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Abstract

A graph G on n vertices is pancyclic if G contains cycles of all lengths £ for 3 < £ < n
and G 1s cycle extendable if for every nonhamiltonian cycle C' C G there is a cycle C' C ¢
such that V(C) C V() and |[V(C')\ V(C)| = 1. We prove that

() every 2-connected K s-free graph is pancyclic, if G is Ps-free and n > 6, if G is
Ps-free and n > 10, or if G is Pr-free, deer-free and n > 14, and

(i) every 2-connected K4 s-free and Zo-free graph on n > 10 vertices is cycle extend-

able using at most two chords of the cycle.
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1. Introduction

We only consider simple, undirected graphs and refer to [2] for terminology and notation
not defined here. A graph G with n > 3 vertices is hamiltonian if G contains a cycle of
length n, and pancyclic if G contains a cycle C} of length k for each k with 3 < k < n. A
graph (G is cycle extendable if for every nonhamiltonian cycle C' C G there is a cycle C' C ¢
such that V(C') C V(C") and |V(C)\V(C)| = 1. If C,, is a cycle with m vertices labeled
V1,02, ..., Uy such that {vjvpq |1 <@ <m—1}U{v,v} C E(G) and vjv4, € E(G) for
some j, k (modulo m), then the edge v;v;4 is called a k-chord of C,,. Clearly, this k-chord
can be used to construct a cycle of length m — k + 1 from the given cycle C,,,. We say that
a graph G is cycle k—extendable if each nonhamiltonian cycle C' can be extended to a cycle
C" that has one additional vertex and uses at most k& chords of C. Finally, a graph G has
a k—pancyclic ordering if the vertices of G can be ordered such that the graph induced by
the first j vertices (j > k) is hamiltonian. Thus a graph with a 3-pancyclic ordering has a
pancyclic ordering.

If G and G’ are graphs, then we say that G is G’-free if G contains no induced subgraph
isomorphic to G’. Specifically, we denote by C' the claw K3, by D the deer, by H the
hourglass, by Py the path with k vertices (i.e. of length k — 1) and by Z; and Z; the graphs
obtained by identifying a vertex of K3 with an end-vertex of P> and Ps, respectively (see
Figure 1).

Probably the first sufficient condition for hamiltonicity of a graph in terms of forbidden

subgraphs is due to Goodman and Hedetniemi [4].

Theorem A [4]. IfG is a 2-connected CZy-free graph, then G is hamiltonian.

Gould and Jacobson [5] extended this result to C'Z3-free graphs.

Theorem B [5]. If G is a 2-connected C'Zy-free graph then G is a cycle or is pancyclic.

Hendry [6] further extended this result showing the following.
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Theorem C [6]. IfG is a 2-connected, C'Zy-free graph on n > 10 vertices, then G is cycle

extendable.

The graph G in Figure 2 shows that C' and Z3, as forbidden subgraphs, are not sufficient
to guarantee even hamiltonicity. Also, the triangles in (G; that contain a vertex of degree 2
can be replaced by an arbitrary K, for r > 3 without changing the conclusion, so there is an

infinite family of C'Zs-free graphs that are not hamiltonian.

A result similar to Theorem B was proved for C'Ps-free graphs by Bedrossian [1].

Theorem D [1]. Let G be a 2-connected C Ps-free graph. Then G is either pancyclic or a

cycle.

The graph G5 in Figure 2 (given in [1]) shows that, to guarantee pancyclicity, Ps cannot

be replaced by the forbidden subgraph Fs in the hypothesis of Theorem D.

However, to obtain hamiltonicity, the following result of Broersma and Veldman ([3]) can
be used to weaken the hypothesis of Theorem D. If G’ is a subgraph of G and u,v € V(G"),
then G’ is said to satisfy property ®(u,v) if (N(u) NN (v)) = V(G') # 0, where N (z) denotes
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the neighborhood of the vertex 2 in G. The symbols A and V are used here to denote “and”

“ 2 s
and “or”, respectively.

Theorem E [3]. Let G be a 2-connected, C-free graph. If every induced subgraph of G
isomorphic to D or Pr (see Figure 1) satisfies ®(a,by) V ®(a,bs) V (®(a,cq) V ®(a, c2)), then

G is hamiltonian.

This result has the following immediate consequence.

Corollary F [3]. Let G be a 2-connected C-free graph. If G is Ps-free or DPr-free, then

G is hamiltonian.

In this paper we will show that

(1) every C'DPr-free (and thus also C'Fs-free or even CPs-free) graph is pancyclic or
belongs to a finite family of exceptional graphs, and

(71) every C'Zy-free graph is either 2-chord extendable or belongs to a finite family of
exceptional graphs.

These families of exceptional graphs are fully described.

2. Results

Proposition 1 (Reduction Procedure RP). Let G be a CDPr-free graph onn >k > 9

vertices. If G contains a CY, then G also contains a Cp_q.



We first introduce some additional notation which will be useful in the proofs that follow.
Let C' be a cycle in a graph G. If an orientation of C' is fixed and uw,v € V(C), then by
U _C_>v we denote the consecutive vertices on C' from u to v in the direction specified by the
orientation of C'. The same vertices, in reverse order, are given by v ? w. If C'is a cycle of
G with a fixed orienation and u € V(D), then u* denotes the successor of v on C' and u™ its
predecessor, respectively.

In the proofs the following four statements for C-free graphs can easily be verified, and

will be frequently used and just referred by the indicated label.

(A) Let Cy, be a cycle with m > 2k + 2 > 6 vertices labeled vy, vg,..., v, and a k-chord

v;v;4k. If there are no i-chords for 2 <4 < k — 1, then v;_1 vk, v;0j46+1 € E(G).
(B) If, moreover, v;_jv;45-1 ¢ E(G) or vj410j4541 € E(G), then v;_yv,4541 € E(G).

