On the independence number in $K_{1, r+1}$-free graphs

Zdeněk Ryjáček *
Department of Mathematics
University of West Bohemia
Americká 42
30614 Plzeň
Czech Republic

Ingo Schiermeyer *
Lehrstuhl C für Mathematik
Rhein.-Westf. Techn. Hochschule
Templergraben 55
D-52062 Aachen
Germany

March 3, 1994

Abstract

In this paper we use the degree sequence, order, size and vertex connectivity of a $K_{1, r+1}$-free graph or of an almost claw-free graph to obtain several upper bounds on its independence number. We also discuss the sharpness of these results.

1. INTRODUCTION

In this paper, a graph will be a finite undirected graph without loops and multiple edges. For notation and terminology not defined here we refer to [1]. Throughout the paper, we denote by $n=|V(G)|$ the order, by $m=|E(G)|$ the size and by $\delta(G)$ (or simply δ) the minimum degree of G. For any $A, B \subset V(G)$ we put $e(A, B)=\{x y \in$ $E(G) \mid x \in A, y \in B\}, N_{A}(B)=\{x \in A \mid x y \in E(G)$ for some $y \in B\}$ and, for $x \in V(G), d_{A}(x)=\left|N_{A}(x)\right| ;\langle A\rangle$ denotes the induced subgraph on A and $G \backslash A$ stands for $\langle V(G) \backslash A\rangle$.

A set $A \subset V(G)$ is independent if $x y \notin E(G)$ for any $x, y \in A$. The size of a maximum independent set in G is denoted by $\alpha(G)$ and referred to as the independence number of G. A set $B \subset V(G)$ is dominating if every vertex of G belongs to B or has a neighbour

[^0]in B. The size of a minimum dominating set is called the domination number of G and denoted by $\gamma(G)$. If $\gamma(G) \leq k$, we say that G is k-dominated.
G is said to be $K_{1, r+1}$-free $(r \geq 2)$ if G does not contain an induced subgraph which is isomorphic to the star $K_{1, r+1}$. In the special case $r=2$ we say that G is claw-free and the star $K_{1,3}$ will be also called the claw.

In [6], the class of claw-free graphs was extended in the following way: we say that G is almost claw-free if there is an independent set $A \subset V(G)$ such that $\alpha(\langle N(x)\rangle) \leq 2$ for $x \in V(G) \backslash A$ and $\gamma(\langle N(x)\rangle) \leq 2<\alpha(\langle N(x)\rangle)$ for $x \in A$. Equivalently, G is almost claw-free if the centres of induced claws are independent and their neighbourhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free. It can be shown (see [6]) that every almost claw-free graph is $K_{1,5}$-free and $K_{1,1,3}$-free and that, for every $x \in A$, $\gamma(\langle N(x)\rangle)=2$.
$K_{1, r+1}$-free and, especially, claw-free graphs are known to have many interesting properties. Gernert [3] proved that in 2-connected claw-free graphs, $\gamma(G) \leq\lceil n / 3\rceil$. Since for every claw-free graph G trivially $\alpha(G) \leq 2 \gamma(G)$ (otherwise, if $\alpha(G)>2 \gamma(G)$, necessarily some vertex in the minimum dominating set dominates at least three independent vertices and we have a claw), we see that in 2-connected claw-free graphs $\alpha(G) \leq 2\lceil n / 3\rceil$. Li and Virlouvet [5] have shown that for every claw-free graph $G, \alpha(G) \leq 2 n /(\delta+2)$. In [2] these results were extended to $K_{1, r+1}$-free graphs.

In the present paper we proceed with this work. We prove several upper bounds for the independence number of $K_{1, r+1}$-free and almost claw-free graphs and discuss their sharpness.

2. RESULTS

Our first theorem gives an upper bound on the independence number of a $K_{1, r+1}$-free graph in terms of its numbers of vertices and edges.

