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Abstract

A graph G on n vertices is pancyclic if G contains cycles of all lengths ` for 3 � ` � n

and G is cycle extendable if for every nonhamiltonian cycle C � G there is a cycle C

0

� G

such that V (C) � V (C

0

) and jV (C

0

) n V (C)j = 1. We prove that

(i) every 2-connected K

1;3

-free graph is pancyclic, if G is P

5

-free and n � 6, if G is

P

6

-free and n � 10, or if G is P

7

-free, deer-free and n � 14, and

(ii) every 2-connected K

1;3

-free and Z

2

-free graph on n � 10 vertices is cycle extend-

able using at most two chords of the cycle.
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1. Introduction

We only consider simple, undirected graphs and refer to [2] for terminology and notation

not de�ned here. A graph G with n � 3 vertices is hamiltonian if G contains a cycle of

length n, and pancyclic if G contains a cycle C

k

of length k for each k with 3 � k � n. A

graph G is cycle extendable if for every nonhamiltonian cycle C � G there is a cycle C

0

� G

such that V (C) � V (C

0

) and jV (C

0

) n V (C)j = 1. If C

m

is a cycle with m vertices labeled

v

1

; v

2

; : : : ; v

m

such that fv

i

v

i+1

j 1 � i � m � 1g [ fv

m

v

1

g � E(G) and v

j

v

j+k

2 E(G) for

some j; k (modulo m), then the edge v

j

v

j+k

is called a k-chord of C

m

. Clearly, this k-chord

can be used to construct a cycle of length m � k + 1 from the given cycle C

m

. We say that

a graph G is cycle k�extendable if each nonhamiltonian cycle C can be extended to a cycle

C

0

that has one additional vertex and uses at most k chords of C. Finally, a graph G has

a k�pancyclic ordering if the vertices of G can be ordered such that the graph induced by

the �rst j vertices (j � k) is hamiltonian. Thus a graph with a 3-pancyclic ordering has a

pancyclic ordering.

If G and G

0

are graphs, then we say that G is G

0

-free if G contains no induced subgraph

isomorphic to G

0

. Speci�cally, we denote by C the claw K

1;3

, by D the deer, by H the

hourglass, by P

k

the path with k vertices (i.e. of length k � 1) and by Z

1

and Z

2

the graphs

obtained by identifying a vertex of K

3

with an end-vertex of P

2

and P

3

, respectively (see

Figure 1).

Probably the �rst su�cient condition for hamiltonicity of a graph in terms of forbidden

subgraphs is due to Goodman and Hedetniemi [4].

Theorem A [4]. If G is a 2-connected CZ

1

-free graph, then G is hamiltonian.

Gould and Jacobson [5] extended this result to CZ

2

-free graphs.

Theorem B [5]. If G is a 2-connected CZ

2

-free graph then G is a cycle or is pancyclic.

Hendry [6] further extended this result showing the following.

2



u

u u

u u

u u

�

�

@

@

b

1

b

2

c

1

c

2

a

The deer D

u u

u

u u

�

�

�@

@

@

The hourglass H

u u

u

u

�

�@

@

Z

1

u u

u

u

u

�

�@

@

Z

2

u u u u u u u

b

1

c

1

a c

2

b

2

P

7

u

u

u

u

�

�

�

H

H

H

The claw C

Figure 1

Theorem C [6]. If G is a 2-connected, CZ

2

-free graph on n � 10 vertices, then G is cycle

extendable.

The graph G

1

in Figure 2 shows that C and Z

3

, as forbidden subgraphs, are not su�cient

to guarantee even hamiltonicity. Also, the triangles in G

1

that contain a vertex of degree 2

can be replaced by an arbitrary K

r

for r � 3 without changing the conclusion, so there is an

in�nite family of CZ

3

-free graphs that are not hamiltonian.

A result similar to Theorem B was proved for CP

5

-free graphs by Bedrossian [1].

Theorem D [1]. Let G be a 2-connected CP

5

-free graph. Then G is either pancyclic or a

cycle.

The graph G

2

in Figure 2 (given in [1]) shows that, to guarantee pancyclicity, P

5

cannot

be replaced by the forbidden subgraph P

6

in the hypothesis of Theorem D.

However, to obtain hamiltonicity, the following result of Broersma and Veldman ([3]) can

be used to weaken the hypothesis of Theorem D. If G

0

is a subgraph of G and u; v 2 V (G

0

),

then G

0

is said to satisfy property �(u; v) if (N(u)\N(v))�V (G

0

) 6= ;, where N(x) denotes

3
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Figure 2

the neighborhood of the vertex x in G. The symbols ^ and _ are used here to denote \and"

and \or", respectively.

Theorem E [3]. Let G be a 2-connected, C-free graph. If every induced subgraph of G

isomorphic to D or P

7

(see Figure 1) satis�es �(a; b

1

)_�(a; b

2

)_ (�(a; c

1

)_ �(a; c

2

)), then

G is hamiltonian.

This result has the following immediate consequence.

Corollary F [3]. Let G be a 2-connected C-free graph. If G is P

6

-free or DP

7

-free, then

G is hamiltonian.

In this paper we will show that

(i) every CDP

7

-free (and thus also CP

6

-free or even CP

5

-free) graph is pancyclic or

belongs to a �nite family of exceptional graphs, and

(ii) every CZ

2

-free graph is either 2-chord extendable or belongs to a �nite family of

exceptional graphs.

These families of exceptional graphs are fully described.

2. Results

Proposition 1 (Reduction Procedure RP). Let G be a CDP

7

-free graph on n � k � 9

vertices. If G contains a C

k

, then G also contains a C

k�1

.
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We �rst introduce some additional notation which will be useful in the proofs that follow.

Let C be a cycle in a graph G. If an orientation of C is �xed and u; v 2 V (C), then by

u

�!

C

v we denote the consecutive vertices on C from u to v in the direction speci�ed by the

orientation of C. The same vertices, in reverse order, are given by v

 �

C

u. If C is a cycle of

G with a �xed orienation and u 2 V (D), then u

+

denotes the successor of u on C and u

�

its

predecessor, respectively.

In the proofs the following four statements for C-free graphs can easily be veri�ed, and

will be frequently used and just referred by the indicated label.

(A) Let C

m

be a cycle with m � 2k + 2 � 6 vertices labeled v

1

; v

2

; : : : ; v

m

and a k-chord

v

j

v

j+k

. If there are no i-chords for 2 � i � k � 1, then v

j�1

v

j+k

; v

j

v

j+k+1

2 E(G).

(B) If, moreover, v

j�1

v

j+k�1

62 E(G) or v

j+1

v

j+k+1

62 E(G), then v

j�1

v

j+k+1

2 E(G).

(C) Let v

j

v

j+i

be an i-chord with 3 � i �

k

2

in a cycle C

k

without 2-chords. If v

j

v

j+i�1

62

E(G), then v

j

v

j+i+1

2 E(G), and likewise if v

j+1

v

j+i

62 E(G), then v

j�1

v

j+i

2 E(G).

(D) Let v

j

v

j+i

be an i-chord in a cycle C

k

. If i � 2 and v

j+1

v

j+i+2

2 E(G) or if i � 3 and

v

j+2

v

j+i+1

2 E(G), then v

j

v

j+i

 �

C

v

j+1

v

j+i+2

�!

