FORBIDDEN SUBGRAPHS AND PANCYCLICITY

Ralph Faudree ${ }^{1,2}$
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U. S. A
Zdeněk Ryjáǎek
Department of Mathematics
University of West Bohemia
30614 Pilsen
Csech Republic

Ronald Gould ${ }^{1}$

Department of Mathematics
Emory University
Atlanta, GA 30322
U. S. A.

Ingo Schiermeyer ${ }^{3}$
Lehrstuhl C für Mathematik Technische Hochschule Aachen

D-52056 Aachen
Germany
April 18, 2000

Abstract

We prove that every 2 -connected $K_{1,3}$-free and Z_{3}-free graph is hamiltonian except for two graphs. Furthermore, we give a complete characterization of all 2 -connected, $K_{1,3}$-free graphs, which are not pancyclic, and which are Z_{3}-free, B-free, W-free, or $H P_{7}$-free.

[^0]
1 INTRODUCTION

We only consider simple graphs and refer to [BM] for terminology and notation not defined here. A graph G with $n \geq 3$ vertices is hamiltonian if G contains a cycle of length n and pancyclic if G contains a cycle C_{k} of length k for each k with $3 \leq k \leq n$.

If C_{m} is a cycle with m vertices labeled $v_{1}, v_{2}, \cdots, v_{m}$ such that $\left\{v_{i} v_{i+1} \mid 1 \leq i \leq m-1\right\} \cup$ $\left\{v_{m} v_{1}\right\} \subset E(G)$ and $v_{j} v_{j+k} \in E(G)$ for some $j, k(\operatorname{modulo} m)$, then the edge $v_{j} v_{j+k}$ is called a k-chord of C_{m}. Clearly, this k-chord can be used to construct a cycle of length $m-k+1$ from the given cycle C_{m}. If G and G^{\prime} are graphs, then we say that G is G^{\prime}-free if G contains no induced subgraph isomorphic to G^{\prime}. Specifically, we denote by C the claw $K_{1,3}$, by B the bull, by W the wounded, by D the deer, by N the net, by H the hourglass, by P_{k} and C_{k} the path and the cycle on k vertices, and by Z_{k} the graph obtained by identifying a vertex of K_{3} with an end-vertex of P_{k+1} (see Figure 1).

Figure 1

Bedrossian [Be] characterized all pairs of forbidden subgraphs for hamiltonian graphs.
ThEOREM A1 [Be]. Let R and S be connected graphs $\left(R, S \neq P_{3}\right)$ and G be a 2-
connected graph. Then G is $R S$-free implies G is hamiltonian if, and only if, $R \cong C$ and S is one of the graphs $C_{3}, P_{4}, P_{5}, P_{6}, Z_{1}, Z_{2}, B, N$, or W.

Bedrossian [Be] also characterized all pairs of forbidden subgraphs for pancyclic graphs.

THEOREM A2 [Be]. Let R and S be connected graphs $\left(R, S \neq P_{3}\right)$ and let $G\left(G \neq C_{n}\right)$ be a 2 -connected graph. Then G is $R S$ - free implies G is pancyclic if, and only if, $R \cong C$ and S is one of the graphs P_{4}, P_{5}, Z_{1}, or Z_{2}.

Bondy [Bo] proposed the following metaconjecture.

Metaconjecture A3 [Bo]. Almost any non-trivial condition on a graph which implies that the graph is hamiltonian also implies that the graph is pancyclic. (There may be a simple family of exceptional graphs.)

Although the Metaconjecture is not true in general, it holds for a remarkably large number of sufficient conditions for hamiltonian graphs. In this paper we will examine Theorem A1 in light of the metaconjecture. The following (additional) results have already been established.

THEOREM A 4 [BV]. If G is a 2-connected $C D P_{7}$-free graph, then G is hamiltonian.

THEOREM A5 [FRS]. Let G be a 2 -connected, C-free graph. If, moreover, G is $D P_{7}-$ free and $n \geq 14, G$ is P_{6} - free and $n \geq 10$, or G is P_{5} - free and $n \geq 6$, then G is pancyclic.

REMARK. There are 50 exceptional graphs, which are $C D P_{7}$ - free and not pancyclic.

THEOREM A6 [FRS]. Let G be a 2 -connected, C-free graph. If G is $H P_{7}$ - free, then G is hamiltonian.

ThEOREM A 7 [FRS]. Let G be a 2-connected, C-free graph. If, moreover, G is $H P_{7}-$ free and $n \geq 9$, then G is either pancyclic or missing only one cycle length.

2 RESULTS

In order for the reader to more easily follow the development of the results of this paper, we shall state and discuss the results in this section and hold the proofs until the next section. In [FRS] the graph H_{1} (see Figure 2) shows that C and Z_{3}, as forbidden subgraphs, are not sufficient to guarantee even hamiltonicity. The natural question, whether there exists an infinite class of exceptional graphs or not, led to our first Theorem.

THEOREM B1. If G is a 2-connected $C Z_{3}$-free graph, then G is either hamiltonian or isomorphic to H_{1} or H_{2}. (see Figure 2).

Figure 2
Next we will derive a full characterization of all 2-connected $C Z_{3}-$ free graphs, which are not pancyclic.

For $r \geq 2$ let $E_{4 r}$ be the (unique) graph on $n=4 r$ vertices labeled $v_{0}, v_{1}, \cdots, v_{4 r-1}$ with edge set $E\left(E_{4 r}\right)=\left\{v_{i} v_{i+1} \mid 0 \leq i \leq 4 r-1\right\} \cup\left\{v_{4 j-4} v_{4 j}, v_{4 j-4} v_{4 j+1}, v_{4 j-3} v_{4 j}, v_{4 j-3} v_{4 j+1} \mid 1 \leq\right.$ $j \leq r\}$ (indices modulo $4 r$).

Proposition B2 (Reduction Procedure RP). Let G be a 2 -connected $C Z_{3}$-free graph on $n \geq k \geq 6$ vertices. If G contains a C_{k} with a chord, then G also contains a C_{k-1} or G contains a subgraph $E_{4 r}$ with $k=4 r$.

Proposition B3 (Reduction Procedure RP). Let G be a 2 -connected $C Z_{3}$-free graph on $n>k \geq 6$ vertices. If G contains a C_{k}, then G also contains a C_{k-1} and a C_{3}.

Proposition B4. Let G be a 2 -connected $C Z_{3}$-free graph on $n \geq 5$ vertices. If G contains an induced C_{5} and has no C_{4}, then G is isomorphic to $C_{5}, G_{6.1}, G_{7.2}$ or H_{3} (see Figure 2 and Figure 3).

For $r \geq 2$ let $F_{4 r}$ be the (unique) graph on $n=4 r$ vertices labeled $v_{1}, v_{2}, \cdots, v_{2 r}, u_{1}, \cdots, u_{2 r}$ and with edge set $E\left(F_{4 r}\right)=\left\{v_{i} v_{j} \mid 1 \leq i<j \leq 2 r\right\} \cup\left\{u_{2 i-1} u_{2 i} \mid 1 \leq i \leq r\right\} \cup\left\{v_{j} u_{j} \mid 1 \leq j \leq\right.$ $2 r\}$.

Proposition B5. Let G be a graph on $n=4 r$ vertices for some $r \geq 2$. If G is C-free, $E_{4 r} \subseteq G$ and G has no C_{n-1} then $G \cong F_{4 r}$.

We are now ready to state our second Theorem.
THEOREM B6. If G is a 2-connected $C Z_{3}$-free graph, then G is either pancyclic or belongs to one of the following three classes of exceptional graphs $\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{3}$, where (see Figure 2 and Figure 3)

$$
\begin{aligned}
\mathcal{G}_{1} & =\left\{C_{n} \mid n \geq 4\right\} \\
\mathcal{G}_{2} & =\left\{F_{4 r} \mid r \geq 2\right\} \\
\mathcal{G}_{3} & =\left\{H_{1}, H_{2}, H_{3}, G_{6.1}, G_{7.2}\right\} .
\end{aligned}
$$

Next we complete the characterization of all 2-connected $C H P_{7}$-free graphs that are not pancyclic, which was started in [FRS]. The proof of Theorem $A 7$ (Theorem 15 in [FRS]) shows that every 2-connected $C H P_{7}$-free graph on $n \geq 9$ vertices contains all cycles from C_{8} up to C_{n} or is missing only one cycle. Moreover, if G is missing a cycle C_{k}, then $k=4 r-1$ for some $r \geq 2$ and $E_{4 r} \subseteq G$.

