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Abstract

We say that a spanning eulerian subgraph FF C G is a flower in a graph G if
there is a vertex u € V(G) (called the center of F') such that all vertices of G except
u are of degree exactly 2 in F. A graph G has the flower property if every vertex of
G is a center of a flower.

Kaneko conjectured that GG has the flower property if and only if G is hamil-
tonian. In the present paper we prove this conjecture in several special classes of
graphs, among others in squares and in a certain subclass of claw-free graphs.

1. INTRODUCTION

We consider only finite undirected graphs without loops and multiple edges. For
terminology and notation not defined here we refer to [1].

If v € V(G), then by dg(x) we denote the degree of « and by Ng(x) (or simply N(x))
we denote the set of all vertices of (¢ that are adjacent to x. Unlike in [1], we denote
the induced subgraph on a set M C V(G) by (M). If for every @ € V(G), (N(x)) has a
property P, then we say that G is locally P.
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The square of a connected graph H is the graph G = H? such that V(G) = V(H)
and two vertices z,y are adjacent in GG if and only if z,y are at distance at most 2 in H.
If G and G’ are graphs, then we say that G is G'-free if G contains no induced subgraph
isomorphic to G'. Specifically, in the case that ' = K 3 we say that G is claw-free and
the star K 3 will be also referred to as the claw.

Let GG be a graph of order n > 3 and v € V(G). If there is a spanning eulerian
subgraph F' of (¢ such that dp(u) > 2 and dp(v) = 2 for all v € V(G), v # u, then F is
called a flower at u and the vertex u is called the center of F. If F'is a flower at u then
the components of the graph F' — « will be called the leaves of F'. Since 1 < dp_, () <2
for every = # u, every leaf of F' is a path.

We say that a graph G has the flower propertyif G has a flower at u for every u € V(G).

Obviously, every hamiltonian cycle of (& is a flower and hence every hamiltonian graph
has the flower property. Kaneko [4] conjectured that these properties are equivalent.

Conjecture [4] (The Flower Conjecture). A graph GG has the flower property if and
only if GG is hamiltonian.

Kaneko and Ota [5] proved that if G has the flower property, then G is 1-tough and
has a 2-factor.
In the present paper we prove the flower conjecture in several special classes of graphs.

2. OBSERVATIONS

Proposition 1. Let ¢ be a graph with minimum degree §(G) < 3. Then G has the
flower property if and only if & is hamiltonian.

Proof. If x € V() is a vertex such that dg(«) < 3 then every flower at  is a hamiltonian
cycle. [ |

Proposition 2. Let G be a graph with connectivity x(G) < 2. Then G has the flower
property if and only if (G is hamiltonian.

Proof. If x(G) =1 then (G is neither hamiltonian nor has the flower property and thus
we can assume that x(G) = 2. Suppose that GG has the flower property. Let {x,y} be
a 2-vertex cut set of G. By the result of Kaneko and Ota [5], GG is 1-tough and hence
G — {z,y} has two components Hy, Hy. Choose z; € H; and let F; be a flower of G at
ziy t = 1,2, Then P = Fy — H; is a hamiltonian {z,y}-path in G — H; and, similarly,
P, = Fy — Hy is a hamiltonian {y, z}-path in G — H,. But then the cycle C = a2 Py Pyx



is a hamiltonian cycle in G. [ |

Proposition 3. Let GG be a bipartite graph. Then GG has the flower property if and only
if G is hamiltonian.

Proof. Let (X,Y) be the bipartition of G. If F' is a flower at v € X, then
> dr(e) = [E(F)] =} dr(y),

z€X yey

from which

dp(u) +2|X = {u}| = 2]Y],

or, equivalently,

dp(u) — 2 +2|X] = 2V,

which implies | X| < |Y|. Taking a flower F’" at v € Y, we get analogously | X| > |Y| and
hence | X| = |Y|. This implies dp(u) = 2 and hence F'is a hamiltonian cycle. |

Proposition 4. Let G be a graph and let @ € V() be such that (N(x)) is a complete
graph. Then G has the flower property if and only if GG is hamiltonian.

Proof. Suppose that (G has the flower property and let F' be a flower at = such that
dp(x) is minimum. Suppose that dp(z) > 2 and let z1, z5 be endvertices of two different
leaves of F. Then, deleting from F' the edges xz, xz; and adding z;z,, we get a flower
F" with dp/(2) < dp(x), which contradicts the minimality of F. Thus, dp(x) = 2 and F
is a hamiltonian cycle. [ |

3. SQUARES

Fleischner [2] proved the following theorem.

Theorem A. [2] If H is a 2-connected graph and G = H?, then  is hamiltonian.

The following statement is also due to Fleischner and follows from Theorem 3 of [3].

Theorem B. [3] Let y be an arbitrary vertex of a 2-connected graph H. Then the graph
(G = H? contains a hamiltonian cycle €' such that both edges of C' containing y are in
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E(H).

Using these two theorems, we can prove the following.

Theorem 5. Let H be a graph and G = H?. Then ( has the flower property if and only
if G is hamiltonian.

Proof. Suppose that G = H? and ( has the flower property.

If H is 2-connected, then ¢ is hamiltonian by Theorem A. Hence x(H) = 1.

