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Abstract

In this paper we use the degree sequence, order, size and vertex connectivity of
a K ,qi-free graph or of an almost claw-free graph to obtain several upper bounds
on its independence number. We also discuss the sharpness of these results.

1. INTRODUCTION

In this paper, a graph will be a finite undirected graph without loops and multiple
edges. For notation and terminology not defined here we refer to [1]. Throughout the
paper, we denote by n = |V(G)| the order, by m = |E(G)| the size and by §(G) (or
simply 0) the minimum degree of G. For any A, B C V(G) we put e(A,B) = {zy €
E(G)| € A, y € B}, No(B) = {x € A| zy € E(G) for some y € B} and, for
r € V(G), da(x) = |Na(z)|; (A) denotes the induced subgraph on A and G\ A stands
for (V(G)\ A).

A set A C V(Q) is independent if vy ¢ E(G) for any x,y € A. The size of a maximum
independent set in G is denoted by a(G) and referred to as the independence number of
G. A set B C V(G) is dominating if every vertex of G belongs to B or has a neighbour
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in B. The size of a minimum dominating set is called the domination number of G and
denoted by v(G). If v(G) < k, we say that G is k-dominated.

G is said to be K ,4q-free (r > 2) if G does not contain an induced subgraph which
is isomorphic to the star K ;1. In the special case r = 2 we say that G is claw-free and
the star K 3 will be also called the claw.

In [6], the class of claw-free graphs was extended in the following way: we say that
G is almost claw-free if there is an independent set A C V(G) such that a((N(x))) < 2
for x € V(G) \ A and v((N(z))) <2 < a((N(z))) for x € A. Equivalently, G is almost
claw-free if the centres of induced claws are independent and their neighbourhoods are
2-dominated. Clearly, every claw-free graph is almost claw-free. It can be shown (see [6])
that every almost claw-free graph is K s-free and K ; 3-free and that, for every x € A,
V(N (2))) = 2.

K ,41-free and, especially, claw-free graphs are known to have many interesting prop-
erties. Gernert [3] proved that in 2-connected claw-free graphs, v(G) < [n/3]. Since for
every claw-free graph G trivially o(G) < 29(G) (otherwise, if a(G) > 2v(G), necessarily
some vertex in the minimum dominating set dominates at least three independent vertices
and we have a claw), we see that in 2-connected claw-free graphs «(G) < 2[n/3]. Li and
Virlouvet [5] have shown that for every claw-free graph G, o(G) < 2n/(5+2). In [2] these
results were extended to K, -free graphs.

In the present paper we proceed with this work. We prove several upper bounds for
the independence number of K, -free and almost claw-free graphs and discuss their
sharpness.

2. RESULTS

Our first theorem gives an upper bound on the independence number of a K ,;-free
graph in terms of its numbers of vertices and edges.

Theorem 1. Let G be a K, -free graph (r > 2) having n vertices and m edges.
Then

o(G) =1 if m =),

1
a(G) < 3 <2n+2r— 1- \/8m+(2r— 1)2> if 0<m<(3),
and this bound is sharp.

Proof. (i) If m = (4), then G ~ K,, and thus «(G) = 1. Thus let m < (%); then
a(G) > 2. Let I C V(G) be an independent set of size a and let R = V(G) \ I. Then,
since G is K ,y1-free, we have 1 < d;(v) < r for every v € R. Thus

1

m < |E{(R))|+ |e(I, )|+ |[E(I))| < (";%) +r(n—a)+0 = §(n— a)(n —a+2r—1),



from which we have
m—a)(n—a+2r—1)—2m >0
or, equivalently,
o — (2n+2r —a+n>+ (2r — )n — 2m > 0.

As a solution of this quadratic inequality we obtain

ag%<2n+2r—1—\/8m+(2r—1)2)>.

(17) To show the sharpness, choose arbitrary integers r, k,n such that 2 <r <k < n,
put I = {vy,...,vx} and R = {wvgy1,...,v,}, let I be independent and (R U {vy}) be
complete and join every vertex of R arbitrarily to some r — 1 vertices in I \ {vx}. Then
the resulting graph G is K, i-free, has |V(G)| = n, a(G) =k, |E(G)| =m = (") +
(r—1)(n—k)=1(n—k)(n — k+2r — 1) and Theorem 1 yields

1
aG) < 5 <2n+2r—1—\/4(n—k)(n—k+2r—1)+(2r—1)2> _
_! <2n+2r—1—\/(2n+27’—1—2k)2> = k.
2
Thus, Theorem 1 is sharp. [ |

Next we turn our attention to conditions that give an upper bound on (&) in terms
of the degrees of the vertices of G.