C

v

j

or v

j

v

j+i

 �

C

v

j+2

v

j+i+1

�!

C

v

j

is a

C

k�1

, respectively.

Proof (of Propositon 1). Let v

1

; : : : ; v

k

be the vertices of C

k

. Since G is P

7

-free, the cycle

C

k

contains a chord. Let i (2 � i �

k

2

) be smallest integer such that G has an i-chord. Among

all chords of C

k

choose such a minimal i-chord (2 � i �

k

2

). Choose a labeling v

1

; v

2

; : : : ; v

k

of the vertices of C

k

such that (fv

j

v

j+1

j 1 � j � k � 1g [ fv

k

v

1

; v

1

v

i+1

g) � E(G). We then

distinguish the following �ve cases.

Case 1. i=2

Then v

1

v

3

v

4

: : : v

k

v

1

is a C

k�1

.

Case 2. i=3

By (A) we have v

1

v

5

; v

k

v

4

2 E(G). If v

2

v

5

2 E(G), then we obtain a C

k�1

by (D). Hence,

we may assume that v

2

v

5

62 E(G) and so v

k

v

5

2 E(G) by (B). If v

2

v

6

2 E(G), v

2

v

7

2 E(G),
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or v

3

v

6

2 E(G) then we obtain a C

k�1

by (D). Hence we may assume that v

2

v

6

; v

2

v

7

, and

v

3

v

6

62 E(G). If v

3

v

7

2 E(G), then v

k

v

5

v

4

v

1

v

2

v

3

v

7

�!

C

v

k

is a C

k�1

. Therefore, v

3

v

7

62 E(G)

and thus v

4

v

7

62 E(G) by (A). Suppose now that v

5

v

8

2 E(G). Then v

4

v

8

; v

5

v

9

2 E(G) by

(A) and v

4

v

9

2 E(G) by (B), since v

4

v

7

62 E(G) by (D). Now if v

6

v

k

2 E(G) or v

7

v

k

2 E(G),

then v

k

v

6

v

5

v

1

v

2

v

3

v

4

v

8

�!

C

v

k

or v

k

v

7

v

6

v

5

v

1

v

2

v

3

v

4

v

9

�!

C

v

k

is a C

k�1

. If v

6

v

k

; v

7

v

k

62 E(G), then

G[fv

2

; v

3

; v

4

; v

k

; v

5

; v

6

; v

7

g] is an induced deer, a contradiction. Hence we may assume that

v

5

v

8

62 E(G). If v

4

v

8

2 E(G), then v

3

v

8

; v

4

v

9

2 E(G) by (D) and v

3

v

9

2 E(G) by (B) and

we obtain the same contradiction. Hence we may assume that v

4

v

8

62 E(G). Analogously,

if v

3

v

8

2 E(G), then v

2

v

8

; v

3

v

9

; v

2

v

9

2 E(G), and if v

6

v

k

2 E(G) or v

7

v

k

2 E(G), then

v

k

v

6

v

5

v

4

v

1

v

2

v

3

v

8

�!

C

v

k

or v

k

v

7

v

6

v

5

v

4

v

3

v

2

v

8

�!

C

v

k

is a C

k�1

, respectively. Hence we may

assume that v

3

v

8

62 E(G). If v

2

v

8

2 E(G), then v

1

v

8

2 E(G) by (C), and if v

6

v

k

2 E(G)

or v

7

v

k

2 E(G), then v

k

v

6

 �

C

v

1

v

8

�!

C

v

k

or v

k

v

7

 �

C

v

2

v

8

�!

C

v

k

is a C

k�1

, respectively. Hence

we may assume that v

2

v

8

62 E(G). But then G[fv

2

; v

3

; : : : ; v

8

g] is an induced P

7

, our �nal

contradiction.

Case 3. i=4

By (A) we have v

1

v

6

; v

k

v

5

2 E(G). If v

2

v

6

2 E(G), then we obtain a C

k�1

by (D).

Hence we may assume that v

2

v

6

62 E(G) and thus v

k

v

6

2 E(G) by (B). If v

2

v

7

2 E(G) or

v

2

v

8

2 E(G) or v

3

v

7

2 E(G), then we obtain a C

k�1

by (D). Hence we may assume that

v

2

v

7

; v

2

v

8

; v

3

v

7

62 E(G). If v

4

v

k

2 E(G), then v

k

v

6

v

5

v

1

v

2

v

3

v

4

v

8

�!

C

v

k

is a C

k�1

. Hence we

may assume that v

4

v

8

62 E(G) and thus v

3

v

8

62 E(G) by (C), since v

2

v

8

62 E(G). But then

G[fv

2

; v

3

; : : : ; v

8

g] is an induced P

7

, a contradiction.

Case 4. i=5

By (A) we have v

1

v

7

; v

k

v

6

2 E(G). If v

2

v

7

2 E(G), then we obtain a C

k�1

by (D).

Hence we may assume that v

2

v

7

62 E(G) and thus v

k

v

7

2 E(G) by (B). If v

2

v

8

2 E(G) or

v

3

v

8

2 E(G), then we obtain a C

k�1

by (D). Hence we may assume that v

2

v

8

; v

3

v

8

62 E(G).

But then G[fv

2

; v

3

; : : : ; v

8

g] is an induced P

7

, a contradiction.

Case 5. i=6

Since G is P

7

-free, C

k

contains all possible 6-chords. Thus v

2

v

8

; v

6

v

k

2 E(G). By (A) we

6



have v

k

v

7

2 E(G) and thus v

k

v

7

 �

C

v

2

v

8

�!

C

v

k

is a C

k�1

.

Remark. The graph G

8:8

(Figure 4) shows that k � 9 in the hypothesis of Proposition 1

is sharp.

The proof of Proposition 1 gives the following two corollaries.

Corollary 2. Let G be a CP

6

-free graph on n � k � 7 vertices. If G contains a C

k

, then

G also contains a C

k�1

.

Corollary 3. Let G be a CP

5

-free graph on n � k � 6 vertices. If G contains a C

k

, then

G also contains a C

k�1

.

Remark. The cycles C

5

and C

6

and the graph G

8:8

(Figure 4) show that the assumptions

\k � 6" or \k � 7" or \k � 9" in the hypothesis of Corollary 3 or Corollary 2 or Proposition

1 cannot be improved, respectively. Furthermore, the graph H of order n = 4r in Figure 3

shows that the assumption that G is D-free is an essential hypothesis of Proposition 1, since

it is hamiltonian, but it has no cycle of length n � 1.

u u u u u u

u u u u u u

: : :

�

�

�

�

K

2r

Figure 3

The next two propositions will be used to prove our main result.

Proposition 4. Let G be a CDP

7

-free graph on n � 9 vertices. If G has a hamiltonian

cycle without 2-chords, then G is pancyclic.

Proof. Let G be a CDP

7

-free graph on n � 9 vertices, which has a hamiltonian cycle without

2-chords. Then G has an i-chord for some i, 3 � i � 6, since G is P

7

-free and n � 9. Among

7



all i-chords choose one such that i is minimal. Then n � 2i+ 1, since G is C-free and i � 3.