Proposition B7. Let G be a 2-connected $C H P_{7}$-free graph on $n>4 r \geq 8$ vertices. If $F_{4 r}$ is an induced subgraph of G, then G has cycles C_{k} for $3 \leq k \leq 4 r$.

Proposition B8. If G is a 2-connected $C H P_{7}$-free graph on $n \leq 12$ vertices, then G is either pancyclic or isomorphic to one of the following graphs: $C_{4}, C_{5}, C_{6}, G_{6.1}, \cdots, G_{12}$ (see Figure 3).

Figure 3

Proposition B9. Let G be a $C P_{7}$-free graph on $n \geq 9$ vertices. If G has a hamiltonian cycle without 2-chords, then G is pancyclic.

We are now ready to present our third Theorem.

THEOREM B10. If G is a 2 -connected $C H P_{7}$-free graph, then G is either pancyclic or belongs to one of the following two classes of exceptional graphs $\mathcal{G}_{1} \cup \mathcal{G}_{2}$, where
$\mathcal{G}_{1}=\left\{F_{4 r} \mid r \geq 2\right\}$,
$\mathcal{G}_{2}=\left\{C_{4}, C_{5}, C_{6}, G_{6.1}, \cdots, G_{12}\right\}$ (see Figure 3).

Next we will derive a full characterization of all 2-connected $C W$-free graphs, which are not pancyclic.

Proposition B11. Let G be a $C W$-free graph on $n \geq k \geq 4$ vertices. If G contains
a C_{k} with a chord, then G also contains a C_{k-1}.

We will now study the structure of 2-connected $C W$-free graphs which have an induced cycle C_{k} for some $k \geq 6$, but no cycle C_{k-1}.

Claim B12. Let G be a 2 -connected $C W$-free graph on $n \geq k \geq 6$ vertices. If G has an induced cycle C of length k, then for every vertex $x \in V(G)-V(C)$ we have $N_{C}(x)=\left\{v^{-}, v, v^{+}\right\}$for some vertex $v \in V(C)$.

Claim B13. If C is an induced cycle of length $k \geq 6$ in a 2-connected $C W$-free graph G, then for any two components H_{1}, H_{2} in $G-C$ and any two vertices $x_{1} \in V\left(H_{1}\right)$ and $x_{2} \in V\left(H_{2}\right)$ we have $\left|N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{2}\right)\right| \leq 1$.

Inspired by Claim $B 12$ and Claim $B 13$ we introduce the following class $\mathcal{C}_{\mathcal{C}}$ of graphs.
Let \mathcal{C}_{C} be the class of all graphs that can be generated from all induced cycles $C_{k}, k \geq 4$, by replacing every vertex of C_{k} by a clique and joining all vertices of two cliques if and only if the corresponding vertices are adjacent in C_{k}. Now let G be a graph of \mathcal{C}_{C} generated from a C_{k} with vertices labeled $v_{1}, v_{2}, \cdots, v_{k}$ and corresponding cliques $K_{i}, \quad 1 \leq i \leq k$. We call a subgraph $G\left[K_{p}, K_{p+1}, \cdots, K_{q}\right]$ a saussage if $\left|V\left(K_{p}\right)\right|=\left|V\left(K_{q}\right)\right|=1$ and $\left|V\left(K_{i}\right)\right| \geq 2$ for $p+1 \leq i \leq q-1$ (indices modulo k), and G a saussage-graph if it has at least one saussage. Now observe that G has exactly one induced cycle of length at least 4 , namely C_{k}, from which it has been generated. All other cycles can only occur in the saussages of G. Now for each graph $G \in \mathcal{C}_{C}$ let $\lambda(G)$ denote the length of the only induced cycle of length at least 4, (i.e., $\lambda(G)=k$), and let $\mu(G)$ be the maximum number of vertices among all saussages of G. Then $\lambda(G) \geq \mu(G)+2$ if and only if G has no C_{k-1}.

Claim B14. Let G be a 2 -connected $C W$-free graph on $n \geq k \geq 6$ vertices. If G has an induced C_{k} and no C_{k-1}, then $G \in \mathcal{C}_{C}$.

ThEOREM B15. If G is a 2-connected $C W$-free graph, then G is either pancyclic or $G \in \mathcal{C}_{C}$ for some induced cycle C_{k} with $k \geq 4$ and $\lambda(G) \geq \mu(G)+2$ or $G \cong G_{6.1}$ (see Figure $3)$.

Corollary B16. If G is a 2 -connected $C B$-free graph, then G is either pancyclic or $G \in \mathcal{C}_{C}$ for some induced cycle C_{k} with $k \geq 4$ and $\lambda(G) \geq \mu(G)+2$.

3 PROOFS

We first introduce some additonal notation which will be useful in the proofs that follow. Let C be a cycle in a graph. If an orientation of C is fixed and $u, v \in V(C)$, then by $u \vec{C} v$ we denote the consecutive vertices on C from u to v in the direction specified by the orientation of C. The same vertices, in reverse order, are given by $v \overleftarrow{C} u$. If C is a cycle of G with a fixed orientation and $u \in V(C)$, then u^{+}denotes the successor of u on C and u^{-}its predecessor with respect to the given orientation, respectively.

Proof of Theorem B1. Suppose G satisfies the hypothesis of the theorem, but G is nonhamiltonian. Let C be a longest cycle of G with a fixed orientation. Since G is 2connected, there exists a path of length at least 2 , internally-disjoint with C, that connects two vertices of C. Let $P=v_{1} u_{1} u_{2} \cdots u_{r} v_{2}$ be such a path of minimum length, implying that P is an induced path unless $v_{1} v_{2} \in E(G)$. For $i=1,2$, let w_{i} be the first vertex in $v_{i}^{+} \vec{C} v_{3-i}$ satisfying $w_{i} v_{i} \notin E(G)$ (existing by Lemma 2 in [BV]). Since G is $C-$ free, $v_{i}^{-} v_{i}^{+} \in E(G)$ for $i=1,2$. Hence, since C is a longest cycle, $\left|V\left(v_{i}^{+} \vec{C} v_{3-i}^{-}\right)\right| \geq 3$ for $i=1,2$.

Case 1. Suppose $\left\{v_{1}^{--} v_{1}, v_{1} v_{1}^{++}, v_{2}^{--} v_{2}, v_{2} v_{2}^{++}\right\} \cap E(G) \neq \emptyset$.
Without loss of generality we may assume that $v_{1} v_{1}^{++} \in E(G)$. For $i=1,2$ let x_{i} be an arbitrary vertex in $v_{i}^{+} \vec{C} w_{i}$ and u be a vertex in $V(P)-\left\{v_{1}, v_{2}\right\}$. Then $u x_{1}, u x_{2}, x_{1} v_{2}, x_{2} v_{1}, x_{1} x_{2} \notin$ $E(G)$ (by Lemma 2 in [BV]). If $v_{1} v_{2} \in E(G)$, then $G\left[\left\{v_{1}^{++}, v_{1}^{+}, v_{1}, v_{2}, w_{2}^{-}, w_{2}\right\}\right]$ is an induced Z_{3}, a contradiction. If $v_{1} v_{2} \notin E(G)$, then $G\left[\left\{v_{1}^{++}, v_{1}^{+}, v_{1}, u_{1}, \cdots, u_{r}, v_{2}, w_{2}^{-}, w_{2}\right\}\right]$ is an induced Z_{r+3}, a contradiction, since $r \geq 1$ and G is Z_{3}-free.

