Almost Claw-Free Graphs

Zdeněk Ryjáček

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WEST BOHEMIA
PLZEŇ. CZECH REPUBLIC

ABSTRACT

We say that G is almost claw-free if the vertices that are centers of induced claws $(K_{1,3})$ in G are independent and their neighborhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free. It is shown that (i) every even connected almost claw-free graph has a perfect matching and (ii) every nontrivial locally connected $K_{1,4}$ -free almost claw-free graph is fully cycle extendable. © 1994 John Wiley & Sons, Inc.

1. INTRODUCTION

Throughout the paper, a graph will be a finite, undirected graph G = (V(G), E(G)) without loops and multiple edges. We say that a graph G is even if it has even number of vertices; otherwise, we call it odd. If $M \subset V(G)$, then $\langle M \rangle$ denotes the induced subgraph on M, $G \setminus M$ stands for $\langle V(G) \setminus M \rangle$, and $c_0(G \setminus M)$ denotes the number of odd components of $G \setminus M$. The square G^2 of G has $V(G^2) = V(G)$ and $E(G^2) = \{uv \mid uv \in E(G)\}$ or $ux \in E(G)$ and $xv \in E(G)$ for some $x \in V(G)$. The three-edge star $K_{1,3}$ will be called the claw and the complete tripartite graph $K_{1,1,3}$ will be referred to as the crown (see Figure 1). If F is a graph, then we say that G is F-free if for every induced subgraph H of G we have $H \not\approx F$ (where \approx denotes isomorphism).

A set $A \subset V(G)$ is independent if any $x, y \in A$ are nonadjacent. The size of a maximum independent set in G will be denoted by $\alpha(G)$ and referred to as the independence number of G. We say that a set $B \subset V(G)$ is a dominating set if every vertex of G belongs to G or has a neighbor in G. The size of a minimum dominating set of G will be called domination number of G and is denoted by $\gamma(G)$. If $\gamma(G) \leq k$, then we say that G is k-dominated. A universal vertex is a vertex that is adjacent to all the other vertices of G. Clearly, G is 1-dominated if and only if G has a universal vertex.

Journal of Graph Theory, Vol. 18, No. 5, 469–477 (1994) © 1994 John Wiley & Sons, Inc. CCC 0364-9024/94/050469-09

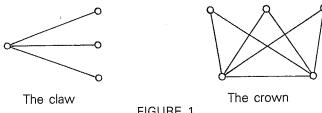


FIGURE 1

A 1-factor of G will be referred to as a perfect matching. We say that Gis hamiltonian if G has a spanning cycle; G is pancyclic if for every m, $3 \le m \le |V(G)|$, there is a cycle of length m in G; G is vertex pancyclic if for any vertex $x \in V(G)$ and for every $m, 3 \le m \le |V(G)|$, there is a cycle of length m containing x. Finally, G is said to be fully cycle extendable (see [3]) if every vertex of G lies on a triangle and for every nonhamiltonian cycle C in G there is a cycle C' in G such that $V(C) \subset V(C')$ and |V(C')| = |V(C)| + 1.

If $x \in V(G)$, then by the neighborhood of x in G (denoted by N(x,G)) we mean in this paper the induced subgraph on the set of all vertices that are adjacent to x. If N(x, G) is connected (k-connected) for every $x \in V(G)$, then we say that G is locally connected (or locally k-connected). Similarly, G is said to be locally claw-free or locally hamiltonian if N(x, G), for every $x \in V(G)$, is a claw-free or a hamiltonian graph, respectively; G is locally k-dominated if $\gamma(N(x,G)) \leq k$ for every $x \in V(G)$.

Claw-free graphs are known to have many interesting properties and have been subject of study of many authors in recent years. The following theorem appeared in [4] and [8].

Theorem A. Every even connected claw-free graph has a perfect matching.

In [5], Oberly and Sumner proved that every connected, locally connected claw-free graph G on at least three vertices is hamiltonian. Clark [2] proved that, under the same conditions, G is vertex pancyclic. Hendry [3] observed that Clark essentially proved the following stronger result.

Theorem B. If G is a connected, locally connected claw-free graph on at least three vertices, then G is fully cycle extendable.

Some further strengthenings of these results can be found in [6] and [7]. Our main goal is to extend Theorems A and B to a certain superclass of the class of claw-free graphs that admits some induced claws.

