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ABSTRACT

We say that G is almost claw-free if the vertices that are centers of
induced claws (Kj 3) in G are independent and their neighborhoods
are 2-dominated. Clearly, every claw-free graph is almost claw-free.
It is shown that {i) every even connected almost claw-free graph has
a perfect matching and (ii) every nontrivial locally connected K 4-free
almost claw-free graph is fully cycle extendable. ® 1994 John Wiley &
Sons, Inc.

1. INTRODUCTION

Throughout the paper, a graph will be a finite, undirected graph G =
(V(G), E(G)) without loops and multiple edges. We say that a graph G
is even if it has even number of vertices; otherwise, we call it odd. If
M C V(G), then (M) denotes the induced subgraph on M, G\M stands for
(V(G)\M), and co(G\M) denotes the number of odd components of G\M.
The square G* of G has V(G?) = V(G) and E(G?) = {uv|uv € E(G)
or ux € E(G) and xv € E(G) for some x € V(G)}. The three-edge star
K, 5 will be called the claw and the complete tripartite graph K 1,3 will be
referred to as the crown (see Figure 1). If F is a graph, then we say that
G is F-free if for every induced subgraph H of G we have H # F (where
= denotes isomorphism).

A set A C V(G) is independent if any x,y € A are nonadjacent. The size
of a maximum independent set in G will be denoted by @(G) and referred
to as the independence number of G. We say that a set B C V(G) is a
dominating set if every vertex of G belongs to B or has a neighbor in B. The
size of a minimum dominating set of G will be called domination number of
G and is denoted by ¥(G). If v(G) < k, then we say that G is k-dominated.
A universal vertex is a vertex that is adjacent to all the other vertices of G.
Clearly, G is 1-dominated if and only if G has a universal vertex.
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The claw The crown
FIGURE 1

A 1-factor of G will be referred to as a perfect matching. We say that G

is hamiltonian if G has a spanning cycle; G is pancyclic if for every m,

3 = m = |V(G)], there is a cycle of length m in G; G is vertex pancyclic

if for any vertex x € V(G) and for every m, 3 = m = |V(G)I, there is a
cycle of length m containing x. Finally, G is said to be fully cycle extendable
(see [3]) if every vertex of G lies on a triangle and for every nonhamiltonian
cycle C in G there is a cycle C' in G such that V(C) C v(C') and
veHl = Iv(o)l + 1.

If x € V(G), then by the neighborhood of x in G (denoted by N(x,G))
we mean in this paper the induced subgraph on the set of all vertices that are
adjacent to x. If N(x,G) is connected (k-connected) for every x € V(G),
then we say that G is locally connected (or locally k-connected). Similarly,
G is said to be locally claw-free ot locally hamiltonian if N(x, G), for every
x € V(G), is a claw-free or a hamiltonian graph, respectively; G is locally
k-dominated if y(N(x,G)) =< k for every x € V(G).

Claw-free graphs are known to have many interesting properties and have
been subject of study of many authors in recent years. The following theorem
appeared in [4] and [8].

Theorem A. Every even connected claw-free graph has a perfect matching.

In [5], Oberly and Sumner proved that every connected, locally connected
claw-free graph G on at least three vertices is hamiltonian. Clark [2] proved
that, under the same conditions, G is vertex pancyclic. Hendry [3] observed
that Clark essentially proved the following stronger result.

Theorem B. If G is a connected, locally connected claw-free graph on at
least three vertices, then G is fully cycle extendable.

Some further strengthenings of these results can be found in [6] and [7].

Our main goal is to extend Theorems A and B to a certain superclass of
the class of claw-free graphs that admits some induced claws.

2. PROPERTIES OF ALMOST CLAW-FREE GRAPHS

It is easy to see that G is claw-free if, and only if, a(N(x, G)) = 2 for every
x € V(G). This fact gives a motivation for the following definition.
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We say that a graph G is almost claw-free if there is a (possibly
empty) independent set A C V(G) such that a(N(x,G)) =2 for x &€ A
and y(N(x,G)) = 2 < a(N(x,G)) for x € A. Equivalently, G is almost
claw-free if G is locally 2-dominated and the set of all centers of induced
claws is independent.

Since y(H) = a(H) for every graph H, every claw-free graph is almost
claw-free.

Proposition 1.

(i) A graph G is locally claw-free if and only if G is crown-free.
(ii) Every almost claw-free graph is locally claw-free.

Proof.

(i) If a vertex u centers and induced claw ({u,x,y,z}) in N(v,G),
then ({u, v,x,y,z}) is an induced crown in G. Conversely, for every
induced crown in G, one of its vertices of degree 4 centers a claw in
the neighborhood of the other one.

(ii) If G contains an induced crown, then its vertices of degree 4 are
adjacent and both of them center an induced claw; consequently, G
is not almost claw-free.

Example. The graphs in Figure 2 and Figure 5 are examples of locally
claw-free graphs that are not almost claw-free.

Corollary 2. If G is almost claw-free, then y(N(x,G)) = 2 for every
x € A.