By Proposition 1, we know that G has a C

k

for 8 � k � n. Therefore it su�ces to show that

G has a C

k

for 3 � k � 7. Choose a labeling v

1

; v

2

; : : : ; v

n

of the vertices of G such that

(fv

j

v

j+1

j 1 � j � n � 1g [ fv

n

v

1

; v

1

v

i+1

g) � E(G). We then distinguish the following four

cases.

Case 1. i=6

Then n � 13 and G has all possible 6-chords, since G is P

7

-free and i = 6. By (A) we

have v

1

v

8

; v

2

v

9

; v

3

v

10

2 E(G). Thus G has a C

3

; C

4

and a C

7

. A C

5

and a C

6

are given by

v

1

v

2

v

3

v

9

v

8

v

1

and by v

1

v

2

v

3

v

10

v

9

v

8

v

1

, respectively.

Case 2. i=5

By (A) we have v

1

v

7

; v

6

v

n

2 E(G) and thus G has a C

3

; C

4

; C

6

and C

7

. Hence, we may

assume that G has no C

5

. If v

5

v

n

2 E(G), then v

n

v

5

v

6

v

7

v

1

v

n

is a C

5

. Hence we may assume

that v

5

v

n

62 E(G) and thus v

7

v

n

2 E(G) by (C). Now if v

5

v

n�1

2 E(G) or v

4

v

n�1

2 E(G),

then v

n�1

v

5

v

6

v

7

v

n

v

n�1

or v

n�1

v

4

v

5

v

6

v

n

v

n�1

is a C

5

, respectively. Hence v

5

v

n�1

; v

4

v

n�1

62

E(G), but then G[fv

n�1

; v

n

; v

1

; v

2

; v

3

; v

4

; v

5

g] is an induced P

7

, a contradiction.

Case 3. i=4

By (A) we have v

1

v

6

; v

5

v

n

2 E(G) and thus G has a C

3

; C

4

; C

5

and C

6

. Hence, we may

assume that G has no C

7

. Thus v

4

v

n�2

62 E(G). If v

3

v

n�2

2 E(G), v

2

v

n�2

2 E(G),

v

4

v

n�1

2 E(G), or v

3

v

n�1

2 E(G), then v

1

v

2

v

3

v

n�2

v

n�1

v

n

v

5

v

1

, v

1

v

2

v

n�2

v

n�1

v

n

v

5

v

6

v

1

,

v

1

v

2

v

3

v

4

v

n�1

v

n

v

5

v

1

, or v

1

v

2

v

3

v

n�1

v

n

v

5

v

6

v

1

is a C

7

, respectively. Now v

4

v

n

62 E(G), since

v

4

v

n�1

; v

1

v

4

; v

1

v

n�1

62 E(G) and G is C-free. But then G[fv

n�2

; v

n�1

; v

n

; v

1

; v

2

; v

3

; v

4

g] is an

induced P

7

, a contradiction.

Case 4. i=3

By (A) we have v

1

v

5

; v

4

v

n

2 E(G) and thus G has a C

3

; C

4

and C

5

. Hence we may

assume that G has no C

6

or no C

7

. If one of the edges v

3

v

n�1

; v

3

v

n�2

or v

3

v

n�3

is present,

then G has a C

6

and a C

7

. Now v

3

v

n

62 E(G), since G is C-free, v

3

v

n�1

62 E(G), and i = 3.

If one of the edges v

2

v

n�1

, v

2

v

n�2

; v

2

v

n�3

, or v

1

v

n�3

is present, then G has a C

6

and a C

7

.

Now v

1

v

n�2

62 E(G), since G is C-free, v

1

v

n�3

62 E(G), and i = 3. By the same argument

8



we have v

n�3

v

n

62 E(G). But then G[fv

n�3

; v

n�2

; v

n�1

; v

n

; v

1

; v

2

; v

3

g] is an induced P

7

, a

contradiction.

Proposition 5. Let G be a 2-connected, CDP

7

-free graph on n � 13 vertices. Then G

is either pancyclic or isomorphic to one of the following graphs: C

4

; C

5

; C

6

; G

6:1

; C

7

; G

7:1

�

G

7:4

; G

8:1

�G

8:10

; G

9:1

�G

9:11

; G

10:1

� G

10:8

; G

11:1

�G

11:7

; G

12:1

�G

12:4

; G

13

(see Figure 4).

The proof of Proposition 5 is lengthy and involves a detailed case analysis, and is therefore

postponed to the appendix. We are now ready to state our main result.

Theorem 6. Let G be a 2-connected CDP

7

-free graph. Then G is either pancyclic or

isomorphic to one of the following graphs: C

4

; C

5

; : : : ; G

13

in Figure 4.

Proof. Let G be a 2-connected CDP

7

-free graph on n � 3 vertices. By Theorem E we know

thatG is hamiltonian. If n � 7 then G is either pancyclic or isomorphic to C

4

; C

5

; C

6

; G

6:1

; C

7

,

G

7:1

; G

7:2

; G

7:3

or G

7:4

, which can be easily veri�ed by a straightforward case analysis. If

n � 8, then G contains all cycles from C

8

up to C

n

by Proposition 1. If, moreover, G has

a cycle C

k

for some k with k � 9 without 2-chords, then G is pancyclic by Proposition 4.

Hence, any counterexample must have n = 8 vertices or must have a cycle C

k

with a 2-chord

for some k with k � 9. All these counterexamples are given by Proposition 5. Furthermore,

the proof of Proposition 5 shows that there are no counterexamples on n � 14 vertices. This

completes the proof.

Theorem 6 has a number of consequences. First observe that all exceptional graphs have

connectivity � = 2.

Corollary 7. Let G be a 3-connected C-free graph. If G is DP

7

-free or P

6

-free, then G is

pancyclic.
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Figure 4

Corollary 8. Let G be a 2-connected, C-free graph. If, moreover, G is DP

7

-free and

n � 14, G is P

6

-free and n � 10, or G is P

5

-free and n � 6, then G is pancyclic.

With the use of Proposition 1, Corollary 2, or Corollary 3 we obtain the following results

for pancyclic orderings, respectively.

Corollary 9. Let G be a 2-connected CDP

7

-free graph on n � 8 vertices. Then G has an

8-pancyclic ordering.

Corollary 10. Let G be a 2-connected CP

6

-free graph on n � 6 vertices. Then G has a

6-pancyclic ordering.

Corollary 11. Let G be a 2-connected, CP

5

-free graph on n � 5 vertices. Then G has a

5-pancyclic ordering.

Remarks. The graph G

8:8

(Figure 4) and the graph G

2

in Figure 2 show that \8-

pancyclic" and \6-pancyclic" in the conclusions of Corollary 9 and Corollary 10 are best

possible, respectively. The following two classes of graphs show that \6-pancyclic" and \5-
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pancyclic" in the conclusions of Corollary 10 and Corollary 11 are best possible, respectively.
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For the class of CZ

2

-free graphs we prove the following extension of Theorem C.

Theorem 12. Let G be a 2-connected CZ

2

-free graph. Then G is either 2-chord extendable

or isomorphic to one of the eight graphs in Figure 6.
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Figure 6

Proof. Let C be a cycle of length k � 3 in a 2-connected CZ

2

-free graph, which cannot be

extended using at most two chords. We distinguish two cases:

Case 1. k � 4

Since G is 2-connected, there is a path v

1

x

1

x

2

: : : x

l

v

2

such that v

1

; v

2

2 V (C); x

i

62 V (C),

and N(x

i

) \ V ([v

+

1

; v

�

2

]) = ; for 1 � i � l. Now let l be minimal, and among all those paths

of length l choose one such that jV ([v

+

1

; v

�

2

])j is as small as possible.

