Shortest walks in almost claw-free graphs

Odile Favaron ${ }^{1}$, Evelyne Flandrin ${ }^{1}$, Hao Li ${ }^{1,3}$, Zdeněk Ryjáček ${ }^{2}$

${ }^{1}$ L.R.I., URA 410 CNRS, Bât. 490, Université Paris-Sud, 91405 Orsay cedex, France
${ }^{2}$ Department of Mathematics, University of West Bohemia, 30614 Pilsen, Czechoslovakia

Abstract

There have been many results concerning claw-free graphs and hamiltonicity. Recently, Jackson and Wormald have obtained more general results on walks in claw-free graphs. In this paper, we consider the family of almost claw-free graphs that contains the previous one, and give some results on walks, especially on shortest covering walks visiting only once some given vertices.

Throughout the paper, we deal with simple undirected graphs without loops and multiple edges. A (x_{0}, x_{l})-walk (or simply a walk) in G is a sequence of vertices $C=$ $x_{0} x_{1} \ldots x_{l}$ such that $x_{i} x_{i+1} \in E(G)$ for every $i=0,1, \ldots, l-1$. If $x \in V(G)$ occurs in this sequence, then we write $x \in C$ and we say that x is visited by C. The number l will be called the length of C and denoted by $l(C)$. If $x_{0}=x_{l}$, then we say that C is a closed walk. For every closed walk $C=x_{0} x_{1} \ldots x_{l}$ and $x \in V(G)$, we put $v(x, C)=\left|\left\{i=1, \ldots, l ; x_{i}=x\right\}\right|$. If $v(x, C)=t$ then we say that C visits t-times the vertex x. The length of the closed walk can be expressed as $l(C)=\sum_{x \in C} v(x, C)$. A closed walk C such that $v(x, C) \geq 1$ for every $x \in V(G)$ is said to be a covering walk of G (or simply a covering walk). A covering walk C is said to be a k-walk of G or simply a k-walk (k being an integer), if $v(x, C) \leq k$ for every $x \in V(G)$. Clearly, every connected graph has a k-walk for some $k \geq 1$ and every hamiltonian cycle is a 1 -walk.

We consider every walk to be oriented in the natural way by increasing subscripts (taken modulo l for closed walks) and, for any $x \in C$, we denote by x^{-}and x^{+}the predecessor and successor of x, respectively, on C in this orientation. If we consider a walk C in the opposite orientation, then we denote it by \overleftarrow{C}.

If C is a walk, every (a, b)-walk P such that P is a subwalk of C (i.e. a subsequence of consecutive vertices of C) will be denoted by $a C b$. If moreover C is a closed walk and

[^0]for a vertex x we have $a^{-}=x, b^{+}=x$ and $x \notin P$, then the walk $a C b$ will be called a branch of C at x (i.e. branches of C at x are the "parts of C " between two consecutive visits of x by C). The vertices a and b are the endvertices of the branch P. Clearly, for every $x \in C$, there are $v(x, C)$ branches of C at x.

We say that the vertices x and y are related (denoted $x \sim y)$, if $x=y$ or $x y \in E(G)$. When $x \sim y$ then $\widehat{x y}$ denotes the sequence $x y$ or the single vertex x, respectively.

For any $M \subset V(G),\langle M\rangle$ denotes the subgraph induced by M in G. For any $x \in V(G)$, the neighbourhood of x, denoted by $N(x)$, is the set of vertices which are adjacent to x. If $\langle N(x)\rangle$ is connected then we say that x is a locally connected vertex. The graph G is locally connected if all its vertices are locally connected.

A set $A \subset V(G)$ is independent if any $x, y \in A$ are non-adjacent. The size of a maximum independent set in G is denoted by $\alpha(G)$ and referred to as the independence number of G. A set $B \subset V(G)$ is dominating if every vertex of G belongs to B or has a neighbour in B. The size of a minimum dominating set is called the domination number of G and denoted by $\gamma(G)$. If $\gamma(G) \leq k$, we say that G is k-dominated.

