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Abstract

We prove that every 2{connected K

1;3

-free and Z

3

�free graph is hamiltonian except

for two graphs. Furthermore, we give a complete characterization of all 2�connected,

K

1;3

-free graphs, which are not pancyclic, and which are Z

3

-free, B-free, W -free, or

HP

7

�free.
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1 INTRODUCTION

We only consider simple graphs and refer to [BM] for terminology and notation not de�ned

here. A graph G with n � 3 vertices is hamiltonian if G contains a cycle of length n and

pancyclic if G contains a cycle C

k

of length k for each k with 3 � k � n.

If C

m

is a cycle with m vertices labeled v

1

; v

2

; � � � ; v

m

such that fv

i

v

i+1

j1 � i � m� 1g [

fv

m

v

1

g � E(G) and v

j

v

j+k

2 E(G) for some j; k (modulo m), then the edge v

j

v

j+k

is called

a k{chord of C

m

. Clearly, this k�chord can be used to construct a cycle of length m� k + 1

from the given cycle C

m

. If G and G

0

are graphs, then we say that G is G

0

-free if G contains

no induced subgraph isomorphic to G

0

. Speci�cally, we denote by C the claw K

1;3

, by B the

bull, by W the wounded, by D the deer, by N the net, by H the hourglass, by P

k

and C

k

the path and the cycle on k vertices, and by Z

k

the graph obtained by identifying a vertex

of K

3

with an end{vertex of P

k+1

(see Figure 1).
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Figure 1

Bedrossian [Be] characterized all pairs of forbidden subgraphs for hamiltonian graphs.

Theorem A1 [Be]. Let R and S be connected graphs (R; S 6

�

=

P

3

) and G be a 2-

1



connected graph. Then G is RS-free implies G is hamiltonian if, and only if, R

�

=

C and S

is one of the graphs C

3

; P

4

; P

5

; P

6

; Z

1

; Z

2

; B;N; or W .

Bedrossian [Be] also characterized all pairs of forbidden subgraphs for pancyclic graphs.

Theorem A2 [Be]. Let R and S be connected graphs (R; S 6= P

3

) and let G (G 6= C

n

)

be a 2-connected graph. Then G is RS� free implies G is pancyclic if, and only if, R

�

=

C

and S is one of the graphs P

4

; P

5

; Z

1

; or Z

2

:

Bondy [Bo] proposed the following metaconjecture.

Metaconjecture A3 [Bo]. Almost any non-trivial condition on a graph which

implies that the graph is hamiltonian also implies that the graph is pancyclic. (There may

be a simple family of exceptional graphs.)

Although the Metaconjecture is not true in general, it holds for a remarkably large number

of su�cient conditions for hamiltonian graphs. In this paper we will examine Theorem A1 in

light of the metaconjecture. The following (additional) results have already been established.

Theorem A4 [BV]. If G is a 2-connected CDP

7

-free graph, then G is hamiltonian.

Theorem A5 [FRS]. Let G be a 2-connected, C�free graph. If, moreover, G is DP

7

�

free and n � 14; G is P

6

� free and n � 10; or G is P

5

� free and n � 6, then G is pancyclic.

Remark. There are 50 exceptional graphs, which are CDP

7

� free and not pancyclic.

Theorem A6 [FRS]. Let G be a 2-connected, C-free graph. If G is HP

7

� free, then G

is hamiltonian.

Theorem A7 [FRS]. Let G be a 2-connected, C-free graph. If, moreover, G is HP

7

�

free and n � 9, then G is either pancyclic or missing only one cycle length.

2



2 RESULTS

In order for the reader to more easily follow the development of the results of this paper, we

shall state and discuss the results in this section and hold the proofs until the next section.

In [FRS] the graph H

1

(see Figure 2) shows that C and Z

3

; as forbidden subgraphs, are

not su�cient to guarantee even hamiltonicity. The natural question, whether there exists an

in�nite class of exceptional graphs or not, led to our �rst Theorem.

Theorem B1. If G is a 2-connected CZ

3

-free graph, then G is either hamiltonian or

isomorphic to H

1

or H

2

. (see Figure 2).
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Figure 2

Next we will derive a full characterization of all 2-connected CZ

3

� free graphs, which are

not pancyclic.

For r � 2 let E

4r

be the (unique) graph on n = 4r vertices labeled v

0

; v

1

; � � � ; v

4r�1

with

edge set E(E

4r

) = fv

i

v

i+1

j 0 � i � 4r� 1g [ fv

4j�4

v

4j

; v

4j�4

v

4j+1

; v

4j�3

v

4j

; v

4j�3

v

4j+1

j 1 �

j � rg (indices modulo 4r).

Proposition B2 (Reduction Procedure RP). Let G be a 2-connected CZ

3

�free graph

on n � k � 6 vertices. If G contains a C

k

with a chord, then G also contains a C

k�1

or G

contains a subgraph E

4r

with k = 4r.

Proposition B3 (Reduction Procedure RP). Let G be a 2-connected CZ

3

�free graph

on n > k � 6 vertices. If G contains a C

k

, then G also contains a C

k�1

and a C

3

.
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Proposition B4. Let G be a 2-connected CZ

3

�free graph on n � 5 vertices. If

G contains an induced C

5

and has no C

4

, then G is isomorphic to C

5

; G

6:1

; G

7:2

or H

3

(see

Figure 2 and Figure 3).

For r � 2 let F

4r

be the (unique) graph on n = 4r vertices labeled v

1

; v

2

; � � � ; v

2r

; u

1

; � � � ; u

2r

and with edge set E(F

4r

) = fv

i

v

j

j 1 � i < j � 2rg [ fu

2i�1

u

2i

j 1 � i � rg [ fv

j

u

j

j 1 � j �

2rg.

Proposition B5. Let G be a graph on n = 4r vertices for some r � 2. If G is

C�free, E

4r

� G and G has no C

n�1

then G

�

=

F

4r

.

We are now ready to state our second Theorem.

Theorem B6. If G is a 2{connected CZ

3

�free graph, then G is either pancyclic or

belongs to one of the following three classes of exceptional graphs G

1

[ G

2

[ G

3

, where (see

Figure 2 and Figure 3)

G

1

= fC

n

j n � 4g

G

2

= fF

4r

j r � 2g

G

3

= fH

1

; H

2

; H

3

; G

6:1

; G

7:2

g:

Next we complete the characterization of all 2-connected CHP

7

-free graphs that are not

pancyclic, which was started in [FRS]. The proof of Theorem A7 (Theorem 15 in [FRS])

shows that every 2-connected CHP

7

-free graph on n � 9 vertices contains all cycles from C

8

up to C

n

or is missing only one cycle. Moreover, if G is missing a cycle C

k

, then k = 4r � 1

for some r � 2 and E

4r

� G.

