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FACTORS AND CIRCUITS IN K, ;-FREE GRAPHS

ZDENEK RYJACEK

Technical University of Plzei, Plzen, Czechoslovakia

In the paper sufficient conditions are given for the existence of a perfect
2-matching, for the existence of a 2-factor and for the pancyclicity of
a connected K, ;-free graph.

1. Introduction

In this paper we consider only finite undirected graphs without loops and
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
A spanning subgraph of G will be called a factor of G; a k-regular factor of
G will be shortly called a k-factor of G (for k = 1, the term perfect matching is
also used). We say that a graph (subgraph, component etc.) is odd or even
according as it has an odd or even number of vertices. A 2-matching of G is
a factor of G whose every component is a path or a circuit. A 2-matching is
called perfect if its every component is an edge or an odd circuit.

A Hamiltonian circuit in G is a connected 2-factor, i.e.,, a spanning circuit.
If G has a Hamiltonian circuit, then we say that G is Hamiltonian. Denote by
|M| the number of elements of a finite set M. We say that G is pancyclic if
G contains a circuit of length k for every k, 3 < k <|V(G)|. G is said to be
panconnected if for every pair of distinct vertices x, y of G and every k,
d(x, y) < k < |V(G)|—1, there is a path of length k in G with x and y as
end-vertices (by d(x, y) we denote the distance of x, y).

Throughout the paper, for M < V(G), we denote by (M) the induced
subgraph on M and by I'(M) the set of all vertices in V(G) which are adjacent
to at least one vertex in M. For a vertex ve V(G), the induced subgraph
N,(v, G) = {I'(v)y will be called the neighbourhood of the first type of v in G.
We say that an edge xy e E(G) is adjacent to v if x # v # y and x or y (or both)
is adjacent to v. The edge-induced subgraph on the set of all edges which are
adjacent to v will be called the neighbourhood of the second type of v in G and
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denoted by N,(v, G). G is said to be locally connected if the neighbourhood
N,(v, G) of every vertex ve V(G) is a connected graph. Analogously, we say
that G is N,-locally connected if for every ve V(G) its second-type nei,ghbour-
hood N,(v, G) is connected. Obviously, every locally connected graph is
N ,-locally connected. '

. We say that a graph G is K, ;-free if G contains no copy of K 1,3 s an
induced subgraph. Evidently, every induced subgraph of a K, ,-free éraph is
also K, j-free. Finally, if H is a subgraph or a set of vertices of é, then by G\H

we mean the induced subgraph on the set of all vertices which belong to G but
not to H.

2. Matchings

In [11] Sumner proved that every connected K, ;-free graph with an even
number of vertices has a perfect matching. Since every induced subgraph of
a K, y-free graph is also K, ;-free, we easily see that if G is an odd connected
K 3-free graph on at least three vertices, then for any x e V(G) for which G\x is
connected, the even subgraph G\x has a perfect matching and hence G has an
almgst perfect matching, i.e., a factor with one vertex of degree 2 and all other
vert3ccs of degree 1. Hence every connected K, ;-free graph on at least two
vertices has a 2-matching. Nevertheless, the graphs in F ig. 1 show that

a connected K, ;-free graph with an odd number of vertices need not have
a perfect 2-matching.

Fig. 1

LEMMA 1. Let G be a connected K, s-free graph with an odd number of
ver{ices and suppose that F is a factor in G whose each component is either
a single edge or is odd. Then there exists a factor F' in G such that the only odd
component of F' is identical to some odd component of F and all the other
components of F' are single edges.

Proof. Suppose that such a factor F' does not exist and let F” be a factdr
of G”such that (i) every odd component of F” is identical to some component of
F, (i) every even component of F"” is a single edge, and (iii) " has a minimum
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number of odd components. Since |V(G)| is odd, F” has at least three odd
components. Let P be a path in G such that the end-vertices of P are in
different odd components H,, H, of F” and no other vertex of P is a vertex of
an odd component of F” (existence of such H,, H, and P follows from the
connectedness of G).

Denote by N the set of all vertices x for which there exists a vertex y on
P such that {x,y) is a component of F” and let M =V(H,)u V(H,)
U V(P)u N. Then evidently every component of F” either is a subgraph of (M)
or is disjoint from {M). Since |[M| is even and (M) is a connected induced
subgraph of G, (M) has a perfect matching, which contradicts (iii). m

THEOREM 1. Let G be a connected K, y-free graph with an odd number of
vertices. Then the following conditions are equivalent:

(i) G has a perfect 2-matching.

(i) G has a perfect 2-matching with exactly one odd circuit.

(iii) In G there exists an odd circuit C such that each component of G\C is
even.

Proof. (i)=>(ii) follows from Lemma 1.

(ii) = (iii). If C is the only odd circuit of a perfect 2-matching, then G\C has
a perfect matching and thus cannot have an odd component.