Case 2. $\left\{v_{i}^{--} v_{i}, v_{i} v_{i}^{++}\right\} \notin E(G)$ for $i=1,2$.
If $v_{1} v_{2} \notin E(G)$ and $r \geq 2$, then $G\left[\left\{v_{1}^{-}, v_{1}, v_{1}^{+}, u_{1}, \cdots, u_{r}, v_{2}\right\}\right]$ is an induced Z_{r+1}, a contradiction, since G is Z_{3}-free. If $v_{1} v_{2} \in E(G)$, then $r=1$, since otherwise $G\left[\left\{v_{1}^{-}, v_{1}, v_{2}, u_{1}\right\}\right]$
would be an induced claw. Hence we may assume that $r=1$. With $\left|V\left(v_{i}^{+} \vec{C} v_{3-i}^{-}\right)\right| \geq 3$ for $i=1,2$ we have $n \geq 9$. If $n=9$ then $v_{i}^{+} v_{3-i}^{-} \in E(G)$ for $i=1,2$, since G is Z_{3}-free. Now observe that G is $C Z_{3}$-free and that (as above) no other edges are possible, since C is a longest cycle. Hence, if $n=9$, then G is either hamiltonian or isomorphic to H_{1} or H_{2}. If $n \geq 10$, then we may assume without loss of generality that $\left|V\left(v_{1}^{+} \vec{C} v_{2}^{-}\right)\right| \geq 4$. We now consider $\left\{v_{1}^{-}, v_{1}, v_{1}^{+}, v_{2}^{--}, v_{2}^{-}, v_{2}\right\}$ if $v_{1} v_{2} \in E(G)$ and $\left\{v_{1}^{-}, v_{1}, v_{1}^{+}, u_{1}, v_{2}, v_{2}^{-}, v_{2}^{--}\right\}$ if $v_{1} v_{2} \notin E(G)$, respectively. Then $v_{1}^{+} v_{2}^{-} \in E(G)$ or $v_{1}^{+} v_{2}^{--} \in E(G)$, since otherwise $G\left[\left\{v_{1}^{-}, v_{1}, v_{1}^{+}, v_{2}^{--}, v_{2}^{-}, v_{2}\right\}\right]$ would be an induced Z_{3} and $G\left[\left\{v_{1}^{-}, v_{1}, v_{1}^{+}, u_{1}, v_{2}, v_{2}^{-}, v_{2}^{--}\right\}\right]$would be an induced Z_{4}, respectively. If $v_{1}^{+} v_{2}^{-} \in E(G)$, then $v_{1}^{++} v_{2}^{-}, v_{1}^{+} v_{2}^{--} \in E(G)$, since G is C-free and $v_{1} v_{1}^{++}, v_{1} v_{2}^{-}, v_{1}^{+} v_{2}, v_{2}^{--} v_{2} \notin E(G)$. Now considering the claw $\left\{v_{1}, v_{1}^{+}, v_{1}^{++}, v_{2}^{--}\right\}$ we conclude that $v_{1}^{++} v_{2}^{--} \in E(G)$. If $v_{1}^{+} v_{2}^{-} \notin E(G)$, then $v_{1}^{++} v_{2}^{-}, v_{1}^{+} v_{2}^{--} \in E(G)$, since G is Z_{3}-free (symmetric argument). Again we conclude that $v_{1}^{++} v_{2}^{--} \in E(G)$. Now $v_{2}^{--} v_{2}^{+} \notin$ $E(G)$, since otherwise $v_{2}^{--} v_{2}^{+} \vec{C} v_{1}^{-} v_{1}^{+} v_{1} v_{2} v_{2}^{-} v_{1}^{++} \vec{C} v_{2}^{--}$or $v_{2}^{--} v_{2}^{+} \vec{C} v_{1}^{-} v_{1}^{+} v_{1} \vec{P} v_{2} v_{2}^{-} v_{1}^{++} \vec{C} v_{2}^{--}$ would be a cycle longer than C. But then $G\left[\left\{v_{2}^{--}, v_{1}^{++}, v_{1}^{+}, v_{1}, v_{2}, v_{2}^{+}\right\}\right]$is an induced Z_{3} when $v_{1} v_{2} \in E(G)$, and $G\left[\left\{v_{2}^{--}, v_{1}^{++}, v_{1}^{+}, v_{1}, u_{1}, v_{2}, v_{2}^{+}\right\}\right]$is an induced Z_{4} when $v_{1} v_{2} \notin E(G)$, respectively, a contradiction.

For the proof of Proposition B2, the following four statements for C-free graphs can easily be verified and will be frequently used and just referenced by the indicated label.
(A) Let C_{m} be a cycle with $m \geq 2 k+2 \geq 6$ vertices labeled $v_{1}, v_{2}, \cdots, v_{m}$ and a k-chord $v_{j} v_{j+k}$. If there are no i-chords for $2 \leq i \leq k-1$, then $v_{j-1} v_{j+k}, v_{j} v_{j+k+1} \in E(G)$.
(B) If, moreover, $v_{j-1} v_{j+k-1} \notin E(G)$ or $v_{j+1} v_{j+k+1} \notin E(G)$, then $v_{j-1} v_{j+k+1} \in E(G)$.
(C) Let $v_{j} v_{j+i}$ be an i-chord with $3 \leq i \leq \frac{k}{2}$ in a cycle C_{k} without $2-$ chords. If $v_{j} v_{j+i-1} \notin$ $E(G)$, then $v_{j} v_{j+i+1} \in E(G)$, and likewise if $v_{j+1} v_{j+i} \notin E(G)$, then $v_{j-1} v_{j+i} \in E(G)$.
(D) Let $v_{j} v_{j+i}$ be an i-chord in a cycle C_{k}. If $i \geq 2$ and $v_{j+1} v_{j+i+2} \in E(G)$ or if $i \geq 3$ and $v_{j+2} v_{j+i+1} \in E(G)$, then $v_{j} v_{j+i} \overleftarrow{C} v_{j+1} v_{j+i+2} \vec{C} v_{j}$ or $v_{j} v_{j+i} \overleftarrow{C} v_{j+2} v_{j+i+1} \vec{C} v_{j}$ is a C_{k-1} respectively.

Proof of Proposition B2. Let v_{1}, \cdots, v_{k} be the vertices of C_{k} and $i\left(2 \leq i \leq \frac{k}{2}\right)$ be the smallest integer such that G has an i-chord. Among all chords of C_{k} choose such a minimal i-chord ($2 \leq i \leq \frac{k}{2}$). Choose a labeling $v_{1}, v_{2}, \cdots, v_{k}$ of the vertices of C_{k} such that $\left(\left\{v_{j} v_{j+1} \mid 1 \leq j \leq k-1\right\} \cup\left\{v_{k} v_{1}, v_{1} v_{i+1}\right\}\right) \subset E(G)$. We now distinguish the following three cases.

Case 1. Suppose $i=2$

Then $v_{1} v_{3} v_{4} \cdots v_{k} v_{1}$ is a C_{k-1}.