Proposition B7. Let G be a 2-connected CHP

7

-free graph on n > 4r � 8 vertices.

If F

4r

is an induced subgraph of G, then G has cycles C

k

for 3 � k � 4r.

Proposition B8. If G is a 2-connected CHP

7

�free graph on n � 12 vertices, then

G is either pancyclic or isomorphic to one of the following graphs: C

4

; C

5

; C

6

; G

6:1

; � � � ; G

12

(see Figure 3).
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Figure 3

Proposition B9. Let G be a CP

7

-free graph on n � 9 vertices. If G has a hamiltonian

cycle without 2-chords, then G is pancyclic.

We are now ready to present our third Theorem.

Theorem B10. If G is a 2-connected CHP

7

-free graph, then G is either pancyclic or

belongs to one of the following two classes of exceptional graphs G

1

[ G

2

, where

G

1

= fF

4r

j r � 2g,

G

2

= fC

4

; C

5

; C

6

; G

6:1

; � � � ; G

12

g (see Figure 3).

Next we will derive a full characterization of all 2-connected CW�free graphs, which are

not pancyclic.

Proposition B11. Let G be a CW�free graph on n � k � 4 vertices. If G contains

5



a C

k

with a chord, then G also contains a C

k�1

.

We will now study the structure of 2-connected CW�free graphs which have an induced

cycle C

k

for some k � 6, but no cycle C

k�1

.

Claim B12. Let G be a 2-connected CW�free graph on n � k � 6 vertices. If G

has an induced cycle C of length k, then for every vertex x 2 V (G) � V (C) we have

N

C

(x) = fv

�

; v; v

+

g for some vertex v 2 V (C):

Claim B13. If C is an induced cycle of length k � 6 in a 2-connected CW�free graph

G, then for any two components H

1

; H

2

in G � C and any two vertices x

1

2 V (H

1

) and

x

2

2 V (H

2

) we have jN

C

(x

1

) \N

C

(x

2

)j � 1.

Inspired by Claim B12 and Claim B13 we introduce the following class C

C

of graphs.

Let C

C

be the class of all graphs that can be generated from all induced cycles C

k

; k � 4, by

replacing every vertex of C

k

by a clique and joining all vertices of two cliques if and only if

the corresponding vertices are adjacent in C

k

. Now let G be a graph of C

C

generated from

a C

k

with vertices labeled v

1

; v

2

; � � � ; v

k

and corresponding cliques K

i

, 1 � i � k. We call

a subgraph G[K

p

; K

p+1

; � � � ; K

q

] a saussage if jV (K

p

)j = jV (K

q

)j = 1 and jV (K

i

)j � 2 for

p+ 1 � i � q � 1 (indices modulo k), and G a saussage-graph if it has at least one saussage.

Now observe that G has exactly one induced cycle of length at least 4, namely C

k

, from

which it has been generated. All other cycles can only occur in the saussages of G. Now for

each graph G 2 C

C

let �(G) denote the length of the only induced cycle of length at least 4,

(i.e., �(G) = k), and let �(G) be the maximum number of vertices among all saussages of G.

Then �(G) � �(G) + 2 if and only if G has no C

k�1

.

Claim B14. Let G be a 2-connected CW�free graph on n � k � 6 vertices. If G has an

induced C

k

and no C

k�1

, then G 2 C

C

.

Theorem B15. If G is a 2-connected CW�free graph, then G is either pancyclic or

G 2 C

C

for some induced cycle C

k

with k � 4 and �(G) � �(G) + 2 or G

�

=

G

6:1

(see Figure

3).

6



Corollary B16. If G is a 2-connected CB-free graph, then G is either pancyclic or

G 2 C

C

for some induced cycle C

k

with k � 4 and �(G) � �(G) + 2.

3 PROOFS

We �rst introduce some additonal notation which will be useful in the proofs that follow. Let

C be a cycle in a graph. If an orientation of C is �xed and u; v 2 V (C), then by u

!

C

v we

denote the consecutive vertices on C from u to v in the direction speci�ed by the orientation

of C. The same vertices, in reverse order, are given by v

 

C

u: If C is a cycle of G with a �xed

orientation and u 2 V (C), then u

+

denotes the successor of u on C and u

�

its predecessor

with respect to the given orientation, respectively.

Proof of Theorem B1. Suppose G satis�es the hypothesis of the theorem, but G

is nonhamiltonian. Let C be a longest cycle of G with a �xed orientation. Since G is 2-

connected, there exists a path of length at least 2, internally{disjoint with C, that connects

two vertices of C. Let P = v

1

u

1

u

2

� � �u

r

v

2

be such a path of minimum length, implying that

P is an induced path unless v

1

v

2

2 E(G). For i = 1; 2, let w

i

be the �rst vertex in v

+

i

!

C

v

3�i

satisfying w

i

v

i

62 E(G) (existing by Lemma 2 in [BV]). Since G is C�free, v

�

i

v

+

i

2 E(G) for

i = 1; 2. Hence, since C is a longest cycle, jV (v

+

i

!

C

v

�

3�i

)j � 3 for i = 1; 2.

Case 1. Suppose fv

��

1

v

1

; v

1

v

++

1

; v

��

2

v

2

; v

2

v

++

2

g \E(G) 6= ;.

Without loss of generality we may assume that v

1

v

++

1

2 E(G). For i = 1; 2 let x

i

be an ar-

bitrary vertex in v

+

i

!

C

w

i

and u be a vertex in V (P )�fv

1

; v

2

g. Then ux

1

; ux

2

; x

1

v

2

; x

2

v

1

; x

1

x

2

62

E(G) (by Lemma 2 in [BV]). If v

1

v

2

2 E(G), then G[fv

++

1

; v

+

1

; v

1

; v

2

; w

�

2

; w

2

g] is an induced

Z

3

, a contradiction. If v

1

v

2

62 E(G), then G[fv

++

1

; v

+

1

; v

1

; u

1

; � � � ; u

r

; v

2

; w

�

2

; w

2

g] is an induced

Z

r+3

, a contradiction, since r � 1 and G is Z

3

�free.

Case 2. fv

��

i

v

i

; v

i

v

++

i

g 62 E(G) for i = 1; 2.

