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ABSTRACT

There are many results concerned with the hamiltonicity of K
graphs. In the paper we show that one of the sufficient conditions for
the K, y-free graph to be Hamiltonian can be lmproved using the con-

cept of second-type vertex neighborhood. The paper is concluded with
a conjecture.

1. INTRODUCTION

In this paper we deal with finite simple graphs. For a vertex v of a graph

= (V(G). E(G)), the neighborhood of v, defined in the obvious sense, i.e.,
as the induced subgraph on the set of all vertices that are adjacent to v, will be
called the neighborhood of the first type of v in G and denoted by N(v, G), or
briefly, N,(v). We say that an edge xy € E(G) is adjacent to v if x # v # y
and x or y is adjacent to v. We define the neighborhood of the second type of v
in G (denoted by N,(v, G) or, briefly, N,(v)) as the edge-induced subgraph on
the set of all edges that are adjacent to v (this concept was first introduced in
[10]). Many questions that have been investigated for the neighborhoods of the
first type can also be studied for the second type neighborhoods (see, e.g.,
(1], [121, {71, [8D).

We say that G is locally connected if for every v € V(G), the neighborhood
N,(v) is a connected graph. Analogously, G is N,-locally connected, if the
second-type neighborhood N,(v) of every vertex v € v(G) is connected. Obvi-
ously, every locally connected graph is N,-locally connected.

Denote by d(v) the degree of a vertex v € V(G), by 8(G) the minimum de-
gree of G, and by n the number of vertices of G. The following theorem gives
sufficient conditions for G to be locally and N,-locally connected (proofs can be
found in [1} and {7}):
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Theorem. (a) If for every pair of vertices x,y of G,

dx) + d(y) >

w| s

(n—=1),

then G is locally connected.
(b) If for every pair of nonadjacent vertices x,y of G,

dix) +d(y) =z n,

then G is Ny-locally connected.

Corollary. (a) G is locally connected provided 8(G) > 2/3(n — 1).
(b) G is N,-locally connected provided 8(G) = n/2.

We say that G is K, ;-free if it does not contain a copy of K, ; as an induced
subgraph. Many results show that K| ,-frec graphs have, under some additional
conditions, some Hamiltonian properties (see, e.g., [2], [3], [4], [6]). Oberly
and Sumner [6] proved that every connected, locally connected K, ,-free graph
on at least three vertices is Hamiltonian. Clark {2] showed that under the same
conditions G is vertex pancyclic. In the present paper we find sufficient condi-
tions for G to be Hamiltonian that are weaker than those in [6]. Some further
results concerning factors and pancyclicity of K, ;-free graphs can be found

in [9].

2. MAIN RESULT

Lemma. Every non-Hamiltonian connected N,-locally connected K, ;-free
graph with 8(G) = 2 contains an induced subgraph H such that H is isomor-
phic to either G, or G, (see Figure 1) and the first-type neighborhood N,(v, G)
of every vertex v € V(H) of degree 4 in H is disconnected.

Proof. Let G be a connected N,-locally connected K, ,-free graph without
vertices of degree 1 that is not Hamiltonian.

(1) For every longest circuit C in G, an edge xqu can be found such that u is
on C while x, is not on C. Denote by u,, u, the vertices neighboring v on C.
Since G is N,-locally connected, we can find a shortest path P in N,(«) from x,
to one of u, or u,; we may assume without loss of gencrality that P is a path
from x, to u, and that u, & V(P). Let the longest circuit C and the edge xyu be
chosen so that the path P is shortest possible and let xg,x,,...,x, = u, be its
lverticels. From the minimality of P it follows that no x;, x; can be adjacent for
i—j|>1.
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FIGURE 1

(2) At least one of x;’s (j = 1,...,k — 1) is on C since otherwisc deleting
from C the edge uu and adding P and the edge xou we could obtain a circuit
that is longer than C. Specifically, we have k = 2.

(3) If u,, u, were nonadjacent, then since {u,, u,, Xo, u} cannot induce K ;,
necessarily xou, € E(G) or xgu, € E(G), which is a contradiction with (2) and
with the choice of P. Hence uus € E(G).

(4) We prove that x,_, is not adjacent to u: suppose, on the contrary, that
Xt € E(G). If x,_, were not on C, then, replacing the edge u,u by the path
u,x,_,u, we should obtain a circuit longer than C; therefore x;_, is on C.

For every vertex x on C, x # u, we denote by x', x" the vertices neighboring
x on C. If ux/_, € E(G), then replacing in C the edge x;_,x,_, by the path
xi_,ux,_, and the path w,uu, by the edge u,u, we should obtain a circuit C’' of
the same (maximal) length as C, and such that if we denoted | = x,_, then u,
should be a neighbor of  on C' and in N,(1) should exist a path from x, to u;
shorter than P but this is a contradiction with the choice of C and P. Similarly,
we show that x/_, and u cannot be adjacent. Since {x;_i, Xy, u,X,_;} cannot
induce K, 5, necessarily x;_.x;_, € E(G); replacing in C the path x;_,x,_\x}_,
by the edge x/_,x/_, and the edge u,u by the path ux, ,u we again obtain
a contradiction.

