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1 INTRODUCTION

We only consider simple graphs and refer to [BM] for terminology and notation not defined
here. A graph G with n > 3 vertices is hamiltonian if G contains a cycle of length n and
pancyclic if G contains a cycle C} of length k£ for each k with 3 < k <n.

If C), is a cycle with m vertices labeled vy, vy, -+ -, v, such that {v;u; [l <i<m—-1}U
{vp1} C E(G) and v;jv;4y € E(G) for some j, k (modulo m), then the edge v;v 44 is called
a k—chord of C,. Clearly, this k—chord can be used to construct a cycle of length m — k + 1
from the given cycle C,,. If G and G’ are graphs, then we say that G is G'-free if G contains
no induced subgraph isomorphic to G’. Specifically, we denote by C' the claw K; 3, by B the
bull, by W the wounded, by D the deer, by N the net, by H the hourglass, by Py and C}
the path and the cycle on k vertices, and by Z the graph obtained by identifying a vertex

of K3 with an end-vertex of Pyq (see Figure 1).
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Figure 1

Bedrossian [Be] characterized all pairs of forbidden subgraphs for hamiltonian graphs.

THEOREM A1l [Be]. Let R and S be connected graphs (R,S 2% Ps) and G be a 2-



connected graph. Then G is RS-free implies G is hamiltonian if, and only if, R =2 C' and S
is one of the graphs Cs, Py, Ps, Ps, Z1, Z2, B, N, or W.

Bedrossian [Be] also characterized all pairs of forbidden subgraphs for pancyclic graphs.

THEOREM A2 [Be]. Let R and S be connected graphs (R, S # P3) and let G (G # C,,)
be a 2-connected graph. Then G is RS— free implies GG is pancyclic if, and only if, R = ('
and S is one of the graphs Py, Ps, 71, or Z5.

Bondy [Bo] proposed the following metaconjecture.

METACONJECTURE A3 [Bo]. Almost any non-trivial condition on a graph which
implies that the graph is hamiltonian also implies that the graph is pancyclic. (There may

be a simple family of exceptional graphs.)

Although the Metaconjecture is not true in general, it holds for a remarkably large number
of sufficient conditions for hamiltonian graphs. In this paper we will examine Theorem Al in

light of the metaconjecture. The following (additional) results have already been established.
THEOREM A4 [BV]. If G is a 2-connected C'DPr-free graph, then ¢ is hamiltonian.

THEOREM AD [FRS]. Let G be a 2-connected, C'—free graph. If, moreover, G is DP;r—
free and n > 14,G is Ps— free and n > 10, or G is Ps— free and n > 6, then (G is pancyclic.

REMARK. There are 50 exceptional graphs, which are C'DP;— free and not pancyclic.

THEOREM A6 [FRS]. Let G be a 2-connected, C-free graph. If G is HPr— free, then G

is hamiltonian.

THEOREM AT [FRS]. Let G be a 2-connected, C-free graph. If, moreover, G is H Pr—

free and n > 9, then G is either pancyclic or missing only one cycle length.



2 RESULTS

In order for the reader to more easily follow the development of the results of this paper, we
shall state and discuss the results in this section and hold the proofs until the next section.
In [FRS] the graph H; (see Figure 2) shows that C' and Zs, as forbidden subgraphs, are
not sufficient to guarantee even hamiltonicity. The natural question, whether there exists an

infinite class of exceptional graphs or not, led to our first Theorem.

THEOREM B1. If G is a 2-connected C'Zs-free graph, then G is either hamiltonian or

isomorphic to Hy or Hy. (see Figure 2).

Hy Hy Hs

Figure 2

Next we will derive a full characterization of all 2-connected C'Z5— free graphs, which are
not pancyclic.

For r > 2 let E4, be the (unique) graph on n = 4r vertices labeled wvg, vy, - -, v4.—1 With
edge set I/(Ly,) = {0041 | 0 < @ < 4r — 1} U{ 0454045, Vaj—aVajq1, V453045, Vaj—3Vaj41 | 1 <

J < r} (indices modulo 4r).

PROPOSITION B2 (Reduction Procedure RP). Let G be a 2-connected C'Zz—free graph
on n > k > 6 vertices. If G contains a C'y with a chord, then G also contains a Cy_y or GG

contains a subgraph Fy,. with k= 4r.

PROPOSITION B3 (Reduction Procedure RP). Let G be a 2-connected C'Z3—free graph

on n > k > 6 vertices. If G contains a C}, then GG also contains a C;_; and a (.



PROPOSITION B4. Let G be a 2-connected CZs—free graph on n > 5 vertices. If
G contains an induced C5 and has no Cy, then G is isomorphic to Cs,Ge1,G72 or Hs (see

Figure 2 and Figure 3).

Forr > 2let Fy, be the (unique) graph on n = 4r vertices labeled vy, vg, - - -, vo,, w1, - - -, ugy
and with edge set E(Fy,) = {viv; |1 << j<2r}U{ugi—qugy | 1< i<riU{vu; |1<5<
2r}.

PROPOSITION B5. Let G be a graph on n = 4r vertices for some r > 2. If G is
(' —free, F;. C G and G has no C,_; then G 22 F},.

We are now ready to state our second Theorem.