If H is a graph, then G is said to be H-free if G does not contain a copy of H as an induced subgraph. The complete bipartite graph $K_{1,3}$ will be referred to as the claw. Clearly, G is claw-free if and only if $\alpha(\langle N(x)\rangle) \leq 2$ for every $x \in V(G)$.

Claw-free graphs are known to have many interesting properties. Oberly and Sumner [6] proved the following result:

Theorem A: Every connected locally connected claw-free graph on at least three vertices is hamiltonian.

Clark [2] showed that, under the same assumptions, G is vertex-pancyclic. Hendry [3] further strengthened this result showing that G is fully cycle extendable.

Jackson and Wormald [4] removed the hypothesis " G is locally connected" and obtained the following result:

Theorem B: Every connected claw-free graph has a 2-walk.
In [5], the class of claw-free graphs was extended in the following way: we say that G is almost claw-free if there is an independent set $A \subset V(G)$ such that $\alpha(\langle N(x)\rangle) \leq 2$ for $x \notin A$ and $\gamma(\langle N(x)\rangle) \leq 2<\alpha(\langle N(x)\rangle)$ for $x \in A$. Equivalently, G is almost claw-free if the centers of induced claws are independent and their neighbourhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free.

It can be shown (see [5]) that every almost claw-free graph is $K_{1,5}$-free and $K_{1,1,3}$-free and that, for every $x \in A, \gamma(\langle N(x)\rangle)=2$. In [5] and [1], several results in claw-free graphs are extended to the class of almost claw-free graphs.

In the present paper we proceed on in the investigations which were done in [4]. Our theorem 7 is a common generalization of Theorems A and B.

First we show that in almost claw-free graphs every covering walk can be shortened
until it becomes a 2 -walk.
Proposition 1 (reduction lemma): Let G be an almost claw-free graph, $x \in V(G)$ and C a covering walk. If $v(x, C) \geq 3$ then there exists a covering walk C^{\prime} such that $l\left(C^{\prime}\right) \leq l(C)-1, v\left(x, C^{\prime}\right)=v(x, C)-1$ and $v\left(y, C^{\prime}\right) \leq v(y, C) \forall y \neq x$.

Proof: Suppose that $v(x, C) \geq 3$ and denote by $P_{1}, \ldots, P_{s}(s \geq 3)$ the branches of C at x and by x_{i}^{k} the endvertices of $P_{i}(i=1, \ldots, s ; k=1,2)$ in accordance with the orientation of C.

If there are i, j, k, h such that $i \neq j$ and $x_{i}^{k} \sim x_{j}^{h}$, then we can suppose without loss of generality (changing if necessary the orientation of some branches and the order of the branches) that $i=1, j=2, k=2$ and $h=1$. The closed walk $C^{\prime}=x P_{1} \widehat{x_{1}^{2} x_{2}^{1}} P_{2} x P_{3} x \ldots P_{s} x$, obtained from C by deleting the edges $x_{1}^{2} x$ and $x x_{2}^{1}$ and adding the edge or vertex $\widehat{x_{1}^{2} x_{2}^{1}}$, has the required property.

We thus suppose that x_{i}^{k} and x_{j}^{h} are not related for all $i \neq j, i, j \in\{1,2, \ldots, s\}$ and for all $k, h \in\{1,2\}$ (but x_{i}^{1} and x_{i}^{2} can be related). This implies $x \in A$. Hence there are vertices d_{1} and d_{2} in $N(x)$ such that every vertex in $N(x)$ is adjacent to d_{1} or d_{2}. As the set A is independent, neither d_{1} nor d_{2} can center a claw and therefore at least one of them (say, d_{1}) is adjacent to both endvertices of some P_{i} (say, P_{1}) and to at least one other vertex x_{j}^{k} (say, x_{2}^{1}). Since C is a covering walk, there exists a branch $P_{i_{0}}$ that visits d_{1}. Clearly $d_{1} \notin\left\{x_{i_{0}}^{1}, x_{i_{0}}^{2}\right\}$ for otherwise endvertices of different branches would be related.