Theorem 1. Let G be a $K_{1, r+1}$-free graph $(r \geq 2)$ having n vertices and m edges. Then

$$
\begin{gathered}
\alpha(G)=1 \text { if } m=\binom{n}{2} \\
\alpha(G) \leq \frac{1}{2}\left(2 n+2 r-1-\sqrt{8 m+(2 r-1)^{2}}\right) \text { if } 0 \leq m<\binom{n}{2},
\end{gathered}
$$

and this bound is sharp.

Proof. (i) If $m=\binom{n}{2}$, then $G \simeq K_{n}$ and thus $\alpha(G)=1$. Thus let $m<\binom{n}{2}$; then $\alpha(G) \geq 2$. Let $I \subset V(G)$ be an independent set of size α and let $R=V(G) \backslash I$. Then, since G is $K_{1, r+1}$-free, we have $1 \leq d_{I}(v) \leq r$ for every $v \in R$. Thus
$m \leq|E(\langle R\rangle)|+|e(I, R)|+|E(\langle I\rangle)| \leq\binom{ n-\alpha}{2}+r(n-\alpha)+0=\frac{1}{2}(n-\alpha)(n-\alpha+2 r-1)$,
from which we have

$$
(n-\alpha)(n-\alpha+2 r-1)-2 m \geq 0
$$

or, equivalently,

$$
\alpha^{2}-(2 n+2 r-1) \alpha+n^{2}+(2 r-1) n-2 m \geq 0
$$

As a solution of this quadratic inequality we obtain

$$
\alpha \leq \frac{1}{2}\left(2 n+2 r-1-\sqrt{\left.8 m+(2 r-1)^{2}\right)}\right) .
$$

(ii) To show the sharpness, choose arbitrary integers r, k, n such that $2 \leq r \leq k<n$, put $I=\left\{v_{1}, \ldots, v_{k}\right\}$ and $R=\left\{v_{k+1}, \ldots, v_{n}\right\}$, let I be independent and $\left\langle R \cup\left\{v_{k}\right\}\right\rangle$ be complete and join every vertex of R arbitrarily to some $r-1$ vertices in $I \backslash\left\{v_{k}\right\}$. Then the resulting graph G is $K_{1, r+1}$-free, has $|V(G)|=n, \alpha(G)=k,|E(G)|=m=\left({ }_{2}^{n-k+1}\right)+$ $(r-1)(n-k)=\frac{1}{2}(n-k)(n-k+2 r-1)$ and Theorem 1 yields

$$
\begin{gathered}
\alpha(G) \leq \frac{1}{2}\left(2 n+2 r-1-\sqrt{4(n-k)(n-k+2 r-1)+(2 r-1)^{2}}\right)= \\
=\frac{1}{2}\left(2 n+2 r-1-\sqrt{(2 n+2 r-1-2 k)^{2}}\right)=k .
\end{gathered}
$$

Thus, Theorem 1 is sharp.

Next we turn our attention to conditions that give an upper bound on $\alpha(G)$ in terms of the degrees of the vertices of G.

Theorem 2. Let G be a $K_{1, r+1}$-free graph $(r \geq 2)$ with degree-sequence $d_{1} \leq d_{2} \leq$ $\ldots \leq d_{n}$. Then

$$
\alpha(G) \leq \max \left\{k \left\lvert\, k+\frac{1}{r} \sum_{i=1}^{k} d_{i} \leq n\right.\right\}
$$

and this bound is sharp.

Proof. (i) Let $I=\left\{v_{1}, \ldots, v_{k}\right\}(k \geq 1)$ be an independent set. Then every vertex $x \in R=V(G) \backslash I$ is adjacent to at most r vertices in I. Thus we have