(C) Let vjv;4; be an i-chord with 3 < < % in a cycle C} without 2-chords. If v;v;4;-1 ¢
E(G), then vjvj4:41 € E(G), and likewise if vj4qv;4; € E(G), then v;_qv;4; € E(G).
(D) Let v;v;4; be an i-chord in a cycle Cy. If ¢ > 2 and vj41v4442 € E(G) orif ¢ > 3 and
— — — —
Vit2Ujtit1 € E(G), then vjujpi C vjp1vjtive € vj or 0vj4 C Vjgavipipr C vj is a

Ck—1, respectively.

Proof (of Propositon 1). Let vy,...,v; be the vertices of C. Since G is Pr-free, the cycle
C', contains a chord. Let ¢ (2 < ¢ < %) be smallest integer such that G has an i-chord. Among
all chords of C} choose such a minimal i-chord (2 < ¢ < %) Choose a labeling vy, vg,..., vk
of the vertices of C such that ({vjvj41 | 1 <j <k —1}U{vgvr,v1v41}) C E(G). We then

distinguish the following five cases.

Case 1. 1=2

Then vyvsvy...vpvy is a Cp_1.

Case 2. i=3
By (A) we have vyvs, vgvg € E(G). If vavs € E(G), then we obtain a C,_; by (D). Hence,
we may assume that vevs ¢ E(G) and so vius € E(G) by (B). If vevg € E(G), vavr € E(G),



or vsvg € F/(G) then we obtain a Cx_; by (D). Hence we may assume that vyvg, vavr, and
vsvg € F(G). If vsur € E(G), then vivsvavivav307 E%k is a Ck_1. Therefore, vsvr € F(G)
and thus vqvr € E(G) by (A). Suppose now that vsvs € E(G). Then vyvs, vsvg € E(G) by
(A) and vqvg € E(G) by (B), since vqvr € E(G) by (D). Now if vgvy € E(G) or vy, € E(G),
then vivgUs5V1U3V3V4U8 _C_>vk Or VU7 VgUs V1 Vg U349 _C_>vk is a Cx_1. If vgvg, vrvp € F(G), then
G[{vy, v3, v4, Vi, Us, Vs, v7}] is an induced deer, a contradiction. Hence we may assume that
vsvg € E(G). If vgvg € E(G), then vsvg, v4vg € E(G) by (D) and vsvg € E(G) by (B) and
we obtain the same contradiction. Hence we may assume that vqvs ¢ E(G). Analogously,
if vsvg € E(G), then vaus, vsvg, vavg € F(G), and if vevy € E(G) or vrvp € E(G), then
Vg UgUs U401 VU3V _C_>vk OT VR U7UgU5V4V3V2Vs _C_>vk is a Cj_q, respectively. Hence we may
assume that vsvg € E(G). If vovg € E(G), then vjvg € E(G) by (C), and if vevy € E(G)
or vrvg € E(G), then vive ? V108 _C_>vk or vLU7 ? Vo ?vk is a C'p_1, respectively. Hence

we may assume that vovg ¢ F(G). But then G[{vg,vs,...,vs}] is an induced P, our final

contradiction.

Case 3. i=4

By (A) we have vjvg,vpvs € E(G). If vaug € E(G), then we obtain a Cy_; by (D).
Hence we may assume that vovg € E(G) and thus vyvg € E(G) by (B). If vevr € E(G) or
voug € F(G) or vsvr € E(G), then we obtain a Cy—; by (D). Hence we may assume that
Uo7, UaUs, U3vr € F(G). If vy, € F(G), then vgpvgvsv1v2030408 _C_>vk is a C;—q. Hence we
may assume that vqvs ¢ F(G) and thus vsvg ¢ E(G) by (C), since vgvg ¢ E(G). But then

G[{vz,vs,...,vs}] is an induced P7, a contradiction.

Case 4. i=5

By (A) we have vjvr,vpvs € E(G). If vaur € E(G), then we obtain a Cy_; by (D).
Hence we may assume that vovr € F(G) and thus vyvr € E(G) by (B). If vgvg € E(G) or
vsvg € F(G), then we obtain a Cx_1 by (D). Hence we may assume that vyvs, vavs ¢ E(G).

But then G[{vg,vs,...,vs}] is an induced Pr, a contradiction.

Case 5. 1=6
Since G is Pr-free, C} contains all possible 6-chords. Thus vyvs, vevr € F(G). By (A) we



—

have vgvr € F(G) and thus vgvr gvgvg C v isaChr_q. [ |

Remark. The graph Ggs (Figure 4) shows that £ > 9 in the hypothesis of Proposition 1

is sharp.
The proof of Proposition 1 gives the following two corollaries.

Corollary 2. Let G be a C'Fs-free graph on n > k > T vertices. If G contains a Cy, then

G also contains a Cj_1.

Corollary 3. Let G be a CFPs-free graph on n > k > 6 vertices. If G contains a Cy, then

G also contains a Cj_1.

Remark. The cycles C5 and Cg and the graph Gg s (Figure 4) show that the assumptions
“k > 6" or “k > 7 or “k > 9” in the hypothesis of Corollary 3 or Corollary 2 or Proposition
1 cannot be improved, respectively. Furthermore, the graph H of order n = 4r in Figure 3
shows that the assumption that G is D-free is an essential hypothesis of Proposition 1, since

it is hamiltonian, but it has no cycle of length n — 1.
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The next two propositions will be used to prove our main result.

Proposition 4. Let G be a CDP:-free graph on n > 9 vertices. If G has a hamiltonian

cycle without 2-chords, then G is pancyclic.

Proof. Let G be a C'D Pr-free graph on n > 9 vertices, which has a hamiltonian cycle without

2-chords. Then G has an i-chord for some 2, 3 <12 < 6, since GG is Pr-free and » > 9. Among



all i-chords choose one such that ¢ is minimal. Then n > 2¢+ 1, since GG is C-free and 7 > 3.
By Proposition 1, we know that G has a C} for 8 < k < n. Therefore it suffices to show that
G has a Cy for 3 < k < 7. Choose a labeling vy, vq,...,v, of the vertices of G such that
({vjvj41 | 1 <5 <n—1}U{vyor,vvi41}) C E(G). We then distinguish the following four

cases.

