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Abstract

In this paper we use the degree sequence, order, size and vertex connectivity of

a K

1;r+1

-free graph or of an almost claw-free graph to obtain several upper bounds

on its independence number. We also discuss the sharpness of these results.

1. INTRODUCTION

In this paper, a graph will be a �nite undirected graph without loops and multiple

edges. For notation and terminology not de�ned here we refer to [1]. Throughout the

paper, we denote by n = jV (G)j the order, by m = jE(G)j the size and by �(G) (or

simply �) the minimum degree of G. For any A;B � V (G) we put e(A;B) = fxy 2

E(G)j x 2 A; y 2 Bg, N

A

(B) = fx 2 Aj xy 2 E(G) for some y 2 Bg and, for

x 2 V (G), d

A

(x) = jN

A

(x)j; hAi denotes the induced subgraph on A and G nA stands

for hV (G) n Ai.

A set A � V (G) is independent if xy =2 E(G) for any x; y 2 A. The size of a maximum

independent set in G is denoted by �(G) and referred to as the independence number of

G. A set B � V (G) is dominating if every vertex of G belongs to B or has a neighbour

�
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in B. The size of a minimum dominating set is called the domination number of G and

denoted by (G). If (G) � k; we say that G is k-dominated.

G is said to be K

1;r+1

-free (r � 2) if G does not contain an induced subgraph which

is isomorphic to the star K

1;r+1

. In the special case r = 2 we say that G is claw-free and

the star K

1;3

will be also called the claw.

In [6], the class of claw-free graphs was extended in the following way: we say that

G is almost claw-free if there is an independent set A � V (G) such that �(hN(x)i) � 2

for x 2 V (G) n A and (hN(x)i) � 2 < �(hN(x)i) for x 2 A. Equivalently, G is almost

claw-free if the centres of induced claws are independent and their neighbourhoods are

2-dominated. Clearly, every claw-free graph is almost claw-free. It can be shown (see [6])

that every almost claw-free graph is K

1;5

-free and K

1;1;3

-free and that, for every x 2 A,

(hN(x)i) = 2.

K

1;r+1

-free and, especially, claw-free graphs are known to have many interesting prop-

erties. Gernert [3] proved that in 2-connected claw-free graphs, (G) � dn=3e. Since for

every claw-free graph G trivially �(G) � 2(G) (otherwise, if �(G) > 2(G), necessarily

some vertex in the minimum dominating set dominates at least three independent vertices

and we have a claw), we see that in 2-connected claw-free graphs �(G) � 2dn=3e. Li and

Virlouvet [5] have shown that for every claw-free graph G, �(G) � 2n=(�+2). In [2] these

results were extended to K

1;r+1

-free graphs.

In the present paper we proceed with this work. We prove several upper bounds for

the independence number of K

1;r+1

-free and almost claw-free graphs and discuss their

sharpness.

2. RESULTS

Our �rst theorem gives an upper bound on the independence number of a K

1;r+1

-free

graph in terms of its numbers of vertices and edges.

Theorem 1. Let G be a K

1;r+1

-free graph (r � 2) having n vertices and m edges.

Then

�(G) = 1 if m = (

n

2

);

�(G) �

1

2

�

2n+ 2r � 1�

q

8m+ (2r � 1)

2

�

if 0 � m < (

n

2

);

and this bound is sharp.

Proof. (i) If m = (

n

2

), then G ' K

n

and thus �(G) = 1. Thus let m < (

n

2

); then

�(G) � 2. Let I � V (G) be an independent set of size � and let R = V (G) n I. Then,

since G is K

1;r+1

-free, we have 1 � d

I

(v) � r for every v 2 R. Thus

m � jE(hRi)j+ je(I; R)j+ jE(hIi)j � (

n��

2

) + r(n� �) + 0 =

1

2

(n� �)(n� �+ 2r � 1);
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from which we have

(n� �)(n� � + 2r � 1)� 2m � 0

or, equivalently,

�

2

� (2n+ 2r � 1)� + n

2

+ (2r � 1)n� 2m � 0:

As a solution of this quadratic inequality we obtain

� �

1

2

�

2n+ 2r � 1�

q

8m+ (2r � 1)

2

)

�

:

(ii) To show the sharpness, choose arbitrary integers r; k; n such that 2 � r � k < n,

put I = fv

1

; : : : ; v

k

g and R = fv

k+1

; : : : ; v

n

g, let I be independent and hR [ fv

k

gi be

complete and join every vertex of R arbitrarily to some r � 1 vertices in I n fv

k

g. Then

the resulting graph G is K

1;r+1

-free, has jV (G)j = n, �(G) = k, jE(G)j = m = (

n�k+1

2

) +

(r � 1)(n� k) =

1

2

(n� k)(n� k + 2r � 1) and Theorem 1 yields

�(G) �

1

2

�

2n+ 2r � 1�

q

4(n� k)(n� k + 2r � 1) + (2r � 1)

2

�

=

=

1

2

�

2n+ 2r � 1�

q

(2n+ 2r � 1� 2k)

2

�

= k:

Thus, Theorem 1 is sharp.

Next we turn our attention to conditions that give an upper bound on �(G) in terms

of the degrees of the vertices of G.

Theorem 2. Let G be a K

1;r+1

-free graph (r � 2) with degree-sequence d

1

� d

2

�

: : : � d

n

. Then

�(G) � max

(

kj k +

1

r

k

X

i=1

d

i

� n

)

and this bound is sharp.

Proof. (i) Let I = fv

1

; : : : ; v

k

g (k � 1) be an independent set. Then every vertex

x 2 R = V (G) n I is adjacent to at most r vertices in I. Thus we have

X

v

j

2I

d(v

j

) � r(n� k)
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and hence

k

X

i=1

d

i

�

k

X

j=1

d(v

j

) � r(n� k)

from which we obtain

k +

1

r

k

X

i=1

d

i

� n:

(ii) To show the sharpness, we construct a graph G in the following way: Choose

arbitrarily � � r � 2 and d

1

� d

2

� : : : � d

��(r�1)

, set t =

P

��(r�1)

i=1

d

i

, put G

1

=

K

��r+1

; G

2

= K

t

; G

3

= K

r�1

, take G

2

+ G

3

and join the i-th vertex of G

1

to exactly

d

i

vertices of G

2

(i = 1; : : : ; � � r + 1) in such a way that no two vertices in G

1

have

a common neighbour in G

2

. Then n = jV (G)j = � + t and G has degree-sequence

d

1

� d

2

� : : : � d

��(r�1)

� t � : : : � t+ r � 1 � : : : � t+ r � 1, from which

P

�

i=1

d

i

= rt

and hence � +

1

r

P

�

i=1

d

i

= � + t = n. Thus, Theorem 2 is sharp.

Corollary 3. [2] Let G be K

1;r+1

-free (r � 2) with minimum degree �(G). Then

�(G) �

rn

� + r

:

Proof. We proceed in the same way as above, i.e., k� �

P

k

i=1

d

i

� r(n� k) implying

k �

rn

�+r

.

Corollary 3 is a special case of the following more general result proved in [2].

Theorem A. If G is a K

1;r+1

-free (r � 2) graph of order n such that �

p

= px for

some p with 1 � p � �, then

�(G) �

rn

x+ r

;

where

�

p

= min

8

<

:

X

v

i

2I

d(v

i

)j I = fv

1

; : : : v

p

g � V (G) is an independent set

9

=

;

:
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This condition also generalizes theorem 2; however, the condition of theorem 2 can be

easily checked, whereas the computation of �

p

is more time-consuming.

Moreover, by the construction of the graph G in the example shown in the proof of

Theorem 2, the sequence f

1

p

�

p

g

�

p=1

is increasing for � > r and hence the upper bound

given by Theorem A is sharp only for p = � (if we do not restrict to the integer parts of

the derived bounds).

For example, if r = 2; � = 6; t = 5; n = 11, then f

1

p

�

p

g

6

p=1

= f1; 1; 1; 1; 1;

10

6

g and for

p = 5 we have

2n

�

5

5

+ 2

=

22

3

> 7 > 6 :

If G does not contain "too many claws" then the result of Corollary 3 can be strength-

ened in the following way. For i � 3 we denote C

i

= fx 2 V (G)j �(hN(x)i) = ig (i.e., C

i

is the set of all vertices of G which are centres of an induced K

1;i

but not of an induced

K

1;i+1

), and we put c

i

= jC

i

j.

