Z. RYJÁČEK

# Matchings and cycles in K<sub>1,3</sub>-free graphs

## 1. Introduction

This paper is an abridged version of [7] and [8]. We consider only finite undirected graphs without loops and multiple edges. Let G be a graph with vertex set V(G) and edge set E(G). A spanning subgraph of G will be called a factor of G; a k-regular factor of G will be shortly called a k-factor of G (for k=1, the term perfect matching is also used). We say that a graph (subgraph, component etc.) is odd or even according to whether it has odd or even number of vertices. A 2-matching of G is a factor of G every component of which is a path or a cycle. A 2-matching is called perfect if every its component is an edge or an odd cycle.

Hamiltonian cycle in G is a connected 2-factor, i.e., a spanning cycle. If G has a Hamiltonian cycle, then we say that G is Hamiltonian. Denote by  $|\mathbf{M}|$  the number of elements of a finite set M. We say that G is pancyclic if G contains a cycle of length k for every k,  $3 \le k \le |V(G)|$ . G is said to be panconnected if for every pair of distinct vertices x,y of G and every k,  $d(\mathbf{x},\mathbf{y}) \le k \le |V(G)| - 1$ , there is a path in G with x and y as end-vertices (by  $d(\mathbf{x},\mathbf{y})$  we denote the distance of x, y).

Throughout the paper, we denote for  $M \subset V(G)$  by  $\langle M \rangle$  the induced subgraph on M

and by  $\Gamma(M)$  the set of all vertices in V(G) which are adjacent to at least one vertex in M. For a vertex  $v \in V(G)$ , the induced subgraph N<sub>1</sub>(v,G) =  $\langle \Gamma(v) \rangle$  will be called the neighbourhood of the first type of v in G. We say that an edge  $xy \in E(G)$  is adjacent to v if  $x \neq v \neq y$  and x or y(or both) is adjacent to v. The edge-induced subgraph on the set of all edges which are adjacent to w will be called the neighbourhood of the second type of w in G and denoted by No(v,G). G is said to be locally connected if the neighbourhood  $N_1(v,G)$  of every vertex  $v \in V(G)$  is a connected graph. Analogously, we say that G is No-locally connected, if for every v ∈ V(G) its second-type neighbourhood  $N_{2}(v,G)$  is connected. Obviously, every locally connected graph is No-locally con-

We say that a graph G is  $\underline{K}_{1,3}$ -free, if G contains no copy of  $K_{1,3}$  as an induced subgraph. Evidently, every induced subgraph of a  $K_{1,3}$ -free graph is also  $K_{1,3}$ -free. Finally, if H is a subgraph or a set of vertices of G, then by  $G \setminus H$  we mean the induced subgraph on the set of all vertices which belong to G but not to H.

## 2. Matchings

In [10] Summer proved that every connected  $K_{1,3}$ -free graph with even number of vertices has a perfect matching. Since every induced subgraph of a  $K_{1,3}$ -free graph is  $K_{1,3}$ -free, we easily see that if G is an odd connected  $K_{1,3}$ -free graph on at

<sup>33.</sup> Intern. Wiss. Koll. TH Ilmenau 1988 Vortragsreihe "Graphen und Netzwerke – Theorie und Anwendungen"

least three vertices, then for arbitrary  $x \in V(G)$ , for which  $G \setminus x$  is connected, the even subgraph  $G \setminus x$  has a perfect matching and hence G has an almost perfect matching, i.e., a factor with one vertex of degree 2 and all other vertices of degree 1. From this we see that every  $K_{1,3}$ -free graph on at least two vertices has a 2-matching. Nevertheless, the graphs on Fig. 1 show that a connected  $K_{1,3}$ -free graph with odd number of vertices need not have a perfect 2-matching.



Theorem 1. Let G be a connected  $K_{1,3}$ -free graph with odd number of vertices and suppose that F is a factor of G, each component of which is either a single edge or is odd. Then there exists a factor F' in G such that the only odd component of F' is identical to some of odd components of F and all the other components of F' are single edges.

Theorem 2. Let G be a connected  $K_{1,3}$ -free graph with odd number of vertices. Then the following conditions are equivalent:

- (i) G has a perfect 2-matching,
- (ii) G has a perfect 2-matching with exactly one odd cycle,
- (iii) in G exists an odd cycle C such that each component of G \cdot C is

Corollary. If in a connected K<sub>1,2</sub>-free graph G with odd number of vertices exists an odd cycle C such that G \ C is connected, then G has a perfect 2-matching.