Case 1. i=6
Then n > 13 and G has all possible 6-chords, since GG is Pr-free and ¢ = 6. By (A) we
have vyvs, vavg, V3019 € E(G). Thus G has a C5,Cy and a C7. A C5 and a Cp are given by

V1 U903VgUg 1 and by vy vav3v1gU9UYY, Tespectively.

Case 2. i=5

By (A) we have vyv7, vev, € E(G) and thus G has a Cs,C4,Cs and C7. Hence, we may
assume that G has no C5. If vsv, € E(G), then v,vsvevrv1v, is a Cs. Hence we may assume
that vsv, ¢ I(G) and thus vrv, € E(G) by (C). Now if vsv,—1 € E(G) or vav,—1 € E(G),
then v,_105V6U7V,U,—1 OF U,_104V5V6V,V,—1 IS a (5, respectively. Hence vsv,_1,v4v,-1 ¢

E(G), but then G[{v,—1, vs, v1, V2, U3, V4, v5}] is an induced Pr, a contradiction.

Case 3. 1=4

By (A) we have vyvg, vsv, € E(G) and thus G has a Cs,C4,C5 and Cs. Hence, we may
assume that G has no C7. Thus vyv,—2 € E(G). If vsv,—g2 € F(G), vav,—2 € E(G),
VaU,—1 € FE(G), or vzv,—1 € E(G), then v102030,-20,_10,0501, U10U20,_20,—10,U50601,
V1U203V4V,—1 Uy Us V1, OT U1U2030,_1U, U501 is a C7, respectively. Now wvyv, € E(G), since
V4Up—1, U104, 01041 € F(G) and G is C-free. But then G[{v,—2, vy—1, Vs, V1, U2, U3, V4}] is an

induced Pr, a contradiction.

Case 4. i=3

By (A) we have vyvs,v4v, € F(G) and thus G has a C5,Cy and C5. Hence we may
assume that GG has no Cs or no C7. If one of the edges vsv,_1,v3v,_2 Or vsv,_3 is present,
then GG has a Cg and a C7. Now wvsv, ¢ E(G), since G is C-free, vsv,_1 ¢ F(G), and 7 = 3.
If one of the edges vyv,_1, v2v,_2,V20,_3, OF V1U,_3 is present, then G has a Cg and a C7.

Now vyv,_2 ¢ F(G), since G is C-free, viv,_3 ¢ E(G), and i = 3. By the same argument



we have v,_3v, ¢ E(G). But then G[{v,_3,vn_2, V-1, Vp, V1, V2,v3}] is an induced P7, a

contradiction. [ |

Proposition 5. Let G be a 2-connected, C D P;-free graph on n < 13 wvertices. Then G
s either pancyclic or isomorphic to one of the following graphs: Cy,Cs,Cq,Ge1,C7, Gr1 —
Gr.4,Gs1 — Gs10,Gor — Goat, Groa — Gros, Giia — Giir, Giza — Gz, Gia (see Figure 4).

The proof of Proposition 5 is lengthy and involves a detailed case analysis, and is therefore

postponed to the appendix. We are now ready to state our main result.

Theorem 6. Let G be a 2-connected C'DPr-free graph. Then G is either pancyclic or
isomorphic to one of the following graphs: Cy4,Cs, ..., G135 in Figure 4.

Proof. Let GG be a 2-connected C'D Pr-free graph on n > 3 vertices. By Theorem E we know
that G is hamiltonian. If n < 7 then (G is either pancyclic or isomorphic to Cy, Cs, Cs, Gg.1, C7,
G7.1,G79,G73 or Gry4, which can be easily verified by a straightforward case analysis. If
n > &, then G contains all cycles from Cys up to €, by Proposition 1. If, moreover, G has
a cycle C for some k with k£ > 9 without 2-chords, then G is pancyclic by Proposition 4.
Hence, any counterexample must have n = 8 vertices or must have a cycle C with a 2-chord
for some k with k£ > 9. All these counterexamples are given by Proposition 5. Furthermore,
the proof of Proposition 5 shows that there are no counterexamples on n > 14 vertices. This

completes the proof. [ |

Theorem 6 has a number of consequences. First observe that all exceptional graphs have

connectivity £ = 2.

Corollary 7. Let G be a 3-connected C-free graph. If G' is D Pr-free or Ps-free, then G is

pancyclic.
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Corollary 8. Let G be a 2-connected, C-free graph. If, moreover, G is DP;-free and
n > 14, G is Fs-free and n > 10, or G is Ps-free and n > 6, then G is pancyclic.

With the use of Proposition 1, Corollary 2, or Corollary 3 we obtain the following results

for pancyclic orderings, respectively.

Corollary 9. Let G be a 2-connected C D Pr-free graph on n > 8 vertices. Then G has an

8-pancyclic ordering.

Corollary 10. Let G be a 2-connected C Fs-free graph on n > 6 vertices. Then G has a

6-pancyclic ordering.

Corollary 11. Let G be a 2-connected, C Ps-free graph on n > 5 vertices. Then G has a

5-pancyclic ordering.

Remarks. The graph Gss (Figure 4) and the graph G5 in Figure 2 show that “8-
pancyclic” and “6-pancyclic” in the conclusions of Corollary 9 and Corollary 10 are best

possible, respectively. The following two classes of graphs show that “6-pancyclic” and “5-

11



pancyclic” in the conclusions of Corollary 10 and Corollary 11 are best possible, respectively.
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For the class of C'Zy-free graphs we prove the following extension of Theorem C.

Theorem 12. Let G be a 2-connected C Zy-free graph. Then GG is either 2-chord extendable

or isomorphic to one of the eight graphs in Figure 6.

