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Abstract

In the present paper we show that if G is a 2-connected claw-free graph such that the vertices
of degree 1 of every induced bull have a common neighbour in G then G is hamiltonian. This
statement was originally conjectured by H.J. Broersma and H.J. Veldman

1. Introduction

Throughout this paper, a graph will be a finite undirected graph without
loops and multiple edges, V(G) and E(G) its vertex and edge sets, respectively. For
M < V(G), {M) stands for the induced subgraph on M; for G, — G we denote
G — G; = (V(G) — V(G1)). A graph G is said to be hamiltonian if G contains a cycle
of length | V(G)|. A complete subgraph (not necessarily maximal) of G will be referred
to as a cligue. The claw is the three-edge star K ; and the bull is the only graph B with
degree sequence 3,3,2,1,1 (see Fig. 1).

An induced subgraph H of G that is isomorphic to the claw or to the bull will be
called an induced claw or induced bull, in this case we write H ~ K, ; or H=x B,
respectively. A graph is said to be claw-free if it contains no induced claw. For a set
M < V(G) we denote N(M) = {ye V(G) — M|xy € E(G) for some x € M}. Finally,
we say that vertices x, y € V(G) have a common neighbour if N(x) n N(y) # 0.

2. Main result

In this section we prove the following theorem that was conjectured in [1] (see also
[2, p. 136]).

Theorem. Let G be a 2-connected claw-free graph. If for every induced bull B in G the
vertices of degree 1 in B have a common neighbour in G, then G is hamiltonian.
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the claw K, 3 the bull B

Fig. 1.

Proof. Suppose that G satisfies the hypothesis of the theorem and is not hamiltonian
and choose a longest cycle C in G with a fixed orientation. Throughout the proof we
denote by v~ and v* the predecessor and successor of a vertex ve V(C). For
u,v € V(C) we denote by uCv (or uCv) the u, v-segment of C with the same (opposite)
orientation with respect to the orientation of C. For u = v we define both uCv and uCv
as a single vertex. Whenever vertices of an induced claw or bull are listed, they are
ordered to form a nonincreasing degree sequence; thus, for an induced claw,
its centre is the first and, for an induced bull, the ‘tips of its horns’ are the last
vertices of the list.
We first prove the following auxiliary assertion.

Claim 1. Let v,x be such that ve V(C), x¢ V(C) and xve E(G). Denote Y =
{ye VG)yw e EG)y = x and yx¢ EG)}, Z = {ze V(G) — ({t} U V)IN@ 1 ¥ #0)}.
Then
(i) {v7,v"} = Yand v v" € E(G),
(i) {v} U Y) is a cliqgue and Y < V(C),
(iii) if ye Yand y¢ {v™,v"}, then y"y* € E(G),
(iv) (a) N(x)n N(Y) = {v};
(b) there is no path vxu;---wy (k>1) such that ye Y and u;¢ V(C) for
i=1,..,k—1,
(v) @) Nx)n N(Z) =
(b) there is no path vxu,---u,z (k >1) such that zeZ and u;¢ V(C) for
i=1,-- k=1,
(vi) <Y u Z) is a clique.

Proof. (i) By the maximality of C, obviously xv~ ¢ E(G) and xv™ ¢ E(G), thus
{v7,v*} = Y. Since {v,x,v",v* > % K, 3, we have v v" € E(G).

(ii) If y,y, ¢ E(G) for some y,,y, € Y then <v,x,y;,y,» = K, 3, a contradiction.
But then since v~ and v* € ¥, ¥ < V(C) by the maximality of C.

(iii) Let ye Y, y¢ {v™,v"}, and suppose that y~y* ¢ E(G). As {y,y ,y",v) =
K, 3, v is adjacent to at least one of the vertices y~,y™; on the other hand, if v is
adjacent to both y~ and y*, then, as obviously xy~ ¢ E(G) (otherwise the cycle
vyCv v*Cy xv contradicts the maximality of C) and, similarly, xy* ¢ E(G),
{v,x,y",y*> =~ K, 3 — a contradiction. Hence, by symmetry, we can assume that
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vy~ € E(G) and vy’ ¢ E(G) (not excluding the possible case y~ =v*). We now
consider {v,y,y7,y*.x>. As {y,y7,»y"} " N(x)=0 and, by the assumption,
y y* ¢ E(G)and vy™ ¢ E(G), {v,y,y",y", x> ~ B. By the assumption of the theorem,
x and y* have a common neighbour u. If u ¢ V(C) then the cycle vxuy*Cv " v*Cyv
contradicts the maximality of C. Thus u € V(C). But then, by (i), u u™* € E(G), which
again yields a contradiction using the cycle vxuy*Cu"u*Co v Cyvifue V(y*Crv™),
or vxuytCo v*Cu u*Cyv if ueV(@*'Cy), respectively. Hence we have
y~y* € E(G).