Proposition 4. Let G be a graph on n vertices with minimum degree �. Then

�(G) �

2n+ c

3

+ 2c

4

+ 3c

5

+ : : :

� + 2

and this bound is sharp.

Proof. Let I and R be as in the proof of Theorem 2. Then, since jN

I

(x)j � i for

x 2 R \ C

i

(i � 3) and N

I

(x) � 2 otherwise. Thus we have

�� � je(R; I)j � 3c

3

+ 4c

4

+ 5c

5

+ : : :+ 2(n� �� c

3

� c

4

� c

5

� : : :) ;

from which

�� � 2(n� �) + c

3

+ 2c

4

+ 3c

5

+ : : :

and hence

� �

2n+ c

3

+ 2c

4

+ 3c

5

+ : : :

� + 2

:

It is easy to see that, using the idea of the proof, we can obtain sharp examples by a

similar construction to that in the proof of Theorem 1.

5



Next we consider the case when G is almost claw-free. Since every almost claw-free

graph is K

1;5

-free, from Corollary 3 we have immediately �(G) � 4n=(� + 4). We show

that this bound can be improved.

Lemma 5. Let G be an almost claw-free graph with minimum degree �. Then

�(G) �

4n

� + 5

:

Proof. Let I be an independent set of size � and R = V (G) n I; denote R

i

= fx 2

Rj d

I

(x) = ig and r

i

= jR

i

j; i = 1; 2; 3; 4: Since every almost claw-free graph is K

1;5

-free

and I is a maximum independent set, R

1

[ R

2

[R

3

[R

4

= R and hence

I = N

I

(R

1

) [N

I

(R

2

) [ (N

I

(R

3

) nN

I

(R

2

)) [ (N

I

(R

4

) nN

I

(R

2

)) :

By de�nition, jN

I

(R

1

)j � r

1

and jN

I

(R

2

)j � 2r

2

: Since every vertex v 2 R

3

[ R

4

is

the centre of an induced K

1;3

and G is almost claw-free, hN(v)i is 2-dominated. Thus, for

every v 2 R

3

there is an x 2 R

2

such that jN

I

(x)\N

I

(v)j = 2, and for every v 2 R

4

there

are x

1

; x

2

2 R

2

such that N

I

(x

1

)[N

I

(x

2

) = N

I

(v). Hence we have jN

I

(R

3

)nN

I

(R

2

)j � r

3

and jN

I

(R

4

) nN

I

(R

2

)j = 0, from which

� = jIj � r

1

+ 2r

2

+ r

3

:

Since obviously

�� � je(I; R)j = r

1

+ 2r

2

+ 3r

3

+ 4r

4

;

we obtain

(� + 1)� � 2r

1

+ 4r

2

+ 4r

3

+ 4r

4

� 4(r

1

+ r

2

+ r

3

+ r

4

) = 4(n� �) ;

from which

� �

4n

� + 5

:

Lemma 6. Let G be a K

1;5

-free graph with minimum degree � such that the set of

centres of induced claws is independent. Then

�(G) �

2n

� + 1

:

Proof. Let I; R;R

i

and r

i

be as in the proof of Lemma 5. Again obviously

6



�� � je(I; R)j = r

1

+ 2r

2

+ 3r

3

+ 4r

4

;

from which, since r

1

+ r

2

+ r

3

+ r

4

= r � �;

�� � 2(n� �)� r

1

+ r

3

+ 2r

4

:

Since no two centres of claws can be adjacent, R

3

[ R

4

is an independent set and

d

R

3

[R

4

(v) � 2 8v 2 I: Thus,

3r

3

+ 4r

4

� 2� ;

or, equivalently,

3

2

r

3

+ 2r

4

� � :

From this,

r

3

+ 2r

4

�

3

2

r

3

+ 2r

4

� � � � + r

1

;

or, equivalently,

�r

1

+ r

3

+ 2r

4

� � :

Hence we have

�� � 2(n� �)� r

1

+ r

3

+ 2r

4

� 2(n� �) + � ;

from which

� �

2n

� + 1

:
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Theorem 7. Let G be an almost claw-free graph with minimum degree �. Then

�(G) �

8

>

>

>

>

<

>

>

>

>

:

2

3

n for � = 1 ;

4

7

n for � = 2 ;

2n

�+1

for � � 3 ;

and this bound is sharp.