Case 2. Suppose $i=3$

By (A) we have $v_{1} v_{5}, v_{k} v_{4} \in E(G)$. If $v_{2} v_{5} \in E(G)$, then we obtain a C_{k-1} by (D). Hence we may assume that $v_{2} v_{5} \notin E(G)$ and so $v_{k} v_{5} \in E(G)$ by (B). If $v_{4} v_{7} \in E(G)$, then $v_{k} v_{5} v_{1} v_{2} v_{3} v_{4} v_{7} \vec{C} v_{k}$ is a C_{k-1}. Hence we may assume that $v_{4} v_{7} \notin E(G)$. Suppose now that $v_{5} v_{8} \notin E(G)$. If $v_{4} v_{8} \in E(G)$, then $v_{3} v_{8}, v_{4} v_{9} \in E(G)$ by (A) and thus $v_{3} v_{9} \in E(G)$ by (B), since $v_{3} v_{7} \notin E(G)$ (or else $\left(v_{k} v_{5} v_{4} v_{1} v_{2} v_{3} v_{7} \vec{C} v_{k}\right)$). But then we obtain a C_{k-1} by $v_{k} v_{1} v_{4} v_{5} v_{6} v_{7} v_{8} v_{3} v_{9} \vec{C} v_{k}$. Hence we may assume that $v_{4} v_{8} \notin E(G)$. Next $v_{1} v_{6} \notin E(G)$ (or else $\left(v_{k} v_{4} v_{3} v_{2} v_{1} v_{6} \vec{C} v_{k}\right)$), $v_{1} v_{7} \notin E(G)$ (or else $\left(v_{k} v_{5} v_{4} v_{3} v_{2} v_{1} v_{7} \vec{C} v_{k}\right)$), and $v_{2} v_{7} \notin E(G)$ by (D). Now if $v_{2} v_{8} \in E(G)$, then $v_{2} v_{9} \in E(G)$, since G is claw-free $\left(\left\{v_{2}, v_{7}, v_{8}, v_{9}\right\}\right)$, but then $v_{1} v_{4} v_{5} v_{6} v_{7} v_{8} v_{2} v_{9} \vec{C} v_{1}$ is a C_{k-1}. Hence we may assume that $v_{2} v_{8} \notin E(G)$. Again the claw $\left\{v_{1}, v_{2}, v_{4}, v_{8}\right\}$ shows that $v_{1} v_{8} \notin E(G)$. But then $G\left[\left\{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}\right]$ is an induced Z_{3}, a contradiction. This shows that $v_{5} v_{8} \in E(G)$. A repeat of these arguments (cf. also Proof of Theorem 15 in FRS]) either gives a C_{k-1} or $k=4 r$ for some $r \geq 2$. In the latter case, $v_{4 i-4} v_{4 i}, v_{4 i-4} v_{4 i+1}, v_{4 i-3} v_{4 i+1} \in E(G)$ for each edge $v_{4 i-3} v_{4 i}, 1 \leq i \leq r$ (indices modulo $4 r$) and the $C_{4 r}$ has no other 3 -chords, 4 -chords, 5 -chords or 6 -chords.

Case 3. Suppose $i \geq 4$

We proceed as in Case 2 and obtain that $v_{1} v_{i+2}, v_{k} v_{i+1}, v_{k} v_{i+2} \in E(G)$. Since i is minimal, $G\left[\left\{v_{i+2}, v_{k}, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ is an induced Z_{3}, a contradiction.

Proof of Proposition B3. Let v_{1}, \cdots, v_{k} be the vertices of C_{k} labeled such that $\left(\left\{v_{j} v_{j+1} \mid 1 \leq j \leq k-1\right\} \cup\left\{v_{k} v_{1}\right\}\right) \subset E(G)$. Since $k<n$, there is a vertex $u \in V(G)-V\left(C_{k}\right)$ such that $N(u) \cap V\left(C_{k}\right) \neq \emptyset$. If C_{k} has a 2-chord, then we obtain a C_{k-1} and a C_{3}. Hence we may assume that C_{k} has no 2 -chords. Now, if $v_{i} \in N(u)$ for some $v_{i} \in V\left(C_{k}\right)$, then $\left\{v_{i-1}, v_{i+1}\right\} \cap N(u) \neq \emptyset$, since G is C-free and $v_{i-1} v_{i+1}$ would be a 2 -chord. Hence G has a C_{3}. Next, if $\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\} \subseteq N(u)$ for some $v_{i} \in V\left(C_{k}\right)$, then $v_{i} u v_{i+3} \vec{C}_{k} v_{i}$ is a C_{k-1}. Hence, $N(u) \cap V\left(C_{k}\right)$ consists of pairwise disjoint pairs $\left\{v_{j}, v_{j+1}\right\}$ and triples $\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$ of consecutive vertices. We distinguish these two cases.

Case 1. Suppose $v_{4}, v_{5} \in N(u), v_{3}, v_{6} \notin N(u)$
If $v_{j}, v_{j+3} \in N(u)$ or $v_{j}, v_{j-3} \in N(u)$, then we (easily) obtain a C_{k-1}. Hence, $v_{j-3}, v_{j+3} \notin$ $N(u)$ for each $v_{j} \in N(u)$. Thus, $v_{1}, v_{2}, v_{7}, v_{8} \notin N(u)$. Since C_{k} has no 2 -chords, we have $v_{1} v_{3}, v_{2} v_{4}, v_{3} v_{5}, v_{4} v_{6}, v_{5} v_{7}, v_{6} v_{8} \notin E(G)$. If $v_{1} v_{4} \in E(G)$, then $v_{1} v_{4} u v_{5} \vec{C} v_{1}$ is a C_{k-1}. Hence we may assume that $v_{1} v_{4}, v_{5} v_{8} \notin E(G)$. If both $v_{2} v_{5}, v_{4} v_{7} \in E(G)$, then $v_{2} v_{5} u v_{4} v_{7} \vec{C} v_{k-1}$ is a C_{k-1}. Hence we may assume without loss of generality that $v_{4} v_{7} \notin E(G)$. If $v_{2} v_{5} \in$ $E(G)$, then $v_{3} v_{8} \notin E(G)$, since otherwise, $v_{2} v_{5} u v_{4} v_{3} v_{8} \vec{C} v_{2}$ is a C_{k-1}. Now, if $v_{4} v_{8} \in$ $E(G)$, then $G\left[\left\{v_{3}, v_{4}, u, v_{8}\right\}\right]$ is an induced claw, a contradiction. Hence $v_{4} v_{8} \notin E(G)$, but then $G\left[\left\{v_{4}, u, v_{5}, v_{6}, v_{7}, v_{8}\right\}\right]$ is an induced Z_{3}, a contradiction. This shows that both $v_{2} v_{5}, v_{4} v_{7} \notin E(G)$. Hence, $v_{1} v_{5}, v_{4} v_{8} \in E(G)$, since G is $Z_{3}-$ free. Considering the claws $\left\{v_{1}, v_{5}, u, v_{6}\right\}$ and $\left\{v_{3}, v_{4}, u, v_{8}\right\}$ we conclude that $v_{1} v_{6}, v_{3} v_{8} \in E(G)$, since G is C-free. But then $v_{1} v_{6} v_{5} u v_{4} v_{3} v_{8} \vec{C} v_{1}$ is a C_{k-1}.

Case 2. Suppose $v_{2}, v_{3}, v_{4} \in N(u), v_{1}, v_{5} \notin N(u)$.

Since C_{k} has no 2-chords, we have $v_{2} v_{4}, v_{3} v_{5}, v_{4} v_{6}, v_{5} v_{7} \notin E(G)$. If $v_{3} v_{6} \in E(G)$ or $v_{4} v_{7} \in E(G)$ or $v_{3} v_{7} \in E(G)$, then $v_{2} u v_{3} v_{6} \vec{C} v_{2}$ or $v_{3} u v_{4} v_{7} \vec{C} v_{3}$ or $v_{2} u v_{4} v_{3} v_{7} \vec{C} v_{2}$ is a C_{k-1}, respectively. Hence we may assume that $v_{3} v_{6}, v_{3} v_{7}, v_{4} v_{7} \notin E(G)$. As in Case 1 we have $u v_{6}, u v_{7} \notin E(G)$, since $u v_{3}, u v_{4} \in E(G)$. But then $G\left[\left\{v_{3}, u, v_{4}, v_{5}, v_{6}, v_{7}\right\}\right]$ is an induced Z_{3}, a contradiction.