(iii)= (i). Choosing a perfect matching in each component of G\C and
adding C we obtain a perfect 2-matching in G. =

Another sufficient condition is given by the following assertion.

THEOREM 2. Let G be a connected K, s-free graph with an odd number of
vertices, and let |V (G)| = 3. If G has at most one vertex of degree 1, then G has
a perfect 2-matching.

Proof. By Tutte’s theorem (see, e.g., [4], Corollary 6.5.1), G has a perfect
2-matching if and only if |['(4)| = |A| for every independent set of vertices A.
Thus, in a connected K, ;-free graph G with no perfect 2-matching there exists
an independent set A such that |I'(4)| < |4|. Since G is K, j-free and A is
independent, every vertex in I'(4) is adjacent to at most two vertices in A.
Hence the vertices in A are contained in at most 2|I'(A)] < 2(|4]—1) = 2]4]| -2
edges and since no vertex has degree 0, necessarily at least two vertices have

degree 1. =

3. 2-Factors and pancyclicity

Oberly and Sumner [6] proved that every nontrivial connected, locally
connected K, s-free graph is Hamiltonian. Clark [1] strengthened this result
by showing that under the same conditions, G is vertex pancyclic. Kanetkar
and Rao [3] proved that every connected, locally 2-connected K ;-free graph
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15 panconnected. Some other hamiltonicity results in K, ,-free graphs (
using local connectedness-type arguments) can -be foundl‘iln [213[55) [8310t
) In [7], the sufficient condition for hamiltonicity from [6] is we’aken,ed' it. is
shown that a_connected, N ,-locally connected K, ;-free graph without ver.t'
of degree 1 is Hamiltonian if it satisfies the foilowing condition: o

G, G,
Fig. 2

ASSUMPTION (A). G does not contain an induced subgraph H isomorphic

to either G, or G, (Fig. 2) such that N G i
g e G or Gy 1(x, G) of every vertex x of degree 4 in

Further, examples are given in [7] showi
i ing that a 2-connected, N ,-locall
c;)nne.cted K, 3-free graph need not be Hamiltonian. In this section \;e shov?/l
that (i) every such graph has a 2-factor, and (i) if G satisfies (A) and is
moreover, 3-connected, then G is pancyclic. ,

THEOREM 3. If G is a connected, N ,-locall
oo > AN g= connected K | ;- i
minimum degree 6(G) > 2, then G has 2a 2-facytor. vafree graph with

Pr.oof Suppose G has no 2-factor and let C be a 2-regular subgraph with
a maximum number of vertices. For each xe V¥ (C) denote by C, the onl
component of C containing x, and by x’, x” the vertices ncighbourinxg xonC ’
Since G is f:onnected, an edge x,u can be found such that ueV(C) whife:
Xo ¢ V(C). Since G is N,-locally connected and 6(G) > 2, we can find a shortest
path P.m N,(u, G) from x, to one of u, u"; we may assume without loss of
generality that P is a path from Xo to ' and that u”¢ V(P). ’

Let the Ifil'.gCSt 2-regular subgraph C and the edge x,u be chosen so that
C has the minimum number of components and, among all such 2-regular
subgraphs, the path P is the shortest possible. Let Xoy Xgy ooy X =t bie; the
ver?xces pf P. By the choice of P, no x;, x ; are adjacent for |i—j| ,>k1 Obviousl
X, is adjacent neither to u’ nor to u”; since {xo, u, u", u} cannot ir.lduce K, 3}’

necessarily u'u” e E(G). Similarly we see that k> 2 ¢
il A 2 2 and at least one of x;

CLAIM 1. At most one vertex on P is nonadi
ki onadjacent to u. If x;, € V(C,), then
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If two vertices x;, x; of P are nonadjacent to u, then for |i—j| = 1 the edge
x;x; does not belong to N,(u, G) and for |i—jl =2, {Xi-1, Xi+1, Xjr1s u}
induces K 3.

Let x,—;€V(C,) and x;,_ ueE(G). Then x,-u¢ E(G), since otherwise,
replacing in C, the path w'uu” by the edge u'u and the edge xj_ X, by the
path x} _,ux,_y, the path P can be made shorter; similarly xi_, u¢ E(G). Since
{Xk—1> Xk—1> Xk—1> u} cannot induce K 3, necessarily x;—;Xi—, € E(G), but
then, replacing in C, the path xi_;X,—1X{-y by the edge xj—;xy-; and the
edge w'u by the path u'x,_ u again makes P shorter.

CLamm 2. x,¢V(C,).

Let, on the contrary, x, € V(C,). Evidently x, is adjacent to neither x| nor
x/ (since otherwise C, can be extended through X,) and since {x}, X7, Xq, X, }
cannot induce K, ;. necessarily x}x7e E(G).