Figure 6

Proof. Let C be a cycle of length k& > 3 in a 2-connected CZ,-free graph, which cannot be

extended using at most two chords. We distinguish two cases:

Case 1. k>4
Since G is 2-connected, there is a path via g ... 20z such that vy, vy € V(C), 2; € V(C),
and N(z;) NV ([vf,v3]) =0 for 1 < i <. Now let [ be minimal, and among all those paths

of length [ choose one such that |V ([v]", v;])| is as small as possible.

Case 1.1. 1=1

— —
Then vy # vi", and vy # v;, since otherwise, viz1vy C vy or vez vy C' v would be a



0-chord extension of C'. Thus v; v} € F(G), for i = 1,2, since G is C-free. Now v] va, v vy &
E(G), since otherwise, vy vozqvq ?v;v; _C_>v1_ or vy V0] _C_>v2_v;' ?vl would be a 2-
chord extension of C'. Therefore, vivy € F(G), since otherwise, G[{vy, vy, v, 21, v9}] is an
induced Z5.

Let y € V([v1, v2]) be the first vertex not adjacent to vy and consider G[{v1, z1,v2, ¥, y}].
By the choice, z1y, 21y~ ,v1y ¢ E(G), and therefore vay € E(G) or vy~ € F(G). Thus,
there exists a vertex z € V([v],vy]) such that vi27, 202 € E(G). Now v 27,20 € E(G),
since otherwise, G[{v], vy, 21, 2}] or G[{z,vy,21,v]}] would be an induced claw. But then

= +

— —
vy 27 C vizgvy C zvy C vy is a 2-chord extension of (', a contradiction.

Case 1.2, [ > 2

Again vz, vizy ¢ E(G). Next vz, vizy ¢ E(G), since [ is minimal. Now vjzy €
E(G), since otherwise, G[{v], v1, 0], #1, 29}] would be an induced Z,. Hence, we may assume
that [ = 2 and v 2, € E(G) (exchange v; and v}"). Thus, vy = v}. Since G is C-free and
there is no O-chord extension of C, we have v;vy, v vy € E(G). Next zyv] € E(G), since
otherwise U;U2U1$1U;— ?vf would be a 1-chord extension of C'. Then vl_v;' € F(G), since
otherwise G[{v], v1, 21, vy }] would be an induced claw. Now consider G[{v] , v2, vy, 2, 21 }].
Since G is Za-free and xyvf, z1v], 2109, 290F € E(G), we have vz € F(G). But then

—
$2U2U1U;— C' vy 2 is a 1-chord extension of ', a contradiction.

Case 2. k=3
Let the vertices of C' be labeled vy, v, vs, and let U; := {& € V(G) — V(C)|z € N(v;)}
for 1 <¢< 3. Then

(1) UnU;=0 for 1<i<j<3,

since otherwise, there would be a 0-chord extension of C'. If R = V(G) — [Uy U Uz U Us U
{v1,v2,v3}] # 0, then there is a vertex w € R contained in an induced Z; (together with
vy, v3 and v3), since G is connected, a contradiction. Thus R = (). Next observe that G[u;] is
complete for 1 <1 < 3, since GG is C-free and by equation (1).

Suppose now that |Uy| < |Us| < |Us|. Since G is 2-connected and by the previous as-

13



sumption we have

(2) Uz, Us # 0.

If a vertex w; € U, is adjacent to two vertices w1, wjo € U;, then G[{vy, vg, v3, wj1, wj2, w; }]
contains an induced Z3, a contradiction. If a vertex w € U; is not adjacent to two vertices
wi, wjiz € Uj, then G[{w;, v;, v;, w1, wjz}] is an induced Zj, a contradiction. Thus, by equa-

tion (2) we conclude that

(3) 1< || < |Us| £ 2,

which implies 5 <n <9.
Now using all of this information we obtain the eight exceptional graphs Zs1, Zs.1, Zs.2,

Zr1y Zra, 23, Zsq and Zg 1 depicted in figure F6. [ |

Corollary 13. If G is a 2-connected C'Zy-free graph on n > 10 vertices, then G is cycle

2-extendable.

3. Concluding Remarks
The proof of Theorem D admits another interesting corollary which seems not to be

mentioned elsewhere.

Corollary 14. Let G be a 2-connected C-free graph. If G is H Pr-free, then G is hamilto-

nian.

Unfortunately, the graph in Figure 3 shows that it is not possible to obtain an analogue
of Theorem 6 replacing “D-free” by “H-free.” However, the whole proof concept of Theorem

6 can be used in the same way to prove the following result.

14



Theorem 15. Let G be a 2-connected, C-free graph. If, moreover, G is H Pr-free and

n > 9, then G is either pancyclic or missing only one cycle.

Sketch of Proof. We follow the proof of Theorem 6 and state only the main differences.
If n <7, then G is either pancyclic or isomorphic to Cy, s, Cs, Ge.1,Cr, G714, Gr3, or Gir 4.
Next observe that in the proof of Theorem 1 only once a contradiction is obtained by the
existence of an induced deer, namely in Case 2 (v1v4 € E(G)). In order to avoid an induced
Pr we successively conclude that vsvs, vgvia, -+ -, Vak—3Vak, Vak+1Vak+a € E(G), where n =
4k +1,n=4k+42,n =4k + 3, or n = 4k 4+ 4 (indices modulo n), respectively. As in Case 2
we know that vy _4va;, Vai—aVaiy1, Vai—3vai41 € F(G) for each edge vy;_sv4;. Then, however,
Vp V3V2 U1 Us Vg ?vn, Vp_ 1 V2 U1 Uy Uy Us ?vn_l, OF V50201 Vp_2Un_10pV4 C Up_g is a Ch_y, if
n=4k+ 1, n = 4k + 2, or n = 4k 4 3, respectively. Hence, we may assume that n = 4k,
k> 2.

Now vy v4vs _C_>v1 and vjvsvg _C_>v1 are a C,_9 and a (,_3, respectively. By successively
replacing paths v4;_3v4,_204,—104; by the edge v4;_3v4; for 2 < i < n/4 we exhibit all cycles
Cp for n/2 =1 < m < n—4. Next, for 1 < p < n/4 -1, we obtain a cycle Cy,yq1 by
VIVs * * * Vgpp1VapVap—a - - V401 OF & cycle Cyp, by 0105 - - V4p_304pVap—g - - - V401, Tespectively.