(iv) (a) Suppose, on the contrary, that ue N(x) n N(y), u # v, for some ye Y. If
u¢ V(C) then clearly y ¢ {v~,v"} (otherwise we find a cycle longer than C replacing
the edge vy by the path vxuy) and hence, by (iii), y~“y* € E(G). But then again,
as clearly yv* € E(G), the cycle vxuyv*Cy y*Cv contradicts the maximality
of C; thus u € V(C). (Remember: v* € ¥ and by (ii), {v} U Y is a clique. Thus y is
adjacent to v™.) Obviously u ¢ {v~,v*}. It is also easy to see that u # y~ (otherwise
cycle vyCv~ vt Cuxv contradicts the maximality of C) and similarly u # y*. If y = v~
then cycle vxuyCu*u~Cv is longer than C and if y = v*, then cycle vxuyCu~u* Cv is
longer than C, thus y¢ {v",v"}. By (i) and (iii), we have u u" € E(G) and
y y* €E(G) which again yields a contradiction using the cycle
vxuyptCu u*Cy~y*Cv (f ueV@E*'Cy™)) or ovxuyw*Cy y*Cu u*Co (if
ue Vy*tcv)).

(iv) (b) can be proved by the same argument.

(v) (a) Let, on the contrary, ue N(x) n N(z) for some z€ Z and choose a ye Y
such that yz € E(G). Since by (iv)a), z ¢ Y, necessarily u # v. By the definition of Y,
u¢ Y. By (iv)b) (for k = 2, u; = u and u, = z), necessarily u € V(C). Now, if z ¢ V(C),
then, since cleary u"x ¢ E(G), u”z ¢ E(G) and {u,u",x,z) * K, 3, we have xz € E(G)
which contradicts (iv). Hence both u and z are on C.

Suppose first that y=v*. If z and u are not consecutive on C, then, by (i),
u"u” € E(G) and, by (iii) (applied to the vertex u), z"z* € E(G). But then we can find
a cycle longer than C replacing vy, z zz" and u uu™ by vxuzy, z7z* and u"u*. If
z = u” then obviously vxuCyzCv is longer than C; hence we have z = u~. We consider
{v,y,v7,%,y*>. Obviously xv~ ¢ E(G),xy ¢ E(G) and, by (iv)(a), xy* ¢ E(G). In the
case vyt € E(G) the cycle vxuCv~yzCy*v and in the case v y* € E(G) the cycle
vxuCv~y* Czyvis longer than C and hence {v,y,v”,x,y*)> &~ B. By the assumption of
the theorem, x and y* have a common neighbour a. But then, by the maximality of C,
ae V(C)and, by (i), a”a™ € E(G), so again we can get a cycle longer than C replacing
v v,yy* and a"aa® by v~ y,vxay* and a"a”.

Thus we have y # v*. Similarly we can show that y # v~ and hence, by (iii), we have
y y* e E(G).

Now, as u,z ¢ Y, neither ¥ and v nor z and v can be consecutive on C. By (iv),
uy ¢ E(G) and hence also u and y are not consecutive on C. If u and z are consecutive
on C then we can find a cycle longer than C by removing uz,v” vv™ and y~yy* and by
adding uxvyz,v v" and y~y* (not excluding the possible cases z=y~ or z=y").
Thusz¢ {u ,u*}. By (i), we have u"u* € E(G) and, by (iii), z”z* € E(G). It remains to



144 Z. Ryjacek [ Discrete Mathematics 140 (1995) 141-147

consider (up to symmetry) the following cases.

Case Cycle of length [V(C)| + 1
z=y ueV(z"Cv) vxuzCu u*Cv v* Cyv
z=y" ueV(@*Cy") vxuzCv~ v Cu~u*Cyv

z¢{y ",y hueVwv*Cy ) ,ze V(y*Cv) vxuzyv*Cu u*Cy y*Cz z*Co
z¢{y ",y hbue Vy*Cv ),ze V(y*Cu") vxuzyv*Cy y*Cz z*Cu"u* Co
z¢{y ,y hue My*Cv)ze V(u*Cv) vxuzyo*Cy y*Cu u*tCz z*Cv

Thus, (v)a) is proved.