THEOREM B6. If G is a 2-connected CZs—free graph, then G is either pancyclic or
belongs to one of the following three classes of exceptional graphs G U Ga U G, where (see

Figure 2 and Figure 3)

Gy = {Fy | r>2}
g3 = {H17H27H37G6.17G7.2}-

Next we complete the characterization of all 2-connected C'H Pr-free graphs that are not
pancyclic, which was started in [FRS]. The proof of Theorem A7 (Theorem 15 in [FRS])
shows that every 2-connected C'H Pr-free graph on n > 9 vertices contains all cycles from Cg
up to C, or is missing only one cycle. Moreover, if GG is missing a cycle C, then k = 4r — 1

for some r > 2 and Fy C G.

PROPOSITION B7. Let G be a 2-connected C'H Pr-free graph on n > 4r > 8 vertices.
If Fy, is an induced subgraph of GG, then G has cycles C, for 3 < k < 4r.

PROPOSITION B8. If G is a 2-connected C'H Pr—free graph on n < 12 vertices, then
G is either pancyclic or isomorphic to one of the following graphs: Cy, Cs5,Cs,Ge1, -+, G12

(see Figure 3).
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PROPOSITION B9. Let G be a C'Pr-free graph on n > 9 vertices. If G has a hamiltonian

cycle without 2-chords, then G is pancyclic.
We are now ready to present our third Theorem.

THEOREM B10. If G is a 2-connected C'H Pr-free graph, then G is either pancyclic or
belongs to one of the following two classes of exceptional graphs G; U Gy, where

Gi={Fy | r>2},

Gy ={C4,C5,C6,Gg1, -+, G2} (see Figure 3).

Next we will derive a full characterization of all 2-connected C'W —free graphs, which are

not pancyclic.

PROPOSITION B11. Let G be a CW —free graph on n > k > 4 vertices. If G contains



a (' with a chord, then G also contains a C';_;.

We will now study the structure of 2-connected C'W —free graphs which have an induced

cycle 'y for some k > 6, but no cycle C'y_1.

Claim B12. Let G be a 2-connected C'W—free graph on n > &k > 6 vertices. If G
has an induced cycle C' of length k, then for every vertex 2 € V(G) — V(C) we have

Ne(z) = {v™,v,v"} for some vertex v € V(C).

Claim B13. If ' is an induced cycle of length k& > 6 in a 2-connected CW —free graph
G, then for any two components Hy, Hy in G — C' and any two vertices 27 € V(H;) and
x9 € V(Hz) we have |No(z1) N Ne(z2)| < 1.

Inspired by Claim B12 and Claim B13 we introduce the following class C¢ of graphs.

Let Co be the class of all graphs that can be generated from all induced cycles Cy, k > 4, by
replacing every vertex of C; by a clique and joining all vertices of two cliques if and only if
the corresponding vertices are adjacent in C. Now let G be a graph of Cc generated from
a (' with vertices labeled vy, vg,---,v; and corresponding cliques K;, 1 <1 < k. We call
a subgraph G[K,, Kyy1, -, K,] a saussage if |V(K,)| = |[V(K,)| = 1 and |V (K;)| > 2 for
p+1<i<¢g—1 (indices modulo k), and G a saussage-graph if it has at least one saussage.
Now observe that GG has exactly one induced cycle of length at least 4, namely C%, from
which it has been generated. All other cycles can only occur in the saussages of G. Now for
each graph G € C¢ let A(G) denote the length of the only induced cycle of length at least 4,
(i.e., A(G) = k), and let p(G) be the maximum number of vertices among all saussages of G

Then A(G) > p(G) + 2 if and only if G has no Cy_4.

Claim B14. Let GG be a 2-connected C'W —free graph on n > k > 6 vertices. If G has an
induced C} and no Cy_q, then G € C¢.

THEOREM B15. If G is a 2-connected C'W —free graph, then G is either pancyclic or
G € C¢ for some induced cycle Cy with £ > 4 and AM(G) > pu(G) +2 or G = Gy (see Figure
3).



COROLLARY B16. If G is a 2-connected C'B-free graph, then GG is either pancyclic or
G € C¢ for some induced cycle Cy with £ > 4 and A(G) > p(G) + 2.

3 PROOFS

We first introduce some additonal notation which will be useful in the proofs that follow. Let
C' be a cycle in a graph. If an orientation of C' is fixed and u,v € V(C), then by uav we
denote the consecutive vertices on C from u to v in the direction specified by the orientation
of C'. The same vertices, in reverse order, are given by v 5u If C'is a cycle of G with a fixed
orientation and u € V(C), then ut denotes the successor of « on C' and u™ its predecessor

with respect to the given orientation, respectively.

Proof of Theorem B1l. Suppose G satisfies the hypothesis of the theorem, but G
is nonhamiltonian. Let C' be a longest cycle of G with a fixed orientation. Since G is 2-
connected, there exists a path of length at least 2, internally—disjoint with ', that connects
two vertices of C'. Let P = vyuqusg - - -u,v9 be such a path of minimum length, implying that
P is an induced path unless vivy € F(G). For i = 1,2, let w; be the first vertex in v;" 8113_2'
satisfying w;v; ¢ E(G) (existing by Lemma 2 in [BV]). Since G is C'—free, v7 v} € F(G) for

%
i = 1,2. Hence, since (' is a longest cycle, |V (vf C'vz ;)| > 3 fori=1,2.
Case 1. Suppose {v7 "o, 0107 vy g, 0 TN E(G) # 0.