If v

1

v

2

62 E(G) and r � 2, then G[fv

�

1

; v

1

; v

+

1

; u

1

; � � � ; u

r

; v

2

g] is an induced Z

r+1

, a con-

tradiction, since G is Z

3

�free. If v

1

v

2

2 E(G), then r = 1, since otherwise G[fv

�

1

; v

1

; v

2

; u

1

g]

7



would be an induced claw. Hence we may assume that r = 1. With jV (v

+

i

!

C

v

�

3�i

)j � 3 for

i = 1; 2 we have n � 9. If n = 9 then v

+

i

v

�

3�i

2 E(G) for i = 1; 2, since G is Z

3

�free.

Now observe that G is CZ

3

�free and that (as above) no other edges are possible, since

C is a longest cycle. Hence, if n = 9, then G is either hamiltonian or isomorphic to H

1

or H

2

. If n � 10, then we may assume without loss of generality that jV (v

+

1

!

C

v

�

2

)j � 4.

We now consider fv

�

1

; v

1

; v

+

1

; v

��

2

; v

�

2

; v

2

g if v

1

v

2

2 E(G) and fv

�

1

; v

1

; v

+

1

; u

1

; v

2

; v

�

2

; v

��

2

g

if v

1

v

2

62 E(G), respectively. Then v

+

1

v

�

2

2 E(G) or v

+

1

v

��

2

2 E(G), since otherwise

G[fv

�

1

; v

1

; v

+

1

; v

��

2

; v

�

2

; v

2

g] would be an induced Z

3

and G[fv

�

1

; v

1

; v

+

1

; u

1

; v

2

; v

�

2

; v

��

2

g] would

be an induced Z

4

, respectively. If v

+

1

v

�

2

2 E(G), then v

++

1

v

�

2

; v

+

1

v

��

2

2 E(G), since G is

C�free and v

1

v

++

1

; v

1

v

�

2

; v

+

1

v

2

; v

��

2

v

2

62 E(G). Now considering the claw fv

1

; v

+

1

; v

++

1

; v

��

2

g

we conclude that v

++

1

v

��

2

2 E(G). If v

+

1

v

�

2

62 E(G), then v

++

1

v

�

2

; v

+

1

v

��

2

2 E(G), since G

is Z

3

�free (symmetric argument). Again we conclude that v

++

1

v

��

2

2 E(G). Now v

��

2

v

+

2

62

E(G), since otherwise v

��

2

v

+

2

!

C

v

�

1

v

+

1

v

1

v

2

v

�

2

v

++

1

!

C

v

��

2

or v

��

2

v

+

2

!

C

v

�

1

v

+

1

v

1

!

P

v

2

v

�

2

v

++

1

!

C

v

��

2

would be a cycle longer than C. But then G[fv

��

2

; v

++

1

; v

+

1

; v

1

; v

2

; v

+

2

g] is an induced Z

3

when

v

1

v

2

2 E(G), and G[fv

��

2

; v

++

1

; v

+

1

; v

1

; u

1

; v

2

; v

+

2

g] is an induced Z

4

when v

1

v

2

62 E(G), re-

spectively, a contradiction.

For the proof of Proposition B2, the following four statements for C�free graphs can easily

be veri�ed and will be frequently used and just referenced by the indicated label.

(A) Let C

m

be a cycle with m � 2k + 2 � 6 vertices labeled v

1

; v

2

; � � � ; v

m

and a k�chord

v

j

v

j+k

. If there are no i�chords for 2 � i � k � 1, then v

j�1

v

j+k

; v

j

v

j+k+1

2 E(G):

(B) If, moreover, v

j�1

v

j+k�1

62 E(G) or v

j+1

v

j+k+1

62 E(G), then v

j�1

v

j+k+1

2 E(G):

(C) Let v

j

v

j+i

be an i�chord with 3 � i �

k

2

in a cycle C

k

without 2�chords. If v

j

v

j+i�1

62

E(G); then v

j

v

j+i+1

2 E(G), and likewise if v

j+1

v

j+i

62 E(G), then v

j�1

v

j+i

2 E(G).

(D) Let v

j

v

j+i

be an i�chord in a cycle C

k

. If i � 2 and v

j+1

v

j+i+2

2 E(G) or if i � 3 and

v

j+2

v

j+i+1

2 E(G), then v

j

v

j+i

 

C

v

j+1

v

j+i+2

!

C

v

j

or v

j

v

j+i

 

C

v

j+2

v

j+i+1

!

C

v

j

is a C

k�1

,

respectively.
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Proof of Proposition B2. Let v

1

; � � � ; v

k

be the vertices of C

k

and i (2 � i �

k

2

)

be the smallest integer such that G has an i-chord. Among all chords of C

k

choose such a

minimal i-chord (2 � i �

k

2

). Choose a labeling v

1

; v

2

; � � � ; v

k

of the vertices of C

k

such that

(fv

j

v

j+1

j 1 � j � k � 1g [ fv

k

v

1

; v

1

v

i+1

g) � E(G). We now distinguish the following three

cases.

Case 1. Suppose i = 2

Then v

1

v

3

v

4

� � �v

k

v

1

is a C

k�1

.

Case 2. Suppose i = 3

By (A) we have v

1

v

5

; v

k

v

4

2 E(G). If v

2

v

5

2 E(G), then we obtain a C

k�1

by (D).

Hence we may assume that v

2

v

5

62 E(G) and so v

k

v

5

2 E(G) by (B). If v

4

v

7

2 E(G), then

v

k

v

5

v

1

v

2

v

3

v

4

v

7

!

C

v

k

is a C

k�1

. Hence we may assume that v

4

v

7

62 E(G). Suppose now that

v

5

v

8

62 E(G). If v

4

v

8

2 E(G), then v

3

v

8

; v

4

v

9

2 E(G) by (A) and thus v

3

v

9

2 E(G) by

(B), since v

3

v

7

62 E(G) ( or else (v

k

v

5

v

4

v

1

v

2

v

3

v

7

!

C

v

k

)). But then we obtain a C

k�1

by

v

k

v

1

v

4

v

5

v

6

v

7

v

8

v

3

v

9

!

C

v

k

. Hence we may assume that v

4

v

8

62 E(G). Next v

1

v

6

62 E(G) ( or

else (v

k

v

4

v

3

v

2

v

1

v

6

!

C

v

k

)), v

1

v

7

62 E(G) (or else (v

k

v

5

v

4

v

3

v

2

v

1

v

7

!