Therefore, if n > 9, then G contains all cycles from Cg up to ), or is missing only one
cycle. For n = 8 we refer to Figure 7.

A family of graphs that satisfy the assumptions of Theorem 15 and are missing exactly
one cycle (namely, the cycle of length n — 1) is given by the graphs in Figure 3. The graph

G's.10 on n = 8 vertices in Figure 4 shows that ‘n > 97 in the hypothesis of Theorem 15 cannot

be improved.

Cy Cs Cs Ge1 Cr Gra Grs Gra Gsa

Gs2 Gsa Gsr Gss Gsg Gsio Goa Gor Groa
Figure 7

All 2-connected C'H Pr-free graphs on 4 < n < 8 vertices that are not pancyclic.
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4. Appendix

Proof of Proposition 5. At first we generate all claw-free, Pr-free, and deer-free graphs
on n < 8 vertices, which are not pancyclic .  Next suppose there is a claw-free, Pr-free
and deer-free graph on n + 1 vertices, n > 8, which is not pancyclic. Then, by Proposition
4, it has a 2-chord. Using this 2-chord in the RP (Proposition 1), we thus also obtain a
counterexample on n vertices. Vice versa, the set of all counterexamples on n + 1 vertices
can be generated from the set of all counterexamples on n vertices as follows. Let G be
a counterexample on n vertices vy, vs,..., v, labeled such that ({vvi41]1 <7 < n -1} U
{v,v1}) C E(G) (see Figure 4, where vy is always double-circled and vertices are labeled
in clockwise orientation). We then successively replace each edge v;v;41 of this C, by a
triangle with edges v;v;41, ViUpt1, Vig10n41 if 1 < ¢ < n — 1, and a triangle with edges
V1 Upy V1Vp41, UnUnt1, Otherwise. Each new graph has to be checked whether it is claw-free, Pr-
free, deer-free, and not pancyclic, and whether additional edges adjacent to v,41 are possible.
For the sake of brevity, the figures of those of these graphs, which are not counterexamples
(G910 —Go.41,Gr06 — Gro31, Gii.6 — Gi1.s,G12.3, Gi2.4) Will not be depicted. If such a graph
is generated more than once (which will be frequently the case in the following), then its

vertices are labeled according to its first occurence in this generation process.
We now distinguish seven cases.

Case 1. n=8

By the hypothesis of the proposition, the cycle Cg contains a chord. Since GG is claw-free,
it contains a 2-chord or a 3-chord. Among all chords of Cs choose an i-chord (2 < ¢ < 3) such
that ¢ is minimal. Choose a labeling v1,vg, ..., vs of the vertices of Cg such that ({v;v;41]1 <

j S 7} U {Ug?]h Ulvi—l—l}) C E(G)

Case 1.1. i=2
Then G contains C5, C7 and Cg. If there is a 3-chord and a 4-chord then G is pancyclic,

since a 4-chord gives a C5 and a 3-chord gives Cy and Cg. If there are only 4-chords then

'For 4 < n < 7 it can be easily verified that all counterexamples are given by the graphs in Figure 4.

16



there is a pair of a 2-chord and a 4-chord that are crossing, since GG is claw-free and has no
3-chord. Thus G has ('3, (5, Cg, C7 and Cy. If there is also a pair of a 2-chord and a 4-chord
which are not crossing, then G is pancyclic. Otherwise we obtain the only counterexample
(G's.1 having only 2-chords and 4-chords. If there are only 3-chords then G has Cs, Cy, Cs, C
and Cg. Now each pair of a 2-chord and a 3-chord whether they are crossing or not, leads to
a C5 and thus G is pancyclic, or we obtain counterexample Ggg.

Hence we may assume that G has only 2-chords. Suppose first that there are no crossing
2-chords. Since GG is Pr-free, there are at least two vertex disjoint 2-chords. If, for example,
v1v3, vavg € F(G), then G is not deer-free. Thus the only counterexample with two 2-chords
is given by Gga. If there are three 2-chords, for example vivs, vsvs and vgvg, then G is not
deer-free. Thus the only counterexample with three 2-chords is given by Ggs. If G has four
2-chords, then vsvs, vsvz, vivr € E(G) and G is pancyclic.

Next suppose there are crossing 2-chords. If, for example, v1vs, vov4, v3v5 € F(G), then
(' is pancyclic. Hence we may assume that among every five successive vertices of Cg there
occur at most two 2-chords. We may assume that vyvy € E(G).

If there is a pair of 2-chords with vertices from {vy4, vs, ..., vs, v}, which are not crossing,
then G is pancyclic. Hence, we may assume that there is either a pair of crossing 2-chords or
there is at most one 2-chord with vertices from {v4, vs, ..., vs, v }. This gives the counterex-

amples G'g 4, Gs5,Gs.6, Gs.r and Gy qo.

Case 1.2. i=3

By (A) we also have vyv5,v4vs € E(G). Thus G has Cs, Cy, Cs, Cg and Cs. If vsvs € E(G)
then we obtain a C7 by (D). Hence we may assume that vsvs ¢ E(G), and thus vsvg € E(G)
by (B). Now every additional edge gives a C7 and G will be pancyclic. Thus the only

counterexample in this case is given by Ggs.