If H has a vertex « with dy(x) = 1, then (Ng(x)) is a complete graph and G is
hamiltonian by Proposition 4. Hence §(H) > 2.

If H has a cut edge (i.e. an edge which is a block) a2y € E(H), then, since 6(H) > 2,
{z,y} is a 2-vertex cut set of G and G is hamiltonian by Proposition 2.

Hence we can assume that H has connectivity x(H) = 1, minimum degree §(H) > 2
and every block of H has at least three vertices.

Let H; be an endblock (i.e. a block containing exactly one cutvertex) of H and let x
be the cutvertex of H in H;. By Theorem B, there is a hamiltonian cycle C; in H} such
that 2~ € F(H) and za™ € E(H) (here we denote by = and z% the predecessor and
successor of & on C).

Put Hy, = H — (H; — ), choose a vertex y € Ny, (z) and let F' be a flower in G at y.
We consider the subgraph ' = F — (Hy — x). Since 1 < dp/(v) < 2 for every v € V(H,)
and dp:(v) = 1 ifand only if v = 2 or v € N(x), F’ is a collection of paths P,i =1,...,(,
with endvertices a;,b;, € N(z)U {z}, i =1,..., 0.

If all the vertices a;, b;, ¢ = 1,...,{, are distinct from a, then, since (N(x) U {z}) is a
clique in G, C' = za; Pibyag Pyby . . . agPibyx™Cx is a hamiltonian cycle in . Hence there
is an ig such that « = a,, (or, similarly, © = b;,). We can assume without loss of generality
that = a; and then analogously C’ = x Pibjas Pyby . . . ayPibyx™ C'x is a hamiltonian cycle
in G. [ |

4. CLAW-FREE GRAPHS

Theorem 6 Let (¢ be a graph and let @ € V() be such that (N(x)) is connected and x
is not a vertex of an induced claw in G. Then ' has the flower property if and only if ¢
is hamiltonian.

Proof. Suppose that (G has the flower property but is not hamiltonian and let F' be a
flower at @ such that dp(x) is minimum. Let Pp,..., P, be the leaves of F' and denote

by z},z? the endvertices of P;, i = 1,...,{. If some endvertices :1;311,:1;35 (zl# i2) of two

J1
11 ?

different leaves P; , P;, are adjacent, then, deleting from /" the edges zz7!, z{. and adding



:chl1 :L'Zj, we get a flower F’ with dp/(2) < dp(z). Hence no endvertices of two different leaves
11

of F' can be adjacent. This implies that / = 2 since otherwise (z, ], z}, 1) is an induced
claw centred at x. Moreover, iz} € E(G) (since otherwise (x,x},x],x}) is an induced
claw centred at x) and, similarly, z3z3 € E(G). Denote z}a? = ¢;, i = 1,2.

Since (N(x)) is connected, there is a path P in (N(a)) joining e; to e3. Suppose that
the flower F' and the path P are chosen such that, among all flowers F' at  with minimum
dp(x), the eq, eg-path P is shortest possible. We can assume without loss of generality
that P is an x}, v3-path. Let 21 = 20, 21, ..., 2x = x5 be the vertices of P.

Suppose first that there is an integer 7, 1 < ¢ < k, such that z,_1z, € E(F). If
zi_12; € E(Py), then, deleting from F the edges z;_1z;, xz] and zz? and adding the edges
rix}, xz;_1 and xz; (not excluding the possible case i = 1), we get a contradiction with
the minimality of P. Similarly we show that z;_1z; ¢ E(P,) and hence z,_1z; ¢ E(F) for
any 7, 1 <1 <k, i.e., no two consecutive vertices of P are consecutive on F'.

We now consider the subgraph (z;,z, 27, 27), where 27,z are the predecessor and
successor of zy on F. If 27 z{ € E(G), then, deleting from F the edges 2,21, 212 and xz
and adding the edges zgz;, 22 and 27 2], we get a flower that contradicts the minimality
of P. Hence z7 z{ ¢ E(G). Since (z1,x,27,2) cannot be an induced claw centred at z;,

we have xz; € E(G) or 2zf € E((G). We distinguish the following four cases.

Case Deleted edges Added edges
vz € E(G),z € V(P) 227, 3z, 23t a2y, 22, 007
vz € E(G),z € V(P2) 227,02y, 233 a2y ,221, 0573
z2f € B(G),z € V(P)  zizf,zal,xx} w2l 2z, 22d
2y € B(G), 2 € V(P)  zizf,zab,xad xzf 2z, 2la?
In each of these cases we get a contradiction with the minimality of P. [ |

Corollary 7. Let G be a claw-free graph which is not locally disconnected. Then G has
the flower property if and only if GG is hamiltonian.

Proof follows immediately from Theorem 6.

Remark 8. It is easy to observe that if (G is a locally disconnected claw-free graph,
then, for every @ € V(G), (N(x)) consists of two vertex disjoint cliques and hence G is
a line graph. Moreover, if G = L(H), then G is locally disconnected if and only if H
is triangle-free. Thus, according to Theorem 6, for the proof of the flower conjecture in
claw-free graphs, it remains to prove it in the case that (& is a line graph of a triangle-free
graph. Hence we have the following corollary.

Corollary 9. Let (G be a claw-free graph that is not a line graph of a triangle-free graph.



Then G has the flower property if and only if &' is hamiltonian.
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