C

v

k

)), and v

2

v

7

62 E(G) by

(D). Now if v

2

v

8

2 E(G), then v

2

v

9

2 E(G), since G is claw{free (fv

2

; v

7

; v

8

; v

9

g), but then

v

1

v

4

v

5

v

6

v

7

v

8

v

2

v

9

!

C

v

1

is a C

k�1

. Hence we may assume that v

2

v

8

62 E(G). Again the claw

fv

1

; v

2

; v

4

; v

8

g shows that v

1

v

8

62 E(G). But then G[fv

1

; v

4

; v

5

; v

6

; v

7

; v

8

g] is an induced Z

3

,

a contradiction. This shows that v

5

v

8

2 E(G). A repeat of these arguments (cf. also Proof

of Theorem 15 in FRS]) either gives a C

k�1

or k = 4r for some r � 2. In the latter case,

v

4i�4

v

4i

; v

4i�4

v

4i+1

; v

4i�3

v

4i+1

2 E(G) for each edge v

4i�3

v

4i

; 1 � i � r (indices modulo 4r)

and the C

4r

has no other 3-chords, 4-chords, 5-chords or 6-chords.

Case 3. Suppose i � 4

We proceed as in Case 2 and obtain that v

1

v

i+2

; v

k

v

i+1

; v

k

v

i+2

2 E(G). Since i is minimal,

G[fv

i+2

; v

k

; v

1

; v

2

; v

3

; v

4

g] is an induced Z

3

, a contradiction.
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Proof of Proposition B3. Let v

1

; � � � ; v

k

be the vertices of C

k

labeled such that

(fv

j

v

j+1

j 1 � j � k�1g[fv

k

v

1

g) � E(G). Since k < n, there is a vertex u 2 V (G)�V (C

k

)

such that N(u) \ V (C

k

) 6= ;. If C

k

has a 2{chord, then we obtain a C

k�1

and a C

3

. Hence

we may assume that C

k

has no 2{chords. Now, if v

i

2 N(u) for some v

i

2 V (C

k

), then

fv

i�1

; v

i+1

g \N(u) 6= ;, since G is C-free and v

i�1

v

i+1

would be a 2-chord. Hence G has a

C

3

. Next, if fv

i

; v

i+1

; v

i+2

; v

i+3

g � N(u) for some v

i

2 V (C

k

), then v

i

uv

i+3

!

C

k

v

i

is a C

k�1

.

Hence, N(u)\ V (C

k

) consists of pairwise disjoint pairs fv

j

; v

j+1

g and triples fv

j

; v

j+1

; v

j+2

g

of consecutive vertices. We distinguish these two cases.

Case 1. Suppose v

4

; v

5

2 N(u); v

3

; v

6

62 N(u)

If v

j

; v

j+3

2 N(u) or v

j

; v

j�3

2 N(u), then we (easily) obtain a C

k�1

. Hence, v

j�3

; v

j+3

62

N(u) for each v

j

2 N(u). Thus, v

1

; v

2

; v

7

; v

8

62 N(u). Since C

k

has no 2{chords, we have

v

1

v

3

; v

2

v

4

; v

3

v

5

; v

4

v

6

; v

5

v

7

; v

6

v

8

62 E(G). If v

1

v

4

2 E(G), then v

1

v

4

uv

5

!

C

v

1

is a C

k�1

. Hence

we may assume that v

1

v

4

; v

5

v

8

62 E(G). If both v

2

v

5

; v

4

v

7

2 E(G), then v

2

v

5

uv

4

v

7

!

C

v

k�1

is a C

k�1

. Hence we may assume without loss of generality that v

4

v

7

62 E(G). If v

2

v

5

2

E(G), then v

3

v

8

62 E(G), since otherwise, v

2

v

5

uv

4

v

3

v

8

!

C

v

2

is a C

k�1

. Now, if v

4

v

8

2

E(G), then G[fv

3

; v

4

; u; v

8

g] is an induced claw, a contradiction. Hence v

4

v

8

62 E(G),

but then G[fv

4

; u; v

5

; v

6

; v

7

; v

8

g] is an induced Z

3

, a contradiction. This shows that both

v

2

v

5

; v

4

v

7

62 E(G). Hence, v

1

v

5

; v

4

v

8

2 E(G), since G is Z

3

�free. Considering the claws

fv

1

; v

5

; u; v

6

g and fv

3

; v

4

; u; v

8

g we conclude that v

1

v

6

; v

3

v

8

2 E(G), since G is C�free. But

then v

1

v

6

v

5

uv

4

v

3

v

8

!

C

v

1

is a C

k�1

.

Case 2. Suppose v

2

; v

3

; v

4

2 N(u); v

1

; v

5

62 N(u).

Since C

k

has no 2{chords, we have v

2

v

4

; v

3

v

5

; v

4

v

6

; v

5

v

7

62 E(G). If v

3

v

6

2 E(G) or

v

4

v

7

2 E(G) or v

3

v

7

2 E(G), then v

2

uv

3

v

6

!

C

v

2

or v

3

uv

4

v

7

!

C

v

3

or v

2

uv

4

v

3

v

7

!

C

v

2

is a C

k�1

,

respectively. Hence we may assume that v

3

v

6

; v

3

v

7

; v

4

v

7

62 E(G). As in Case 1 we have

uv

6

; uv

7

62 E(G), since uv

3

; uv

4

2 E(G). But then G[fv

3

; u; v

4

; v

5

; v

6

; v

7

g] is an induced Z

3

, a

contradiction.

Proof of Proposition B4. Let v

1

; v

2

; � � � ; v

5

be the vertices of the induced C

5

such
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that fv

j

v

j+1

j1 � j � 4g [ fv

5

v

1

g � E(G). If n = 5, then G

�

=

C

5

. If n > 5, then let

H = G� V (C

5

). Since G is 2{connected, there is a vertex x 2 V (H) such that N

C

5

(x) 6= ;.