(v) (b) Suppose that there is such a path vxu,...u,z for some zeZ and let
again ye Y be such that yze E(G). As z¢ Y, we have u, #v and, by (ivikb),
u,¢Y and u e V(C). If z¢ V(C), then from wugu_ ¢ E(G),u, z¢ E(G) and
(g, g Uy — 1,2y K 3 we have upz € E(G) which again contradicts (iv)(b). Hence both
u, and z are on C. The remainder of the proof of (v)(b) is quite analogous to that of the
part (v)a) (replacing the edge xu by the path xu,...u;) and is therefore omitted.

(vi) We prove that (Y u Z) is a clique.

Suppose first that there is a ze Z and a ye€ Y which are nonadjacent. Choose
a yeN(z)n Y and consider <{v,y,y,x,z>: by the construction, xy ¢ E(G) and
xy ¢ E(G), by (iv)a), xz ¢ E(G), by (vXa), vz ¢ E(G) and hence {v,¥,y,x,z) = B, but
then, by the assumption of the theorem, x and z have a common neighbour which
contradicts (v). Thus N(z) > Y for every z € Z. Now, if there are z,,z, € Z such that
212, ¢ E(G) then, for any ye Y, {(y,v,2,,2;> ® K; 3 by (v{a). Hence (YU Z) is
a clique. This completes the proof of Claim 1. O

Since G is connected, we can choose vertices x, w such that x ¢ V(C),w € V(C) and
xw € E(G); by part (i) of Claim 1, w™w™* € E(G). We claim the following.

Claim 2. There is a system of cliques Ky,K,,...,K; in G such that
(i) Ko={w}, V(K,) #0 and |V(K;)| =2 for 1 <i<k—~1,
(ii) V(Ki) N V(K)) =0 for i #}j,
(iii) for every i, 1 <i< k—1,
x; € V(K;) = N(x) = V(Ki-;) v V(Ki)) v V(Kisy) — {X.'},

(iv) V(Ko) U V(K) U -+ U V(Ky) = V(C).

Proof. We construct the cliques Ky, K, ..., K, by induction.

(1) Put Ko={w} and K, =<Z;), where Z, = {z€e V(G)— V(K,)|zw € E(G)
and zx ¢ E(G)}. (Note that {w*,w™} < K;.) Then, by part (i) of Claim 1
(where w replaces v and Z, = Y), we have that (V(Ky) v V(K;)) is a clique and



Z. Ryjacek [ Discrete Mathematics 140 (1995) 141-147 145

V(Ko) w V(Ky) € V(C). If equality holds then we are done; otherwise
Z,={ze V(G — [V(Ko) v V(K{)]INZ) " V(K,) #0} #0 and we can put
K, ={Z,>. By part (vi) of Claim 1, {¥(K,) u V(K,)) is a clique. By the construction,
the cliques Ko,K,,K, satisfy (i)-(iii) of Claim 2 and, by the maximality of C,
V(Ko) v V(Ky) v V(K;) = V(C).

(2) Suppose that we have already obtained cliques K¢, K>, ..., K, (n > 2) satisfying
the conditions (i)-(iii). By the maximality of C, V{(Kp)u --- u V(K,) = V(C).
If equality holds then we are done, hence we can suppose that
V(C) — [V(Ko)u -+ u V(K,)] # 9. (Note that this implies that |V(K,)| = 2.) Let
Zyi1=1{zeV(G) — [V(Ko)u -- u V(K,)]IN(z) n V(K,) # 0}. Before showing that
V(K)w Z,y1) is a clique, we first prove the following assertion concerning
the case n = 2.

Ifn=2then N(x)n N(Z3) = 0.

Suppose n = 2 and, on the contrary, u € N(x) n N(z)for some z € Z;. By part (v)}b)
of Claim 1, necessarily u € V(C) and, since {u,u",z, x> K, 3, we have also z € V(C)
(otherwise zx € E(G) which contradicts (v) of Claim 1). Note that by part (i) of Claim 1,
u~u” € E(G). Choose a vertex v € N(z) n V(K3).

We first treat the special cases when some of the vertices u,z,v,w*,w”,w are
consecutive on C (except the obvious consecutive pairs ww* and ww ™). Obviously,
uw¢ E(C) and zw¢ E(C). The case uve E(C) contradicts (v)(a) and the cases
uw™* € E(C) and uw~ € E(C) contradict (iv)a) of Claim 1. The cases zw™ € E(C) and
zw™ € E(C) imply ze V(K,) and the case vwe E(C) implies ve V(K,), which is
impossible. Thus, the only possible special cases are uz € E(C), zv € E(C),ow™ € E(C)
or vw™ € E(C).