$$
\sum_{v_{j} \in I} d\left(v_{j}\right) \leq r(n-k)
$$

and hence

$$
\sum_{i=1}^{k} d_{i} \leq \sum_{j=1}^{k} d\left(v_{j}\right) \leq r(n-k)
$$

from which we obtain

$$
k+\frac{1}{r} \sum_{i=1}^{k} d_{i} \leq n .
$$

(ii) To show the sharpness, we construct a graph G in the following way: Choose arbitrarily $\alpha \geq r \geq 2$ and $d_{1} \leq d_{2} \leq \ldots \leq d_{\alpha-(r-1)}$, set $t=\sum_{i=1}^{\alpha-(r-1)} d_{i}$, put $G_{1}=$ $\bar{K}_{\alpha-r+1}, G_{2}=K_{t}, G_{3}=\bar{K}_{r-1}$, take $G_{2}+G_{3}$ and join the i-th vertex of G_{1} to exactly d_{i} vertices of $G_{2}(i=1, \ldots, \alpha-r+1)$ in such a way that no two vertices in G_{1} have a common neighbour in G_{2}. Then $n=|V(G)|=\alpha+t$ and G has degree-sequence $d_{1} \leq d_{2} \leq \ldots \leq d_{\alpha-(r-1)} \leq t \leq \ldots \leq t+r-1 \leq \ldots \leq t+r-1$, from which $\sum_{i=1}^{\alpha} d_{i}=r t$ and hence $\alpha+\frac{1}{r} \sum_{i=1}^{\alpha} d_{i}=\alpha+t=n$. Thus, Theorem 2 is sharp.

Corollary 3. [2] Let G be $K_{1, r+1}$-free ($r \geq 2$) with minimum degree $\delta(G)$. Then

$$
\alpha(G) \leq \frac{r n}{\delta+r}
$$

Proof. We proceed in the same way as above, i.e., $k \delta \leq \sum_{i=1}^{k} d_{i} \leq r(n-k)$ implying $k \leq \frac{r n}{\delta+r}$.

Corollary 3 is a special case of the following more general result proved in [2].

Theorem A. If G is a $K_{1, r+1}$-free $(r \geq 2)$ graph of order n such that $\sigma_{p}=p x$ for some p with $1 \leq p \leq \alpha$, then

$$
\alpha(G) \leq \frac{r n}{x+r},
$$

where

$$
\sigma_{p}=\min \left\{\sum_{v_{i} \in I} d\left(v_{i}\right) \mid I=\left\{v_{1}, \ldots v_{p}\right\} \subset V(G) \text { is an independent set }\right\} .
$$

This condition also generalizes theorem 2; however, the condition of theorem 2 can be easily checked, whereas the computation of σ_{p} is more time-consuming.

Moreover, by the construction of the graph G in the example shown in the proof of Theorem 2, the sequence $\left\{\frac{1}{p} \sigma_{p}\right\}_{p=1}^{\alpha}$ is increasing for $\alpha>r$ and hence the upper bound given by Theorem A is sharp only for $p=\alpha$ (if we do not restrict to the integer parts of the derived bounds).

For example, if $r=2, \alpha=6, t=5, n=11$, then $\left\{\frac{1}{p} \sigma_{p}\right\}_{p=1}^{6}=\left\{1,1,1,1,1, \frac{10}{6}\right\}$ and for $p=5$ we have

$$
\frac{2 n}{\frac{\sigma_{5}}{5}+2}=\frac{22}{3}>7>6 .
$$

If G does not contain "too many claws" then the result of Corollary 3 can be strengthened in the following way. For $i \geq 3$ we denote $C_{i}=\{x \in V(G) \mid \alpha(\langle N(x)\rangle)=i\}$ (i.e., C_{i} is the set of all vertices of G which are centres of an induced $K_{1, i}$ but not of an induced $\left.K_{1, i+1}\right)$, and we put $c_{i}=\left|C_{i}\right|$.

Proposition 4. Let G be a graph on n vertices with minimum degree δ. Then

$$
\alpha(G) \leq \frac{2 n+c_{3}+2 c_{4}+3 c_{5}+\ldots}{\delta+2}
$$

and this bound is sharp.

Proof. Let I and R be as in the proof of Theorem 2. Then, since $\left|N_{I}(x)\right| \leq i$ for $x \in R \cap C_{i}(i \geq 3)$ and $N_{I}(x) \leq 2$ otherwise. Thus we have

$$
\delta \alpha \leq|e(R, I)| \leq 3 c_{3}+4 c_{4}+5 c_{5}+\ldots+2\left(n-\alpha-c_{3}-c_{4}-c_{5}-\ldots\right),
$$

from which

$$
\delta \alpha \leq 2(n-\alpha)+c_{3}+2 c_{4}+3 c_{5}+\ldots
$$

and hence

$$
\alpha \leq \frac{2 n+c_{3}+2 c_{4}+3 c_{5}+\ldots}{\delta+2}
$$

It is easy to see that, using the idea of the proof, we can obtain sharp examples by a similar construction to that in the proof of Theorem 1.