Suppose that x, is adjacent to- u. If [V(C,)| = 4 (ie., x\x{ =u'u"), then,
deleting from C, the edges x,u” and uu/ and adding the path x,x,u and the
edge w'u”, C is extended. Thus the length of C, is at least 5, but then, replacing
in C, the path xjx,x{ by the edge X, x{, the path u'uu” by the edge u'u" and
adding to C a new component {Xg, X, u), we again have a contradiction.
Hence x,u¢ E(G) and necessarily x,ueE(G).

If x, ¢ V(C), then from {x,, X, X;, x,)> we see that xx, € E(G) and C,
can be extended through x,; hence x, € V(C). Similarly, if X, X, € E(C), then
replacing u'uu” and x,x, by w'u” and x,X,ux, gives a contradiction; hence
x,x, ¢ E(C).

Consider C,, (not excluding the case Cy, = C,). At least one of x5, X (say,
x5) is not on P. Since x,u¢E(G) and {x,, x5, u, X,} cannot induce K, 3,
necessarily x5 is adjacent to x, or to u, but in both cases C,, can be extended

through x,.
CLAaM 3. k<3

Ifk = 5, then {x,, X,, W, u} O {X, X5, ', u} induces K; 3; thus k <S5.Let
k = 4. Then, considering {x,, X,, U, uy, we have obviously x,u¢ E(G) and
hence both x, and x; are adjacent to u. By Claim 1, x;¢V(C,) and since
evidently x,€V(C), necessarily C,, # C,. If xjueE(G), then replacing in
C xyx5 and v'u by x3u and x;u/, the number of components of C is decreased;
thus x5u¢ E(G). Similarly xju¢ E(G) and since {x4, x4, u, X5} cannot induce
K, 3, necessarily x5x3€ E(G). If the length of C,, is at least 4, then the
replacement of x3x; x5 by x3x5 in Cy, and of u'u by u'x,u in C, contradicts the
choice of P. Thus C,, is a triangle and considering {x,, X3, ', x3» and
(x5, X3, W, x3) we easily see that, if x4 # X, # x4, then both x5 and x5 must be
adjacent to x,.

By Claim 2, x, ¢ V(C,) and since x,u€ E(G), by the choice of P we have
x, € V(C), ie., C,, # C,; since Cy, is a triangle, also C,, # Cx,. If one of xi,
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x{ (say, x{) is on P (ie., x| = x,), then deleting from C u'u, x,x% and XX, and
adding x5 u', x, x5 and x 14, the number of components of C is decreased; hence
both x| and x{ are not on P. Considering {xg, X1, X1, x,) we see that x} and
x{ are adjacent; from {x,, x}, x,, x,> and {Xg, X, x5, x;> we further deduce
that both x} and x{ are adjacent to X,.

Evidently x, is on C. In the case xj = x, (or, analogously, x = x,), one
can easily obtain a contradiction; thus both x’, and x4 are not on P and from
{xy, X3, X3, X,) We see that x} is adjacent to X3 or to x,. In the first case we
replace in C the edges x,x’ and x;x} by x,x; and X34, while in the second
case we replace x,x} and x,x5 by x,x5 and x)x, for C,, # C,, and u'y,
XXy X7, X,x5 and x3x5 by xjx{, x, x5, X, X3, X34 and x,u for C,, = C,,. In
each case the number of components of C is decreased, a contradiction.

CLAaM 4. k<2

Let, on the contrary, k = 3. Evidently at least one of x,, X, is on C.

If x,¢V(C), then, by Claim 2, Cx, # C,; since obviously x| cannot be
adjacent to x,, we see, considering {Xg> X1, X5, X, that x| is adjacent to X5
but then, replacing x, x by x, x,x} gives a contradiction. Similarly, if x, is not
on C, then, by the choice of P, x,u¢ E(G) and, by Claim 1, x,u€eE(G) and
Cx, # C,. Since obviously x; cannot be adjacent to x, and {%y s X5, 0, %,
cannot induce K, 3, we have x5u’'€ E(G), but then the number of components
of C can be decreased joining together C,, and C,. Thus both x, and x, are on
C and C,, # C,. Considering {x,, x, x¥, xy» we see that x| x{eE(G) and,
similarly, each of x), x{ which is not on P is adjacent to x,.

Suppose that x, is on C,,. Then x,x, cannot belong to E(C) (since
otherwise replacing in C «'u and x,x, by u’'x, and X, xou, C is extended) and
hence both x, and x} are not on P. Since x} is not adjacent to u’ (otherwise
replace u'u, x, x5 and x{ x, x{ by u'x5, x}x{ and XXy xou) and {x,, x5, u', x,}
cannot induce K, 3, necessarily x, x € E(G), but then, replacing u'u, x,x% and
xixyxj by xix{, w'x, and xx,x,u, we again have a contradiction.