Suppose first that u,z are consecutive on C. If, eg, z= ut, ie, vut € E(G),
then, by part (vi) of Claim 1 (in which u replaces v), we have also vu~ € E(G);
thus the cases z=u" and z=u"' are equivalent. By the symmetry, we can
assume without loss of generality that ve V(u*Cw™). Now, we have v #w"~
since otherwise the cycle wxuCvu Cw*w™w extends C. We consider
(v,o7,0t,wh

Case Cycle of length |V(C)| + 1
v wt e E(G) wxuCv~w*Cu~vCw
vtwt e E(G) wxuCvu~ Cw*o*Cw

v vt € E(G) wxuCw*outCo v Cw

Hence u and z cannot be consecutive on C.

By part (iii) of Claim 1, we now have z"z* € E(G) and, by part (ii) of Claim 1, z is
adjacent to both u~ and u™. Now, z,v cannot be consecutive, for otherwise, if, e.g.,
zv € E(u* Cw ™) then we can find a cycle longer than C by removing ww*,u "« and vz
and by adding wxu,vw* and zu~; the second case is similar. Finally, neither
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vw~ € E(C) nor vw* € E(C):

Case Cycle of length |V(C)| + 1
vt =w,zeV(utCrv) wxuCz z*Cozu=Cw*w™w
vt =wT,ze V(w'Cu) wxuCozu~ Cztz Cwrw ™ w
v-=whzeVuCw)  wxuCvzu*Cz z Cw wtw

v =wtze V@ Cu) wxuCz*z CozutCw wtw

Thus, no two of the vertices u,z,v,w ,w* are consecutive on C, but then we can
again find a cycle longer than C by removing 4 uu™,v " ov*,z"zz* and ww* and by
adding w u*,v7v*,z7z* and wxuzvw®. This contradiction proves that
N(x)n N(Z3)=0.

We now show, that, for any n > 2, (V(K,) U Z,,,) is a clique. Suppose first that,
on the contrary, zy¢ E(G) for some zeZ,,, and ye V(K,), choose vertices
y1€ V(K,) n N(z),v, € V(K,-) and v, € V(K,_,) and consider {vy, y{, ¥,2,0, . The
induction hypothesis (iii) implies v,y ¢ E(G),v,y ¢ E(G) and v,z ¢ E(G) for n > 2 and
v,2¢ E(G) for n>3. By part (v a) of Claim 1, v,z¢ E(G) for n=2. Hence
{v1,Y1:0,2,02» & B and, by the assumption of the theorem, there is a vertex
ue N(v;) n N(2). But then, if n =2, we have v, = w and since wu € E(G), by the
definition of K, necessarily u = x or ux € E(G) which contradicts part (v)a) of
Claim 1 or the assertion N(x)n N(Z;) =0, respectively. If n =3 then, by part
(iii) of the induction hypothesis, the only possibility is ¥ = w which yields zx € E(G),
contradicting again the assertion N(z) N N(Z3) = 0. For n > 4, since v, € V(K,_,), by
part (iii) of the induction hypothesis we have ue V(K, 3} u V(K,_,) u V(K,_1)
which contradicts the fact that uze E(G) and zeZ,,,. Hence N(z) > V(K,)
for every ze Z,,,. Now, considering <{y,v,z,,z,) for any z,,z,€Z,,,,y€ V(K,)
and ve V(K,-;), we have zyz,€ E(G). Consequently, (V(K,)UZ,,,> is a
clique.

By the construction, the cliques K, K, ..., K, + satisfy the conditions (i)-(iii) and,
by the maximality of C, V(Ky)u --- u V(K,+,) = V(C). Since V(C) is finite, the
construction yields after a finite number of steps a system of cliques satisfying all the
conditions (i)—(iv) of Claim 2.

The graph G is 2-connected and hence there is a vertex w’ € ¥(C) and an x, w'-path
P such that w¢ V(P) and no vertex of P except w is on C. By (iii} of Claim 2,
w’ € V(K,), but then, by the properties of the cliques Ky, K,..., K, there is a w, w-
path P’ such that V(P)=V(Ky)u ---u V(K,)= V(C) and the paths P and P’
together with the edge wx yield a cycle that is longer than C. This contradiction proves
the theorem. [

Remark. The graph depicted in Fig. 2 shows that the assumptions of the theorem do
not imply pancyclicity of G.
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Fig,. 2.
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