Next we consider the case when G is almost claw-free. Since every almost claw-free graph is $K_{1,5}$-free, from Corollary 3 we have immediately $\alpha(G) \leq 4 n /(\delta+4)$. We show that this bound can be improved.

Lemma 5. Let G be an almost claw-free graph with minimum degree δ. Then

$$
\alpha(G) \leq \frac{4 n}{\delta+5}
$$

Proof. Let I be an independent set of size α and $R=V(G) \backslash I$; denote $R_{i}=\{x \in$ $\left.R \mid d_{I}(x)=i\right\}$ and $r_{i}=\left|R_{i}\right|, i=1,2,3,4$. Since every almost claw-free graph is $K_{1,5}$-free and I is a maximum independent set, $R_{1} \cup R_{2} \cup R_{3} \cup R_{4}=R$ and hence

$$
I=N_{I}\left(R_{1}\right) \cup N_{I}\left(R_{2}\right) \cup\left(N_{I}\left(R_{3}\right) \backslash N_{I}\left(R_{2}\right)\right) \cup\left(N_{I}\left(R_{4}\right) \backslash N_{I}\left(R_{2}\right)\right)
$$

By definition, $\left|N_{I}\left(R_{1}\right)\right| \leq r_{1}$ and $\left|N_{I}\left(R_{2}\right)\right| \leq 2 r_{2}$. Since every vertex $v \in R_{3} \cup R_{4}$ is the centre of an induced $K_{1,3}$ and G is almost claw-free, $\langle N(v)\rangle$ is 2-dominated. Thus, for every $v \in R_{3}$ there is an $x \in R_{2}$ such that $\left|N_{I}(x) \cap N_{I}(v)\right|=2$, and for every $v \in R_{4}$ there are $x_{1}, x_{2} \in R_{2}$ such that $N_{I}\left(x_{1}\right) \cup N_{I}\left(x_{2}\right)=N_{I}(v)$. Hence we have $\left|N_{I}\left(R_{3}\right) \backslash N_{I}\left(R_{2}\right)\right| \leq r_{3}$ and $\left|N_{I}\left(R_{4}\right) \backslash N_{I}\left(R_{2}\right)\right|=0$, from which

$$
\alpha=|I| \leq r_{1}+2 r_{2}+r_{3} .
$$

Since obviously

$$
\delta \alpha \leq|e(I, R)|=r_{1}+2 r_{2}+3 r_{3}+4 r_{4}
$$

we obtain

$$
(\delta+1) \alpha \leq 2 r_{1}+4 r_{2}+4 r_{3}+4 r_{4} \leq 4\left(r_{1}+r_{2}+r_{3}+r_{4}\right)=4(n-\alpha)
$$

from which

$$
\alpha \leq \frac{4 n}{\delta+5}
$$

Lemma 6. Let G be a $K_{1,5}$-free graph with minimum degree δ such that the set of centres of induced claws is independent. Then

$$
\alpha(G) \leq \frac{2 n}{\delta+1}
$$

Proof. Let I, R, R_{i} and r_{i} be as in the proof of Lemma 5. Again obviously

$$
\alpha \delta \leq|e(I, R)|=r_{1}+2 r_{2}+3 r_{3}+4 r_{4}
$$

from which, since $r_{1}+r_{2}+r_{3}+r_{4}=r-\alpha$,

$$
\alpha \delta \leq 2(n-\alpha)-r_{1}+r_{3}+2 r_{4}
$$

Since no two centres of claws can be adjacent, $R_{3} \cup R_{4}$ is an independent set and $d_{R_{3} \cup R_{4}}(v) \leq 2 \forall v \in I$. Thus,