Proof of Proposition B4. Let $v_{1}, v_{2}, \cdots, v_{5}$ be the vertices of the induced C_{5} such
that $\left\{v_{j} v_{j+1} \mid 1 \leq j \leq 4\right\} \cup\left\{v_{5} v_{1}\right\} \subseteq E(G)$. If $n=5$, then $G \cong C_{5}$. If $n>5$, then let $H=G-V\left(C_{5}\right)$. Since G is $2-$ connected, there is a vertex $x \in V(H)$ such that $N_{C_{5}}(x) \neq \emptyset$. As in the proof of Proposition B3, we conclude that x has either two or three consecutive neighbors on the C_{5}. Since G has no C_{4} we conclude that for every $x \in N_{H}\left(V\left(C_{5}\right)\right)$ we have $\left|N(x) \cap V\left(C_{5}\right)\right|=2$ and $N_{C_{5}}(x)=\left\{v_{i}, v_{i+1}\right\}$ for some i. By the 2 -connectedness of G we conclude that each component of H either is an isolated vertex or has at least two vertices each of them having two neighbors on C_{5}. Thus for $n=6$ we obtain the unique exceptional graph $G_{6.1}$ (see Figure 3). Since G has no C_{4}, for $n \geq 7$ there is no pair of vertices $x, y \in V(H)$ such that $N_{C_{5}}(x)=N_{C_{5}}(y)=\left\{v_{i}, v_{i+1}\right\}$ for some i (which gives $\left(x v_{i} y v_{i+1} x\right)$). Without loss of generality we may assume $N_{C_{5}}(x)=\left\{v_{1}, v_{2}\right\}$ for some $x \in V(H)$. Suppose $N_{C_{5}}(y)=\left\{v_{3}, v_{4}\right\}$ for some $y \in V(H)-\{x\}$. Since G has no C_{4}, we have $x y \notin E(G)$ (or else $\left(x v_{2} v_{3} y x\right)$). But then $G\left[\left\{x, v_{2}, v_{1}, v_{5}, v_{4}, y\right\}\right]$ is an induced Z_{3}, a contradiction. Hence we may assume that $N_{H}\left(v_{4}\right)=\emptyset$ and thus $\left|N_{H}\left(C_{5}\right)\right|=2$ (symmetric argument). Without loss of generality we may assume that $N_{C_{5}}(y)=\left\{v_{5}, v_{1}\right\}$ for some $y \in V(H)-\{x\}$. Since G has no C_{4}, we have $x y \notin E(G)$ (or else $\left(y v_{1} v_{2} x y\right)$). Thus for $n=7$ we obtain the unique exceptional graph $G_{7,2}$ (see Figure 2). For $n \geq 8$ we conclude that H consists of one component, since $\left|N_{H}\left(C_{5}\right)\right|=2$. Let $x w_{1} w_{2} \cdots w_{r} y$ be a shortest path connecting x and y in H. Then $r \geq 2$, since G has no $C_{4}\left(x v_{1} y w_{1} x\right)$. If $r \geq 3$, then $G\left[\left\{v_{1}, v_{2}, x, w_{1}, w_{2}, w_{3}\right\}\right]$ is an induced Z_{3}, a contradiction. Hence we have $r=2$. This gives the unique exceptional graph H_{3} (see Figure 2).

Proof of Proposition B5. Let the vertices of G be labeled $v_{1}, v_{2}, \cdots, v_{n}$ such that $\left\{v_{j} v_{j+1} \mid 1 \leq j \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \subset E(G),\left\{v_{1} v_{4}, v_{5} v_{8}, \cdots, v_{4 r-3} u_{4 r}\right\} \subset E(G)$ and $\left\{v_{4 i-3} v_{4 i+1}\right.$, $\left.v_{4 i-4} v_{4 i}, v_{4 i-4} v_{4 i+1}\right\} \subset E(G)$ for each edge $v_{4 i-3} v_{4 i}$ (indices modulo n). If $r=2$ then $G \cong$ $F_{8}\left(=E_{8}\right)$, since any additional edge gives a C_{7}. For $r>2$ we perform an induction on k for $1 \leq k \leq\left\lfloor\frac{r}{2}\right\rfloor$. For each k and all possible i-chords with $4 k-1 \leq i \leq 4 k+2$ (and $3 \leq i \leq 2 r$) we shall show:

$$
\begin{array}{ll}
i=4 k-1: & v_{1} v_{4 k} \in E(G) ; v_{2} v_{4 k+1}, v_{3} v_{4 k+2}, v_{n} v_{4 k-1} \notin E(G) \\
i=4 k: & v_{n} v_{4 k}, v_{1} v_{4 k+1} \in E(G) ; v_{2} v_{4 k+2}, v_{3} v_{4 k+3} \notin E(G) \\
i=4 k+1: & v_{n} v_{4 k+1} \in E(G) ; v_{1} v_{4 k+2}, v_{2} v_{4 k+3}, v_{3} v_{4 k+4} \notin E(G) \\
i=4 k+2: & v_{n} v_{4 k+2}, v_{1} v_{4 k+3}, v_{2} v_{4 k+4}, v_{3} v_{4 k+5} \notin E(G) .
\end{array}
$$

By the cyclic structure of G these properties then remain valid for all induced subgraphs $G\left[\left\{v_{4 j}, v_{4 j+1}, \cdots, v_{4 j+4 k+5}\right\}\right]$. We first show the induction step "k $\rightarrow k+1$ ". To show that $v_{1} v_{4 k}, v_{n} v_{4 k}, v_{1} v_{4 k+1}, v_{n} v_{4 k+1} \in E(G)$, we consider suitable claws and make use of the claw-freeness of G :

$$
\begin{aligned}
\left\{v_{1}, v_{4 k-1}, v_{4 k}, v_{4 k+4}\right\}: & v_{1} v_{4 k}, v_{4 k-1} v_{4 k}, v_{4 k} v_{4 k+4} \in E(G), \\
& v_{1} v_{4 k-1}, v_{4 k-1} v_{4 k+4} \notin E(G) ; \\
& \text { hence } v_{1} v_{4 k+4} \in E(G) . \\
\left\{v_{1}, v_{4 k-1}, v_{4 k}, v_{4 k+5}\right\}: \quad & v_{1} v_{4 k}, v_{4 k-1} v_{4 k}, v_{4 k} v_{4 k+5} \in E(G), \\
& v_{1} v_{4 k-1}, v_{4 k-1} v_{4 k+5} \notin E(G) ; \\
& \text { hence } v_{1} v_{4 k+5} \in E(G) . \\
\left\{v_{n}, v_{4 k-1} v_{4 k}, v_{4 k+5}\right\}: \quad & v_{n} v_{4 k}, v_{4 k-1} v_{4 k}, v_{4 k} v_{4 k+5} \in E(G), \\
& v_{n} v_{4 k-1}, v_{4 k-1} v_{4 k+5} \notin E(G) ; \\
& \text { hence } v_{n} v_{4 k+5} \in E(G) . \\
\left\{v_{n}, v_{4 k-1}, v_{4 k}, v_{4 k+4}\right\}: \quad & v_{n} v_{4 k}, v_{4 k-1} v_{4 k}, v_{4 k} v_{4 k+4} \in E(G), \\
& v_{n} v_{4 k-1}, v_{4 k-1} v_{4 k+4} \notin E(G) ; \\
& \text { hence } v_{n} v_{4 k+4} \in E(G) .
\end{aligned}
$$

$v_{2} v_{4 k+5} \notin E(G):$ else $v_{n} v_{4 k+4} \overleftarrow{C} v_{2} v_{4 k+5} \vec{C} v_{n} \quad$ is a $\quad C_{n-1}$
$v_{n} v_{4 k+3} \notin E(G):$ else $v_{n} v_{4 k+3} \stackrel{\leftarrow}{C} v_{1} v_{4 k+5} \vec{C} v_{n} \quad$ is a $\quad C_{n-1}$
$v_{3} v_{4 k+6} \notin E(G):$ else $v_{n} v_{4 k} \vec{C} v_{4 k+4} v_{1} v_{2} v_{3} v_{4 k+6} \vec{C} v_{n}$ is a C_{n-1}
$v_{2} v_{4 k+6} \notin E(G):$ else $v_{n} v_{4} \vec{C} v_{4 k+5} v_{1} v_{2} v_{4 k+6} \vec{C} v_{n} \quad$ is a C_{n-1}
$v_{3} v_{4 k+7} \notin E(G): \quad$ else $\quad v_{n} v_{4} \vec{C} v_{4 k+5} v_{1} v_{2} v_{3} v_{4 k+7} \vec{C} v_{n}$ is a C_{n-1}
$v_{1} v_{4 k+6} \notin E(G):$ else $v_{n} v_{4 k+4} \stackrel{\leftarrow}{C} v_{1} v_{4 k+6} \vec{C} v_{n} \quad$ is a C_{n-1}
$v_{2} v_{4 k+7} \notin E(G): \quad$ else $\quad v_{1} v_{4 k+4} \overleftarrow{C} v_{2} v_{4 k+7} \overleftarrow{C} v_{4 k+5} v_{4 k+9} \vec{C} v_{1} \quad$ is a C_{n-1}
$v_{3} v_{4 k+8} \notin E(G): \quad$ else $\quad v_{3} v_{4 k+8} \stackrel{\leftarrow}{C} v_{5} v_{4 k+9} \vec{C} v_{3}$ is a $C_{n_{1}}$
$v_{n} v_{4 k+6} \notin E(G):$ else $v_{n} v_{4 k+6} v_{4 k+5} v_{1} \vec{C} v_{4 k+4} v_{4 k+8} \vec{C} v_{n}$ is a C_{n-1}
$v_{1} v_{4 k+7} \notin E(G):$ else $v_{n} v_{4 k+4} \overleftarrow{C} v_{1} v_{4 k+7} \overleftarrow{C} v_{4 k+5} v_{4 k+9} \vec{C} v_{n} \quad$ is a $\quad C_{n-1}$
$v_{2} v_{4 k+8} \notin E(G): \quad$ else $\quad v_{2} v_{4 k+8} \stackrel{\leftarrow}{C} v_{4} v_{4 k+9} \vec{C} v_{2} \quad$ is a $\quad C_{n-1}$
$v_{3} v_{4 k+9} \notin E(G): \quad$ else $\quad v_{1} v_{4 k+8} \stackrel{\leftarrow}{C} v_{3} v_{4 k+9} \vec{C} v_{1} \quad$ is a $\quad C_{n-1}$.