Without loss of generality we may assume that v;0] € E(G). Fori = 1,2let z; be an ar-
bitrary vertex in v;" 8’w2 and u be a vertexin V (P)—{vy, va}. Then uay, uxq, x1vq, xov1, 2122 €
E(G) (by Lemma 2 in [BV]). If vjvy € F(G), then G[{v]T, v, vy, v, 05, wq}] is an induced
73, a contradiction. If vjvy & E(G), then G[{v]™, v}, vy, uy, -+, uy, v, w5, wy}] is an induced

Z,4+3, a contradiction, since r > 1 and G is Zz—free.
Case 2. {v7 v,vivit) ¢ B(G) fori=1,2.

If vyvg € E(G) and r > 2, then G[{v],v1,v], u1, -+, u,,v2}] is an induced Z,41, a con-

tradiction, since GG is Zz—free. If vyvy € E(G), then r = 1, since otherwise G[{v], v1, va, u1 }]



would be an induced claw. Hence we may assume that r = 1. With |V(v;|'8v3__i)| > 3 for
i =1,2 we have n > 9. If n = 9 then vfv; , € E(G) for i = 1,2, since G is Zz—free.
Now observe that G is C'Zz—free and that (as above) no other edges are possible, since
C' is a longest cycle. Hence, if » = 9, then G is either hamiltonian or isomorphic to H;
or Hy. If n > 10, then we may assume without loss of generality that |V(vi"8v2_)| > 4.
We now consider {vi, vy, v, vy 7,05, v} if vivy € F(G) and {vy, vy, 0, ug, v, 05,057}
if vjvy € E(G), respectively. Then vfvy € E(G) or viv;~ € E(G), since otherwise
G[{v],v1,v], v 7, vy, v2}] would be an induced Z3 and G[{v],v1,v], uy, va, vy, v; " }] would
be an induced Zy, respectively. If vvy € FE(G), then vfToy, vfvy ™ € E(G), since G is
C—free and viv ™t vivy, v 2, v3 “vg € E(G). Now considering the claw {vy, v, v vy 7}
we conclude that v tv; ™ € E(G). If vfvy ¢ E(G), then v oy vfv;~ € E(G), since G
is Z3—free (symmetric argument). Again we conclude that v tv; ™ € F(G). Now vy ~vf ¢
E(G), since otherwise vy ~vf 8vl_vi|'vlv2v2_vf'+ 8’1}2__ or vy Tvi 81}{1}?’1}1 ]_3>v2v2_vf'+ 81}2__
would be a cycle longer than C'. But then G[{v; ™, v{ ™, v]", v1, v2,v]}]is an induced Z3 when
v1vy € B(G), and G[{vy; ~,vft, vf vi, up, v, v5}] is an induced Z; when vivy & E(G), re-

spectively, a contradiction. Hl

For the proof of Proposition B2, the following four statements for C'—free graphs can easily

be verified and will be frequently used and just referenced by the indicated label.

(A) Let ), be a cycle with m > 2k 4 2 > 6 vertices labeled vy, v, -+, v, and a k—chord

v;v;4k. If there are no i—chords for 2 < ¢ < k — 1, then v;_1v4, v;v;4541 € E(G).
(B) If, moreover, v;_jv;45-1 ¢ E(G) or vj410j4541 € E(G), then v;_yv,4541 € E(G).

(C) Let v;vj4; be an t—chord with 3 <i < % in a cycle C}, without 2—chords. If v;v;4;-1 ¢
E(G), then vjvj4:41 € E(G), and likewise if vj4qv;4; € E(G), then v;_qv;4; € E(G).
(D) Let vjvj4; be an i—chord in a cycle Cy. If ¢ > 2 and vj41v4i42 € E(G) orif 7 > 3 and
— — — —
Vj+2Vj4it1 € E(G), then vjvji; C vj110j4it2 Cvj or 004 C 01205 4it1 C'v; is a Cyo,

respectively.



PROOF OF PROPOSITION B2. Letuv,---, v be the vertices of Cy and i (2 < i < &)
be the smallest integer such that GG has an i-chord. Among all chords of C} choose such a
minimal ¢-chord (2 <i < %) Choose a labeling vy, v, - -+, v; of the vertices of C such that
({vjvj41 | 1 <j <k —1}U{vgvy, v10i41}) C E(G). We now distinguish the following three

cases.