Theorem 2. Let G be a K, -free graph (r > 2) with degree-sequence d; < dy <
. <d,. Then

k
a(G) < max{k| k+12di < n}
"zt

and this bound is sharp.

Proof. (i) Let I = {vy,...,v} (k > 1) be an independent set. Then every vertex
r € R=V(G)\ I is adjacent to at most r vertices in /. Thus we have

Z d(v;) < r(n—k)

Vj el



and hence
k k
> d; <Y d(vy) <r(n—k)
i=1 j=1

from which we obtain

1 k

ris

(17) To show the sharpness, we construct a graph G in the following way: Choose
arbitrarily « > r > 2 and dy < dy < ... < dy_(_1), st t = Zf;(r_l) d;, put G; =

Ko_ry1, Go = Ky, G3 = K,_;, take G5 + G5 and join the i-th vertex of G to exactly
d; vertices of Gy (i = 1,...,a¢ —r + 1) in such a way that no two vertices in G; have
a common neighbour in Gy. Then n = |V(G)| = a +t and G has degree-sequence
di <dy < ... <dppoy <t< .. <t+r—1<...<t+r—1, from which 31, d; = rt

and hence a + % Yo, d; = a4+t =mn. Thus, Theorem 2 is sharp. [ |

Corollary 3. [2] Let G be K, -free (r > 2) with minimum degree 6(G). Then

rm

< .
o(G) < o+r

Proof. We proceed in the same way as above, i.e., k6 < X% d; < r(n — k) implying

rn

Corollary 3 is a special case of the following more general result proved in [2].

Theorem A. If G is a K4 -free (r > 2) graph of order n such that o, = px for
some p with 1 < p < «, then

where

0, = min { > d(v;)| I ={vi,...v,} C V(G) is an independent set} :

v €T



This condition also generalizes theorem 2; however, the condition of theorem 2 can be
easily checked, whereas the computation of o, is more time-consuming.

Moreover, by the construction of the graph G in the example shown in the proof of
Theorem 2, the sequence {I—l)ap}g‘:l is increasing for a¢ > r and hence the upper bound
given by Theorem A is sharp only for p = « (if we do not restrict to the integer parts of
the derived bounds).

For example, if r =2, a =6, t =5, n = 11, then {%ap}gzl ={1,1,1,1,1,%} and for
p =5 we have

2n 22

=—>7>6.
=42 3

If G does not contain "too many claws” then the result of Corollary 3 can be strength-
ened in the following way. For i > 3 we denote C; = {z € V(G)| a((N(z))) =i} (i.e., C;
is the set of all vertices of G which are centres of an induced K, ; but not of an induced
K it1), and we put ¢; = |C}].

Proposition 4. Let G be a graph on n vertices with minimum degree . Then

2n+C3+264+365+...
G) <
oG) < 5+ 2

and this bound is sharp.

Proof. Let I and R be as in the proof of Theorem 2. Then, since |N;(z)| < i for
z € RNC; (i > 3) and Ny(x) < 2 otherwise. Thus we have

da < le(R,I)| <3c3+4cy+bes+...4+2(n—a—c3—cs—c5—...),
from which
da <2(n—a)+c3+2¢s +3c5+ ...

and hence

2n+C3+264+365+...
(07 .
- o+ 2

It is easy to see that, using the idea of the proof, we can obtain sharp examples by a
similar construction to that in the proof of Theorem 1. [ |



Next we consider the case when G is almost claw-free. Since every almost claw-free
graph is K s-free, from Corollary 3 we have immediately a(G) < 4n/(§ + 4). We show
that this bound can be improved.