Case 2. n=9

If we successively replace the edges of G's.; we obtain the graph Gg .42 (4 times), which is
pancyclic, and the graph Gg.43 (4 times). The graph Gg .43 is only missing a C4 and contains
an induced deer G[{vs,v1,vs, vg, V4, Vs5,v6}]. Any additional (possible) edge adjacent to vg

gives a (Y.
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For G4 we obtain Gg 12 (4 times) and Gg13 (4 times). The graph Gg12 is only missing
a (s, which can be obtained by adding one of the edges v vg, v5vg, VgUg, U7Ug OF Vgvg. If NONE
of these edges is present, then vsvg € FE(G), since G is claw-free ((vs,v1,v9,v3)), and we
obtain the counterexample Gg . The graph Gg 13 is missing a C4y and a Cs which can be
obtained by adding one of the edges vivg, vovg, Vg, U709 OF vgvg. If none of these edges is
present, then vsvg € FE(G), since G[{vs, vs, v4, V9, U3, v1,vs}] is an induced deer. Thus, we
obtain counterexample Gg».

For G's 3 we obtain (g 14, Gg 15, Gg.16 and Gg 17 (each of them 2 times). The graphs Gg 14,
Gig.15 and (g 16 are pancyclic, and Gg 17 contains an induced deer G[{vy, vs, v7, Vg, vs, V1, V2 }],
and is missing only a Cy4, which is obtained by adding one of the edges vy vg, V209, V3v9, V4Vg, U5Ug
or Vglg.

For Gs4 we obtain Gg3 (2 times), Gg1s (4 times), and Gg.19 (2 times). The graph Gg3
is only missing a (s, which can be obtained by any additional edge adjacent to vg. The
graph Gg1g is pancyclic and Gg 19 is missing only a Cs. However, Gg 19 is not claw-free
((v2, v3,v9,v5) and (vg, vg, V4, v5)). Thus, vavg € F(G) or vsvg € E(G) which gives a Cs.

For Gig5 we obtain Gg.20,G9.21,Go22 and Ggg (each of these 2 times). In this case
Glg.20, Gg.21, and Gga9 are pancyclic, and counterexample Gg 4 is only missing a (5, which
can be obtained by adding one of the edges vy vr, vovr, V307, V407, O vsv7. Thus vrvg can be
added and we obtain counterexample Ggg.

For G's ¢ we obtain G923, G9.24, G9.25, G9.2, G'9.26, Gi9.27, G928, and (g 29. The graph Gg 23
is pancyclic, and G924 and Gg35 contain an induced deer (G[{vs,vs, v7, vs, V1, V2, Ug}] and
G[{vs, ve, v7, Vs, U1, U3, Vg }]), and are missing only a C5, which is obtained by adding any edge
adjacent to vg. Counterexample Gg 5 is only missing a C's, which can be obtained by adding
one of the edges vivg, v2vg, V3Vg, V7UY, OF Vgvg. Thus vevg can be added and we obtain (once
more) counterexample Gg 4. Also, Gg .26 contains an induced deer G[{vs, vy, vs, v9, Vs, U7, Vs }]
and is missing only a C'5, which can be obtained by adding one of the edges vivg, vovg, v3vg,
or vsvg, or by adding vsvg and vrvg. Thus either vqvg € F(G) or vrvg € E(G), and we
obtain (once more) counterexamples Gg 4 and Gg 3. The graph (g 27 contains an induced P;

(G[{vs, v1, v2, va, Us, Vs, Vo }]) and is missing only a C5, which can be obtained by adding one
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of the edges vyvg, vavg, V3Vg, V4Vg, OF Usve. Thus vsvg € E(G), and we obtain (once more)
counterexample Gg3. By the same arguments Gg.25 and Gg .29 can be handled to obtain in
both cases counterexample Gg 5.

For G's 7 we obtain G930, G9.31, G9.26, Ga.6, G'9.32, G9.33, G9.27, and (Glg.34. The graph Gg 30
is not claw-free ((vy,vq,vg,vs) and (v1, vy, v3,v4)) and is missing only a C5, which can be
obtained by adding any edge adjacent to vg. Both Gg 31 and Gg.34 are pancyclic. Counterex-
ample Gg g is missing only a C5 and is a subgraph of counterexample Gg 4. The graph Gg a2
contains two induced P; (G[{vg, v7, vs, V1, V2, V4, v5}] and G[{vg, v7, vs, v1, V3, V4, U5}]) and is
missing only a (5, which can be obtained by adding one of the edges vivg, vavg, 309, V4vg,
or vsvg. Thus vgvg can be added to obtain counterexample Gg7. A repeat of the previous
argument handles Gg s3.

For Gig s we obtain Gg3s (4 times), Ggss (2 times), and Gg37 (2 times), which are all
pancyclic.

For G's.g we obtain Gg.3s, G939 (2 times), G40 (2 times), Gg.41 (2 times), and Gg ;. Both
Gg.ao and G4y are pancyclic, Gg 39 contains an induced Pr (G[{ve, v2, v1, vs, v7, Us, U5}]),
and Gg3g contains an induced deer (G[{va,vs,vs,vg, v1,vs,v7}]). Both are missing only a
C's, which can be obtained by adding any edge adjacent to vg, except for vivg in (G939 and
v3vg Or vgtg in (Gg3g, which leads to counterexamples Ggs and Gg5 or Gg7, respectively.
Counterexample Gg 1 can again be extended to counterexample Gg 7.

For Gs10 we obtain Gga4 (2 times), Ggas, Goae (2 times), Ggar (2 times) and Gg s,
which are all missing a C's and a Cs. Moreover, all of them have an induced claw, an induced
deer or an induced Pr. Adding edges adjacent to vg, these induced subgraphs disappear and
we obtain counterexample (Ggg in the case of (Gg44 and (g .45, counterexample (g 19 in the

case of (Gg 46 and (Gg 47 and counterexample (Gg 11 in the case of Gg 47 and Gg 4s.

Case 3. n=10

The graph Gg is only missing a C's5, which is obtained if we replace one of the edges
V45, UsUg OF UgU7 by a triangle. Otherwise, G'1g.32, G10.9 and G'g.10 are obtained (each of them
2 times). Also, G'1g.32 contains an induced P; G[{vs, v4, v7, vs, vg, U1, v10}] and is missing only

a (5, which can be obtained by adding one of the edges wvsvig, v4v10, Vsv10, VeV10, V7010, OT
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vgv1g. 1Thus vgvig can be added to obtain counterexample G1p.1. The graph Gg.9 contains
an induced deer G[{vs, vg, V2, V10, U3, V4, U5 }] and is missing only a C'5, which can be obtained
by adding one of the edges viv10, Usv10, Vg010, UTV10, UsU10, OF Vg1g. Thus vyv1g can be added
to obtain counterexample GG1g.2. Using the same argumentation vovig can be added in G1g.1¢9
to obtain G1g.».