As in the proof of Proposition B3, we conclude that x has either two or three consecutive

neighbors on the C

5

. Since G has no C

4

we conclude that for every x 2 N

H

(V (C

5

)) we have

jN(x) \ V (C

5

)j = 2 and N

C

5

(x) = fv

i

; v

i+1

g for some i. By the 2{connectedness of G we

conclude that each component of H either is an isolated vertex or has at least two vertices

each of them having two neighbors on C

5

. Thus for n = 6 we obtain the unique exceptional

graph G

6:1

(see Figure 3). Since G has no C

4

, for n � 7 there is no pair of vertices x; y 2 V (H)

such thatN

C

5

(x) = N

C

5

(y) = fv

i

; v

i+1

g for some i (which gives (xv

i

yv

i+1

x)). Without loss of

generality we may assume N

C

5

(x) = fv

1

; v

2

g for some x 2 V (H). Suppose N

C

5

(y) = fv

3

; v

4

g

for some y 2 V (H)� fxg. Since G has no C

4

, we have xy 62 E(G) (or else (xv

2

v

3

yx)). But

then G[fx; v

2

; v

1

; v

5

; v

4

; yg] is an induced Z

3

, a contradiction. Hence we may assume that

N

H

(v

4

) = ; and thus jN

H

(C

5

)j = 2 (symmetric argument). Without loss of generality we

may assume that N

C

5

(y) = fv

5

; v

1

g for some y 2 V (H)� fxg. Since G has no C

4

, we have

xy 62 E(G) (or else (yv

1

v

2

xy)). Thus for n = 7 we obtain the unique exceptional graph G

7;2

(see Figure 2). For n � 8 we conclude thatH consists of one component, since jN

H

(C

5

)j = 2.

Let xw

1

w

2

� � �w

r

y be a shortest path connecting x and y in H . Then r � 2, since G has

no C

4

(xv

1

yw

1

x). If r � 3, then G[fv

1

; v

2

; x; w

1

; w

2

; w

3

g] is an induced Z

3

, a contradiction.

Hence we have r = 2. This gives the unique exceptional graph H

3

(see Figure 2).

Proof of Proposition B5. Let the vertices of G be labeled v

1

; v

2

; � � � ; v

n

such that

fv

j

v

j+1

j1 � j � n� 1g [ fv

n

v

1

g � E(G), fv

1

v

4

; v

5

v

8

; � � � ; v

4r�3

u

4r

g � E(G) and fv

4i�3

v

4i+1

,

v

4i�4

v

4i

; v

4i�4

v

4i+1

g � E(G) for each edge v

4i�3

v

4i

(indices modulo n). If r = 2 then G

�

=

F

8

(= E

8

), since any additional edge gives a C

7

. For r > 2 we perform an induction on k for

1 � k � b

r

2

c. For each k and all possible i-chords with 4k � 1 � i � 4k + 2 (and 3 � i � 2r)

we shall show:

i = 4k � 1 : v

1

v

4k

2 E(G); v

2

v

4k+1

; v

3

v

4k+2

; v

n

v

4k�1

62 E(G)

i = 4k : v

n

v

4k

; v

1

v

4k+1

2 E(G); v

2

v

4k+2

; v

3

v

4k+3

62 E(G)

i = 4k + 1 : v

n

v

4k+1

2 E(G); v

1

v

4k+2

; v

2

v

4k+3

; v

3

v

4k+4

62 E(G)

i = 4k + 2 : v

n

v

4k+2

; v

1

v

4k+3

; v

2

v

4k+4

; v

3

v

4k+5

62 E(G):
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By the cyclic structure of G these properties then remain valid for all induced subgraphs

G[fv

4j

; v

4j+1

; � � � ; v

4j+4k+5

g]. We �rst show the induction step \k �! k + 1". To show

that v

1

v

4k

; v

n

v

4k

; v

1

v

4k+1

; v

n

v

4k+1

2 E(G), we consider suitable claws and make use of the

claw{freeness of G:

fv

1

; v

4k�1

; v

4k

; v

4k+4

g : v

1

v

4k

; v

4k�1

v

4k

; v

4k

v

4k+4

2 E(G);

v

1

v

4k�1

; v

4k�1

v

4k+4

62 E(G);

hence v

1

v

4k+4

2 E(G):

fv

1

; v

4k�1

; v

4k

; v

4k+5

g : v

1

v

4k

; v

4k�1

v

4k

; v

4k

v

4k+5

2 E(G);

v

1

v

4k�1

; v

4k�1

v

4k+5

62 E(G);

hence v

1

v

4k+5

2 E(G):

fv

n

; v

4k�1

v

4k

; v

4k+5

g : v

n

v

4k

; v

4k�1

v

4k

; v

4k

v

4k+5

2 E(G);

v

n

v

4k�1

; v

4k�1

v

4k+5

62 E(G);

hence v

n

v

4k+5

2 E(G):

fv

n

; v

4k�1

; v

4k

; v

4k+4

g : v

n

v

4k

; v

4k�1

v

4k

; v

4k

v

4k+4

2 E(G);

v

n

v

4k�1

; v

4k�1

v

4k+4

62 E(G);

hence v

n

v

4k+4

2 E(G):

v

2

v

4k+5

62 E(G) : else v

n

v

4k+4

 

C

v

2

v

4k+5

!

C

v

n

is a C

n�1

v

n

v

4k+3

62 E(G) : else v

n

v

4k+3

 

C

v

1

v

4k+5

!

C

v

n

is a C

n�1

v

3

v

4k+6

62 E(G) : else v

n

v

4k

!

C

v

4k+4

v

1

v

2

v

3

v

4k+6

!

C

v

n

is a C

n�1

v

2

v

4k+6

62 E(G) : else v

n

v

4

!

C

v

4k+5

v

1

v

2

v

4k+6

!

C

v

n

is a C

n�1

v

3

v

4k+7

62 E(G) : else v

n

v

4

!

C

v

4k+5

v

1

v

2

v

3

v

4k+7

!

C

v

n

is a C

n�1

v

1

v

4k+6

62 E(G) : else v

n

v

4k+4

 

C

v

1

v

4k+6

!

C

v

n

is a C

n�1

v

2

v

4k+7

62 E(G) : else v

1

v

4k+4

 

C

v

2

v

4k+7

 

C

v

4k+5

v

4k+9

!

C

v

1

is a C

n�1

v

3

v

4k+8

62 E(G) : else v

3

v

4k+8

 

C

v

5

v

4k+9

!

C

v

3

is a C

n

1

v

n

v

4k+6

62 E(G) : else v

n

v

4k+6

v

4k+5

v

1

!

C

v

4k+4

v

4k+8

!

C

v

n

is a C

n�1

v

1

v

4k+7

62 E(G) : else v

n

v

4k+4

 

C

v

1

v

4k+7

 

C

v

4k+5

v

4k+9

!

C

v

n

is a C

n�1

v

2

v

4k+8

62 E(G) : else v

2

v

4k+8

 

C

v

4

v

4k+9

!

C

v

2

is a C

n�1

v

3

v

4k+9

62 E(G) : else v

1

v

4k+8

 

C

v

3

v

4k+9

!