$$
3 r_{3}+4 r_{4} \leq 2 \alpha
$$

or, equivalently,

$$
\frac{3}{2} r_{3}+2 r_{4} \leq \alpha
$$

From this,

$$
r_{3}+2 r_{4} \leq \frac{3}{2} r_{3}+2 r_{4} \leq \alpha \leq \alpha+r_{1}
$$

or, equivalently,

$$
-r_{1}+r_{3}+2 r_{4} \leq \alpha
$$

Hence we have

$$
\alpha \delta \leq 2(n-\alpha)-r_{1}+r_{3}+2 r_{4} \leq 2(n-\alpha)+\alpha,
$$

from which

$$
\alpha \leq \frac{2 n}{\delta+1}
$$

Theorem 7. Let G be an almost claw-free graph with minimum degree δ. Then

$$
\alpha(G) \leq \begin{cases}\frac{2}{3} n & \text { for } \delta=1 \\ \frac{4}{7} n & \text { for } \delta=2 \\ \frac{2 n}{\delta+1} & \text { for } \delta \geq 3\end{cases}
$$

and this bound is sharp.

Proof. (i) The upper bound follows immediately from Lemma 5 for $\delta=1,2$ and from Lemma 6 for $\delta \geq 3$.
(ii) For $\delta=1$, the graph $t P_{3}$ (i.e., t vertex-disjoint copies of the path on three vertices P_{3}) and for $\delta=2$, the graph $t\left(2 P_{3}+K_{1}\right)$ (i.e., t vertex-disjoint copies of the butterfly $2 P_{3}+K_{1}$) achieve the upper bounds given by Theorem 7 .

For $\delta \geq 3$ we construct the graph G by taking k vertex-disjoint copies H_{1}, \ldots, H_{k} of $K_{\delta} \backslash e(k \geq 2)$ and k additional vertices x_{1}, \ldots, x_{k} and by joining each x_{i} to all the vertices of H_{i} and H_{i+1} for $i=1, \ldots, k(\bmod k)$. The graph G is almost claw-free, has $n=k(\delta+1)$ vertices, $\alpha(G)=2 k$ and Theorem 7 gives

$$
\alpha(G) \leq \frac{2 n}{\delta+1}=\frac{2 k(\delta+1)}{\delta+1}=2 k .
$$

Figure 1

Next we prove an upper bound for $\alpha(G)$ using the vertex-conectivity of a $K_{1, r+1}$-free graph G.

Propositon 8. Let G be a $K_{1, r+1}$ free graph $(r \geq 2)$ with connectivity κ. Then

$$
\alpha(G) \leq \frac{(r-1) n-\kappa+2}{r}
$$

Proof. We proceed by induction on the number of vertices in G.

1. If $n=\kappa+1$ then

$$
\frac{(r-1) n-\kappa+2}{r}=\frac{(r-1)(\kappa+1)-\kappa+2}{r}=\frac{\kappa(r-2)+r+1}{r} \geq \frac{r+1}{r} \geq 1
$$

and, as $G \simeq K_{n}, \alpha(G)=1$.
2. Suppose that the theorem is true for every $K_{1, r+1}$ free graph G on less than n vertices. Let $S \subset V(G)$ be a vertex cutset such that $|S|=\kappa$ and $I \subset V(G)$ be an independent set such that $|I|=\alpha(G)$. Denote $S_{1}=S \cap I ; k=\left|S_{1}\right| ; G_{1}, \ldots, G_{l}$ the components of $G \backslash S$ and $n_{i}=\left|V\left(G_{i}\right)\right|, i=1, \ldots, l$. Then, by the induction hypothesis, each of the subgraphs $\left\langle V\left(G_{i}\right) \cup S_{1}\right\rangle$ has independence number at most $\left[(r-1)\left(n_{i}+k\right)+1\right] / r$ and hence

$$
\begin{gathered}
\alpha(G) \leq \frac{(r-1)\left(n_{1}+k\right)+1}{r}+\ldots+\frac{(r-1)\left(n_{l}+k\right)+1}{r}-(l-1) k= \\
\frac{(r-1)\left(n_{1}+\ldots+n_{l}\right)+(r-1) l k+l+(1-l) r k}{r}= \\
\frac{(r-1)(n-\kappa)+(r-l)(k-1)+r}{r} .
\end{gathered}
$$

Since $k \leq \kappa$ and $l \geq 2$, we further obtain

$$
\alpha(G) \leq \frac{(r-1)(n-\kappa)+(r-2)(\kappa-1)+r}{r}=\frac{(r-1) n-\kappa+2}{r} .
$$

In order to compare the bounds of Proposition 8 and of Corollary 3, we consider the following examples.