The graph Gg5 is only missing a C's5, which is obtained if we replace one of the edges
v4U5 Or vgur by a triangle. Otherwise, G'ip.11 (2 times), Gio.12 (2 times), Gio.13 (2 times),
and Gg.14 are generated, each of them missing only a Cs. The graph G1g.11 has an induced
deer G[{vy4, vs, v7, V8, Vg, V1, V10}], and any additional edge adjacent to vyg gives a Cj, Also,
G19.12 has an induced Pr G[{vi0, v3, v4, g, 7, g, 1 }], and a Cs can be obtained by adding
one of the edges vyv19, Usv10, VgU10, UTU10, UsU10, OT Vg¥1g9. LThus vavig can be added to obtain
(i10.2 (once more). By the same argument vyv1g can be added in Gg.13 to obtain G1g.2. Also,
(G10.14 contains an induced deer G[{vy0, vs, v7, Vg, Vg, V102 }] and any edge adjacent to vy gives
a Ck.

The graph Gg3 is only missing a C'5, which is obtained if we replace one of the edges
UgUs, U4Us, Ugl7 OF Uslg be a triangle. Otherwise, G115 (2 times), Gioi16 (2 times) and
G193 are generated. Now, Gg.15 has an induced P; G[{v4,vs, ve, v7, V9, U1, U10}], and every
additional edge v;v10 gives a (5, except for vguyg, which leads to counterexample Gp.4. Also,
G10.16 has an induced deer G[{ve, v7, vg, vy, U2, V3, V10}] and every additional edge v;vio gives
a ('s. The same holds for counterexample G1g 3.

The graph Gg4 is only missing a C'5, which is obtained if we replace one of the edges
U1 Ug, U2U3, U304 OT Usvg by a triangle. Otherwise, G017, G018, G10.19, G1o.20 and Gig.31 are
generated. Both G'1g.17 and G115 are not claw-free ((vg, v1, v10, v3) and (vs, v4, V10, vs)), and
every additional edge v;v19 gives a Cs. In G1p.19 and G190 every additional edge v;v1p gives
a C's except for vgvig in G119 and vgvig in (G1g.20, which both lead to counterexample G1g 5.
In G031 G[{v10,v9, v, U3, Us, Vs, v7}] is an induced Pr.

The graph Ggs is only missing a C5, which is obtained if we replace on of the edges
U9V3, V4Us, UsUg, UgU7, O v7vg by a triangle. Otherwise, G'10.2,Gho.21, Gl1o,22, and Gp.23 are

generated. In counterexample Gg.9 every edge v;v19 gives a Ci, except for vgv1g, which leads
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to counterexample G'195. The graph Gig.21 is not C-free ((vg, vs, v10, vs5)), and adding vov1g
or vsvyg gives a Cs. Also, Gyp.22 has an induced Pr G[{ve, vs, v4, U2, U1, Vg, V10}], and G123
an induced deer G[{vg, vs, vg, V10, V1, V2, v3}]. Every additional edge v;v1o gives a C5 except
for vivig in G1g.22, which leads to counterexample G1g.4, and except for vevig and vgvig in
G'10.23- Adding both edges gives a C's, whereas adding only one edge leads to counterexamples
G1o.5 and G1g.4, respectively.

The graph Ggg is missing only a C5, which is obtained if one of the edges vyvs or vgvr
is replaced by a triangle. Otherwise, G'1g.24 (2 times), G1o.25 (2 times), G'10.26 (2 times), and
(1027 are generated. Both G124 and G1g.25 are not C-free ((vg, v1, v10, v3) or (v1, V10, U3, V4)),
and adding only vsvig or vivig gives no Cs, and leads to Gio6, which has an induced Pr.
The graph Gyo.26 has an induced deer G[{vg, vy, v3, v10, U4, U5, v7}] and Gyg27 is not C-free
({(va, vs,v10,v7)). In both graphs each additional edge v;v19 gives a Cs.

Also, Gg 7 is only missing a C's which is obtained if we replace one of the edges vyvs, v4vs,
UsUg, Vg7 O Uglg be a triangle. Otherwise, G128, G105, G1o.7, and Gig.o9 are generated.
The graph G125 has an induced deer G[{vs, vy, v2, V10, U3, U4, U5 }], and every additional edge
v; 010 gives a (5 except for vyvyg, which leads to counterexample G 5. Every additional edge
v;v10 also gives a C5 in the other three graphs except for vavig in Go6, which leads (again)
to counterexample Gg5. The graph G1g.7 has an induced Pr.

The graph (g is also only missing a C's, which is obtained if we replace one of the edges
V1 V2, UsU4, U4Us, Ugl7, U7Us OF Ugvy by a triangle. Otherwise, G'1g.30 is generated (3 times), in
which every additional edge v;v19 gives a Cs.

The graph Ggg is only missing a Cg, which is obtained if we replace one of the edges
VU9, U2U3, Uglg, OF gy by a triangle. Otherwise, all generated graphs are not deer-free and
we obtain counterexamples G1g¢ and Gig.7.

The graph Gg 1o is missing a C5 and a Cg. Moreover, all of them have an induced claw,
an induced deer or an induced Pr. Adding edges adjacent to vip, these induced subgraphs
disappear and we obtain counterexamples G196 and Gig.s.