C

v

1

is a C

n�1

.
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Next we show the induction beginning with \k = 1". By the hypothesis we know that

v

1

v

4

; v

n

v

4

; v

1

v

5

; v

n

v

5

2 E(G). For k = 1 the (12) constructions above (of a C

n�1

) remain

valid. Thus, v

2

v

5

; v

n

v

3

, � � � ; v

3

v

9

62 E(G).

Proof of Theorem B6. If G is nonhamiltonian, then G is isomorphic to either H

1

or

H

2

by Theorem B1. Hence we may assume that G is hamiltonian. If G has a C

n

without

chords, then G

�

=

C

n

. Hence we may assume that C

n

has a chord. If G has no C

n�1

, then by

Proposition (B2) we have E

4r

� G with n = 4r, and thus by Proposition (B5) we conclude

that G

�

=

F

4r

. Hence we may assume that G has a C

n�1

. Then by Proposition (B3) G has

cycles C

k

for k = 3 and 5 � k � n. If G has no C

4

then G is isomorphic to G

6:1

or G

7:2

or

H

3

by Proposition B4 and pancyclic otherwise.

Proof of Proposition B7. Let v

1

; v

2

; � � � ; v

2r

; u

1

; u

2

; � � � ; u

2r

be the vertices of F

4r

such that d

F

4r

(u

i

) = 2, with u

i

v

i

2 E(G) for 1 � i � 2r and u

2i�1

u

2i

2 E(G) for 1 � i � r.

We know that F

4r

is only missing a C

4r�1

. Suppose there is a vertex w 2 V (G � F

4r

)

such that wu

i

2 E(G) for some i with 1 � i � 2r. We may assume that wu

1

2 E(G).

Since v

1

u

2

62 E(G) and G is claw-free, we have v

1

w 2 E(G) or wu

2

2 E(G). Then

v

1

wu

1

u

2

v

2

v

3

u

3

u

4

v

4

� � �u

2r�2

v

2r�2

v

2r�1

v

2r

v

1

or v

1

u

1

wu

2

v

2

v

3

u

3

u

4

v

4

� � �u

2r�2

v

2r�2

v

2r�1

v

2r

v

1

is

a C

4r�1

. Hence we may assume that d

G

(u

i

) = 2 for 1 � i � 2r. Thus, there is a vertex

w 2 V (G � F

4r

) such that wv

i

2 E(G) for some i with 1 � i � 2r. We may assume that

wv

i

2 E(G). Since G is claw-free and wu

1

; u

1

u

2

62 E(G), we have wv

2

2 E(G). But then,

v

1

wv

2

u

3

u

4

v

4

� � �u

2r

v

2r

v

1

is the desired C

4r�1

.

Proof of Proposition B8. At �rst we generate all CHP

7

-free graphs on n � 8 vertices,

which are not pancyclic. For 4 � n � 7 it can be easily veri�ed that all exceptional graphs are

given by the graphs in Figure 3. Next suppose there is a CHP

7

-free graph on n+ 1 vertices,

n � 8; which is not pancyclic. Then by Proposition B9, it has a 2-chord. Using this 2-chord

in the reduction procedure, we also obtain an exceptional graph on n vertices. Vice versa, the

set of all exceptional graphs on n+1 vertices can be generated from the set of all exceptional

graphs on n vertices as follows. Let G be a counterexample on n vertices v

1

; v

2

; � � � ; v

n

such

that (fv

i

v

i+1

j1 � i � n�1g[fv

n

v

1

g) � E(G). We then successively replace each edge v

i

v

i+1

13



of this C

n

by a triangle with edges v

i

v

i+1

; v

i

v

n+1

; v

i+1

v

n+1

if 1 � i � n�1 and a triangle with

edges v

1

v

n

; v

1

v

n+1

; v

n

v

n+1

, otherwise. Each new graph has to be checked as to whether it is

CHP

7

-free and not pancyclic, and whether additional edges adjacent to v

n+1

are possible.

We now consider six cases.

Case 1. Suppose n = 8.

By the hypothesis of the proposition, the cycle C

8

contains a chord. Since G is claw-free,

it contains a 2-chord or a 3-chord. Among all chords of C

8

choose an i-chord (2 � i � 3) such

that i is minimal. Choose a labeling v

1

; v

2

; � � � ; v

8

of the vertices of C

8

such that (fv

j

v

j+1

j

1 � j � 7g [ fv

8

v

1

; v

1

v

i+1

g) � E(G).

Case 1.1. Suppose i = 2

Then G contains C

3

; C

7

and C

8

: If there is a 3-chord and a 4-chord then G is pancyclic,

since a 4-chord gives a C

5

and a 3-chord gives C

4

and C

6

. If there are only 4-chords and

there is a pair of 2-chords and a 4-chord that are crossing, then since G is claw-free and has

no 3-chord, G has a C

3

; C

5

; C

6

; C

7

and C

8

. If there is also a pair of a 2-chord and a 4-chord

that are not crossing, then G is pancyclic. Otherwise we obtain the only exceptional graph

G

8:1

having only 2-chords and 4-chords. If there are only 3-chords then G has C

3

; C

4

; C

6

; C

7

and C

8

. Now each pair of a 2-chord and a 3-chord, whether they are crossing or not, leads

to a C

5

and thus G is pancyclic, or we obtain the exceptional graph G

8:2

.

Hence we may assume that G has only 2-chords. Suppose �rst that there are no crossing

2-chords. Since G is P

7

-free, there are at least two vertex disjoint 2-chords. Since G is H-free,

any pair of 2-chords is vertex disjoint. Thus the only exceptional graphs with two 2-chords

are given by G

8:3

and G

8:4

.

Next suppose there are crossing 2-chords. If, for example v

1

v

3

; v

2

v

4

; v

3

v

5

2 E(G); then

G is pancyclic. Hence we may assume that among every �ve successive vertices of C

8

there

occur at most two 2-chords. We may assume that v

2

v

4

2 E(G): Hence v

3

v

5

; v

8

v

2

=2 E(G);

since G is H-free. Thus we obtain the exceptional graphs G

8:5

; G

8:6

and G

8:7

.

14



Case 1.2. Suppose i = 3

The only exceptional graph in this case is F

8

2 G

1

.

For the sake of brevity, in the following four cases we list those exceptional graphs on n

vertices, that have been generated from a speci�c exceptional graph on n � 1 vertices.