Next we show the induction beginning with " $k=1$ ". By the hypothesis we know that $v_{1} v_{4}, v_{n} v_{4}, v_{1} v_{5}, v_{n} v_{5} \in E(G)$. For $k=1$ the (12) constructions above (of a C_{n-1}) remain valid. Thus, $v_{2} v_{5}, v_{n} v_{3}, \cdots, v_{3} v_{9} \notin E(G)$.

Proof of Theorem B6. If G is nonhamiltonian, then G is isomorphic to either H_{1} or H_{2} by Theorem B1. Hence we may assume that G is hamiltonian. If G has a C_{n} without chords, then $G \cong C_{n}$. Hence we may assume that C_{n} has a chord. If G has no C_{n-1}, then by Proposition (B2) we have $E_{4 r} \subseteq G$ with $n=4 r$, and thus by Proposition (B5) we conclude that $G \cong F_{4 r}$. Hence we may assume that G has a C_{n-1}. Then by Proposition (B3) G has cycles C_{k} for $k=3$ and $5 \leq k \leq n$. If G has no C_{4} then G is isomorphic to $G_{6.1}$ or $G_{7.2}$ or H_{3} by Proposition B 4 and pancyclic otherwise.

Proof of Proposition B 7 . Let $v_{1}, v_{2}, \cdots, v_{2 r}, u_{1}, u_{2}, \cdots, u_{2 r}$ be the vertices of $F_{4 r}$ such that $d_{F_{4 r}}\left(u_{i}\right)=2$, with $u_{i} v_{i} \in E(G)$ for $1 \leq i \leq 2 r$ and $u_{2 i-1} u_{2 i} \in E(G)$ for $1 \leq i \leq r$. We know that $F_{4 r}$ is only missing a $C_{4 r-1}$. Suppose there is a vertex $w \in V\left(G-F_{4 r}\right)$ such that $w u_{i} \in E(G)$ for some i with $1 \leq i \leq 2 r$. We may assume that $w u_{1} \in E(G)$. Since $v_{1} u_{2} \notin E(G)$ and G is claw-free, we have $v_{1} w \in E(G)$ or $w u_{2} \in E(G)$. Then $v_{1} w u_{1} u_{2} v_{2} v_{3} u_{3} u_{4} v_{4} \cdots u_{2 r-2} v_{2 r-2} v_{2 r-1} v_{2 r} v_{1}$ or $v_{1} u_{1} w u_{2} v_{2} v_{3} u_{3} u_{4} v_{4} \cdots u_{2 r-2} v_{2 r-2} v_{2 r-1} v_{2 r} v_{1}$ is a $C_{4 r-1}$. Hence we may assume that $d_{G}\left(u_{i}\right)=2$ for $1 \leq i \leq 2 r$. Thus, there is a vertex $w \in V\left(G-F_{4 r}\right)$ such that $w v_{i} \in E(G)$ for some i with $1 \leq i \leq 2 r$. We may assume that $w v_{i} \in E(G)$. Since G is claw-free and $w u_{1}, u_{1} u_{2} \notin E(G)$, we have $w v_{2} \in E(G)$. But then, $v_{1} w v_{2} u_{3} u_{4} v_{4} \cdots u_{2 r} v_{2 r} v_{1}$ is the desired $C_{4 r-1}$.

Proof of Proposition B8. At first we generate all $C H P_{7}$-free graphs on $n \leq 8$ vertices, which are not pancyclic. For $4 \leq n \leq 7$ it can be easily verified that all exceptional graphs are given by the graphs in Figure 3. Next suppose there is a $C H P_{7}$-free graph on $n+1$ vertices, $n \geq 8$, which is not pancyclic. Then by Proposition B9, it has a 2-chord. Using this 2 -chord in the reduction procedure, we also obtain an exceptional graph on n vertices. Vice versa, the set of all exceptional graphs on $n+1$ vertices can be generated from the set of all exceptional graphs on n vertices as follows. Let G be a counterexample on n vertices $v_{1}, v_{2}, \cdots, v_{n}$ such that $\left(\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}\right) \subset E(G)$. We then successively replace each edge $v_{i} v_{i+1}$
of this C_{n} by a triangle with edges $v_{i} v_{i+1}, v_{i} v_{n+1}, v_{i+1} v_{n+1}$ if $1 \leq i \leq n-1$ and a triangle with edges $v_{1} v_{n}, v_{1} v_{n+1}, v_{n} v_{n+1}$, otherwise. Each new graph has to be checked as to whether it is $C H P_{7}$-free and not pancyclic, and whether additional edges adjacent to v_{n+1} are possible.

We now consider six cases.

Case 1. Suppose $n=8$.

By the hypothesis of the proposition, the cycle C_{8} contains a chord. Since G is claw-free, it contains a 2 -chord or a 3 -chord. Among all chords of C_{8} choose an i-chord $(2 \leq i \leq 3)$ such that i is minimal. Choose a labeling $v_{1}, v_{2}, \cdots, v_{8}$ of the vertices of C_{8} such that $\left(\left\{v_{j} v_{j+1} \mid\right.\right.$ $\left.1 \leq j \leq 7\} \cup\left\{v_{8} v_{1}, v_{1} v_{i+1}\right\}\right) \subset E(G)$.

Case 1.1. Suppose $i=2$

Then G contains C_{3}, C_{7} and C_{8}. If there is a 3 -chord and a 4 -chord then G is pancyclic, since a 4 -chord gives a C_{5} and a 3 -chord gives C_{4} and C_{6}. If there are only 4-chords and there is a pair of 2 -chords and a 4 -chord that are crossing, then since G is claw-free and has no 3 -chord, G has a $C_{3}, C_{5}, C_{6}, C_{7}$ and C_{8}. If there is also a pair of a 2 -chord and a 4 -chord that are not crossing, then G is pancyclic. Otherwise we obtain the only exceptional graph $G_{8.1}$ having only 2 -chords and 4 -chords. If there are only 3 -chords then G has $C_{3}, C_{4}, C_{6}, C_{7}$ and C_{8}. Now each pair of a 2 -chord and a 3 -chord, whether they are crossing or not, leads to a C_{5} and thus G is pancyclic, or we obtain the exceptional graph $G_{8.2}$.

Hence we may assume that G has only 2 -chords. Suppose first that there are no crossing 2-chords. Since G is P_{7}-free, there are at least two vertex disjoint 2-chords. Since G is H-free, any pair of 2 -chords is vertex disjoint. Thus the only exceptional graphs with two 2 -chords are given by $G_{8.3}$ and $G_{8.4}$.

Next suppose there are crossing 2 -chords. If, for example $v_{1} v_{3}, v_{2} v_{4}, v_{3} v_{5} \in E(G)$, then G is pancyclic. Hence we may assume that among every five successive vertices of C_{8} there occur at most two 2 -chords. We may assume that $v_{2} v_{4} \in E(G)$. Hence $v_{3} v_{5}, v_{8} v_{2} \notin E(G)$, since G is H-free. Thus we obtain the exceptional graphs $G_{8.5}, G_{8.6}$ and $G_{8.7}$.