Proof. (i) The upper bound follows immediately from Lemma 5 for � = 1; 2 and from

Lemma 6 for � � 3.

(ii) For � = 1, the graph tP

3

(i.e., t vertex-disjoint copies of the path on three vertices

P

3

) and for � = 2, the graph t(2P

3

+ K

1

) (i.e., t vertex-disjoint copies of the buttery

2P

3

+K

1

) achieve the upper bounds given by Theorem 7.

For � � 3 we construct the graph G by taking k vertex-disjoint copies H

1

; : : : ; H

k

of K

�

n e (k � 2) and k additional vertices x

1

; : : : ; x

k

and by joining each x

i

to all the

vertices of H

i

and H

i+1

for i = 1; : : : ; k (mod k). The graph G is almost claw-free, has

n = k(� + 1) vertices, �(G) = 2k and Theorem 7 gives

�(G) �

2n

� + 1

=

2k(� + 1)

� + 1

= 2k :

u u u u

u u u

u u u

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

P

3

The buttery 2P

3

+K

1

Figure 1

Next we prove an upper bound for �(G) using the vertex-conectivity of a K

1;r+1

-free

graph G.

Propositon 8. Let G be a K

1;r+1

-free graph (r � 2) with connectivity �. Then

�(G) �

(r � 1)n� �+ 2

r

:

8



Proof. We proceed by induction on the number of vertices in G.

1. If n = �+ 1 then

(r � 1)n� �+ 2

r

=

(r � 1)(�+ 1)� � + 2

r

=

�(r � 2) + r + 1

r

�

r + 1

r

� 1

and, as G ' K

n

; �(G) = 1:

2. Suppose that the theorem is true for every K

1;r+1

-free graph G on less than n

vertices. Let S � V (G) be a vertex cutset such that jSj = � and I � V (G) be an

independent set such that jIj = �(G). Denote S

1

= S \ I; k = jS

1

j; G

1

; : : : ; G

l

the

components of G n S and n

i

= jV (G

i

)j; i = 1; : : : ; l. Then, by the induction hypothesis,

each of the subgraphs hV (G

i

)[S

1

i has independence number at most [(r�1)(n

i

+k)+1]=r

and hence

�(G) �

(r � 1)(n

1

+ k) + 1

r

+ : : :+

(r � 1)(n

l

+ k) + 1

r

� (l � 1)k =

(r � 1)(n

1

+ :::+ n

l

) + (r � 1)lk + l + (1� l)rk

r

=

(r � 1)(n� �) + (r � l)(k � 1) + r

r

:

Since k � � and l � 2, we further obtain

�(G) �

(r � 1)(n� �) + (r � 2)(�� 1) + r

r

=

(r � 1)n� �+ 2

r

:

In order to compare the bounds of Proposition 8 and of Corollary 3, we consider the

following examples.

Example 9. For arbitrary r > � � 1, the complete bipartite graph G = K

�;r

is

K

1;r+1

-free with n = jV (G)j = �+ r; �(G) = r; �(G) = �(G) = � and Corollary 3 gives

�(G) �

rn

� + r

=

r(�+ r)

�+ r

= r :

In the next example we construct for every integers � > � � 1 a claw-free graph for

which the bound in Corollary 3 is achieved.

Example 10. Choose arbitrary integers � > � � 1 and letH be an arbitrary �-regular

�-edge connected graph. Such graphs exist for all possible values of � and � except the

9



case when � is even and � is odd. E.g., for � � 2, one of the possible constructions is

the following: for any k > l � 2 there is an l-regular graph H

l;k

on k vertices which has

vertex connectivity l (cf. [1]) and we construct the graph H by taking a matching of �

edges u

i

w

i

(1 � i � �) and joining each vertex u

i

to all vertices of a copy of H

���;��1

and

each vertex w

i

to all vertices of a second copy of H

���;��1

. This graph has 2� + 2(� � 1)

vertices, is �-regular and has edge-connectivity �.