Case 1.1. l=1

Then v

2

6= v

+

1

, and v

1

6= v

+

2

, since otherwise, v

1

x

1

v

2

�!

C

v

1

or v

2

x

1

v

1

�!

C

v

2

would be a

12



0-chord extension of C. Thus v

�

i

v

+

i

2 E(G), for i = 1; 2, since G is C-free. Now v

�

1

v

2

; v

+

1

v

2

62

E(G), since otherwise, v

�

1

v

2

x

1

v

1

�!

C

v

�

2

v

+

2

�!

C

v

�

1

or v

1

x

1

v

2

v

+

1

�!

C

v

�

2

v

+

2

�!

C

v

1

would be a 2-

chord extension of C. Therefore, v

1

v

2

2 E(G), since otherwise, G[fv

�

1

; v

1

; v

+

1

; x

1

; v

2

g] is an

induced Z

2

.

Let y 2 V ([v

1

; v

2

]) be the �rst vertex not adjacent to v

1

and consider G[fv

1

; x

1

; v

2

; y

�

; yg].

By the choice, x

1

y; x

1

y

�

; v

1

y 62 E(G), and therefore v

2

y 2 E(G) or v

2

y

�

2 E(G). Thus,

there exists a vertex z 2 V ([v

+

1

; v

�

2

]) such that v

1

z

�

; zv

2

2 E(G). Now v

�

1

z

�

; zv

+

2

2 E(G),

since otherwise, G[fv

�

1

; v

1

; x

1

; zg] or G[fz; v

2

; x

1

; v

+

2

g] would be an induced claw. But then

v

�

1

z

�

 �

C

v

1

x

1

v

2

 �

C

zv

+

2

�!

C

v

�

1

is a 2-chord extension of C, a contradiction.

Case 1.2. l � 2

Again v

�

1

x

1

; v

+

1

x

1

62 E(G). Next v

1

x

2

; v

+

1

x

2

62 E(G), since l is minimal. Now v

�

1

x

2

2

E(G), since otherwise, G[fv

�

1

; v

1

; v

+

1

; x

1

; x

2

g] would be an induced Z

2

. Hence, we may assume

that l = 2 and v

+

1

x

2

2 E(G) (exchange v

�

1

and v

+

1

). Thus, v

2

= v

+

1

. Since G is C-free and

there is no 0-chord extension of C, we have v

1

v

+

2

; v

�

1

v

2

2 E(G). Next x

1

v

+

2

62 E(G), since

otherwise v

�

1

v

2

v

1

x

1

v

+

2

�!

C

v

�

1

would be a 1-chord extension of C. Then v

�

1

v

+

2

2 E(G), since

otherwise G[fv

�

1

; v

1

; x

1

; v

+

2

g] would be an induced claw. Now consider G[fv

�

1

; v

2

; v

+

2

; x

2

; x

1

g].

Since G is Z

2

-free and x

1

v

+

2

; x

1

v

�

1

; x

1

v

2

; x

2

v

+

2

62 E(G), we have v

�

1

x

2

2 E(G). But then

x

2

v

2

v

1

v

+

2

�!

C

v

�

1

x

2

is a 1-chord extension of C, a contradiction.

Case 2. k=3

Let the vertices of C be labeled v

1

; v

2

; v

3

, and let U

i

:= fx 2 V (G)� V (C)jx 2 N(v

i

)g

for 1 � i � 3. Then

(1)
U

i

\ U

j

= ; for 1 � i < j � 3;

since otherwise, there would be a 0-chord extension of C. If R = V (G) � [U

1

[ U

2

[ U

3

[

fv

1

; v

2

; v

3

g] 6= ;, then there is a vertex w 2 R contained in an induced Z

2

(together with

v

1

; v

2

and v

3

), since G is connected, a contradiction. Thus R = ;. Next observe that G[u

i

] is

complete for 1 � i � 3, since G is C-free and by equation (1).

Suppose now that jU

1

j � jU

2

j � jU

3

j. Since G is 2-connected and by the previous as-

13



sumption we have

(2)
U

2

; U

3

6= ;.

If a vertex w

i

2 U

i

is adjacent to two vertices w

j1

; w

j2

2 U

j

, thenG[fv

1

; v

2

; v

3

; w

j1

; w

j2

; w

i

g]

contains an induced Z

2

, a contradiction. If a vertex w 2 U

i

is not adjacent to two vertices

w

j1

; w

j2

2 U

j

, then G[fw

i

; v

i

; v

j

; w

j1

; w

j2

g] is an induced Z

2

, a contradiction. Thus, by equa-

tion (2) we conclude that

(3) 1 � jU

2

j � jU

3

j � 2;

which implies 5 � n � 9.

Now using all of this information we obtain the eight exceptional graphs Z

5:1

; Z

6:1

; Z

6:2

,

Z

7:1

; Z

7:2

; Z

7:3

; Z

8:1

and Z

9:1

depicted in �gure F6.

Corollary 13. If G is a 2-connected CZ

2

-free graph on n � 10 vertices, then G is cycle

2-extendable.

3. Concluding Remarks

The proof of Theorem D admits another interesting corollary which seems not to be

mentioned elsewhere.

Corollary 14. Let G be a 2-connected C-free graph. If G is HP

7

-free, then G is hamilto-

nian.

Unfortunately, the graph in Figure 3 shows that it is not possible to obtain an analogue

of Theorem 6 replacing \D-free" by \H-free." However, the whole proof concept of Theorem

6 can be used in the same way to prove the following result.

14



Theorem 15. Let G be a 2-connected, C-free graph. If, moreover, G is HP

7

-free and

n � 9, then G is either pancyclic or missing only one cycle.

Sketch of Proof. We follow the proof of Theorem 6 and state only the main di�erences.

If n � 7, then G is either pancyclic or isomorphic to C

4

; C

5

; C

6

; G

6:1

; C

7

; G

7:1

; G

7:3

, or G

7;4

.

Next observe that in the proof of Theorem 1 only once a contradiction is obtained by the

existence of an induced deer, namely in Case 2 (v

1

v

4

2 E(G)). In order to avoid an induced

P

7

we successively conclude that v

5

v

8

; v

9

v

12

; � � � ; v

4k�3

v

4k

; v

4k+1

v

4k+4

2 E(G), where n =

4k + 1; n = 4k + 2; n = 4k + 3, or n = 4k + 4 (indices modulo n), respectively. As in Case 2

we know that v

4i�4

v

4i

; v

4i�4

v

4i+1

; v

4i�3

v

4i+1

2 E(G) for each edge v

4i�3

v

4i

. Then, however,

v

n

v

3

v

2

v

1

v

5

v

6

�!

C

v

n

, v

n�1

v

2

v

1

v

n

v

4

v

5

�!

C

v

n�1

, or v

n�3

v

2

v

1

v

n�2

v

n�1

v

n

v

4

�!

C

v

n�3

is a C

n�1

, if

n = 4k + 1, n = 4k + 2, or n = 4k + 3, respectively. Hence, we may assume that n = 4k,

k � 2.

Now v

1

v

4

v

5

�!