Proof. Let y(N(x,G)) = 1foran x € A and let u be a universal vertex
in N(x,G). As x € A, there is an induced claw centered at x, but then its
vertices together with the vertex u induce a crown in G.

Corollary 3. Every almost claw-free graph is K s-free.
Proof. If there is an induced K s centered at a vertex x € A then there is

a neighbor of x that is adjacent to at least three of its endvertices (otherwise
N(x,G) cannot be 2-dominated) but then we again have an induced crown.

FIGURE 2
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Example. The graph depicted in Figure 6 is an almost claw-free graph
that is not Kj 4-free.

The following result appeared in [1].

Theorem C. If G is a k-connected claw-free graph (k = 2) with a(G? =
k, then G is hamiltonian.

From Theorem C we can easily deduce the following two assertions.

Corollary 4. If G is a k-connected claw-free graph (k = 2) with v(G) =
k, then G is hamiltonian.

Proof. 1f G is not hamiltonian, then we can choose a set S C V(G),
|S| = k + 1, which is independent in G2. Let D be a minimum domi-
nating set in G. Since |D| = k, there are vertices i, U2 €Sadde&eD
such that du, € E(G) and du, € E(G), which implies uju; & E(G?),
a contradiction.

Proposition 5. Every locally 9_connected almost claw-free graph is locally
hamiltonian.

Proof. Follows immediately from Proposition 1 and from Corollary 4.

3. PERFECT MATCHINGS
The following theorem extends Theorem A.

Theorem 6.  Every even connected almost claw-free graph has a perfect
matching.

Proof. Let G be an even connected almost claw-free graph without any
perfect matching. We make use of the following statement, which was proved
in [9].

Theorem D. If G is an even connected graph that does not have a perfect
matching, then there is a set S C V(G) such that co(G\S) > |S| and
every vertex of § is adjacent to vertices in at least three odd components
of G\S.

Let S C V(G) have the properties given in Theorem D. Then every
vertex of § centers an induced claw and, since G is almost claw-free, S
is independent. Thus, for any x € S, N(x,G) has at least 3 components,
which contradicts the fact that G is locally 2-dominated.



ALMOST CLAW-FREE GRAPHS 473

Examples. The graphs in Figure 2 show that Theorem 6 fails if G is only
locally 3-dominated, the set A is not independent, or G is only locally
claw-free (& crown-free).

4, HAMILTONICITY
The following theorem extends Theorem B.

Theorem 7. Every connected, locally connected K 1,4-free almost claw-free
graph on at least three vertices is fully cycle extendable.

Proof. Since every vertex of G lies on a triangle, it is sufficient to prove
that for every cycle C of length m = |V(G)| — 1 there is a cycle C' of
length m + 1 such that V(C) C V(C"). Throughout the proof, we suppose
that for every cycle C C G, one of its orientations is chosen, and for any
u € V(C), we denote by u~ and u* the predecessor and successor of u on
C, respectively. For u,v € V(C), uCv, or uCv denotes the u, v-arc of C
with the same or opposite orientation with respect to the orientation of C;
if u = v, then we define both uCv and uCv as a single vertex. Whenever
vertices of an induced K 3 or K 4 are listed, its center is always the first
vertex of the list.

The proof proceeds in a series of steps.

1. We show that for every cycle C C G there are vertices w € V(O\A
and x & V(C) such that xw € E(G). Indeed, by the connectedness of G,
there are v € V(C) and x & V(C) such that xv € E(G). Since G is locally
connected, we can find a shortest path @ in N(v,G) joining x to one of
v, v*. Let vy be the vertex consecutive to x on Q. Then v, € V(C)
and v;v € E(G); we denote by w that of the vertices v, v; that is not
in A.

2. Let a cycle C C G and the vertices x, w be chosen in such a way that,
among all cycles with vertex set V(C), the path @ that joins x inN(w,G) to
one of w—,w* (say, w*) is shortest possible and suppose that C cannot be
extended through x. As xw™~ & E(G) and xw™ & E(G) (otherwise we can
extend C) and w cannot center an induced claw, we have w-wt € E(G).

Denote by x = X0, X1s .+ . Xie» Xp+1 = w the vertices of Q. By the mini-
mality of @, x; € V(C) for 1 =i < k and x;x; & E(G) for |i — jl = 2.
Considering induced claws centered at w, we have k = 2; on the other
hand, trivially & = 1.

3, Suppose first that k = 2. Obviously xw~ & E(G), and by the mini-
mality of Q, xx, & E(G); as {w,x,w™,xz) # Ky 3, wehave w™ x; € E(G).
Thus, by the symmetry, we can suppose without loss of generality that
x1 € x5 Cw™ (see Figure 3).
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FIGURE 3

We consider the following cases.