Lemma 5. Let GG be an almost claw-free graph with minimum degree §. Then
4n
G) < )
A0 <55

Proof. Let I be an independent set of size &« and R = V(G) \ I; denote R; = {z €
R| di(x) =i} and r; = |R;|, i = 1,2, 3,4. Since every almost claw-free graph is K s-free
and I is a maximum independent set, Ry U Ry U R3 U Ry = R and hence

I'= Ni(R1) UN;(Ry) U (Ni(Rs) \ Ni(Rz)) U (Nr(Ra) \ N1(R)).-

By definition, |N;(Ry)| < 1 and |N;(R3)| < 2ry. Since every vertex v € Rz U Ry is
the centre of an induced K 3 and G is almost claw-free, (N(v)) is 2-dominated. Thus, for
every v € Ry there is an z € Ry such that |Ny(z) N Ny(v)| = 2, and for every v € Ry there
are 1, Ty € Ry such that Ny(z1)UN(z2) = Ny(v). Hence we have | N7 (R3)\ N;(Ry)| < r3
and |N](R4) \ N](R2)| = O, from which

a=|I<ri+2rp+r;3.
Since obviously
da < le(I,R)| =11 +2ry+ 3rs + 4ry
we obtain
04+ 1)a<2r+4ry+drs+4ry < 4(ri+ro+r3+ry) =4(n—a),

from which

B
3

(%)
_l’_
ot
|

Lemma 6. Let G be a K, 5-free graph with minimum degree § such that the set of
centres of induced claws is independent. Then

2n
J+1°

a(G) <

Proof. Let I, R, R; and r; be as in the proof of Lemma 5. Again obviously
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ad < le(I,R)| =ry + 2ry + 3rz +4ry ,
from which, since r{ +ry +r3+ry =1 — a,
ad <2(n—a)—r+r3+2ry .

Since no two centres of claws can be adjacent, R3 U R, is an independent set and
drsur,(v) < 2 Vv € I. Thus,

3rs +4ry, < 2a
or, equivalently,

3

57“3 +2ry < .
From this,

3
r3 4+ 2ry < §r3+2r4§a§a+r1 ,

or, equivalently,

—r1+r3+2ry < a.
Hence we have
ad <2(n—a)—ri+r3+2ry, <2(n—a)+a,

from which




Theorem 7. Let G be an almost claw-free graph with minimum degree §. Then

%n foro =1,
a(G) < %n for 6 =2,
. ford >3,

and this bound is sharp.

Proof. (i) The upper bound follows immediately from Lemma 5 for 6 = 1,2 and from
Lemma 6 for § > 3.

(17) For § = 1, the graph tPs (i.e., t vertex-disjoint copies of the path on three vertices
P3) and for § = 2, the graph ¢(2P; + K;) (i.e., ¢t vertex-disjoint copies of the butterfly
2P; + K;) achieve the upper bounds given by Theorem 7.

For § > 3 we construct the graph G by taking k vertex-disjoint copies Hy,..., Hy
of K5\ e (k> 2) and k additional vertices z1,...,x; and by joining each z; to all the
vertices of H; and H;yq for i = 1,...,k (mod k). The graph G is almost claw-free, has
n = k(6 + 1) vertices, a(G) = 2k and Theorem 7 gives

o(C) < 20 _26(0+1) _,
§+1 5+1 -

Ps The butterfly 2P; + K,

Figure 1

Next we prove an upper bound for «(G) using the vertex-conectivity of a K, -free
graph G.

Propositon 8. Let G be a K, ,-free graph (r > 2) with connectivity x. Then

r—1)n—k+2
. :

a(G) < (



Proof. We proceed by induction on the number of vertices in G.

1. f n =k + 1 then
(r—l)n—/f+2_(r—l)(/f+1)—i£+2_/f(r—2)+r+1>T+1>

1

r r r oo
and, as G ~ K,,, a(G) = 1.

2. Suppose that the theorem is true for every K, ;-free graph G on less than n
vertices. Let S C V(@) be a vertex cutset such that |S| = k and I C V(G) be an
independent set such that |I| = «(G). Denote Sy = SN I; k = |S]; Gy,...,G, the
components of G\ S and n; = |V(G;)|, i = 1,...,1. Then, by the induction hypothesis,
each of the subgraphs (V' (G;)US;) has independence number at most [(r—1)(n;+k)+1]/r
and hence

(T—l)(n1+k)+1+.“+(r—l)(nl—l-k)-i-l

a(G) <

(- 1)k =

(r=1m +...+n)+ (T —-1lk+1+(1—-Drk

r

(r—l)(n—ﬁ;)+(r—l)(k—1)+r.

Since k£ < k and [ > 2, we further obtain

a(G) < (r=D—r)+=2)kE-1+r _(r-ln-r+2
< . - i}

In order to compare the bounds of Proposition 8 and of Corollary 3, we consider the
following examples.