Case 2. Suppose n = 9

G

8:1

:

G

8:2

: G

9:1

; G

9:2

; G

9:4

G

8:3

: G

9:1

G

8:4

: G

9:2

; G

9:3

G

8:5

: G

9:5

G

8:6

: G

9:4

G

8:7

:

G

8:8

:

Case 3. Suppose n = 10

G

9:1

: G

10:1

G

9:2

: G

10:2

; G

10:3

G

9:3

: G

10:2

G

9:4

:

G

9:5

:

Case 4. Suppose n = 11

G

10:1

:

G

10:2

: G

11

G

10:3

: G

11

Case 5. Suppose n = 12

G

11

: G

12

Case 6. Suppose n = 13

The graph G

12

is only missing a C

5

: Replacing an edge by a triangle, we either obtain

a C

5

and thus a pancyclic graph, or a graph that is not H-free. In the latter case, every

additional (possible) edge gives a C

5

:

Proof of Propositon B9. In ([Frs] Proposition 4) this was proved for the class of

CDP

7

-free graphs. However, the D-freeness is not needed there, hence the conclusion even

holds in the class of CP

7

free graphs.

Proof of Theorem B10. Let G be a 2-connected CHP

7

-free graph on n � 3 vertices.

By Theorem A6 we know that G is hamiltonian. If n � 8 then G is either pancyclic or

15



isomorphic to C

4

; C

5

; C

6

; G

6:1

; � � � ; G

8:7

; F

8

by Proposition B8. If n � 9, then G contains all

cycles from C

8

up to C

n

or is missing only one cycle C

4r�1

for some r � 2 and F

4r

� G as

mentioned earlier. In the latter case, F

4r

is an induced subgraph of G by Proposition B5. If

n > 4r then G has all cycles C

k

for 3 � k � 4r by Proposition B7 and hence is pancyclic.

Otherwise, G

�

=

F

4r

and hence G is not pancyclic. Hence we many assume that G contains

all cycles from C

8

up to C

n

: If, moreover, G has a cycle C

k

for some k � 9 without 2-chords,

then G is pancyclic by Proposition B9.

Hence, any exceptional graph must have n = 8 vertices or must have a cycle C

k

with a 2-

chord for some k � 9: All these exceptional graphs are given by Propostion B8. Furthermore,

the proof of Proposition B8 shows that there are no exceptional graphs on n � 13 vertices.

This completes the proof.

Proof of Proposition B11. Let v

1

; � � �v

k

be the vertices of C

k

: Let i be the smallest

integer such that G has an i-chord. Since G is C- free we have 2 � i �

k�1

2

: Among all chords

of C

k

choose a minimal i-chord (2 � i �

k�1

2

). Choose a labeling v

1

; v

2

; � � � ; v

k

of the vertices

of C

k

such that (fv

j

v

j+1

j1 � j � k � 1g [ fv

k

v

1

; v

1

v

i+1

g) � E(G).

We now distinguish the following two cases.

Case 1. Suppose i = 2

Then v

1

v

3

v

4

� � �v

k

v

1

is a C

k�1

.

Case 2. Suppose i � 3

For i � 3 we have k � 7: For k = 7 we conclude (successively) that all 3-chords

are present, since G is C- free. Then v

1

v

4

v

5

v

2

v

6

v

7

v

1

is a C

6

: For k � 8 we will show

that G either has a C

k�1

or that G[fv

k�2

; v

k�1

; v

k

; v

1

; v

2

; v

i+1

g] is an induced W . Since

G is a C-free and i is minimal we have v

1

v

i+2

; v

k

v

i+1

2 E(G). If v

2

v

i+2

2 E(G), then

v

k

v

i+1

 

C

v

2

v

i+2

!

C

v

k

is a C

k�1

. Otherwise, v

k

v

i+2

2 E(G), or G[fv

k

; v

1

; v

2

; v

i+2

g] would be

an induced claw. Since i � 3 and i is minimal we have v

k�2

v

k

; v

k�1

v

1

; v

k

v

2

; v

2

v

i+1

=2 E(G).

If v

k�2

v

1

2 E(G) or v

k�1

v

2

2 E(G) or v

k�2

v

2

2 E(G); then v

k�2

v

1

!

C

v

i+1

v

k

v

i+2

!

C

v

k�2

or

v

k�1

v

2

!

C

v

i+1

v

1

v

i+2

!

C

v

k�1

or v

k�2

v

2

!

C

v

i+1

v

1

v

k

v

i+2

!

C

v

k�2

is a C

k�1

. If v

k�1

v

i+1

2 E(G)
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or v

k�2

v

i+1

2 E(G), then v

k�1

v

i+1

 

C

v

1

v

i+2

!

C

v

k�1

or v

k�2

v

i+1

 

C

v

k

v

i+2

!

C

v

k�2

is a C

k�1

.

Otherwise, G[fv

k�2

; v

k�1

; v

k

; v

1

; v

2

; v

i+1

g] is an induced W , a contradiction.

Proof of Claim B12. For k = n the assertion holds. Hence we may assume that

k < n. Since G is 2-connected, there are two vertices v 2 V (C) and x 2 V (G)nV (C) such

that vx 2 E(G): Since G is C-free and C

k

is an induced cycle, we have fv

�

; v

+

g\N

C

(x) 6= ;.

Suppose �rst, that v

�

; v 2 N(x) and v

��

; v

+

62 N(x): Then v

���

; v

++

62 N(x), since

G has no C

k�1

. But then G[fv

��

; v

�

; v; v

+

; v

++

; xg] is an induced W , a contradiction.

Hence we may assume that v

�

; v; v

+

2 N(x): Again, since G has no C

k�1

, we conclude that

v

��

; v

++

=2 E(G). Now, if there is a vertex w 2 V (C) \ N(x) such that w =2 fv

�

; v; v

+

g,

then G[fv

�

; v

+

; w; xg] is an induced claw, a contradiction. Next suppose there is a vertex

y 2 V (G) n V (C) such that N

C

(y) = ;: We may assume that there is a path yxw such that

w 2 V (C) and x =2 V (C): But then G[fy; x; v

�

; v

+

g] is an induced claw, since C

k

has no

chords, a contradiciton.

Proof of Claim B13. Suppose there are two components H

1

; H

2

in G � C and two

vertices x

1

2 V (H

1

); x

2

2 V (H

2

) such that jN

C

(x

1

) \N

C

(x

2

)j � 2. By Claim B12 we then

distinguish two cases.

Case 1. Suppose N

C

(x

1

) = N

C

(x

2

) = fw

�

; w; w

+

g for a vertex w 2 V (C).

But then G[fx

1

; x

2

; w

+

; w

++

g] is an induced claw, a contradiction.