2. PROPERTIES OF ALMOST CLAW-FREE GRAPHS

It is easy to see that G is claw-free if, and only if, $\alpha(N(x,G)) \leq 2$ for every $x \in V(G)$. This fact gives a motivation for the following definition.

We say that a graph G is almost claw-free if there is a (possibly empty) independent set $A \subset V(G)$ such that $\alpha(N(x,G)) \leq 2$ for $x \notin A$ and $\gamma(N(x,G)) \leq 2 < \alpha(N(x,G))$ for $x \in A$. Equivalently, G is almost claw-free if G is locally 2-dominated and the set of all centers of induced claws is independent.

Since $\gamma(H) \leq \alpha(H)$ for every graph H, every claw-free graph is almost claw-free.

Proposition 1.

- (i) A graph G is locally claw-free if and only if G is crown-free.
- (ii) Every almost claw-free graph is locally claw-free.

Proof

- (i) If a vertex u centers and induced claw $\langle \{u, x, y, z\} \rangle$ in N(v, G), then $\langle \{u, v, x, y, z\} \rangle$ is an induced crown in G. Conversely, for every induced crown in G, one of its vertices of degree 4 centers a claw in the neighborhood of the other one.
- (ii) If G contains an induced crown, then its vertices of degree 4 are adjacent and both of them center an induced claw; consequently, G is not almost claw-free.

Example. The graphs in Figure 2 and Figure 5 are examples of locally claw-free graphs that are not almost claw-free.

Corollary 2. If G is almost claw-free, then $\gamma(N(x,G)) = 2$ for every $x \in A$.

Proof. Let $\gamma(N(x,G)) = 1$ for an $x \in A$ and let u be a universal vertex in N(x,G). As $x \in A$, there is an induced claw centered at x, but then its vertices together with the vertex u induce a crown in G.

Corollary 3. Every almost claw-free graph is $K_{1,5}$ -free.

Proof. If there is an induced $K_{1,5}$ centered at a vertex $x \in A$ then there is a neighbor of x that is adjacent to at least three of its endvertices (otherwise N(x, G) cannot be 2-dominated) but then we again have an induced crown.

FIGURE 2

Example. The graph depicted in Figure 6 is an almost claw-free graph that is not $K_{1,4}$ -free.

The following result appeared in [1].

Theorem C. If G is a k-connected claw-free graph $(k \ge 2)$ with $\alpha(G^2) \le k$, then G is hamiltonian.

From Theorem C we can easily deduce the following two assertions.

Corollary 4. If G is a k-connected claw-free graph $(k \ge 2)$ with $\gamma(G) \le k$, then G is hamiltonian.

Proof. If G is not hamiltonian, then we can choose a set $S \subset V(G)$, |S| = k + 1, which is independent in G^2 . Let D be a minimum dominating set in G. Since $|D| \le k$, there are vertices $u_1, u_2 \in S$ and $d \in D$ such that $du_1 \in E(G)$ and $du_2 \in E(G)$, which implies $u_1u_2 \in E(G^2)$, a contradiction.

Proposition 5. Every locally 2-connected almost claw-free graph is locally hamiltonian.

Proof. Follows immediately from Proposition 1 and from Corollary 4.

3. PERFECT MATCHINGS

The following theorem extends Theorem A.

Theorem 6. Every even connected almost claw-free graph has a perfect matching.

Proof. Let G be an even connected almost claw-free graph without any perfect matching. We make use of the following statement, which was proved in [9].

Theorem D. If G is an even connected graph that does not have a perfect matching, then there is a set $S \subset V(G)$ such that $c_0(G \setminus S) > |S|$ and every vertex of S is adjacent to vertices in at least three odd components of $G \setminus S$.

Let $S \subset V(G)$ have the properties given in Theorem D. Then every vertex of S centers an induced claw and, since G is almost claw-free, S is independent. Thus, for any $x \in S$, N(x,G) has at least 3 components, which contradicts the fact that G is locally 2-dominated.

Examples. The graphs in Figure 2 show that Theorem 6 fails if G is only locally 3-dominated, the set A is not independent, or G is only locally claw-free (\Leftrightarrow crown-free).

4. HAMILTONICITY

The following theorem extends Theorem B.

Theorem 7. Every connected, locally connected $K_{1,4}$ -free almost claw-free graph on at least three vertices is fully cycle extendable.