Case 1. Suppose i =2

Then vqvsvy -« -vgvy is a Cp_q.
Case 2. Suppose i =3

By (A) we have vjvs,vpvgy € E(G). If vyvs € E(G), then we obtain a Cy_; by (D).
Hence we may assume that vevs € E(G) and so vgyvs € E(G) by (B). If vqv; € E(G), then
vkv5v1v2v3v4v78’vk is a Ck_1. Hence we may assume that vqvr ¢ E(G). Suppose now that
vsvg € E(G). If vgvs € F(G), then vsvs, vavg € E(G) by (A) and thus vsvg € F(G) by
(B), since vsvr € E(G) ( or else (vkv5v4v1v2v3v78vk)). But then we obtain a Cp_; by
vkv1v4v5v6v7v8v3v98vk. Hence we may assume that vqvs ¢ E(G). Next vivg € F(G) ( or
else (vkv4v3v2v1v68’vk)), vivr € E(G) (or else (vkv5v4v3v2v1v78vk)), and vpvr € E(G) by
(D). Now if vvg € E(G), then vyvg € E(G), since G is claw—free ({vg, v7, vs, v9}), but then
v1v4v5v6v7v8v2v98v1 is a Ck—1. Hence we may assume that vavs ¢ F(G). Again the claw
{v1, v2, v, vs} shows that vyvs € F(G). But then G[{vy, v4, vs, vs, v7,vs}] is an induced Zs,
a contradiction. This shows that vsvg € E(G). A repeat of these arguments (cf. also Proof
of Theorem 15 in FRS]) either gives a C_1 or k = 4r for some r > 2. In the latter case,
Vai—4Vai, Vaj—aV4i41, Vai—3Vai+1 € E(G) for each edge vy _sv4;,1 < ¢ < r (indices modulo 4r)

and the C4, has no other 3-chords, 4-chords, 5-chords or 6-chords.
Case 3. Suppose i > 4

We proceed as in Case 2 and obtain that viv;yo, Vpvig1, VEVi42 € F(G). Since ¢ is minimal,

G[{viy2, v, v1, v2,v3,v4}] is an induced Z3, a contradiction. ll



Proof of PI’OpOSitiOl’l B3. Let vy, -, v be the vertices of 'y labeled such that
({vjvj41 | 1 <j<k—1}U{vgvi}) C E(G). Since k < n, there is a vertex u € V(G) =V (C})
such that N(u) NV (Cy) # 0. If C) has a 2—chord, then we obtain a Cj_y and a C5. Hence
we may assume that C has no 2—chords. Now, if v; € N(u) for some v; € V(C}), then
{vi—1, i1} N N (u) # 0, since G is C-free and v;_yv;41 would be a 2-chord. Hence GG has a
Cs. Next, if {v;, vit1, vige, virs} C N(u) for some v; € V(C}), then viuvH_gB’kvi isaClr_q.
Hence, N(u) NV (C%) consists of pairwise disjoint pairs {v;, v;41} and triples {v;, vj41,vj42}

of consecutive vertices. We distinguish these two cases.
Case 1. Suppose vg,vs5 € N(u), vs,vs € N(u)

If v;,v;43 € N(u) or v;,vj_3 € N(u), then we (easily) obtain a Cj_;. Hence, vj_3,v;43 ¢
N(u) for each v; € N(u). Thus, vy,ve,v7,vs € N(u). Since Cy has no 2—chords, we have
V13, Va4, U35, U4, UsV7, UgUs € F(G). If vivy € E(G), then v1v4uv58v1 is a C,_;. Hence
we may assume that vivs, vsvg ¢ E(G). If both veus, vavr € E(G), then v2v5uv4v78vk_1
is a Cj—1. Hence we may assume without loss of generality that vqvr € F(G). If vavs €
E(G), then vsvg ¢ F(G), since otherwise, v2v5uv4v3v88v2 is a Cp_1. Now, if vvg €
E(G), then G[{vs,v4,u,vs}] is an induced claw, a contradiction. Hence vyvs ¢ FE(G),
but then G[{v4,u,vs, vg, v7,v8}] is an induced Zs, a contradiction. This shows that both
vovs, vav7 € E(G). Hence, vivs,vqvs € E(G), since G is Zz—free. Considering the claws
{v1, vs,u,v6} and {vs, v4, u, vs} we conclude that vive, vsvs € F(G), since G is C'—free. But

%
then vjvgvsuvyavsvg C'vy is a Cp_yq.
Case 2. Suppose vy, v3,v4 € N(u), vi,vs € N(u).

Since C}% has no 2-chords, we have vyvy, v3vs, Vave, V507 & E(G). If vsvg € E(G) or

- - -
vavr € E(G) or vsvr € E(G), then vauvsve C vg or vsuvgvy C'vs or vauvavsvr C'vg is a Ci_q,
respectively. Hence we may assume that vsvs, vsvr,vavy € E(G). As in Case 1 we have

uvg, uvy € F(G), since uvs, uvy € E(G). But then G[{vs, u, v4, vs, v, v7}] is an induced Zs, a

contradiction. B

Proof of PI’OpOSitiOl’l B4. TlLet vy, V2, -, Vs be the vertices of the induced C5 such

10



that {v;v;41|1 < j < 4} UA{vsvri} C E(G). If n =5, then G =2 Cs. 1If n > 5, then let
H =G —V(C5). Since G is 2—connected, there is a vertex € V(H) such that N¢, (z) # 0.
As in the proof of Proposition B3, we conclude that z has either two or three consecutive
neighbors on the Cs. Since G has no Cy we conclude that for every € N (V(C5)) we have
IN(z) NV (C5)] = 2 and N¢,(2) = {v;,v;41} for some 7. By the 2-connectedness of G' we
conclude that each component of H either is an isolated vertex or has at least two vertices
each of them having two neighbors on C5. Thus for n = 6 we obtain the unique exceptional
graph Gl 1 (see Figure 3). Since G has no Cy, for n > 7 there is no pair of vertices z,y € V(H)
such that N¢, (z) = Ne, (y) = {vi, viy1} for some ¢ (which gives (zv;yv;412)). Without loss of
generality we may assume N¢, (2) = {vy, v} for some 2 € V(H). Suppose N¢, (y) = {vs,va}
for some y € V(H) — {z}. Since G has no Cy, we have zy ¢ E/(G) (or else (zvgvsyz)). But
then G[{x,vq, v1,vs5,v4,y}] is an induced Zs, a contradiction. Hence we may assume that
Np(vs) = 0 and thus [Ny (Cs)| = 2 (symmetric argument). Without loss of generality we
may assume that Ng, (y) = {vs, v1} for some y € V(H) — {z}. Since ¢ has no Cy4, we have
ry ¢ E(G) (or else (yviveay)). Thus for n = 7 we obtain the unique exceptional graph Gz,