C

v

1

and v

1

v

5

v

6

�!

C

v

1

are a C

n�2

and a C

n�3

, respectively. By successively

replacing paths v

4i�3

v

4i�2

v

4i�1

v

4i

by the edge v

4i�3

v

4i

for 2 � i � n=4 we exhibit all cycles

C

m

for n=2 � 1 � m � n � 4. Next, for 1 � p � n=4 � 1, we obtain a cycle C

2p+1

by

v

1

v

5

� � �v

4p+1

v

4p

v

4p�4

� � �v

4

v

1

or a cycle C

2p

by v

1

v

5

� � �v

4p�3

v

4p

v

4p�4

� � �v

4

v

1

, respectively.

Therefore, if n � 9, then G contains all cycles from C

8

up to C

n

or is missing only one

cycle. For n = 8 we refer to Figure 7.

A family of graphs that satisfy the assumptions of Theorem 15 and are missing exactly

one cycle (namely, the cycle of length n � 1) is given by the graphs in Figure 3. The graph

G

8:10

on n = 8 vertices in Figure 4 shows that `n � 9' in the hypothesis of Theorem 15 cannot

be improved.

C

4

C

5

C

6

G

6:1

C

7

G

7:1

G

7:3

G

7:4

G

8:1

G

8:2

G

8:4

G

8:7

G

8:8

G

8:9

G

8:10

G

9:1

G

9:7

G

10:1

t t

t t

t t

t t

A

A

A

A

@

@

�

�

�

�

�

�

�

�

@

@

Figure 7

All 2-connected CHP

7

-free graphs on 4 � n � 8 vertices that are not pancyclic.
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4. Appendix

Proof of Proposition 5. At �rst we generate all claw-free, P

7

-free, and deer-free graphs

on n � 8 vertices, which are not pancyclic

1

. Next suppose there is a claw-free, P

7

-free

and deer-free graph on n + 1 vertices, n � 8, which is not pancyclic. Then, by Proposition

4, it has a 2-chord. Using this 2-chord in the RP (Proposition 1), we thus also obtain a

counterexample on n vertices. Vice versa, the set of all counterexamples on n + 1 vertices

can be generated from the set of all counterexamples on n vertices as follows. Let G be

a counterexample on n vertices v

1

; v

2

; : : : ; v

n

labeled such that (fv

i

v

i+1

j1 � i � n � 1g [

fv

n

v

1

g) � E(G) (see Figure 4, where v

1

is always double-circled and vertices are labeled

in clockwise orientation). We then successively replace each edge v

i

v

i+1

of this C

n

by a

triangle with edges v

i

v

i+1

; v

i

v

n+1

; v

i+1

v

n+1

if 1 � i � n � 1, and a triangle with edges

v

1

v

n

; v

1

v

n+1

; v

n

v

n+1

, otherwise. Each new graph has to be checked whether it is claw-free, P

7

-

free, deer-free, and not pancyclic, and whether additional edges adjacent to v

n+1

are possible.

For the sake of brevity, the �gures of those of these graphs, which are not counterexamples

(G

9:10

�G

9:41

; G

10:6

�G

10:31

; G

11:6

�G

11:8

; G

12:3

; G

12:4

) will not be depicted. If such a graph

is generated more than once (which will be frequently the case in the following), then its

vertices are labeled according to its �rst occurence in this generation process.

We now distinguish seven cases.

Case 1. n=8

By the hypothesis of the proposition, the cycle C

8

contains a chord. Since G is claw-free,

it contains a 2-chord or a 3-chord. Among all chords of C

8

choose an i-chord (2 � i � 3) such

that i is minimal. Choose a labeling v

1

; v

2

; : : : ; v

8

of the vertices of C

8

such that (fv

j

v

j+1

j1 �

j � 7g [ fv

8

v

1

; v

1

v

i+1

g) � E(G).

Case 1.1. i=2

Then G contains C

3

; C

7

and C

8

. If there is a 3-chord and a 4-chord then G is pancyclic,

since a 4-chord gives a C

5

and a 3-chord gives C

4

and C

6

. If there are only 4-chords then

1

For 4 � n � 7 it can be easily veri�ed that all counterexamples are given by the graphs in Figure 4.
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there is a pair of a 2-chord and a 4-chord that are crossing, since G is claw-free and has no

3-chord. Thus G has C

3

; C

5

; C

6

; C

7

and C

8

. If there is also a pair of a 2-chord and a 4-chord

which are not crossing, then G is pancyclic. Otherwise we obtain the only counterexample

G

8:1

having only 2-chords and 4-chords. If there are only 3-chords then G has C

3

; C

4

; C

6

; C

7

and C

8

. Now each pair of a 2-chord and a 3-chord whether they are crossing or not, leads to

a C

5

and thus G is pancyclic, or we obtain counterexample G

8:9

.

Hence we may assume that G has only 2-chords. Suppose �rst that there are no crossing

2-chords. Since G is P

7

-free, there are at least two vertex disjoint 2-chords. If, for example,

v

1

v

3

; v

4

v

6

2 E(G), then G is not deer-free. Thus the only counterexample with two 2-chords

is given by G

8:2

. If there are three 2-chords, for example v

1

v

3

; v

3

v

5

and v

6

v

8

, then G is not

deer-free. Thus the only counterexample with three 2-chords is given by G

8:3

. If G has four

2-chords, then v

3

v

5

; v

5

v

7

; v

1

v

7

2 E(G) and G is pancyclic.

Next suppose there are crossing 2-chords. If, for example, v

1

v

3

; v

2

v

4

; v

3

v

5

2 E(G), then

G is pancyclic. Hence we may assume that among every �ve successive vertices of C

8

there

occur at most two 2-chords. We may assume that v

2

v

4

2 E(G).

If there is a pair of 2-chords with vertices from fv

4

; v

5

; : : : ; v

8

; v

1

g, which are not crossing,

then G is pancyclic. Hence, we may assume that there is either a pair of crossing 2-chords or

there is at most one 2-chord with vertices from fv

4

; v

5

; : : : ; v

8

; v

1

g. This gives the counterex-

amples G

8:4

; G

8:5

; G

8:6

; G

8:7

and G

8:10

.

Case 1.2. i=3

By (A) we also have v

1

v

5

; v

4

v

8

2 E(G). Thus G has C

3

; C

4

; C

5

; C

6

and C

8

. If v

3

v

8

2 E(G)

then we obtain a C

7

by (D). Hence we may assume that v

3

v

8

62 E(G), and thus v

5

v

8

2 E(G)

by (B). Now every additional edge gives a C

7

and G will be pancyclic. Thus the only

counterexample in this case is given by G

8:8

.