Proof. Since every vertex of G lies on a triangle, it is sufficient to prove that for every cycle C of length $m \leq |V(G)| - 1$ there is a cycle C' of length m+1 such that $V(C) \subset V(C')$. Throughout the proof, we suppose that for every cycle $C \subset G$, one of its orientations is chosen, and for any $u \in V(C)$, we denote by u^- and u^+ the predecessor and successor of u on C, respectively. For $u, v \in V(C)$, uCv, or $u\overline{C}v$ denotes the u, v-arc of C with the same or opposite orientation with respect to the orientation of C; if u = v, then we define both uCv and $u\overline{C}v$ as a single vertex. Whenever vertices of an induced $K_{1,3}$ or $K_{1,4}$ are listed, its center is always the first vertex of the list.

The proof proceeds in a series of steps.

- 1. We show that for every cycle $C \subset G$ there are vertices $w \in V(C) \setminus A$ and $x \notin V(C)$ such that $xw \in E(G)$. Indeed, by the connectedness of G, there are $v \in V(C)$ and $x \notin V(C)$ such that $xv \in E(G)$. Since G is locally connected, we can find a shortest path Q in N(v, G) joining x to one of v^-, v^+ . Let v_1 be the vertex consecutive to x on Q. Then $v_1 \in V(C)$ and $v_1v \in E(G)$; we denote by w that of the vertices v, v_1 that is not in A.
- 2. Let a cycle $C \subset G$ and the vertices x, w be chosen in such a way that, among all cycles with vertex set V(C), the path Q that joins x in N(w, G) to one of w^-, w^+ (say, w^+) is shortest possible and suppose that C cannot be extended through x. As $xw^- \notin E(G)$ and $xw^+ \notin E(G)$ (otherwise we can extend C) and w cannot center an induced claw, we have $w^-w^+ \in E(G)$. Denote by $x = x_0, x_1, \ldots, x_k, x_{k+1} = w^+$ the vertices of Q. By the mini-

Denote by $x = x_0, x_1, \ldots, x_k, x_{k+1} = w$ the vertices of Q. By the infinity of Q, $x_i \in V(C)$ for $1 \le i \le k$ and $x_i x_j \notin E(G)$ for $|i - j| \ge 2$. Considering induced claws centered at w, we have $k \le 2$; on the other hand, trivially $k \ge 1$.

3. Suppose first that k=2. Obviously $xw^- \notin E(G)$, and by the minimality of Q, $xx_2 \notin E(G)$; as $\langle w, x, w^-, x_2 \rangle \not\approx K_{1,3}$, we have $w^-x_2 \in E(G)$. Thus, by the symmetry, we can suppose without loss of generality that $x_1 \in x_2^+ Cw^-$ (see Figure 3).

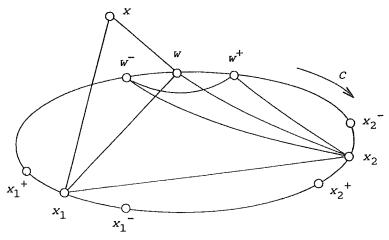


FIGURE 3

We consider the following cases.

Case	Cycle C_1
$w^+ = x_2^-$	$wx_2Cw^-w^+w$
$x_2^- x_2^+ \in E(G)$	$wx_2w^+Cx_2^-x_2^+Cw$
$x_2 w \in E(G)$	$wx_2Cw^-w^+Cx_2^-w$
$x_2^+ w \in E(G)$	$wx_2^+Cw^-w^+Cx_2w$

In each of these cases, x_2 and w are consecutive on C_1 and the path $Q_1 = \langle x, x_1, x_2 \rangle$ is a x, C-path in N(w, G) with $|V(Q_1)| < |V(Q)|$, which contradicts the minimality of Q. Consequently, neither of these possibilities can occur and hence $\langle x_2, x_2^-, x_2^+, w \rangle \approx K_{1,3}$, which implies $x_2 \in A$. Since A is independent, we have $x_1 \notin A$ and hence obviously $x_1^- x_1^+ \in E(G)$. Now we can easily see that $x_2^+ \neq x_1^-$ and $x_1^+ \neq w^-$ since otherwise the cycles $wCx_2w^-\overline{C}x_1^+x_2^+x_1xw$ and $wCx_1^-x_1^+x_1xw$ extend C. We now consider $\langle x_2, x_2^-, x_2^+, x_1, w^- \rangle$.