Finally, the graph (Gg.11 is only missing a C's and a Cs. A repeat of the previous arguments

this time leads to counterexamples G197 and Gig.s.
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Case 4. n=11

The graph G1g.1 is only missing a Cs, which is obtained if we replace one of the edges
V1V2, U4Us, UsUs, Ugl7, Ugl1g, OF V191 by a triangle. Otherwise, G115 is generated (4 times).
Also, G116 has an induced deer G[{vs, vy, v2, v11, U3, U4, 5}], and every additional edge v;vyy
gives a (5, except for vwyv11, which leads to counterexample Gy 5.

The graph G2 is only missing a Cs, which is obtained if we replace one of the edges
V1 U2, UsU4, U4Us, UsUg OF VgU7 by a triangle. If we replace vyvs (by a triangle), we obtain a graph
that is not claw-free, and every additional edge v;v11 gives a C5. Replacing vrvg or vgvg we
obtain two graphs that are not D-free. Every additional edge v;v1; gives a C'5 except for vgvyg
or vrvy1, respectively, which leads (in both cases) to counterexample G'11.2. Replacing vovig
or vivyp we obtain two graphs that are not C-free. Every additional edge v;v1; gives a Cj
except for vyv11 or vevy1, respectively, which leads (in both cases) to counterexample Gy 5.

The graph G153 is only missing a Cs, which is obtained if we replace one of the edges
V12, U4Us, UgU7, OT Ug¥1g by a triangle. Otherwise, G119 (2 times) and Gq10 (4 times) are
generated. Both of them are not C-free and every additional edge gives a Cj.

The graph G4 is only missing a Cs, which is obtained if we replace one of the edges
VU2, U2U3, U4Us5, UgU7, Uglyg, Vgl1g, OF U1U1p by a triangle. Replacing vsvy or vrvg we obtain a
graph, which is not C-free, and every additional edge gives a C5. If we replace vsvg, we obtain
counterexample (G112, and every additional edge v;v11 gives a Ck.

The graph Gio5 is only missing a C5 which is obtained if we replace one of the edges
U1 U2, U3y, U405, UsUs, UgUT, Uglg, OT U1U1p by a triangle. Replacing vovs or vgvyg we obtain two
graphs, which are not C-free, and every additional edge v;v11 gives a (5. Replacing vrvg we
obtain counterexample (G173, and every additional edge v;v11 gives a Cs.

The graph Gig6 is only missing a Cg which is obtained if we replace one of the edges
VU9, U2U3, U3V, OF U405 by a triangle. Otherwise, all generated graphs have an induced claw,
an induced deer or an induced Pr. Adding edges adjacent to vyy, these induced subgraphs
disappear and we obtain counterexamples G114, G115 and Gi16.

Also, the graph Gz is only missing a (s and can be treated like G196. We this time

obtain counterexamples G115 and Gyq.7.
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Finally, the graph G1¢.g is missing a C'5 and a Cs. Replacing successively edges by a trian-
gle, we obtain graphs which have an induced claw, an induced deer or an induced P;. Adding

edges adjacent to w1y, these induced subgraphs disappear and we obtain counterexamples

Giis and Ghye.

Case 5. n=12

The graph G111 is only missing a Cs, which is obtained if we replace one of the edges
V1 V2, UaU3, U4Us, UsUg, UgUt, U7Us, U19V11, OF 01011 by a triangle. Otherwise, G123 and Gz (2
times) are generated, and G133 is not C-free and G134 is not deer-free. Every additional
edge v;v12 gives a (s except for viguyp in G124, which leads to counterexample Gy 5.

The graph G112 is only missing a C5 which is obtained if we replace one of the edges
VU3, U4Us, UsUg, UgU7, U7Us, Uslg, O v1gv11 by a triangle. Replacing vivg, v3v4, vov1g OT 1011
we obtain graphs that are not C-free and every additional edge v;v12 gives a (s, except
for v11v12 or vav1 in the cases of vyvy or vivyy, respectively. This leads (in both cases) to
counterexample G 1.

The graph (G113 is only missing a (5 which is obtained if we replace one of the edges
VU2, U3y, V405, UsVs, UgUT, Vgl1g, OT v1v11 by a triangle. Replacing vovs, v7vs, vgvg O v19U11
we obtain graphs that are not C-free and every additional edge v;v12 gives a (s, except
for vgui2 or vrurz in the cases of vrvs or vsvg, respectively. This leads (in both cases) to
counterexample G2.9.

The graph G114 is only missing a Cg which is obtained if we replace one of the edges
VU2, U2U3, U3y, U4U5, Uglg, Vgl10, U10V11, OT ¥1101 by a triangle. Otherwise, three graphs are
generated which are not deer-free. Then every additional edge vi5v; gives a Cg or we obtain
counterexample G2 3.

Also, the graph G115 is only missing a Cg which is obtained if we replace one of the
edges vyvg, UouU3, U1gU11, OF v11v1 by a triangle. Otherwise, all generated graphs have an
induced claw, an induced deer or an induced P7. Adding edges adjacent to vio, these induced
subgraphs disappear and we obtain counterexamples G123 and G2.4.

Also, G116 is only missing a Cg and can be treated like G115. We this time obtain

counterexample G2 3.
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Finally, G117 is only missing a Cg and can be treated like G174. We this time obtain

counterexample G 4.

Case 6. n=13

Both G151 and G35 are only missing a C5. Replacing an edge by a triangle gives a Cj
except for vzvy and vgvig in Gioq and vsvy and vivig in Giz9. In all four cases we obtain
graphs that are not C-free and every additional edge v;v15 gives a Cs.

The graph (G123 is only missing a Cg which is obtained if we replace one of the edges
UgUs3, . .., Uslg, UTUs, . .., V19011 Dy a triangle. Otherwise, all generated graphs have an in-
duced claw, an induced deer or an induced P. Adding edges adjacent to v;s3, these induced
subgraphs disappear and we obtain the counterexample G'3.

Finally, G154 is only missing a Cs and can be treated like G2 5.

Case 7. n=14
The graph G113 is only missing a Cs. Replacing an edge by a triangle gives a (s except
for vguy. In this case the generated graph is not deer-free and every additional edge v;v14

gives a (. ||
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