Case 2. n=9

If we successively replace the edges of G

8:1

we obtain the graph G

9:42

(4 times), which is

pancyclic, and the graph G

9:43

(4 times). The graph G

9:43

is only missing a C

4

and contains

an induced deer G[fv

8

; v

1

; v

3

; v

9

; v

4

; v

5

; v

6

g]. Any additional (possible) edge adjacent to v

9

gives a C

4

.
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For G

8:2

we obtain G

9:12

(4 times) and G

9:13

(4 times). The graph G

9:12

is only missing

a C

5

, which can be obtained by adding one of the edges v

4

v

9

; v

5

v

9

; v

6

v

9

; v

7

v

9

or v

8

v

9

. If none

of these edges is present, then v

3

v

9

2 E(G), since G is claw-free (hv

8

; v

1

; v

9

; v

3

i), and we

obtain the counterexample G

9:1

. The graph G

9:13

is missing a C

4

and a C

5

which can be

obtained by adding one of the edges v

1

v

9

; v

2

v

9

; v

6

v

9

; v

7

v

9

or v

8

v

9

. If none of these edges is

present, then v

5

v

9

2 E(G), since G[fv

6

; v

5

; v

4

; v

9

; v

3

; v

1

; v

8

g] is an induced deer. Thus, we

obtain counterexample G

9:2

.

For G

8:3

we obtain G

9:14

; G

9:15

; G

9:16

and G

9:17

(each of them 2 times). The graphs G

9:14

;

G

9:15

and G

9:16

are pancyclic, and G

9:17

contains an induced deer G[fv

4

; v

5

; v

7

; v

9

; v

8

; v

1

; v

2

g],

and is missing only a C

4

, which is obtained by adding one of the edges v

1

v

9

; v

2

v

9

; v

3

v

9

; v

4

v

9

; v

5

v

9

or v

6

v

9

.

For G

8:4

we obtain G

9:3

(2 times), G

9:18

(4 times), and G

9:19

(2 times). The graph G

9:3

is only missing a C

5

, which can be obtained by any additional edge adjacent to v

9

. The

graph G

9:18

is pancyclic and G

9:19

is missing only a C

5

. However, G

9:19

is not claw-free

(hv

2

; v

3

; v

9

; v

5

i and hv

2

; v

9

; v

4

; v

5

i). Thus, v

2

v

9

2 E(G) or v

5

v

9

2 E(G) which gives a C

5

.

For G

8:5

we obtain G

9:20

; G

9:21

; G

9:22

and G

94

(each of these 2 times). In this case

G

9:20

; G

9:21

, and G

9:22

are pancyclic, and counterexample G

9:4

is only missing a C

5

, which

can be obtained by adding one of the edges v

1

v

7

; v

2

v

7

; v

3

v

7

; v

4

v

7

, or v

5

v

7

. Thus v

7

v

9

can be

added and we obtain counterexample G

9:8

.

For G

8:6

we obtain G

9:23

; G

9:24

; G

9:25

; G

9:2

; G

9:26

; G

9:27

; G

9:28

, and G

9:29

. The graph G

9:23

is pancyclic, and G

9:24

and G

9:25

contain an induced deer (G[fv

5

; v

6

; v

7

; v

8

; v

1

; v

2

; v

9

g] and

G[fv

5

; v

6

; v

7

; v

8

; v

1

; v

3

; v

9

g]), and are missing only a C

5

, which is obtained by adding any edge

adjacent to v

9

. Counterexample G

9:2

is only missing a C

5

, which can be obtained by adding

one of the edges v

1

v

9

; v

2

v

9

; v

3

v

9

; v

7

v

9

, or v

8

v

9

. Thus v

6

v

9

can be added and we obtain (once

more) counterexample G

9:4

. Also, G

9:26

contains an induced deer G[fv

3

; v

4

; v

5

; v

9

; v

6

; v

7

; v

8

g]

and is missing only a C

5

, which can be obtained by adding one of the edges v

1

v

9

; v

2

v

9

; v

3

v

9

,

or v

8

v

9

, or by adding v

4

v

9

and v

7

v

9

. Thus either v

4

v

9

2 E(G) or v

7

v

9

2 E(G), and we

obtain (once more) counterexamples G

9:4

and G

9:3

. The graph G

9:27

contains an induced P

7

(G[fv

8

; v

1

; v

2

; v

4

; v

5

; v

6

; v

9

g]) and is missing only a C

5

, which can be obtained by adding one
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of the edges v

1

v

9

; v

2

v

9

; v

3

v

9

; v

4

v

9

, or v

8

v

9

. Thus v

5

v

9

2 E(G), and we obtain (once more)

counterexample G

9:3

. By the same arguments G

9:28

and G

9:29

can be handled to obtain in

both cases counterexample G

9:5

.

For G

8:7

we obtain G

9:30

; G

9:31

; G

9:26

; G

9:6

; G

9:32

; G

9:33

; G

9:27

, and G

9:34

. The graph G

9:30

is not claw-free (hv

1

; v

2

; v

9

; v

4

i and hv

1

; v

9

; v

3

; v

4

i) and is missing only a C

5

, which can be

obtained by adding any edge adjacent to v

9

. Both G

9:31

and G

9:34

are pancyclic. Counterex-

ample G

9:6

is missing only a C

5

and is a subgraph of counterexample G

9:4

. The graph G

9:32

contains two induced P

7

(G[fv

9

; v

7

; v

8

; v

1

; v

2

; v

4

; v

5

g] and G[fv

9

; v

7

; v

8

; v

1

; v

3

; v

4

; v

5

g]) and is

missing only a C

5

, which can be obtained by adding one of the edges v

1

v

9

; v

2

v

9

; v

3

v

9

; v

4

v

9

,

or v

5

v

9

. Thus v

8

v

9

can be added to obtain counterexample G

9:7

. A repeat of the previous

argument handles G

9:33

.

For G

8:8

we obtain G

9:35

(4 times), G

9:36

(2 times), and G

9:37

(2 times), which are all

pancyclic.

For G

8:9

we obtain G

9:38

, G

9:39

(2 times), G

9:40

(2 times), G

9:41

(2 times), and G

9:1

. Both

G

9:40

and G

9:41

are pancyclic, G

9:39

contains an induced P

7

(G[fv

9

; v

2

; v

1

; v

8

; v

7

; v

6

; v

5

g]),

and G

9:38

contains an induced deer (G[fv

4

; v

3

; v

2

; v

9

; v

1

; v

8

; v

7

g]). Both are missing only a

C

5

, which can be obtained by adding any edge adjacent to v

9

, except for v

1

v

9

in G

9:39

and

v

3

v

9

or v

8

v

9

in G

9:38

, which leads to counterexamples G

9:5

and G

9:5

or G

9:7

, respectively.

Counterexample G

9:1

can again be extended to counterexample G

9:7

.

For G

8:10

we obtain G

9:44

(2 times), G

9:45

, G

9:46

(2 times), G

9:47

(2 times) and G

9:48

,

which are all missing a C

5

and a C

6

. Moreover, all of them have an induced claw, an induced

deer or an induced P

7

. Adding edges adjacent to v

9

, these induced subgraphs disappear and

we obtain counterexample G

9:9

in the case of G

9:44

and G

9:45

, counterexample G

9:10

in the

case of G

9:46

and G

9:47

and counterexample G

9:11

in the case of G

9:47

and G

9:48

.