Example 9. For arbitrary $r>\kappa \geq 1$, the complete bipartite graph $G=K_{\kappa, r}$ is $K_{1, r+1}$-free with $n=|V(G)|=\kappa+r, \alpha(G)=r, \kappa(G)=\delta(G)=\kappa$ and Corollary 3 gives

$$
\alpha(G) \leq \frac{r n}{\delta+r}=\frac{r(\kappa+r)}{\kappa+r}=r .
$$

In the next example we construct for every integers $\delta>\kappa \geq 1$ a claw-free graph for which the bound in Corollary 3 is achieved.

Example 10. Choose arbitrary integers $\delta>\kappa \geq 1$ and let H be an arbitrary δ-regular κ-edge connected graph. Such graphs exist for all possible values of δ and κ except the
case when δ is even and κ is odd. E.g., for $\kappa \geq 2$, one of the possible constructions is the following: for any $k>l \geq 2$ there is an l-regular graph $H_{l, k}$ on k vertices which has vertex connectivity l (cf. [1]) and we construct the graph H by taking a matching of κ edges $u_{i} w_{i}(1 \leq i \leq \kappa)$ and joining each vertex u_{i} to all vertices of a copy of $H_{\delta-\kappa, \delta-1}$ and each vertex w_{i} to all vertices of a second copy of $H_{\delta-\kappa, \delta-1}$. This graph has $2 \kappa+2(\delta-1)$ vertices, is δ-regular and has edge-connectivity κ.

We construct the middle graph $G=M(H)$ of H (cf. [4]) by inserting a vertex x_{i} in the "middle" of each edge $e_{i}, 1 \leq i \leq|E(H)|$ and adding the edge $x_{i} x_{j}$ for $1 \leq i<j \leq|E(H)|$ if only if e_{i} and e_{j} have a common vertex. Then G is claw-free with vertex connectivity $\kappa, \alpha(G)=\alpha=|V(H)|$ and $\delta(G)=\delta$ and G has $n=|V(H)|+|E(H)|=\alpha+\frac{1}{2} \alpha \delta=$ $\alpha(\delta+2) / 2$ vertices. Corollary 3 thus gives

$$
\alpha(G) \leq \frac{2 n}{\delta+2}=\frac{\alpha(\delta+2)}{\delta+2}=\alpha
$$

(If a δ-regular κ-edge connected graph does not exist, i.e., for δ even and κ odd, we take for H a graph with exactly two vertices of degree $\delta+1$ and, by the same construction, we obtain $n=\alpha+\frac{1}{2} \alpha \delta+1$ and $\alpha(G) \leq[\alpha(\delta+2)+2] /(\delta+2)=\alpha+2 /(\delta+2) ;$ as $2 /(\delta+2)<1$, the result is also sharp).

In [2] it is shown that the result of Corollary 3 is sharp for arbitrarily large δ, r and n; however, these graphs have connectivity $\kappa=\delta$. We next construct an infinite family of graphs with the same properties (i.e., with arbitrarily large δ, r and n) and with $\kappa<\delta$.