Case 1.2. Suppose $i=3$

The only exceptional graph in this case is $F_{8} \in \mathcal{G}_{1}$.

For the sake of brevity, in the following four cases we list those exceptional graphs on n vertices, that have been generated from a specific exceptional graph on $n-1$ vertices.

```
Case 2. Suppose \(n=9\)
Case 4. Suppose \(n=11\)
\(G_{10.1}\) :
\(G_{10.2}: \quad G_{11}\)
\(G_{10.3}: G_{11}\)
Case 5. Suppose \(n=12\)
    \(G_{11}: \quad G_{12}\)
    \(G_{8.6}: \quad G_{9.4}\)
    \(G_{8.7}\) :
    Case 6. Suppose \(n=13\)
    \(G_{8.8}\) :
```

```
Case 3. Suppose \(n=10\)
\(G_{9.1}: G_{10.1}\)
\(G_{9.2}: \quad G_{10.2}, G_{10.3}\)
\(G_{9.3}: \quad G_{10.2}\)
\(G_{9.4}\) :
\(G_{9.5}\) :
```

The graph G_{12} is only missing a C_{5}. Replacing an edge by a triangle, we either obtain a C_{5} and thus a pancyclic graph, or a graph that is not H-free. In the latter case, every additional (possible) edge gives a C_{5}

Proof of Propositon B9. In ([Frs] Proposition 4) this was proved for the class of $C D P_{7}$-free graphs. However, the D-freeness is not needed there, hence the conclusion even holds in the class of $C P_{7}$ free graphs.

Proof of Theorem B10. Let G be a 2 -connected $C H P_{7}$-free graph on $n \geq 3$ vertices. By Theorem A 6 we know that G is hamiltonian. If $n \leq 8$ then G is either pancyclic or
isomorphic to $C_{4}, C_{5}, C_{6}, G_{6.1}, \cdots, G_{8.7}, F_{8}$ by Proposition B8. If $n \geq 9$, then G contains all cycles from C_{8} up to C_{n} or is missing only one cycle $C_{4 r-1}$ for some $r \geq 2$ and $F_{4 r} \subseteq G$ as mentioned earlier. In the latter case, $F_{4 r}$ is an induced subgraph of G by Proposition B5. If $n>4 r$ then G has all cycles C_{k} for $3 \leq k \leq 4 r$ by Proposition B7 and hence is pancyclic. Otherwise, $G \cong F_{4 r}$ and hence G is not pancyclic. Hence we many assume that G contains all cycles from C_{8} up to C_{n}. If, moreover, G has a cycle C_{k} for some $k \geq 9$ without 2-chords, then G is pancyclic by Proposition B9.

Hence, any exceptional graph must have $n=8$ vertices or must have a cycle C_{k} with a 2 chord for some $k \geq 9$. All these exceptional graphs are given by Propostion B8. Furthermore, the proof of Proposition B8 shows that there are no exceptional graphs on $n \geq 13$ vertices. This completes the proof.

Proof of Proposition B 11 . Let $v_{1}, \cdots v_{k}$ be the vertices of C_{k}. Let i be the smallest integer such that G has an i-chord. Since G is C-free we have $2 \leq i \leq \frac{k-1}{2}$. Among all chords of C_{k} choose a minimal i-chord $\left(2 \leq i \leq \frac{k-1}{2}\right)$. Choose a labeling $v_{1}, v_{2}, \cdots, v_{k}$ of the vertices of C_{k} such that $\left(\left\{v_{j} v_{j+1} \mid 1 \leq j \leq k-1\right\} \cup\left\{v_{k} v_{1}, v_{1} v_{i+1}\right\}\right) \subset E(G)$.

We now distinguish the following two cases.

Case 1. Suppose $i=2$

Then $v_{1} v_{3} v_{4} \cdots v_{k} v_{1}$ is a C_{k-1}.

Case 2. Suppose $i \geq 3$

For $i \geq 3$ we have $k \geq 7$. For $k=7$ we conclude (successively) that all 3 -chords are present, since G is C - free. Then $v_{1} v_{4} v_{5} v_{2} v_{6} v_{7} v_{1}$ is a C_{6}. For $k \geq 8$ we will show that G either has a C_{k-1} or that $G\left[\left\{v_{k-2}, v_{k-1}, v_{k}, v_{1}, v_{2}, v_{i+1}\right\}\right]$ is an induced W. Since G is a C-free and i is minimal we have $v_{1} v_{i+2}, v_{k} v_{i+1} \in E(G)$. If $v_{2} v_{i+2} \in E(G)$, then $v_{k} v_{i+1} \overleftarrow{C} v_{2} v_{i+2} \vec{C} v_{k}$ is a C_{k-1}. Otherwise, $v_{k} v_{i+2} \in E(G)$, or $G\left[\left\{v_{k}, v_{1}, v_{2}, v_{i+2}\right\}\right]$ would be an induced claw. Since $i \geq 3$ and i is minimal we have $v_{k-2} v_{k}, v_{k-1} v_{1}, v_{k} v_{2}, v_{2} v_{i+1} \notin E(G)$. If $v_{k-2} v_{1} \in E(G)$ or $v_{k-1} v_{2} \in E(G)$ or $v_{k-2} v_{2} \in E(G)$, then $v_{k-2} v_{1} \vec{C} v_{i+1} v_{k} v_{i+2} \vec{C} v_{k-2}$ or $v_{k-1} v_{2} \vec{C} v_{i+1} v_{1} v_{i+2} \vec{C} v_{k-1}$ or $v_{k-2} v_{2} \vec{C} v_{i+1} v_{1} v_{k} v_{i+2} \vec{C} v_{k-2}$ is a C_{k-1}. If $v_{k-1} v_{i+1} \in E(G)$
or $v_{k-2} v_{i+1} \in E(G)$, then $v_{k-1} v_{i+1} \stackrel{\leftarrow}{C} v_{1} v_{i+2} \vec{C} v_{k-1}$ or $v_{k-2} v_{i+1} \stackrel{\leftarrow}{C} v_{k} v_{i+2} \vec{C} v_{k-2}$ is a C_{k-1}. Otherwise, $G\left[\left\{v_{k-2}, v_{k-1}, v_{k}, v_{1}, v_{2}, v_{i+1}\right\}\right]$ is an induced W, a contradiction.

Proof of Claim B12. For $k=n$ the assertion holds. Hence we may assume that $k<n$. Since G is 2-connected, there are two vertices $v \in V(C)$ and $x \in V(G) \backslash V(C)$ such that $v x \in E(G)$. Since G is C-free and C_{k} is an induced cycle, we have $\left\{v^{-}, v^{+}\right\} \cap N_{C}(x) \neq \emptyset$. Suppose first, that $v^{-}, v \in N(x)$ and $v^{--}, v^{+} \notin N(x)$. Then $v^{---}, v^{++} \notin N(x)$, since G has no C_{k-1}. But then $G\left[\left\{v^{--}, v^{-}, v, v^{+}, v^{++}, x\right\}\right]$ is an induced W, a contradiction. Hence we may assume that $v^{-}, v, v^{+} \in N(x)$. Again, since G has no C_{k-1}, we conclude that $v^{--}, v^{++} \notin E(G)$. Now, if there is a vertex $w \in V(C) \cap N(x)$ such that $w \notin\left\{v^{-}, v, v^{+}\right\}$, then $G\left[\left\{v^{-}, v^{+}, w, x\right\}\right]$ is an induced claw, a contradiction. Next suppose there is a vertex $y \in V(G) \backslash V(C)$ such that $N_{C}(y)=\emptyset$. We may assume that there is a path $y x w$ such that $w \in V(C)$ and $x \notin V(C)$. But then $G\left[\left\{y, x, v^{-}, v^{+}\right\}\right]$is an induced claw, since C_{k} has no chords, a contradiciton.

Proof of Claim B13. Suppose there are two components H_{1}, H_{2} in $G-C$ and two vertices $x_{1} \in V\left(H_{1}\right), x_{2} \in V\left(H_{2}\right)$ such that $\left|N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{2}\right)\right| \geq 2$. By Claim B12 we then distinguish two cases.