(5) The only vertex of P that is nonadjacent to u is x,_,: if another x;
(1 £ j < k — 1) were nonadjacent to u, then necessarily j = k — 3 (since oth-
erwise the edge x,_,x;_s should not be in Ny(w)), and by (1). {x;_1,x—2, X, u}
should induce K, ;.

(6) k = 3. If k > 3, then according to (1) and (5), necessarily {x,, x,, 4, 4}
should induce K, . Since by (2) k = 2, it remains to prove that k # 2.
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Suppose that &k = 2. Evidently x/x, & E(G), since otherwise replacing in C
the edge x/x, by the path x1%ox, lengthens C; similarly, X% & E(G) (we do
not exclude the case whep xj or x{ is identical with one of Uy, uy). Since

{x,’,x’,’,xo,x,} cannot induce X ,, necessarily x (x} € E(G).This again enables
us to make C longer. Hence we have V(P) = {xo,x,,xz, ut, xu € E(G), and
Yo & E(G) (see Figure 2).

(7) x, is on C, for if x, ¢ V(C), then by (2) x,

€ V(C); since Xy Is adjacent
to neither x/ nor x7 (the

proof is analogous to that in (6)) and {xo, x{, x}, x,}
cannot induce X, ;, necessarily x x| € E(G) and then deleting from C the path
xix,x) and the edge u,u and adding the edge x x| and the path ux,x xou we
obtain a circuit that js longer than C.

Similarly, x, € V(C), for otherwise necessarily x,x} ¢ E(G) (since other-
wise replacing in C the edge x,x; by the Path x,x,x} can C be made longer) and
analogously x 7 ¢ E(G); since {x,,x3, %%, x,} cannot induce X, ., necessarily

XX, € E(G), but this again enables us to make C longer.

(8) We can assume without loss of generality that x x, € E(C) (ie., x! =

X5
and xj = x)). Suppose, on the contrary, that xx, ¢ E(C). Then, since Xy is ad-
Jjacent neither to X{ nor to xy (proof is similar to that in (6)), necessarily

XXy € EG). If x3x5 € E(G), then replacing in C the path x X
xix{, the path X3x,x5 by the edge xix7 and the edge u,u by
a circuit should arise that is longer than C; therefore X3x3 € E(G). Since
{x,,xz’,xg’,xz} cannot induce K, 3, x, is adjacent either to x} or to x4, In the first
case replacing in C the path x{x.x{ by the edge x x7 and the edge x;x, by the
Path x;x x, we obtain a circuit C’ of the same length as C and such that
X%, € E(C"); the second case is similar. Hence one of X{, xy (say, xY) is iden-
tical to X, and one of x;, x4 (say, x3), is identical to X

X7 by the edge
the path y 12X Xou,

(9) Evidently XX, € E(G) since X| can be adjacent n
to u (proof is easy) and {x{, 4, x,,x,} cannot induce K
lows that X5 # u, and X| # u, # x; (see Figure 3).

either to x, (by (6)) nor
1,3 from this it easily fol-

FIGURE 2
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FIGURE 3
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FIGURE 4
: FIGURE 6
to prove that the first-type neighborhoods of the vertices u, x,, x,, and u,
are disconnected.

(16) We prove the following two assertions:
(14) N,(u) is disconnected since if it were connected then we could show step

(A) If a vertex y € V(P,) is adjacent to both x; and u, then the vertices y’,

by step in the same way as in the proof of the main theorem of [6] that C is »" neighboring y on C arc .adjacent. )

not maximal. (B) If a vertex v € V(P,) is adjacent to both x| and x, then the vertices y', y"
ueighboring y on C arc adjacent.

(15) The disconnectedness of N,(x,) can be verified in the same way as in ; . : -
(14) considering x,; instead of u and x|, x, instead of u,, u,. f I.’roof of (). Froml(B) it fOI.IOWS that y cagmot s 1 OF i, bedae 3 d1v1d.es
) ! P, into two subpaths P, (containing u,) and P} (containing x;). We can easily

see that each of these paths must have at least two edges. Let y' E,V(P}),
V' € V(P?) be the neighbors of y on C. The vertex y’ cannot be adjacent to x,
since otherwise deleting from C the edges y'y, x|x,, X;X,, and uu, and adding
the edges y'x}, yu,, x|x,, and the path x x,u we would obtain a circuit that is
longer than C. In the same way we show that y" cannot be adjacent to x; and
since {V',", x,, y} cannot induce K, ;, necessarily y'y" € E(G).

The proof of (B) is similar and is left to the reader.