We construct the middle graph G = M(H) of H (cf. [4]) by inserting a vertex x

i

in the

"middle" of each edge e

i

, 1 � i � jE(H)j and adding the edge x

i

x

j

for 1 � i < j � jE(H)j

if only if e

i

and e

j

have a common vertex. Then G is claw-free with vertex connectivity

�; �(G) = � = jV (H)j and �(G) = � and G has n = jV (H)j + jE(H)j = � +

1

2

�� =

�(� + 2)=2 vertices. Corollary 3 thus gives

�(G) �

2n

� + 2

=

�(� + 2)

� + 2

= � :

(If a �-regular �-edge connected graph does not exist, i.e., for � even and � odd, we take

for H a graph with exactly two vertices of degree �+1 and, by the same construction, we

obtain n = �+

1

2

��+1 and �(G) � [�(�+2)+2]=(�+2) = �+2=(�+2); as 2=(�+2) < 1,

the result is also sharp).

In [2] it is shown that the result of Corollary 3 is sharp for arbitrarily large �; r and n;

however, these graphs have connectivity � = �. We next construct an in�nite family of

graphs with the same properties (i.e., with arbitrarily large �; r and n) and with � < �.

Example 11. Choose arbitrary integers r � 2; s � 2; � � r and k such that

2r � 2 � k � � + r � 2 and denote t = rs. Put V (G) = A [ A

1

[ : : : [ A

t

, where

A; A

1

; : : : ; A

t

are pairwise disjoint sets such that A = fx

1

; : : : ; x

t

g and

jA

i

j =

8

>

>

>

>

<

>

>

>

>

:

� � k + r � 1 for i � r (mod r);

k � 2r + 3 for i � r � 1 (mod r);

1 otherwise.

Let hfx

i

g [ A

i

[ : : : [ A

i+r�1

i be complete for i = 1; : : : ; t � r + 1 and join x

i

by an

edge to every vertex of A

i

[ : : :[A

r

[A

1

[ : : :[A

i�t+r�1

for i = t� r+2; : : : ; t. Then the

graph G has n = s� + t vertices, minimum degree �, independence number �(G) = t and

rn

� + r

=

r(s� + sr)

� + r

= sr = t;

moreover, G has connectivity �(G) = minf�; kg:

Examples 9,10 and 11 show that the bound of Corollary 3 is sharp for all pairs �; �

such that 1 < � � � and, therefore, Proposition 8 cannot be expected to give (for arbitrary

n) a better bound than that expressed in terms of degrees in this case.
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However, the following example shows that for � = � = 1, the bound given by Propo-

sition 8 is better and the di�erence between the two bounds can be arbitrarily large.

Example 12. Choose arbitrary integers r � 2 and k � 2, let H be a caterpillar with

vertex set V (H) = fy

1

; : : : ; y

k

; x

1

1

; : : : ; x

r

1

; x

1

2

; : : : ; x

r

2

; : : : ; x

1

k

; : : : ; x

r

k

g (where hy

1

; : : : ; y

k

i is

a path, x

j

i

have degree 1 and y

i

x

j

i

2 E(H) for every i = 1; : : : ; k and j = 1; : : : ; r), and

denote by G the graph which is obtained from H by indentifying x

r

i

with x

1

i+1

for all

i = 1; : : : ; k � 1 (for k = 5 and r = 4, see Fig.2).

t t t t t t t t t t t t t t t t

t t t t t

�

�

�

�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

S

S

S

S

S

S

x

1

1

x

2

1

x

3

1

x

4

1

=x

1

2

x

2

2

x

3

2

x

4

2

=x

1

3

x

2

3

x

3

3

x

4

3

=x

1

4

x

2

4

x

3

4

x

4

4

=x

1

5

x

2

5

x

3

5

x

4

5

Figure 2

Then G is K

1;r+1

-free with �(G) = �(G) = 1, has n = kr+1 vertices and independence

number �(G) = k(r � 1) + 1 = kr � k + 1. Proposition 8 yields

�(G) �

(r � 1)n+ 1

r

=

(r � 1)(kr + 1) + 1

r

= kr � k + 1 = �(G) ;

while from Corollary 3 we obtain

�(G) �

rn

r + 1

=

r(kr + 1)

r + 1

= kr � k + 1 +

k � 1

r + 1

= �(G) +

k � 1

r + 1

:

By the construction,

k�1

r+1

can be arbitrarily large.
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