Case	Cycle C' of Length $ V(C) + 1$
$x_1w^-\in E(G)$	$wCx_1^-x_1^+Cw^-x_1xw$
$x_1x_2^- \in E(G)$	$wxx_1x_2\overline{C}w^+x_2Cx_1\overline{x_1}^+\underline{C}w$
$x_1x_2^+ \in E(G)$	$wxx_1x_2^+Cx_1^-x_1^+Cw^-x_2\overline{C}w$
$w^-x_2^- \in E(G)$	$wxx_1x_2Cx_1^-x_1^+Cw^-x_2^-\overline{C}w$

Since also $x_2^-x_2^+ \notin E(G)$ and $\langle x_2, x_2^-, x_2^+, x_1, w^- \rangle \not= K_{1,4}$, we have $w^-x_2^+ \in E(G)$. But then, as obviously $xx_1^+ \notin E(G)$, $xx_2 \notin E(G)$, $x_1 \notin A$, and $\langle x_1, x, x_1^+, x_2 \rangle \not= K_{1,3}$, necessarily $x_2x_1^+ \in E(G)$ and the cycle $wCx_2x_1^+Cw^-x_2^+Cx_1xw$ again extends C. This contradiction proves that $k \neq 2$ and, hence, by (2), k = 1.

4. We easily observe that $x_1^+ \neq w^-$, $x_1^- \neq w^+$, $xx_1^- \notin E(G)$ and $xx_1^+ \notin E(G)$. If $x_1^-x_1^+ \in E(G)$, then the cycle $wxx_1w^+Cx_1^-x_1^+Cw$ extends C; therefore also $x_1^-x_1^+ \notin E(G)$, which implies that $\langle x_1, x_1^-, x_1^+, x \rangle \approx K_{1,3}$, and consequently, $x_1 \in A$. Moreover, as obviously $xw^+ \notin E(G)$ and $x_1^+w^+ \notin E(G)$ (otherwise the cycle $wxx_1\overline{C}w^+x_1^+Cw$ extends C) and since $\langle x_1, x_1^-, x_1^+, w^+, x \rangle \not\approx K_{1,4}$, we have $x_1^-w^+ \in E(G)$ (see Figure 4).

5. We show that the vertices x_1^- and x_1^+ have a common neighbor $d \in N(x_1, G)$. If, on the contrary, no such vertex exists, then, since $N(x_1, G)$ is 2-dominated and $x \in N(x_1, G)$, there is a vertex $u \in N(x_1, G)$ that is adjacent to x and to one of x_1^+, x_1^- (say, x_1^+ ; the second case is similar). If $u \notin V(C)$ then we can extend C replacing the edge $x_1x_1^+$ by the path $x_1ux_1^+$; thus $u \in V(C)$. As $ux_1 \in E(G)$ and $x_1 \in A$, u cannot center a claw and, consequently, $u^-u^+ \in E(G)$; but then, since obviously $x_1^- \neq u \neq x_1^+$, the replacement of u^-uu^+ and $x_1x_1^+$ by u^-u^+ and $x_1xux_1^+$ extends C. Hence x_1^- and x_1^+ have a common neighbor $d \in N(x_1, G)$ and, obviously, $d \in V(C)$.

6. Suppose that $d \in w^+Cx_1^-$ and consider $\langle d, d^-, d^+, x_1 \rangle$.

Case	Cycle C' of Length $ V(C) + 1$
$d^-d^+ \in E(G)$	$wxx_1w^+Cd^-d^+Cx_1^-dx_1^+Cw$
$d^-x_1 \in E(G)$	$wxx_1d^-\overline{C}w^+x_1^-\overline{C}dx_1^+Cw$
$d^+x_1 \in E(G)$	$wxx_1d^+Cx_1^-w^+Cdx_1^+Cw$

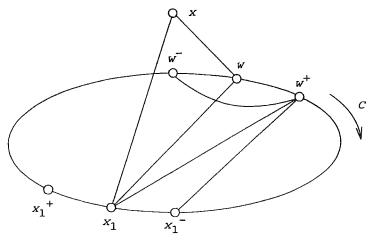


FIGURE 4

As each of these cases yields a contradiction and $\langle d, d^-, d^+, x_1 \rangle \neq K_{1,3}$, necessarily $d \in x_1^+ Cw^-$.