TS e

(17) We prove that N,(x,) is disconnected; suppose, on the contrary, that
N\(x,) is connected. Since both x,x| and xju, are in N,(x,)}, there is a path in
N\ (x,) that joins one of x,, x; with one of x;, u,. Let O be the shortest path

in N\(x,) from x, or x| to x5 or u, and denote by y,,y;,
(ie..yy=x ory, =

., Y, its vertices
xjand y, = x; ory, = ;). From the minimality of Q it
follows that no y;, y; are adjacent for li = j| > 1 and hence p = 3 (otherwise
{¥0 Y2, ¥,.%,} should induce K, 3). On the other hand, p Z 2, since by (13)
none of x,, x| can be adjacent to any of x;, u,. Hence citherp = 2 or p = 3.

(17a) Consider the case p = 2. Evidently y, € V(C) since otherwise C could
FIGURE 5 be extended through y,; similarly, the neighbors y{, y} of y, on C cannot be ad-
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Jacent. Further, if v, were nonadjucent to any of x,, x| (say, x,) and simulta-
neously to any of x3, u, (say, «,), then {x,, y,, 4, x5} should induce K, ;. Hence
¥y is adjacent either to both x| and x1, or to both 1, and x}. Since y|, y/ cannot
be adjacent and y, & M, we scc (using (16) (A) and (B)) that in the first case
¥, € V(P)) while in the second case y, € V(P,). Hesice we have the following
two possibilities:

(1) v, is on P, and is adjacent to both x, and x!.

(i) », is on P, and is adjacent to both x} and «,.

Case (i). Since y, € V(P)), it divides P, into two subpaths P} (containing
u,) and P7 (containing x!), each of them having evidently at least two edges.
Let y; € V(P)), y| € V(P?) be the neighbors of y, on C. Since {y;, ", x,. v}
cannot induce K, 5 and y{, | cannot be adjacent, necessarily y|x, € E(G)
or yix, € E(G); simultaneously y, is adjacent to either u, or x}. In each of

these four cases we can easily construct a circuit that is longer than C (for
yix, € E(G) and y,u, € E(G)—see Figure 7).

Case (ii). This implies a contradiction in the same way as the preceding
one (details are left to the reader) and hence p # 2.

(17b) Suppose that p = 3, i.e., the vertices of Q are y,, y,, Y2, ¥1 (¥, is one of
xy; Xy and yy is one of u,, x3). Then y, is adjacent to both x, and x|, and y, is
adjacent to both x; and u, since if, e.g., y.x, & E(G), then {x,y,, u,, x,} would

FIGURE 7
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induce K, ;; other cases are similar. We can therefore assume without loss of
generality that vy = x| and vy = x3. Now, obviously, y;, € V(C), since other-
wise C could be extended through y,; similarly, y, € V(C). The neighbors y!,
¥y of ¥, on C cannot be adjacent since otherwise we could replace in C the path
viv;y7 by th edge v v| and the edge x;x, by the path x| y,x,, and would have
obtained the (impossible) case p = 2. Similarly, v3y5 & E(G). From this and
from (16) (A) and (B) we conclude that v, € V(P)) and y, € V(P,).

Denote again by P}, P} the subpaths of P, determined by y,, and by y;, v}
the neighbors of y, on them: analogously, define the subpaths P} and P3 of P,
and the vertices y,, y5 on them. Excluding the cases y| = x|, yy = x}, and
¥> = u, and observing induced K, ; on {y{, v/, x,.y,} and on {y}, ¥}, X5, y:} we
conclude after some considerations that are similar to those in (17a) that each of
these cascs Icads to the contradiction. Therefore, N,(x,) is disconnected.

(18) The disconnectedness of N,(u,) can be verified analogously using u, in-
stead of x, and the edges x,x; and wuu, instead of x,x] and u,x!. '

Theorem. Let G be a connected, Ny-locally connected K, ,-free graph with-

out vertices of degree I, which does not contain an induced subgraph H iso-

morphic to cither G, or G, (Figure 1) such that V,(v,G) of every vertex x of
degree 4 in H is disconnected. Then G is Hamiltonian.

The proof follows immediately from the lemma.

We say that G is locally quasiconnected if, for each xy € E(G), either N(x)
or ¥,(y) is connected (this concept was introduced by Nebesky [5]).

Corollary. Let G be a connected, N--locally connected K, ;-free graph with-
out vertices of degree 1, which satisfies one of the following conditions:

(i) the induced subgraph of G on the set of all vertices v € V(G) with dis-
connected N(v, G) has no induced circuit of length 4,
(i) G is locally quasiconnected.

Then G is Hamiltonian.

Examples. The graphs in Figures 8 and 9 are connected, N,-locally con-

nected K, y-free graphs with 8(G) = 3 that are not Hamiltonian; the graph in
Figure 8 contains an induced G, but not G,, while the graph in Figure 9 con-
tains an induced G, but not G,. The graph in Figure 10 satisfies the assumptions
of the theorem and is Hamiltonian but not vertex pancyclic. Also the graph of
Figure 10 fails to satisfy either condition of the above corollary.

We conclude the paper with a conjecture.

Conjecture.

Every 3-connected N,-locally connected K, ;-free graph is
Hamiltonian.
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