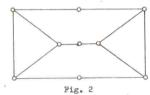
Theorem 3. Let G be a connected  $K_{1,3}$ -free graph with odd number of vertices, let  $|V(G)| \ge 3$ . If G has at most one vertex of degree 1, then G has a perfect 2-mat-

#### 3. Cycles

Oberly and Summer [6] proved that every nontrivial connected, locally connected K<sub>1,3</sub>-free graph is Hamiltonian. Clark [1] strengthened this result showing that under the same conditions, G is vertex pancyclic. Kanetkar and Rao [3] proved that every connected, locally 2-connected K<sub>1,3</sub>-free graph is panconnected. Some other Hamiltonicity results in K<sub>1,3</sub>-free graphs (not using local connectedness-type arguments) can be found in [2], [5], [9].

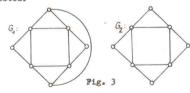
Theorem 4. If G is a connected,  $N_2$ -locally connected  $K_{1,3}$ -free graph with minimum degree  $\delta(G) \ge 2$ , then G has a 2-factor.

Example. The graph on Fig. 2 is a connected  $K_{1,3}$ -free graph with  $\delta(G)=2$  which has no 2-factor.



Let us introduce the following condition.

Assumption (A)  $\epsilon$  G does not contain an induced subgraph H isomorphic to either  $G_1$  or  $G_2$  (Fig. 3) such that  $N_1(x,G)$  of every vertex x of degree 4 in H is disconnected.



Theorem 5. Let G be a 2-connected  $N_2$ -locally connected  $K_{1,3}$ -free graph which satisfies the assumption (a). Then G is Hamiltonian.

Example. The graphs on Fig. 4 and 5 are 2-sommested, N2-locally connected K1,3-free graphs which are not Hamiltonian; the graph on Fig. 4 contains an induced G1

but not  $G_2$  while the graph on Fig. 5 contains an induced  $G_2$  but not  $G_1$ .



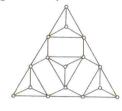


Fig. 4

Fig. 5

Theorem 6. Let G be a 3-connected  $N_2$ -locally connected  $K_{1,3}$ -free graph which satisfies the assumption A. Then G is pancyclic.

Example. The graph on Fig. 6 is a 2-connected  $N_2$ -locally connected  $K_{1,3}$ -free graph satisfying  $\stackrel{\frown}{A}$  which is Hamiltonian but not pancyclic.

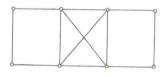


Fig. 6

### References.

- [1] Clark, L.: Hamiltonian properties of connected locally connected graphs. Congr. Numer. 32(1984), 199-204.
- [2] Duffus, D., Jacobson, M.S., Gould, R.J.: Forbidden subgraphs and the Hamiltonian theme. The theory and applications of graphs (Kalamazoo, Mich., 1980), 297-316, Wiley, New York, 1981.
- [3] Kanetkar,S.V., Rao,P.R.: Connected, locally 2-connected K<sub>1,3</sub>-free graphs are panconnected. J. Graph Theory 8(1984), 347-353.
- [4] Lovász,L., Plummer,M.D.: Matching theory. Akadémiai Kiadó, Budapest, 1986.
- Matthews, M.M., Sumner, D.P.: Hamiltonian results in K<sub>1,3</sub>-free graphs.
   J. Graph Theory 8(1984), 139-146.
- [6] Oberly, D.J., Sumner, D.P.: Every connected, locally connected nontrivial

- graph with no induced claw is Hamiltonian. J. Graph Theory 3(1979),351-356.
- [7] Ryjáček, Z.: Hamiltonian circuits in N2-locally connected K<sub>1,3</sub>-free graphs (to appear).
- [8] Ryjáček, Z.: Factors and circuits in K<sub>1.3</sub>-free graphs (to appear).
- [9] Shepherd, F.B.: Claws. Master Thesis, University of Waterloo, Ontario, 1987.
- [10] Sumner, D.P.: Graphs with 1-factors. Proc.Amer.Math.Soc.42(1974), 8-12.

#### Author:

Dr. Zdeněk Ryjáček, CSc.
Department of Mathematics
Technical University of Plzeň
Nejedlého sady 14
306 14 Plzeň
C\*\*echoslovakia