7. We now consider $\langle w^+, x_1, w^-, w^{++} \rangle$. As clearly $w^{++} \neq x_1^-, w^-w^{++} \notin E(G)$ (otherwise $wxx_1Cw^-w^{++}Cx_1^-w^+w$ extends C) and $\langle w^+, x_1, w^-, w^{++} \rangle \not\approx K_{1,3}$, we see that $x_1w^- \in E(G)$ or $x_1w^{++} \in E(G)$.

If $x_1w^- \in E(G)$ then, since $\langle x_1, x_1^-, x_1^+, w^-, x \rangle \not\approx K_{1,4}$, we have $x_1^+w^- \in E(G)$ and, observing $\langle d, d^-, d^+, x_1 \rangle$, we have the following possibilities:

Case	Cycle C' of Length $ V(C) + 1$
$d^-d^+ \in E(G)$	$xwCx_1^-dx_1^+Cd^-d^+Cw^-x_1x$
$d^-x_1 \in E(G)$	$xwCx_1^-dCw^-x_1^+Cd^-x_1x$
$d^+x_1 \in E(G)$	$xwCx_1^-d\overline{C}x_1^+w^-\overline{C}d^+x_1x$.

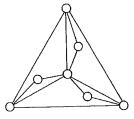
Thus, $\langle d, d^-, d^+, x_1 \rangle \approx K_{1,3}$, which is a contradiction. Hence we have $x_1 w^- \notin E(G)$ and, consequently, $x_1 w^{++} \in E(G)$, which implies $w^{++} \in N(x_1, G)$.

8. Similarly as in (5) we can show that x and w^{++} have no common neighbor in $N(x_1, G)$ and hence, as $N(x_1, G)$ is 2-dominated, we can assume without loss of generality that $w^{++}d \in E(G)$. We observe $\langle d, d^-, d^+, x_1^- \rangle$.

Case	Cycle C' of Length $ V(C) + 1$
$d^-d^+ \in E(G)$ $d^+x_1^- \in E(G)$ $d^-x_1^- \in E(G)$	$wxx_1w^+Cx_1^-dx_1^+Cd^-d^+Cw$ $wxx_1Cdw^{++}Cx_1^-d^+Cw^-w^+w$ $wxx_1w^+Cx_1^-d^-\overline{C}x_1^+dw$

Thus, $\langle d, d^-, d^+, x_1^- \rangle \approx K_{1,3}$. This contradiction completes the proof.

Examples. The graphs in Figure 5 show that Theorem 7 fails if G is only locally 3-dominated, the set A is not independent, or G is only locally claw-free (\Leftrightarrow crown-free). The graph in Figure 6 shows that Theorem 7 fails if G is locally connected and almost claw-free but not $K_{1,4}$ -free.



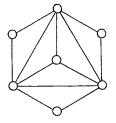
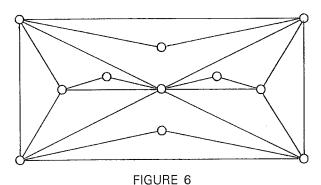


FIGURE 5



ACKNOWLEDGMENT

The author is grateful to one of the referees whose suggestion led to a strengthening of Theorem 7.

References

- [1] A. Ainouche, H. J. Broersma, and H. J. Veldman, Remarks on hamiltonian properties of claw-free graphs. *Ars Combinat.* **29**C (1990) 110–121.
- [2] L. Clark, Hamiltonian properties of connected locally connected graphs. *Congr. Numer.* **32** (1984) 199–204.
- [3] G.R.T. Hendry, Extending cycles in graphs. *Discrete Math.* **85** (1990) 59–72.
- [4] M. Las Vergnas, A note on matchings in graphs. Colloque sur la Théorie des graphes (Paris, 1974), Cahiers Centre Études Rech. Opér. 17 (1975) 257–260.
- [5] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian. *J. Graph Theory* **3** (1979) 351–356.
- [6] Z. Ryjáček, Factors and circuits in $K_{1,3}$ -free graphs. Combinatorics and Graph Theory, Vol. 25, Polish Scientific Publishers, Warsaw, Banach Centre Publications (1989) 137–145.
- [7] Z. Ryjáček, Hamiltonian circuits in N_2 -locally connected $K_{1,3}$ -free graphs. J. Graph Theory 14 (1990) 321–331.
- [8] D.P. Sumner, Graphs with 1-factors. *Proc. Am. Math. Soc.* **42** (1974) 8–13.
- [9] D. P. Sumner, 1-factors and antifactor sets. *J. London Math. Soc.* 2 **13** (1976) 351–359.