(see Figure 2). For n > 8 we conclude that H consists of one component, since [Ny (Cs)| = 2.
Let zwyws---w,y be a shortest path connecting z and y in H. Then r > 2, since G has
no Cy (zviywya). If r > 3, then G[{vy, v2, &, w1, we, ws}] is an induced 73, a contradiction.

Hence we have r = 2. This gives the unique exceptional graph Hs (see Figure 2). il

Proof of PI’OpOSitiOl’l B5. Let the vertices of G be labeled vy, vy, - -, v, such that
{vjvipll <j<n—11U{v,01} C E(G), {vivg, vsvs, - -+, vap_3ty, } C E(G) and {vg_3v4i41,
Vai—4Vai, Vai—aVaiy1} C F(G) for each edge vy;_svy; (indices modulo n). If r = 2 then G =
Fs(= FEjg), since any additional edge gives a C7. For r > 2 we perform an induction on k for
1 <k < [5]. For each k and all possible i-chords with 4k — 1 <& <4k 42 (and 3 <7 < 2r)
we shall show:

i=4k—1: vy € E(G); vvap41, UsVakt2, VnVak—1 € F(G)

1 =4k : U Vak, V1Vak+1 € E(G); vavsky2, Vsvapss € E(G)

i=4k+1: vyvapqr € F(G); v104k42, V2Vakt3, V3Vakta € F(G)

i =4k +2: U U442, V1Vak43, V2Vskta, U3Uakys € E(G).

11



By the cyclic structure of G these properties then remain valid for all induced subgraphs
G[{vaj, V4541, -+, Vaj4akt5}]). We first show the induction step “k — k + 17. To show
that v1vag, Uy Uk, V1Vak+1, VnVaky1 € F(G), we consider suitable claws and make use of the

claw—freeness of GG:

{Uh Vak—1, V4k, U4k+4} D V1V4k, V4k—1V4k, V4kV4k4+4 € E(G)7
V1 Vg1, Vak—1Vakta & F(G);
hence viv4p44 € F(G).

{U1, Vag—1, Vak, Vagys} © U1V4k, Vag—1Vak, VagVspys € E(G)7
V1 Vg1, Vak—1Vakts & F(G);

hence vivarys € F(G).

{Un, Vak—1V4k, U4k+5} D UpUik, Vak—1V4k, VakUsk4s € E(G)7
UpUsk—1, Vak—1Vak45 & E(G)§

hence v,v4ry5 € F(G).

{Vny Vak—1, Vak, Vagga} o UnUsk, Vak—1Vak, VaxVanta € E(G),
UnV4k—1, V4k—1V4k+4 Q E(G)§
hence v,v444 € F(G).

— —
Voapys € E(G else  vyv4p1a C V20445 C v, isa Chy
UpV4k+3 € E(G

V3V4k+6 € FE G

— -
else  vyvap3 Cv10ap45C v, isa Chy

— —
else v,V C' Vgryav1020304616 CV,  isa Choy

— —
VoUapye € E(G else  v,vg O V4pg5010204k46 C Uy isa Chy
— —

v3Uapyr € E(G else v, U4 C Vapp501020304847 Cvy I8 2 Chy

— -
VVapye € E(G else  vyvapra C V104046 C vy isa Chy

— — — .
VoUapyr € E(G else VU444 C V2V4p47 C VapgsVakpo C1 isa Chy

— —
v3vapts € E(G else  v3V4p48 C'UsVappo C'vs isa Cf,

— —

VpUakye € E(G else v, V4p16Vak4501 C VapyaVapts C'v,  isa Chg

— — -
ViVapyr € (G else v, V4544 C V1V4p47 C VapgsVakpo Cv, s a Chyg
V2V4k48 € F G

V3V4k49 € FE G

— -
else  vav4p48 C'V4Vspyo Cv2 isa Choy

(&)
(&)
(&)
(&)
(&)
(OF
(OF
(&)
(&)
(&)
(&)
(&)

— -
else  vivgpes CUsgkeo Cvy isa Ch_q.
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Next we show the induction beginning with “k = 1”7. By the hypothesis we know that
V1U4, Uy, U105, V05 € E(G). For k = 1 the (12) constructions above (of a C),,_1) remain

valid. Thus, vevs, v,vs, -+, v3vg € E(G). I

Proof of Theorem B6. If ¢ is nonhamiltonian, then (' is isomorphic to either Hy or
Hy by Theorem B1l. Hence we may assume that G is hamiltonian. If G has a ), without
chords, then G 22 (. Hence we may assume that C), has a chord. If G has no C,,_1, then by
Proposition (B2) we have Fy,. C G with n = 4r, and thus by Proposition (B5) we conclude
that G = Fy.. Hence we may assume that G' has a C,_;. Then by Proposition (B3) ¢ has
cycles Cp for k = 3 and 5 < k < n. If G has no (4 then G is isomorphic to Gg1 or G75 or