Case 1. Suppose $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)=\left\{w^{-}, w, w^{+}\right\}$for a vertex $w \in V(C)$.

But then $G\left[\left\{x_{1}, x_{2}, w^{+}, w^{++}\right\}\right]$is an induced claw, a contradiction.

Case 2. Suppose $N_{C}\left(x_{1}\right)=\left\{w^{-}, w, w^{+}\right\}$and $N_{C}\left(x_{2}\right)=\left\{w, w^{+}, w^{++}\right\}$for a vertex $w \in$ $V(C)$.

But then $G\left[\left\{w^{-}, x_{1}, w^{+}, x_{2}, w^{++}, w^{+++}\right\}\right]$is an induced W, a contradiction.

Proof of Claim B14. We perform an induction on $p=|V(G) \backslash V(C)|$.

1. Induction beginning with $p=0$.

Then $k=n$ and thus $G \cong C_{n}$. Hence $G \in \mathcal{C}_{C}$.

2. Induction step $p-1 \rightarrow p$.

Suppose that Claim B14 holds for all graphs with $|V(G) \backslash V(C)| \leq p-1$ and let G be a graph with $|V(G) \backslash V(C)|=p$. Choose a vertex $x \in(V(G)) \backslash V(C))$ and put $G^{\prime}=G-x$. Then, the following properties hold:

1. G^{\prime} is $C W$-free, since ' $C W$-freeness' is a hereditary property.
2. G^{\prime} is 2-connected due to Claim B12.
3. C is an induced C_{k} in G^{\prime}.
4. There is no cycle in G^{\prime} of length $|V(C)|-1$.

Thus, by the induction hypothesis, $G^{\prime} \in \mathcal{C}_{C}$. Let the vertices of C be labeled $y_{1}, y_{2}, \cdots, y_{k}$ and let K_{i} be the clique with $y_{i} \in V\left(K_{i}\right),(1 \leq i \leq k)$, corresponding to the structure of the class \mathcal{C}_{C}. By Claim B12, x has exactly three neighbors on C, say y_{i-1}, y_{i}, y_{i+1}.
(i) If there is a vertex $z_{i} \in V\left(K_{1}\right)$ such that $x z_{i} \notin E(G)$, then $G\left[\left\{y_{i-1} x, z_{i}, y_{i-2}\right\}\right]$ is an induced claw, a contradiction.
(ii) If there is a vertex $z_{i+1} \in V\left(K_{i+1}\right)$ such that $x z_{i+1} \notin E(G)$, then $G\left[\left\{x, y_{i}, y_{i-1}, y_{i-2}, z_{i+1}, y_{i+2}\right\}\right]$ is an induced W, a contradiction.
(iii) Symmetric to (ii) we have $x z_{i-1} \in E(G)$ for all vertices $z_{i-1} \in V\left(K_{i-1}\right)$.

Thus $G \in \mathcal{C}_{C}$.
Proof of Theorem B15. Let G be a 2 -connected $C W$-free graph. By Theorem A1 we know that G is hamiltonian. By Proposition B11 we conclude that G is either pancyclic or has an induced cycle C_{k} for some $k \geq 4$. If $k \geq 6$ and G has no C_{k-1} then $G \in \mathcal{C}_{C}$ by Proposition B14 and necessarily $\lambda(G) \geq \mu(G)+2$. Hence we may assume that $4 \leq k \leq 5$. If $k=n$, implying $G \cong C_{n}$, then $G \in \mathcal{C}_{C}$. Hence we may further assume that $k<n$. Since G is C-free there is no pair of vertices $v \in V(C), x \in V(G)-V(C)$ such that $x v \in E(G)$ and $x v^{-}, x v^{+} \notin E(G)$. If $\left\{v^{-}, v, v^{+}\right\} \subset N_{C}(x)$ for a vertex $x \in V(G)-V(C)$, then G has
a C_{3} and a C_{4} and thus is pancyclic. Hence, if G is not pancyclic, then $k=5$ and for each vertex $x \in V(G)-V(C)$ we have $N_{C}(x)=\emptyset$ or $\left|N_{C}(x)\right|=2$. In the latter case, $N_{C}(x)=\left\{v, v^{+}\right\}$for a vertex $v \in V(C)$. Thus for $n=6$ we obtain the exceptional graph $G_{6.1}$. Now for $n \geq 7$, suppose first that there are two vertices $x, y \in V(G)-V(C)$ such that $N_{C}(x)=\left\{v^{-}, v\right\}, N_{C}(y)=\left\{w^{-}, w\right\}$ for two vertices $v, w \in V(C)$. Since G is missing only a C_{4}, we cannot have $v=w$. If $w^{-}=v$ or $w^{-}=v^{+}$then $x y \notin E(G)$, since otherwise $x y w^{-} v^{-} x$ or $x y w^{-} v x$ gives a C_{4}. But then $G\left[\left\{v^{---}, v^{--}, v^{-}, x, v, y\right\}\right]$ or $G\left[\left\{v^{--}, v^{-}, x, v, w^{-}, y\right\}\right]$ is an induced W, a contradiction. Hence we many assume that $V(G)-V(C)$ has exactly one component and that here are two vertices $x, y \in V(G)-V(C)$ such that $x y \in E(G)$ and $N_{C}(x)=\left\{v^{-}, v\right\}$ for a vertex $v \in V(C)$ and $N_{C}(y)=\emptyset$. But then $G\left[\left\{v^{---}, v^{--}, v^{-}, v, x, y\right\}\right]$ is an induced W, a contradiction.

4 CONCLUDING REMARKS

Our results obtained in this paper and in [FRS] may now be summarized as follows: We have examined Theorem A1 in the light of the Metaconjecture for all forbidden pairs $R S$ with $R \cong C$ and S is one of the graphs $P_{4}, P_{5}, P_{6}, Z_{1}, Z_{2}, B$ and W. Hence the two cases where $S \cong C_{3}$ or $S \cong N$ remain. Note that ' C_{3}-freeness' is not a reasonable choice, since pancyclicity implies the existence of a C_{3}. For $S \cong N$ observe that all exceptional graphs of Theorem B15 are also $C N$-free. Moreover, we have constructed a large variety of classes of exceptional graphs that are $C N$-free, and there is no indication that this might be a 'simple family' (in the terminology of the Metaconjecture). In addition the classes of $C D P_{7^{-}}$ free graphs, of $C H P_{7}$-free graphs, and of $C Z_{3}$-free graphs that are not pancyclic are now completely characterized.

Finally, observe that all exceptional graphs have connectivity $\kappa=2$.

Corollary C1. Let R, S and T be connected graphs ($R, S, T \not \not F P_{3}$) and G be a 3connected graph. Then G is $R S$-free or G is $R S T$-free implies that G is pancyclic, if $R \cong C$ and S is one of the following graphs $P_{4}, P_{5}, P_{6}, Z_{1}, Z_{2}, Z_{3}, B, N$ or W, or $S T$ is one of the
pairs of graphs $D P_{7}$ or $H P_{7}$.

The case $R \cong C$ and $S \cong N$ has been settled by Shephard [Sh].

References

[Be] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity. Thesis, Memphis State University, USA, 1991.
[Bo] J.A. Bondy, Pancyclic Graphs, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium III (1971) 167-172.
[BM] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[BV] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensusing hamiltonicity or pancyclicity of $K_{1,3}$-free graphs, Contemporary Methods in Graph Theory (R. Bodendiek ed.). BI-Wiss. Verl., Mannheim-Wien-Zürich, 1990, 181-194.
[FRS] R.J. Faudree, R. Ryjáček and I. Schiermeyer, Forbidden subgraphs and cycle extendability, J. Combin. Math. Combin. Comput., to appear.
[Sh] F.B. Shepard, Hamiltonicity in Claw-free Graphs, J. Combin. Theory Ser. B 53 (1991) 173-194.

[^0]: 1 Research partially supported by ONR grant N00014-91-J-1085
 2 Research partially supported by NSA grant MDA 904-90-H-4034
 3 Research supported by EC-grant No. 927