Case 2. Suppose N

C

(x

1

) = fw

�

; w; w

+

g and N

C

(x

2

) = fw;w

+

; w

++

g for a vertex w 2

V (C).

But then G[fw

�

; x

1

; w

+

; x

2

; w

++

; w

+++

g] is an induced W , a contradiction.

Proof of Claim B14. We perform an induction on p = jV (G)nV (C)j.

1. Induction beginning with p = 0.

Then k = n and thus G

�

=

C

n

. Hence G 2 C

C

.
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2. Induction step p� 1! p.

Suppose that Claim B14 holds for all graphs with jV (G)nV (C)j � p � 1 and let G be

a graph with jV (G)nV (C)j = p: Choose a vertex x 2 (V (G))nV (C)) and put G

0

= G � x.

Then, the following properties hold:

1. G

0

is CW -free, since `CW -freeness' is a hereditary property.

2. G

0

is 2-connected due to Claim B12.

3. C is an induced C

k

in G

0

:

4. There is no cycle in G

0

of length jV (C)j � 1.

Thus, by the induction hypothesis, G

0

2 C

C

. Let the vertices of C be labeled y

1

; y

2

; � � � ; y

k

and let K

i

be the clique with y

i

2 V (K

i

); (1 � i � k), corresponding to the structure of the

class C

C

. By Claim B12, x has exactly three neighbors on C, say y

i�1

; y

i

; y

i+1

.

(i) If there is a vertex z

i

2 V (K

1

) such that xz

i

=2 E(G); then G[fy

i�1

x; z

i

; y

i�2

g] is an

induced claw, a contradiction.

(ii) If there is a vertex z

i+1

2 V (K

i+1

) such that xz

i+1

=2 E(G); then G[fx; y

i

; y

i�1

; y

i�2

; z

i+1

; y

i+2

g]

is an induced W , a contradiction.

(iii) Symmetric to (ii) we have xz

i�1

2 E(G) for all vertices z

i�1

2 V (K

i�1

).

Thus G 2 C

C

.

Proof of Theorem B15. Let G be a 2-connected CW -free graph. By Theorem A1

we know that G is hamiltonian. By Proposition B11 we conclude that G is either pancyclic

or has an induced cycle C

k

for some k � 4. If k � 6 and G has no C

k�1

then G 2 C

C

by

Proposition B14 and necessarily �(G) � �(G) + 2. Hence we may assume that 4 � k � 5:

If k = n, implying G

�

=

C

n

, then G 2 C

C

: Hence we may further assume that k < n: Since

G is C-free there is no pair of vertices v 2 V (C); x 2 V (G) � V (C) such that xv 2 E(G)

and xv

�

; xv

+

=2 E(G): If fv

�

; v; v

+

g � N

C

(x) for a vertex x 2 V (G) � V (C); then G has
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a C

3

and a C

4

and thus is pancyclic. Hence, if G is not pancyclic, then k = 5 and for

each vertex x 2 V (G) � V (C) we have N

C

(x) = ; or jN

C

(x)j = 2: In the latter case,

N

C

(x) = fv; v

+

g for a vertex v 2 V (C): Thus for n = 6 we obtain the exceptional graph

G

6:1

. Now for n � 7; suppose �rst that there are two vertices x; y 2 V (G)� V (C) such that

N

C

(x) = fv

�

; vg; N

C

(y) = fw

�

; wg for two vertices v; w 2 V (C): Since G is missing only a

C

4

, we cannot have v = w. If w

�

= v or w

�

= v

+

then xy =2 E(G), since otherwise xyw

�

v

�

x

or xyw

�

vx gives a C

4

. But then G[fv

���

; v

��

; v

�

; x; v; yg] or G[fv

��

; v

�

; x; v; w

�

; yg] is

an induced W , a contradiction. Hence we many assume that V (G)� V (C) has exactly one

component and that here are two vertices x; y 2 V (G) � V (C) such that xy 2 E(G) and

N

C

(x) = fv

�

; vg for a vertex v 2 V (C) and N

C

(y) = ;. But then G[fv

���

; v

��

; v

�

; v; x; yg]

is an induced W , a contradiction.

4 CONCLUDING REMARKS

Our results obtained in this paper and in [FRS] may now be summarized as follows: We

have examined Theorem A1 in the light of the Metaconjecture for all forbidden pairs RS

with R

�

=

C and S is one of the graphs P

4

; P

5

; P

6

; Z

1

; Z

2

; B and W . Hence the two cases

where S

�

=

C

3

or S

�

=

N remain. Note that `C

3

�freeness' is not a reasonable choice, since

pancyclicity implies the existence of a C

3

. For S

�

=

N observe that all exceptional graphs

of Theorem B15 are also CN -free. Moreover, we have constructed a large variety of classes

of exceptional graphs that are CN -free, and there is no indication that this might be a

`simple family' (in the terminology of the Metaconjecture). In addition the classes of CDP

7

-

free graphs, of CHP

7

-free graphs, and of CZ

3

-free graphs that are not pancyclic are now

completely characterized.

Finally, observe that all exceptional graphs have connectivity � = 2.

Corollary C1. Let R; S and T be connected graphs (R; S; T 6

�

=

P

3

) and G be a 3-

connected graph. Then G is RS-free or G is RST -free implies that G is pancyclic, if R

�

=

C

and S is one of the following graphs P

4

; P

5

; P

6

; Z

1

; Z

2

; Z

3

; B;N or W , or ST is one of the

19



pairs of graphs DP

7

or HP

7

.

The case R

�

=

C and S

�

=

N has been settled by Shephard [Sh].

References

[Be] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity.

Thesis, Memphis State University, USA, 1991.

[Bo] J.A. Bondy, Pancyclic Graphs, Proceedings of the Second Louisiana Conference on

Combinatorics, Graph Theory and Computing, Congressus Numerantium III (1971)

167-172.

[BM] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London

and Elsevier, New York, 1976.

[BV] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensusing hamil-

tonicity or pancyclicity of K

1;3

-free graphs, Contemporary Methods in Graph Theory

(R. Bodendiek ed.). BI-Wiss. Verl., Mannheim-Wien-Z�urich, 1990, 181-194.

[FRS] R.J. Faudree, R. Ryj�a�cek and I. Schiermeyer, Forbidden subgraphs and cycle extend-

ability, J. Combin. Math. Combin. Comput., to appear.

[Sh] F.B. Shepard, Hamiltonicity in Claw-free Graphs, J. Combin. Theory Ser. B 53 (1991)

173-194.

20