H3 by Proposition B4 and pancyclic otherwise. il

Proof of PI’OpOSitiOl’l B7. Let U1, Vg, "+ +y Vgp, Up, U, + + +, Ug be the vertices of Fy,
such that dg, (u;) = 2, with w;v; € E(G) for 1 <17 < 2r and ug;_qug; € F(G) for 1 <@ <r.
We know that Fjy, is only missing a Cy-—q1. Suppose there is a vertex w € V(G — Fy,)
such that wu; € E(G) for some ¢ with 1 < ¢ < 2r. We may assume that wuy € E(G).
Since vyuy ¢ E(G) and G is claw-free, we have vyw € E(G) or wuy € E(G). Then
VWU UV V3 U ULV * * * Uy —2V2p _2 V2, —1 V2 UL OF V1 U1 WUV U U4V * * * Uy —2V2p_2V2,—1 V2,1 18
a Cyr—1. Hence we may assume that dg(u;) = 2 for 1 < ¢ < 2r. Thus, there is a vertex
w € V(G — Fy) such that wv; € E(G) for some ¢ with 1 < ¢ < 2r. We may assume that
wv; € F(G). Since G is claw-free and wuy, wqyuy ¢ E(G), we have wvy € I/(G). But then,

V] WUURUL Vg * + - Uy U2, vy 1S the desired Cy,—q. B

Proof of PI’OpOSitiOl’l B8. At first we generate all C'H Pr-free graphs on n < 8 vertices,
which are not pancyclic. For 4 < n < 71t can be easily verified that all exceptional graphs are
given by the graphs in Figure 3. Next suppose there is a C'H Pr-free graph on n 4 1 vertices,
n > 8, which is not pancyclic. Then by Proposition B9, it has a 2-chord. Using this 2-chord
in the reduction procedure, we also obtain an exceptional graph on n vertices. Vice versa, the
set of all exceptional graphs on n+ 1 vertices can be generated from the set of all exceptional
graphs on n vertices as follows. Let G be a counterexample on n vertices vy, vy, - - -, v, such

that ({vivig1]l <@ <n—1}U{v,v1}) C F(G). We then successively replace each edge v;v;41
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of this (), by a triangle with edges v;v;41, ViUn41, Vig1Up+1 if 1 <0 < n—1 and a triangle with
edges U1V, V1Up41, UnUnt1, Otherwise. Each new graph has to be checked as to whether it is
C H P;-free and not pancyclic, and whether additional edges adjacent to v,41 are possible.

We now consider six cases.
Case 1. Suppose n =S8.

By the hypothesis of the proposition, the cycle Cg contains a chord. Since GG is claw-free,
it contains a 2-chord or a 3-chord. Among all chords of Cs choose an i-chord (2 < ¢ < 3) such
that ¢ is minimal. Choose a labeling vy, v, -+, vs of the vertices of Cg such that ({v;v;4; |

1 S] S 7} U {U8U17U1Ui+1}) C E(G)
Case 1.1. Suppose i =2

Then G contains Cs, C; and Cy. If there is a 3-chord and a 4-chord then G is pancyclic,
since a 4-chord gives a C5 and a 3-chord gives Cy and Cg. If there are only 4-chords and
there is a pair of 2-chords and a 4-chord that are crossing, then since GG is claw-free and has
no 3-chord, G has a (s, C5,Cg, C7 and Cg. If there is also a pair of a 2-chord and a 4-chord
that are not crossing, then G is pancyclic. Otherwise we obtain the only exceptional graph
(G's.1 having only 2-chords and 4-chords. If there are only 3-chords then G has Cs, Cy, Cs, C
and Cs. Now each pair of a 2-chord and a 3-chord, whether they are crossing or not, leads

to a Cs and thus G is pancyclic, or we obtain the exceptional graph Ggo.

Hence we may assume that G has only 2-chords. Suppose first that there are no crossing
2-chords. Since G is Pr-free, there are at least two vertex disjoint 2-chords. Since G is H-free,
any pair of 2-chords is vertex disjoint. Thus the only exceptional graphs with two 2-chords
are given by (g3 and Gg 4.

Next suppose there are crossing 2-chords. If, for example vjvs, vavg, v3vs € F(G), then
(' is pancyclic. Hence we may assume that among every five successive vertices of Cg there
occur at most two 2-chords. We may assume that vyvy € E(G). Hence vsvs, vsve ¢ E(G),

since GG is H-free. Thus we obtain the exceptional graphs Gss,Gsg and Gg 7.
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Case 1.2. Suppose i=3
The only exceptional graph in this case is Fg € Gy.

For the sake of brevity, in the following four cases we list those exceptional graphs on n

vertices, that have been generated from a specific exceptional graph on n — 1 vertices.