Example 11. Choose arbitrary integers $r \geq 2, s \geq 2, \delta \geq r$ and k such that $2 r-2 \leq k \leq \delta+r-2$ and denote $t=r s$. Put $V(G)=A \cup A_{1} \cup \ldots \cup A_{t}$, where A, A_{1}, \ldots, A_{t} are pairwise disjoint sets such that $A=\left\{x_{1}, \ldots, x_{t}\right\}$ and

$$
\left|A_{i}\right|= \begin{cases}\delta-k+r-1 & \text { for } i \equiv r \quad(\bmod r) \\ k-2 r+3 & \text { for } i \equiv r-1 \quad(\bmod r) \\ 1 & \text { otherwise }\end{cases}
$$

Let $\left\langle\left\{x_{i}\right\} \cup A_{i} \cup \ldots \cup A_{i+r-1}\right\rangle$ be complete for $i=1, \ldots, t-r+1$ and join x_{i} by an edge to every vertex of $A_{i} \cup \ldots \cup A_{r} \cup A_{1} \cup \ldots \cup A_{i-t+r-1}$ for $i=t-r+2, \ldots, t$. Then the graph G has $n=s \delta+t$ vertices, minimum degree δ, independence number $\alpha(G)=t$ and

$$
\frac{r n}{\delta+r}=\frac{r(s \delta+s r)}{\delta+r}=s r=t
$$

moreover, G has connectivity $\kappa(G)=\min \{\delta, k\}$.

Examples 9,10 and 11 show that the bound of Corollary 3 is sharp for all pairs κ, δ such that $1<\kappa \leq \delta$ and, therefore, Proposition 8 cannot be expected to give (for arbitrary n) a better bound than that expressed in terms of degrees in this case.

However, the following example shows that for $\delta=\kappa=1$, the bound given by Proposition 8 is better and the difference between the two bounds can be arbitrarily large.

Example 12. Choose arbitrary integers $r \geq 2$ and $k \geq 2$, let H be a caterpillar with vertex set $V(H)=\left\{y_{1}, \ldots, y_{k}, x_{1}^{1}, \ldots, x_{1}^{r}, x_{2}^{1}, \ldots, x_{2}^{r}, \ldots, x_{k}^{1}, \ldots, x_{k}^{r}\right\}$ (where $\left\langle y_{1}, \ldots, y_{k}\right\rangle$ is a path, x_{i}^{j} have degree 1 and $y_{i} x_{i}^{j} \in E(H)$ for every $i=1, \ldots, k$ and $j=1, \ldots, r$), and denote by G the graph which is obtained from H by indentifying x_{i}^{r} with x_{i+1}^{1} for all $i=1, \ldots, k-1$ (for $k=5$ and $r=4$, see Fig.2).

Figure 2
Then G is $K_{1, r+1}$-free with $\kappa(G)=\delta(G)=1$, has $n=k r+1$ vertices and independence number $\alpha(G)=k(r-1)+1=k r-k+1$. Proposition 8 yields

$$
\alpha(G) \leq \frac{(r-1) n+1}{r}=\frac{(r-1)(k r+1)+1}{r}=k r-k+1=\alpha(G),
$$

while from Corollary 3 we obtain

$$
\alpha(G) \leq \frac{r n}{r+1}=\frac{r(k r+1)}{r+1}=k r-k+1+\frac{k-1}{r+1}=\alpha(G)+\frac{k-1}{r+1} .
$$

By the construction, $\frac{k-1}{r+1}$ can be arbitrarily large.

References

[1] Bondy, J.A.; Murty, U.S.R.: Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.
[2] Faudree, R.J.; Gould, R.J.; Jacobson, M.S.; Lesniak, L.M.; Lindquester, T.E.: On independent generalized degrees and independence numbers in $K(1, m)$-free graphs. Discrete Mathematics 103(1992), 17-24.
[3] Gernert, D.: Forbidden and unavoidable supgraphs. Ars Combinatoria 27(1989), 165-176.
[4] Hamada, T.; Yoshimura, I.: Traversability and connectivity of the middle graph. Discrete Math. 14(1976), 247-255.
[5] Li, Hao; Virlouvet, C.: Neighborhood conditions for claw-free hamiltonian graphs. Ars Combinatoria 29A(1990), 109-116.
[6] Ryjáček, Z.: Almost claw-free graphs. Journal of Graph Theory (to appear).

[^0]: *This research was done partly while the second author was visiting the University of West Bohemia and partly while the first author was visiting RWTH Aachen. Research supported by EC-grant No 927.

