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Abstract
Ryjacek, Z., N,-locally disconnected graphs, Discrete Mathematics 121 (1993) 189-193.

The edge-induced subgraph on the set of all edges of a graph G that are adjacent to a given vertex x is
called the neighbourhood of the second type of x in G and is denoted by N ,(x, G) (an edge yz is said
to be adjacent to x if y#x#z and y or z is adjacent to x). A graph G is N,-locally disconnected if
N,(x, G) is disconnected for every vertex x of G. The main aim of the present paper is to find the
maximum size of an N,-locally disconnected graph of a given order.

1. Introduction

Graphs with prescribed properties of vertex neighbourhoods have been the subject
of study of many papers in recent years. In the present paper we consider the
maximum size of a graph of a given order in which all second-type neighbourhoods of
vertices are disconnected. An exact value is found in the case of planar graphs and
estimates are given in the general case.

We consider only finite undirected graphs without loops and multiple edges. The
neighbourhood of a vertex xeV(G) of a graph G=(V(G), E(G)) defined in the
obvious sense, i.e. as the induced subgraph on the set of all neighbouring vertices, will
be referred to as the neighbourhood of the first type of x in G and denoted by N (x, G).
We say that an edge yzeE(G) is adjacent to a vertex xe V(G) if y#x##zand y or z (or
both) is adjacent to x. The edge-induced subgraph on the set of all edges that are
adjacent to x will be called the neighbourhood of the second type of x in G and
denoted by N,(x,G) (this concept was first introduced in [4] and studied e.g. in
[1,3,5,6]).

We say that G is locally disconnected (N,-locally disconnected) if N 1(x,G)
(N,(x,G)) is a disconnected graph for every xeV(G) .

In [2] the authors showed that the asymptotic behaviour of the maximum size of
a locally disconnected graph is the same as the size of the complete graph of the same
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order. In [ 7] the exact value of this maximum size is found in the special case of planar
graphs. The main aim of the present paper is to study these questions in the sense of
the second-type neighbourhood.

Clearly, the cycle C, is an example of an N,-locally disconnected graph for every
n=5; it is easy to see that there is no N »-locally disconnected graph of order n<4. For
nz=5, we denote by t(n) the maximum size of an Nj-locally disconnected graph of
order n and by t,(n) the maximum size of a planar N ,-locally disconnected graph of
order n. Since every N 2-locally disconnected graph is clearly also locally disconnected,
the values of t(n) and tp(n) are expected to be lower than those in [2,7].

2. Planar graphs

Denote by | a | the integer part of a real number q, i.e. the largest integer that is not
greater than a.

Theorem 2.1. Let n be an integer, n>=5. Then

t(n)= (11n—=36)  for n=1(mod 5),
A= L(11n—30) | otherwise.

Throughout the proof, we assume that for a planar graph G its fixed embedding
into the plane is chosen. We denote by f the number of faces of G and by f; the
number of its i-gonal faces, i= 3, ...; by a large face we mean a face that is at least
pentagonal. We say that G has a property P if every vertex xe V(G) is either incident at
least twice to some large face of G (if x is a cutvertex of G) or is incident to at least two
large faces of G. Clearly, every planar N 2-locally disconnected graph has the property
P. We first prove the following auxiliary assertion,

Lemma2.2. Let G be a connected planar graph of order n and size m having the property
P and such that f;=0 for i=4 and for i>8. Then

m<%(11”"‘30)‘“%f6“%f7-

Proof. From Euler’s formula, n—m+ f=2, we have
m=n+f3+fs+fs+f,— 2.

Obviously, 2m=3f, + 5fs+6fs+7f; and therefore
m=3n—6—2fs —3f; —4f..

The property P yields

2n<5fs + 606+ 715,
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which proves the lemma. U

Proof of Theorem 2.1. (a) Let G be a planar N,-locally disconnected graph of order
n and the maximum size m=t4n) . Then G is connected (since it is maximal) and has
the property P (since it is N,-locally disconnected). Further, if there is a face in G that
is at least octagonal then new edges can be introduced in such a way that the face
splits into at most heptagonal large faces. The resulting graph has at least m edges and
fulfils the assumptions of the lemma, from which we have

m<%(11n—30).

(b) Let now n = 1(mod5), ie. n = 5k+1 for some k=1 and let G be a planar
N ,-locally disconnected graph of order n and size m=| $(11n—30) |=11k—4. Clearly,
f; = Ofori = 4 and i>8 since otherwise the same construction as in part (a) of the
proof yields a contradiction. Thus, by the lemma,

m=11k—4<3(11n —30)—2 fo—L1fr=11k——2fs—1fs
from which necessarily fy=f,=0. Euler’s formula, f=f;+fs=2-—n+m, then yields

f3+f5=6k_3:

Gy Gg G

Fig. 1.
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from which and from the obvious equality,
3f3+5s=2m=22k -8,

we have
2fs=4k+1,

which contradicts the fact that f5 is an integer.

Hence, we have proved that if n=1(mod 5) then every planar N,-locally discon-
nected graph of order n has at most 11k—5=%(11n — 36) edges.

(c) It remains to prove that for every n>5 there is a planar connected N ,-locally
disconnected graph G, of order n and a given maximum size. For n =5,6 we
put G,=C,, forn=7,8,9,10,11 the graphs G, are shown in Fig. 1; for n>11, we con-
struct the graph G, by recursively replacing one pentagonal face of G, s by the graph,
which is shown in Fig. 2. It is easy to see that the resulting graphs have required
properties. [

3. General case
Denote by 4(G) the maximum degree of G.

Theorem 3.1. Let G be an N,-locally disconnected graph of order n. Then

A(G)<~g.

Proof. Suppose, on the contrary, that there is a vertex ve V(G) of degree d(V)= n/2.
Denote by M the set of all neighbouring vertices of v and put M=M u{v} and
N=V(G) — M. By the assumption, |M|>|N|. If xeM is an arbitrary vertex, then its
neighbourhood N,(x, G) contains the edges vy for all yeM, y#x and from the
disconnectedness of N,(x, G) it follows that there is a vertex ze N the only neighbour of
which in M is x. Since x is arbitrary, we have | N|>| M|, which is a contradiction. [J
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Theorem 3.2. Let n>=5 be an integer. Then
tn—D(n+35<t(n)<in(n—1) ifnis odd,

Tn(n+2)<t(m)<in(n —2) if n is even.

Proof. (a) Let G be an N,-locally disconnected graph. From Theorem 3.1 we have
A(G)<(n—1)/2 if n is odd and 4(G)<(n—2)/2 if n is even. Hence,

{%n(n—- 1) if nis odd,

1 d(v)<in4(G) < oo
m=3 Z (v)<3n4(G) i.n(n-_z) if n is even.

veV(G)

(b) To prove the lower bounds for ¢(n), we construct a graph G, of order n by the
following construction.

(o) n is even. If we take the disjoint union of an arbitrary graph H of order n/2 and
of its complement H such that both H and H have no vertices of degree 0 and join the
pairs of corresponding vertices of H and H by n/2 new edges then the resulting graph
of order n is N,-locally disconnected and has §n(n+2) edges (for n = 8 and H=C,,
see Fig. 3).

(B) nis odd. If we take the disjoint union of the complete graph K,_ 1y, and of the
star Ky (»-1y2 and join every vertex of the complete graph with one vertex of degree
1 of the star then we obtain an N,-locally disconnected graph of order n having
L(n—1)(n+5) edges (for n=9, see Fig. 4).
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