Example 9. For arbitrary » > x > 1, the complete bipartite graph G = K, , is
Ky qi-free with n = |V(G)| =k + 1, a(G) =1, k(G) = §(G) = k and Corollary 3 gives

o(G) < rn :r(/{+r) _,
T o+ K+r

In the next example we construct for every integers 6 > k > 1 a claw-free graph for
which the bound in Corollary 3 is achieved.

Example 10. Choose arbitrary integers § > x > 1 and let H be an arbitrary d-regular
k-edge connected graph. Such graphs exist for all possible values of § and k except the

9



case when ¢ is even and k is odd. E.g., for kK > 2, one of the possible constructions is
the following: for any £ > [ > 2 there is an [-regular graph H;j on k vertices which has
vertex connectivity [ (cf. [1]) and we construct the graph H by taking a matching of x
edges w;w; (1 <@ < k) and joining each vertex u; to all vertices of a copy of Hs_, 51 and
each vertex w; to all vertices of a second copy of Hs_ 5_1. This graph has 2x +2(6 — 1)
vertices, is d-regular and has edge-connectivity k.

We construct the middle graph G = M (H) of H (cf. [4]) by inserting a vertex z; in the
"middle” of each edge e;, 1 < i < |E(H)| and adding the edge z;z; for 1 <i < j < |E(H)|
if only if e; and e; have a common vertex. Then G is claw-free with vertex connectivity
k, a(G) = a = |V(H)| and §(G) = 6 and G has n = |V(H)| + |E(H)| = a + 1ad =
a(0 4 2)/2 vertices. Corollary 3 thus gives

2n a(d+2)
a(@) < §+2 §+2

(If a §-regular k-edge connected graph does not exist, i.e., for § even and x odd, we take
for H a graph with exactly two vertices of degree  + 1 and, by the same construction, we
obtain n = a+iad+1 and o(G) < [a(6+2)+2]/(6+2) = a+2/(6+2); as 2/(6+2) < 1,
the result is also sharp).

In [2] it is shown that the result of Corollary 3 is sharp for arbitrarily large §, r and n;
however, these graphs have connectivity xk = §. We next construct an infinite family of
graphs with the same properties (i.e., with arbitrarily large d,r and n) and with k < .

Example 11. Choose arbitrary integers r > 2, s > 2, 6 > r and k such that
2r —2 < k <0+ r —2 and denote t = rs. Put V(G) = AU A U...U A;, where
A, Ay, ..., A, are pairwise disjoint sets such that A = {zy,...,z;} and

S—k+r—1 for i=r (modr),
|A;| =< k—2r+3 for i=r—1 (mod r),
1 otherwise.

Let ({z;} UA; U...UA;1,_1) be complete fori =1,...,t —r+ 1 and join x; by an
edge to every vertex of A;U.. .UA, UAU...UA; 4, fori=t—r+2, ... t. Then the
graph G has n = sd + t vertices, minimum degree §, independence number «(G) = ¢ and

rn r(s0 + sr)
= =sr==t;
o+ o+

moreover, G has connectivity x(G) = min{J, k}.

Examples 9,10 and 11 show that the bound of Corollary 3 is sharp for all pairs x, ¢§
such that 1 < k < § and, therefore, Proposition 8 cannot be expected to give (for arbitrary
n) a better bound than that expressed in terms of degrees in this case.

10



However, the following example shows that for 6 = x = 1, the bound given by Propo-
sition 8 is better and the difference between the two bounds can be arbitrarily large.

Example 12. Choose arbitrary integers r > 2 and k& > 2, let H be a caterpillar with
vertex set V(H) = {1, ..., Y, 1, ., 21, @y, ..., &b, ..., @y, ..., 2%} (where (y1,...,y) is
a path, z have degree 1 and y;2! € F(H) for every i = 1,...,kand j =1,...,7), and
denote by G the graph which is obtained from H by indentifying z7 with x},, for all
i=1,....,k—1 (for k=5 and r = 4, see Fig.2).

1 2 3 4__,.1 2 3 4__ .1 2 3 4__ .1 2 3 4__,.1 2 3 4

Figure 2
Then G is K ,;-free with k(G) = §(G) = 1, has n = kr+1 vertices and independence
number a(G) = k(r — 1) + 1 = kr — k + 1. Proposition 8 yields

(r—n+1 (-DFEr+1)+1

a(G) <

kr—k+1=aG),

while from Corollary 3 we obtain

rn r(kr +1) k—1 k—1
G) < = =kr—k+1 =a(G .
o )_r+1 r+1 TR +7’+1 o )+T+1
By the construction, % can be arbitrarily large.
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