Case 2. Suppose n =9 Case 4. Suppose n =11
sy Ghoa :
Gga: Goi,Go2,Goa Groz2: Gu
Ggs: Gga Gios: Gu
Gsa: Goa,Go
54 9293 Case 5. Suppose n =12
Ggs: Gos
Gii: Gz
Gge: Gga
Gy Case 0. Suppose n = 13
Ggg:

Case 3. Suppose n =10

Goa: Gioa

Goz: Gioz, Gros
Gos: Gioz

Goa:

Gos:

The graph Gy, is only missing a C5. Replacing an edge by a triangle, we either obtain
a (5 and thus a pancyclic graph, or a graph that is not H-free. In the latter case, every
additional (possible) edge gives a Cs. B

Proof of Propositon B9. 1In ([Frs] Proposition 4) this was proved for the class of
C'D Pr-free graphs. However, the D-freeness is not needed there, hence the conclusion even

holds in the class of C'Pr free graphs. il

Proof of Theorem B10. Let G be a 2-connected C'H Pr-free graph on n > 3 vertices.

By Theorem A6 we know that G is hamiltonian. If » < 8 then (' is either pancyclic or
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isomorphic to Cy,Cs,Cs, Gg.1, - - -, Gs.7, Fs by Proposition BS. If n > 9, then G contains all
cycles from Cyg up to (), or is missing only one cycle (4,1 for some r > 2 and Fy,. C G as
mentioned earlier. In the latter case, Iy, is an induced subgraph of G by Proposition B5. If
n > 4r then G has all cycles O} for 3 < k < 4r by Proposition B7 and hence is pancyclic.
Otherwise, G = Fy,. and hence G is not pancyclic. Hence we many assume that GG contains
all cycles from Cg up to C,,. If, moreover, G has a cycle C}, for some k > 9 without 2-chords,
then G is pancyclic by Proposition B9.

Hence, any exceptional graph must have n = 8 vertices or must have a cycle C with a 2-
chord for some k > 9. All these exceptional graphs are given by Propostion B8. Furthermore,
the proof of Proposition B8 shows that there are no exceptional graphs on n > 13 vertices.

This completes the proof. il

Proof of PI’OpOSitiOl’l B11. Let vy, -+ - U be the vertices of (. Let ¢ be the smallest
integer such that GG has an i-chord. Since GG is C- free we have 2 < ¢ < k%l Among all chords
of C choose a minimal i-chord (2 < i < ]“2;1) Choose a labeling vy, vg, - - -, vg of the vertices
of Cy such that ({vjvj41]1 <j <k —=1}U{vgvr,vivi01}) C E(G).

We now distinguish the following two cases.
Case 1. Suppose i =2

Then vyvsvy - -vgvy is a Cp_1.
Case 2. Suppose i > 3

For ¢ > 3 we have k > 7. For k = 7 we conclude (successively) that all 3-chords
are present, since G is C- free. Then vivavsvovgurvy is a Cg. For k > 8 we will show
that G either has a Ci_y or that G[{vr_2,vg_1, Vg, U1, 02,41 }] is an induced W. Since
G is a C-free and ¢ is minimal we have vjviyo, vpvip1 € F(G). If vyvipe € F(G), then
Vg Vi1 5 V242 8 v is a Cg_1. Otherwise, vyvipo € E(G), or G[{vg, v1, vz, vi42}] would be
an induced claw. Since ¢ > 3 and ¢ is minimal we have vg_ovk, Vp—101, UkV2, V2041 € E(G).
If vg_qv1 € E(G) or vg_qvz € F(G) or vp_zvy € E(G), then Uk_z?]la vi+1vkvi+28vk_2 or

— — — —
Vk—1V2 C 0j41010i42 C Vp—1 OF Vg2V C Vip101VkViq2 C'Vp—2 is @ Cpy. If 1041 € E(G)
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— — — —
or Vp—ovit1 € I(G), then vp_1vi41 Cvi1vig2 C Vk—1 OF Vg_o0i11 C' VgViqe C'Vp_2 is a Ch_y.

Otherwise, G[{vk_2, vk_1, Uk, U1, U2, Vi41}] is an induced W, a contradiction. B

Proof of Claim B12. For k = n the assertion holds. Hence we may assume that
k < n. Since GG is 2-connected, there are two vertices v € V(') and 2 € V(G)\V(C) such
that va € F(G). Since G is C-free and CY is an induced cycle, we have {v™, vt} N N (2) # 0.
Suppose first, that v=,v € N(z) and v=",vt ¢ N(z). Then v~~~ ,vtT & N(z), since
G has no Cj_;. But then G[{v™",v™,v,vT, v+ z}] is an induced W, a contradiction.
Hence we may assume that v™, v,v% € N(z). Again, since G has no Cj_1, we conclude that
v=,vtt ¢ E(G). Now, if there is a vertex w € V(C) N N(z) such that w ¢ {v™,v,vT},
then G[{v™,vT,w,z}] is an induced claw, a contradiction. Next suppose there is a vertex
y € V(G)\ V(C) such that No(y) = 0. We may assume that there is a path yzw such that
w € V(C) and = ¢ V(C). But then G[{y,z,v",v"}] is an induced claw, since C} has no

chords, a contradiciton. Wl

Proof of Claim B13. Suppose there are two components Hy, Hy in G — C' and two
vertices x1 € V(Hy), 29 € V(Hj) such that |[No(21) N No(2g)| > 2. By Claim B12 we then

distinguish two cases.
Case 1. Suppose Neo(z1) = No(z2) = {w™, w, wt} for a vertex w € V(C).
But then G[{z1, 22, wT, wT*}]is an induced claw, a contradiction.