Suppose that x, is on C,. By Claim 1, x, is not adjacent to u and hence
x,u€ E(G). Clearly C, has length at least 5 (otherwise replace u'u, x,u” and
xy X1 by xix,, w'u” and x, x,u). If x,x, € E(G), then, replacing X,x5 and x, X}
by x,x; and xx,, the number of components of C is decreased. Thus
x; X2 ¢ E(G), and, similarly, x, x;¢ E(G) (not excluding the cases x5 =u" or
x3 =u'). From this, considering {x,, x5, x4, X,», we have x,x5eE(G), but
then, replacing in C x5x,x3, w'uu” and xx,x] by x,x%u'u” and xjx,x} and
adding to C a new component {Xg, X, uy, C is extended.

Thus C,, # C,, # C,; from {x,, x, u, x,» it then follows that x, is
adjacent to x, or to «, but in the first case,-replacing x, x} and x,x5 by x, x)
and x}x,, the number of components of C is decreased, while in the second
case, replacing w'u, x,x5 and x,x} by u'x3, xix, and x,x,u, C is extended
through x,. Thus, Claim 4 is proved.
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Now, since x, cannot be adjacent to ', i.e., k > 2, by Claim 4, k = 2.. By
Claim 2, x, ¢ V(C,), and since evidently x, € V(C), we have C,, # C,,,. C'onsxdcr
{xq, X, U, X, )t X, can be adjacent to neither x’ nor «’ and .hence x\u eE(G)I,
but then again C can be extended through x, by replacing v'u and x, X}
by xju’ and x,xgu. This contradiction completes the proof. =

Fig. 3

ExampLE. The graph in Fig. 3"is a connected K, j-free N z-loca.lly
connected graph which is maximally non-Hamiltonian (see [9], [10]). De}etmg
intermittent edges gives a connected K, 3-free graph with 6(G) > 2 and without

any 2-factor.

THEOREM 4. Let G be a 3-connected N,-locally connected K, s-free graph
which satisfies the assumption (A). Then G is pancyclic.

Proof. (1) Let r be the smallest integer such that in G there is a circuit of
length r, but none of length r+1; suppose that r <[V(G)|. Then for every
circuit C of length r there exists an edge xyu such that ue ¥(C) and x, ¢ V(C).
Denote by u,, u, the neighbours of u on C. Since G is N ,-locally connected, we
can find a shortest path in N,(u, G) from x, to one of u,, u,; we may assume
without loss of generality that P is a path from x, to u, and that u, ¢ V(P?. Let
the circuit C of length r and the edge x,u be chosen so that t.he path P is the
shortest possible and let x,, X;,..., %, =u, be its vertices. From the
minimality of P we have x;x;¢ E(G) for |i—j| > L.

(2) At least one vertex x; (1 <j < k—1)is on C. Suppose, on the contrgry,
that the only vertex of P lying on C is u; . If x, - ; is adjacent to u, then replacing
in C u,u by u, x,_,u we extend C; hence x,_,u¢ E(G) and thus xk_zuel_"j(G).
Since G is 3-connected, an edge vw can be found such that u, # v # u, v 1s'on
C and w is not on C (otherwise C is a bicomponent of G with biarticu!athn
{u, u}). Let v/, v"" be the neighbours of v on C. If wv’.eI.Z(G), the’?, replacmg in
C v'v by v'wy, C is extended; thus wv' ¢ E(G) and similarly wo” ¢ E(G). Slx.lce
{v', w, v, v} cannot induce K, 3, necessarily v'v” € E(G), but.th‘en, replacing
v'vv” by v'v"” and u,u by u;x;_x,-,u, we have a cor?traélctlop.

(2a) By the minimality of P, every vertex of P which is adjacent to u
is on C.
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(3}(18): the rest of the proof is quite analogous to the proof of the main
lemma of [7] (in part (14), use (2a)), and is therefore omitted. m

Fig. 4

ExAaMPLE. The graph in Fig. 4 is a 2-connected N,-locally connected
K s-free graph satisfying (A), which is Hamiltonian, but not pancyclic.

Summarizing the obtained and some other recent results, we have the
following table.

Let G be a connected K, ;-Iree graph on at lcast three vertices.

If Then References

|V(G)| is even
[V(G)| is odd

G has a perfect matching
G has an almost perfect matching (1]

G has at most 1 vertex

of degree 1 G has a perfect 2-matching

G is N,-locally connected,

8(G) =2 G has a 2-factor

G is N,-locally connected,

3(G) =2, (A) G is Hamiltonian (71

G is N,-locally connccted,

3-connected, (A) G is pancyclic

G is locally connected G is vertex pancyclic [1]
G is locally 2-connected G is panconnected [3]
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