Case 3. n=10

The graph G

9:1

is only missing a C

5

, which is obtained if we replace one of the edges

v

4

v

5

; v

5

v

6

or v

6

v

7

by a triangle. Otherwise, G

10:32

; G

10:9

and G

10:10

are obtained (each of them

2 times). Also, G

10:32

contains an induced P

7

G[fv

3

; v

4

; v

7

; v

8

; v

9

; v

1

; v

10

g] and is missing only

a C

5

, which can be obtained by adding one of the edges v

3

v

10

; v

4

v

10

; v

5

v

10

; v

6

v

10

; v

7

v

10

, or
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v

8

v

10

. Thus v

9

v

10

can be added to obtain counterexample G

10:1

. The graph G

10:9

contains

an induced deer G[fv

8

; v

9

; v

2

; v

10

; v

3

; v

4

; v

5

g] and is missing only a C

5

, which can be obtained

by adding one of the edges v

1

v

10

; v

5

v

10

; v

6

v

10

; v

7

v

10

; v

8

v

10

, or v

9

v

10

. Thus v

4

v

10

can be added

to obtain counterexample G

10:2

. Using the same argumentation v

2

v

10

can be added in G

10:10

to obtain G

10:2

.

The graph G

9:2

is only missing a C

5

, which is obtained if we replace one of the edges

v

4

v

5

or v

6

v

7

by a triangle. Otherwise, G

10:11

(2 times), G

10:12

(2 times), G

10:13

(2 times),

and G

10:14

are generated, each of them missing only a C

5

. The graph G

10:11

has an induced

deer G[fv

4

; v

5

; v

7

; v

8

; v

9

; v

1

; v

10

g], and any additional edge adjacent to v

10

gives a C

5

, Also,

G

10:12

has an induced P

7

G[fv

10

; v

3

; v

4

; v

6

; v

7

; v

9

; v

1

g], and a C

5

can be obtained by adding

one of the edges v

1

v

10

; v

5

v

10

; v

6

v

10

; v

7

v

10

; v

8

v

10

, or v

9

v

10

. Thus v

4

v

10

can be added to obtain

G

10:2

(once more). By the same argument v

2

v

10

can be added in G

10:13

to obtain G

10:2

. Also,

G

10:14

contains an induced deer G[fv

10

; v

6

; v

7

; v

8

; v

9

; v

1

v

2

g] and any edge adjacent to v

10

gives

a C

5

.

The graph G

9:3

is only missing a C

5

, which is obtained if we replace one of the edges

v

2

v

3

; v

4

v

5

; v

6

v

7

or v

8

v

9

be a triangle. Otherwise, G

10:15

(2 times), G

10:16

(2 times) and

G

10:3

are generated. Now, G

10:15

has an induced P

7

G[fv

4

; v

5

; v

6

; v

7

; v

9

; v

1

; v

10

g], and every

additional edge v

i

v

10

gives a C

5

, except for v

9

v

10

, which leads to counterexample G

10:4

. Also,

G

10:16

has an induced deer G[fv

6

; v

7

; v

9

; v

1

; v

2

; v

3

; v

10

g] and every additional edge v

i

v

10

gives

a C

5

. The same holds for counterexample G

10:3

.

The graph G

9:4

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

9

; v

2

v

3

; v

3

v

4

or v

5

v

6

by a triangle. Otherwise, G

10:17

; G

10:18

; G

10:19

; G

10:20

and G

10:31

are

generated. Both G

10:17

and G

10:18

are not claw-free (hv

9

; v

1

; v

10

; v

3

i and hv

3

; v

4

; v

10

; v

6

i), and

every additional edge v

i

v

10

gives a C

5

. In G

10:19

and G

10:20

every additional edge v

i

v

10

gives

a C

5

except for v

8

v

10

in G

10:19

and v

6

v

10

in G

10:20

, which both lead to counterexample G

10:5

.

In G

10:31

G[fv

10

; v

9

; v

2

; v

3

; v

5

; v

6

; v

7

g] is an induced P

7

.

The graph G

9:5

is only missing a C

5

, which is obtained if we replace on of the edges

v

2

v

3

; v

4

v

5

; v

5

v

6

; v

6

v

7

, or v

7

v

8

by a triangle. Otherwise, G

10:2

; G

10:21

; G

10;22

, and G

10:23

are

generated. In counterexample G

10:2

every edge v

i

v

10

gives a C

5

, except for v

9

v

10

, which leads
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to counterexample G

10:5

. The graph G

10:21

is not C-free (hv

2

; v

3

; v

10

; v

5

i), and adding v

2

v

10

or v

5

v

10

gives a C

5

. Also, G

10:22

has an induced P

7

G[fv

6

; v

5

; v

4

; v

2

; v

1

; v

9

; v

10

g], and G

10:23

an induced deer G[fv

6

; v

8

; v

9

; v

10

; v

1

; v

2

; v

3

g]. Every additional edge v

i

v

10

gives a C

5

except

for v

1

v

10

in G

10:22

, which leads to counterexample G

10:4

, and except for v

2

v

10

and v

8

v

10

in

G

10:23

. Adding both edges gives a C

5

, whereas adding only one edge leads to counterexamples

G

10:5

and G

10:4

, respectively.

The graph G

9:6

is missing only a C

5

, which is obtained if one of the edges v

4

v

5

or v

6

v

7

is replaced by a triangle. Otherwise, G

10:24

(2 times), G

10:25

(2 times), G

10:26

(2 times), and

G

10:27

are generated. Both G

10:24

and G

10:25

are not C-free (hv

9

; v

1

; v

10

; v

3

i or hv

1

; v

10

; v

3

; v

4

i),

and adding only v

3

v

10

or v

1

v

10

gives no C

5

, and leads to G

10:6

, which has an induced P

7

.

The graph G

10:26

has an induced deer G[fv

9

; v

1

; v

3

; v

10

; v

4

; v

5

; v

7

g] and G

10:27

is not C-free

(hv

4

; v

5

; v

10

; v

7

i). In both graphs each additional edge v

i

v

10

gives a C

5

.

Also, G

9:7

is only missing a C

5

which is obtained if we replace one of the edges v

1

v

2

; v

4

v

5

;

v

5

v

6

; v

6

v

7

or v

8

v

9

be a triangle. Otherwise, G

10:28

; G

10:5

; G

10:7

, and G

10:29

are generated.

The graph G

10:28

has an induced deer G[fv

8

; v

1

; v

2

; v

10

; v

3

; v

4

; v

5

g], and every additional edge

v

i

v

10

gives a C

5

except for v

4

v

10

, which leads to counterexample G

10:5

. Every additional edge

v

i

v

10

also gives a C

5

in the other three graphs except for v

2

v

10

in G

10:6

, which leads (again)

to counterexample G

10:5

. The graph G

10:7

has an induced P

7

.

The graph G

9:8

is also only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

3

v

4

; v

4

v

5

; v

6

v

7

; v

7

v

8

or v

9

v

1

by a triangle. Otherwise, G

10:30

is generated (3 times), in

which every additional edge v

i

v

10

gives a C

5

.

The graph G

9:9

is only missing a C

6

, which is obtained if we replace one of the edges

v

1

v

2

; v

2

v

3

; v

8

v

9

; or v

9

v

1

by a triangle. Otherwise, all generated graphs are not deer-free and

we obtain counterexamples G

10:6

and G

10:7

.

The graph G

9:10

is missing a C

5

and a C

6

. Moreover, all of them have an induced claw,

an induced deer or an induced P

7

. Adding edges adjacent to v

10

, these induced subgraphs

disappear and we obtain counterexamples G

10:6

and G

10:8

.

Finally, the graph G

9:11

is only missing a C

5

and a C

6

. A repeat of the previous arguments

this time leads to counterexamples G

10:7

and G

10:8

.
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Case 4. n=11

The graph G

10:1

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

4

v

5

; v

5

v

6

; v

6

v

7

; v

9

v

10

, or v

10

v

1

by a triangle. Otherwise, G

11:8

is generated (4 times).