Case Cycle C
wt = x; wx,Cw ™ wtw
x5 %5 € E(G) wx,w* Cxz x5 Cw
xw € E(G) wx,Cw wtCxyw
x> w € E(G) wxs Cw~wT Cxaw

In each of these cases, x, and w are consecutive on C; and the path
0; = {x,x1, %) is a x,C-path in N(w,G) with [V(Q1)] < [V(Q)], which
contradicts the minimality of Q. Consequently, neither of these possibilities
can occur and hence (xs, x5, x5 ,w) = Ki,3, which implies x; € A. Since
A is independent, we have x; & A and hence obviously x; xi € E(G).
Now we can easily see that x5 #+ x; and xi # w~ since otherwise the
cycles wazw_-C_xfr x5 x1xw and wCx| x1 x1xw extend C. We now consider
(xz,x{,x;,xl,w“).

Case Cycle C' of Length [V(C)| + 1
uw” € E(G) wafxfr_Cw"xlxw
x1x2 € E(G) wxxlx{Cerszxfxf“gw
x1xs € E(G) wxx1x; Cxp x; Cw ™ x,Cw
w x, € E(G) wxxx2Cxi xi Cw ™ x3 Cw

Since also x;x; & E(G) and (x9, %7 , %3 ,x1, W) % Ky 4, we have
w™x; € E(G). But then, as obviously xxi & E(G), xx, & E(G), x1 &
A, and (x1,x, X1 ,x2) # Ky,3, necessarily xx7 € E(G) and the cycle
wa2x1+ Cw‘x{r Cxxw again extends C. This contradiction proves that

k # 2 and, hence, by (2), k = 1.
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4. We easily observe that xi # w™, x{ # w*, xx; € E(G) and
xxi & E(G). If x{ xi € E(G), then the cycle wxx;wt Cxi x7 Cw extends
C; therefore also xix; & E(G), which implies that (x,xi,x),x) =~
K13, and consequently, x; € A. Moreover, as obviously xw* & E(G)
and xiw* & E(G) (otherwise the cycle wxx;Cw*x; Cw extends C)
and since {xi,xi,x;,w",x) # K4, we have xiw"™ € E(G) (see
Figure 4).

5. We show that the vertices x; and x; have a common neighbor
d € N(x;, G). If, on the contrary, no such veriex exists, then, since N(x;, G)
is 2-dominated and x € N(x;,G), there is a vertex u € N(x;, G) that is
adjacent to x and to one of X, X1 (say, x1; the second case is similar).
If u & V(C) then we can extend C replacing the edge x;x; by the path
xuxy; thus u € V(C). As ux; € E(G) and x;, € A, u cannot center a claw
and, consequently, #~u™ € E(G); but then, since obviously x; # u # x1,
the replacement of u uut and x;x{ by u u* and x1xux; extends C.
Hence x; and x; have a common neighbor 4 € N(x;, G) and, obviously,
d e v). :

6. Suppose that d € w¥Cx{ and consider {(d,d™,d*, x).

Case Cycle C' of Length |V(C)| + 1
d~d* € E(G) wxx;w* Cd~d”* Cxy dxi Cw
d™x; € E(G) wxx;d"Cw¥x; Cdx; Cw
d*x, € E(G) wxx d* Cxi wtCdx; Cw

X7 xq

FIGURE 4
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As each of these cases yields a contradiction and {d,d”,d",x1) # Ky 3,
necessarily d € x Cw™.

7. We now consider (w*,x;,w™,w*"). As clearly wtt #x,wwtt &
E(G) (otherwise wxx,Cw~wr+Cx; whw extends C) and wh,x, w7,
wtt) % K 3, we see that xyw~ € E(G) or uwtt € E(G).

If x;w~ € E(G) then, since {xy,x1,x1,w™,x) # Ky 4, we have xwm €
E(G) and, observing (d,d~,d*,x;), we have the following possibilities:

Case Cycle C' of Length |V(C)| + 1
d-d* € E(G) xwCxi dxi Cd—d*Cw™x1x
d~x € E(G) xwCxi dCw™x{ Cd ™ x1x
d*x; € E(G) xwCx; dCxiw Cd*x1x.

Thus, {d,d”,d",x;) = K3, which is a contradiction. Hence we have
x;w~ €& E(G) and, consequently, xw** € E(G), which implies wtt €
N(xl, G)

8. Similarly as in (5) we can show that x and w** have no com-
mon neighbor in N(x;,G) and hence, as N (x1,G) is 2-dominated, we
can assume without loss of generality that w**d € E(G). We observe
{d,d”,d",x1).

Case Cycle C' of Length |V(C)| + 1
d-d* € E(G) wxxyw* Cxi dxi Cd~d* Cw
d*x; € E(G) wxx1de++Cx£_d+Cw“w+w
d~x;{ € E(G) wxx,wt Cxi d~Cxi dw

Thus, (d,d”,d",x1 ) = Ki,3. This contradiction completes the proof.

Examples. The graphs in Figure 5 show that Theorem 7 fails if G is
only locally 3-dominated, the set A is not independent, or G is only
locally claw-free (& crown-free). The graph in Figure 6 shows that
Theorem 7 fails if G is locally connected and almost claw-free but not
K, 4-free.

FIGURE b
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