Case 2. Suppose Ne(zy) = {w™,w,w} and N¢(z) = {w,w, wtT} for a vertex w €

V(C).

But then G[{w™, z1,w", z2, wT T, wtTT}] is an induced W, a contradiction. ll
Proof of Claim B14. We perform an induction on p = [V (G)\V(C)|.
1. Induction beginning with p = 0.

Then k& = n and thus G = C,,. Hence G € C¢.
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2. Induction step p—1 — p.

Suppose that Claim B14 holds for all graphs with |[V(G)\V(C)| < p—1 and let G be
a graph with |[V(G)\V(C)| = p. Choose a vertex z € (V(G))\V(C)) and put G' = G — z.
Then, the following properties hold:

1. G is CW-ree, since ‘C'W-freeness’ is a hereditary property.

2. (' is 2-connected due to Claim B12.

3. C'is an induced C} in G".

4. There is no cycle in G’ of length |V (C)| — 1.

Thus, by the induction hypothesis, G’ € Cc. Let the vertices of C' be labeled yq, yo, - - -, ys

and let K; be the clique with y; € V(K;), (1 < < k), corresponding to the structure of the

class Co. By Claim B12, z has exactly three neighbors on C' say y;—1, yi, Yit1-

(i) If there is a vertex z; € V(K7y) such that 2z ¢ F(G), then G[{y;—12, z;, yi—2}] is an

induced claw, a contradiction.

(ii) If thereis a vertex z;41 € V(K;41) such that 2z,41 ¢ F(G), then G{z, i, yi—1, Yi—2, Zit1, Yit2 ]

is an induced W, a contradiction.

(iii) Symmetric to (ii) we have 2,y € I/(G) for all vertices z;_; € V(K;_4).
Thus G € Co. I

Proof of Theorem B15. Let G be a 2-connected CW-free graph. By Theorem Al
we know that G is hamiltonian. By Proposition B11 we conclude that G is either pancyclic
or has an induced cycle C} for some k& > 4. If £ > 6 and G has no Cy_y then G € Co by
Proposition B14 and necessarily A(G') > p(G) + 2. Hence we may assume that 4 < £ < 5.
If £ = n, implying G = C,, then G € Cc. Hence we may further assume that k£ < n. Since
G is C-free there is no pair of vertices v € V(C),2 € V(G) — V(C) such that zv € E(G)
and zv™, 20t ¢ E(G). If {v7,v,vt} C N¢(z) for a vertex @ € V(G) — V(C), then G has
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a C5 and a (4 and thus is pancyclic. Hence, if G is not pancyclic, then k& = 5 and for
each vertex z € V(G) — V(C) we have N¢(z) = 0 or |[Ne(x)] = 2. In the latter case,
Ne(z) = {v,vT} for a vertex v € V(C). Thus for n = 6 we obtain the exceptional graph
Ge.1. Now for n > 7, suppose first that there are two vertices z,y € V(G) — V(C') such that
Ne(z) = {v™,v}, Ne(y) = {w™, w} for two vertices v, w € V(C). Since ¢ is missing only a
Cy, we cannot have v = w. If w™ = v or w™ = vT then zy ¢ F((), since otherwise ayw~ v~ a
or zyw~ve gives a Cy. But then G{v™"",v™ ", v, z,v,y}] or G[{v™ ", v 7,2, v,w,y}] is
an induced W, a contradiction. Hence we many assume that V(G) — V(C') has exactly one
component and that here are two vertices z,y € V(G) — V(C) such that zy € E(G) and
Ne(z) = {v™,v} for a vertex v € V(C) and N (y) = 0. But then G[{v™"",v" ", v, v,2,y}]

is an induced W, a contradiction. W

4 CONCLUDING REMARKS

Our results obtained in this paper and in [FRS] may now be summarized as follows: We
have examined Theorem Al in the light of the Metaconjecture for all forbidden pairs RS
with B 2 (' and S is one of the graphs Py, Ps, Fs, 71, Z3, B and W. Hence the two cases
where S = C'5 or S =2 N remain. Note that ‘C's—freeness’ is not a reasonable choice, since
pancyclicity implies the existence of a C5. For § = N observe that all exceptional graphs
of Theorem B15 are also C'N-free. Moreover, we have constructed a large variety of classes
of exceptional graphs that are C'N-free, and there is no indication that this might be a
‘simple family’ (in the terminology of the Metaconjecture). In addition the classes of C'D Pr-
free graphs, of C'H Pr-free graphs, and of C'Zs-free graphs that are not pancyclic are now
completely characterized.

Finally, observe that all exceptional graphs have connectivity xk = 2.

Corollary C1l. ©Let R,S and T be connected graphs (R,S,T 2 P3) and GG be a 3-
connected graph. Then G is RS-free or G is RST-free implies that GG is pancyclic, if R 2 C
and S is one of the following graphs Py, Ps, Ps, Z1, Z3, Zs, B, N or W, or ST is one of the
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pairs of graphs DPr or H Px.

The case R = (' and S 2 N has been settled by Shephard [Sh].
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