Also, G

11:6

has an induced deer G[fv

8

; v

9

; v

2

; v

11

; v

3

; v

4

; v

5

g], and every additional edge v

i

v

11

gives a C

5

, except for v

4

v

11

, which leads to counterexample G

11:1

.

The graph G

10:2

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

3

v

4

; v

4

v

5

; v

5

v

6

or v

6

v

7

by a triangle. If we replace v

2

v

3

(by a triangle), we obtain a graph

that is not claw-free, and every additional edge v

i

v

11

gives a C

5

. Replacing v

7

v

8

or v

8

v

9

we

obtain two graphs that are not D-free. Every additional edge v

i

v

11

gives a C

5

except for v

9

v

11

or v

7

v

11

, respectively, which leads (in both cases) to counterexample G

11:2

. Replacing v

9

v

10

or v

1

v

10

we obtain two graphs that are not C-free. Every additional edge v

i

v

11

gives a C

5

except for v

1

v

11

or v

9

v

11

, respectively, which leads (in both cases) to counterexample G

11:1

.

The graph G

10:3

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

4

v

5

; v

6

v

7

, or v

9

v

10

by a triangle. Otherwise, G

11:9

(2 times) and G

11:10

(4 times) are

generated. Both of them are not C-free and every additional edge gives a C

5

.

The graph G

10:4

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

2

v

3

; v

4

v

5

; v

6

v

7

; v

8

v

9

; v

9

v

10

, or v

1

v

10

by a triangle. Replacing v

3

v

4

or v

7

v

8

we obtain a

graph, which is not C-free, and every additional edge gives a C

5

. If we replace v

5

v

6

, we obtain

counterexample G

11:2

, and every additional edge v

i

v

11

gives a C

5

.

The graph G

10:5

is only missing a C

5

which is obtained if we replace one of the edges

v

1

v

2

; v

3

v

4

; v

4

v

5

; v

5

v

6

; v

6

v

7

; v

8

v

9

, or v

1

v

10

by a triangle. Replacing v

2

v

3

or v

9

v

10

we obtain two

graphs, which are not C-free, and every additional edge v

i

v

11

gives a C

5

. Replacing v

7

v

8

we

obtain counterexample G

11:3

, and every additional edge v

i

v

11

gives a C

5

.

The graph G

10:6

is only missing a C

6

which is obtained if we replace one of the edges

v

1

v

2

; v

2

v

3

; v

3

v

4

, or v

4

v

5

by a triangle. Otherwise, all generated graphs have an induced claw,

an induced deer or an induced P

7

. Adding edges adjacent to v

11

, these induced subgraphs

disappear and we obtain counterexamples G

11:4

, G

11:5

and G

11:6

.

Also, the graph G

10:7

is only missing a C

6

and can be treated like G

10:6

. We this time

obtain counterexamples G

11:5

and G

11:7

.
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Finally, the graph G

10:8

is missing a C

5

and a C

6

. Replacing successively edges by a trian-

gle, we obtain graphs which have an induced claw, an induced deer or an induced P

7

. Adding

edges adjacent to v

11

, these induced subgraphs disappear and we obtain counterexamples

G

11:5

and G

11:6

.

Case 5. n=12

The graph G

11:1

is only missing a C

5

, which is obtained if we replace one of the edges

v

1

v

2

; v

2

v

3

; v

4

v

5

; v

5

v

6

; v

6

v

7

; v

7

v

8

; v

10

v

11

, or v

1

v

11

by a triangle. Otherwise, G

12:3

and G

12:4

(2

times) are generated, and G

12:3

is not C-free and G

12:4

is not deer-free. Every additional

edge v

i

v

12

gives a C

5

except for v

10

v

12

in G

12:4

, which leads to counterexample G

12:1

.

The graph G

11:2

is only missing a C

5

which is obtained if we replace one of the edges

v

2

v

3

; v

4

v

5

; v

5

v

6

; v

6

v

7

; v

7

v

8

; v

8

v

9

, or v

10

v

11

by a triangle. Replacing v

1

v

2

; v

3

v

4

; v

9

v

10

or v

1

v

11

we obtain graphs that are not C-free and every additional edge v

i

v

12

gives a C

5

, except

for v

11

v

12

or v

2

v

12

in the cases of v

1

v

2

or v

1

v

11

, respectively. This leads (in both cases) to

counterexample G

12:1

.

The graph G

11:3

is only missing a C

5

which is obtained if we replace one of the edges

v

1

v

2

; v

3

v

4

; v

4

v

5

; v

5

v

6

; v

6

v

7

; v

9

v

10

, or v

1

v

11

by a triangle. Replacing v

2

v

3

; v

7

v

8

; v

8

v

9

or v

10

v

11

we obtain graphs that are not C-free and every additional edge v

i

v

12

gives a C

5

, except

for v

9

v

12

or v

7

v

12

in the cases of v

7

v

8

or v

8

v

9

, respectively. This leads (in both cases) to

counterexample G

12:2

.

The graph G

11:4

is only missing a C

6

which is obtained if we replace one of the edges

v

1

v

2

; v

2

v

3

; v

3

v

4

; v

4

v

5

; v

8

v

9

; v

9

v

10

; v

10

v

11

, or v

11

v

1

by a triangle. Otherwise, three graphs are

generated which are not deer-free. Then every additional edge v

12

v

i

gives a C

6

or we obtain

counterexample G

12:3

.

Also, the graph G

11:5

is only missing a C

6

which is obtained if we replace one of the

edges v

1

v

2

; v

2

v

3

; v

10

v

11

, or v

11

v

1

by a triangle. Otherwise, all generated graphs have an

induced claw, an induced deer or an induced P

7

. Adding edges adjacent to v

12

, these induced

subgraphs disappear and we obtain counterexamples G

12:3

and G

12:4

.

Also, G

11:6

is only missing a C

6

and can be treated like G

11:5

. We this time obtain

counterexample G

12:3

.

23



Finally, G

11:7

is only missing a C

6

and can be treated like G

11:4

. We this time obtain

counterexample G

12:4

.

Case 6. n=13

Both G

12:1

and G

12:2

are only missing a C

5

. Replacing an edge by a triangle gives a C

5

except for v

3

v

4

and v

9

v

10

in G

12:1

and v

3

v

4

and v

1

v

12

in G

12:2

. In all four cases we obtain

graphs that are not C-free and every additional edge v

i

v

13

gives a C

5

.

The graph G

12:3

is only missing a C

6

which is obtained if we replace one of the edges

v

2

v

3

; : : : ; v

5

v

6

; v

7

v

8

; : : : ; v

10

v

11

by a triangle. Otherwise, all generated graphs have an in-

duced claw, an induced deer or an induced P

7

. Adding edges adjacent to v

13

, these induced

subgraphs disappear and we obtain the counterexample G

13

.

Finally, G

12:4

is only missing a C

6

and can be treated like G

12:3

.

Case 7. n=14

The graph G

13

is only missing a C

6

. Replacing an edge by a triangle gives a C

6

except

for v

6

v

7

. In this case the generated graph is not deer-free and every additional edge v

i

v

14

gives a C

6

.
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