If $d_{1}^{+} \sim d_{1}^{-}$, then C^{\prime} is obtained from C by replacing the subwalk $d_{1}^{-} d_{1} d_{1}^{+}$by $\widehat{d_{1}^{-}} d_{1}^{+}$ and the subwalk $x_{1}^{2} x x_{2}^{1}$ by $x_{1}^{2} d_{1} x_{2}^{1}$.

Henceforth d_{1}^{-}and d_{1}^{+}are not related.
If $d_{1} \in P_{1}$, then, considering $\left\langle d_{1}, d_{1}^{-}, d_{1}^{+}, x_{2}^{1}\right\rangle$ and the fact that $d_{1} \notin A$, we see that $d_{1}^{-} \sim x_{2}^{1}$ or $d_{1}^{+} \sim x_{2}^{1}$. In the first case we take $C^{\prime}=x_{1}^{1} P_{1} \widehat{d_{1}^{-}} x_{2}^{1} P_{2} x P_{3} x \ldots P_{s} x \overleftarrow{P}_{1} d_{1} x_{1}^{1}$ which is obtained from C by deleting the edges $x x_{1}^{1}, x x_{2}^{1}, d_{1}^{-} d_{1}$ and adding $\widehat{d_{1}^{-} x_{2}^{1}}$ and $d_{1} x_{1}^{1}$. In the second case similarly $C^{\prime}=x P_{1} d_{1} x_{1}^{2} \stackrel{\leftarrow}{{ }_{P}^{1}} 1 \widehat{d_{1}^{+} x_{2}^{1}} P_{2} x P_{3} x \ldots P_{s} x$.

If $d_{1} \in P_{i}$ for some $i \geq 2$, then, considering $\left\langle d_{1}, d_{1}^{-}, d_{1}^{+}, x_{1}^{1}\right\rangle$, we see that $d_{1}^{-} \sim x_{1}^{1}$ or $d_{1}^{+} \sim x_{1}^{1}$. In the first case $C^{\prime}=x_{1}^{1} P_{1} x_{1}^{2} d_{1} P_{i} x P_{i+1} x \ldots P_{s} x P_{2} x \ldots P_{i-1} x P_{i} \widehat{d_{1}^{\prime} x_{1}^{1}}$ is obtained from C by deleting the edges $x x_{1}^{1}, x_{1}^{2} x, d_{1}^{-} d_{1}$ and adding $x_{1}^{2} d_{1}$ and $\widehat{d_{1}^{-} x_{1}^{1}}$. In the second case, $C^{\prime}=x P_{2} x P_{3} x \ldots P_{i} d_{1} x_{1}^{2} \overleftarrow{P}_{1} x_{1}^{1} d_{1}^{+} P_{i} x P_{i+1} x \ldots P_{s} x$ is obtained from C by deleting the edges $x x_{1}^{1}, x_{1}^{2} x, d_{1} d_{1}^{+}$and adding $x_{1}^{2} d_{1}$ and $\widehat{x_{1}^{1} d_{1}^{+}}$.

In all cases, the new walk C^{\prime} has the required properties.
If we apply the reduction lemma while there exists some vertex which is visited at least three times by C, we obtain the following three corollaries. The second one extends Theorem A.

Corollary 2: Every shortest covering walk of a connected almost claw-free graph is a 2-walk.

Corollary 3: Every connected almost claw-free graph has a 2-walk.
Corollary 4: In a connected almost claw-free graph, if there is a covering walk visiting exactly once the vertex x, then there is a 2 -walk visiting x exactly once.

In the following, we are interested in those vertices which are visited exactly once by some 2-walk. It is easy to see that such vertices cannot be cutvertices of G. The next proposition shows that in almost claw-free graphs this trivial necessary condition is also sufficient.

Proposition 5: Let G be a connected almost claw-free graph and $x \in V(G)$. Then there is a 2-walk C such that $v(x, C)=1$ if and only if x is not a cutvertex of G.

Proof: Clearly if $v(x, C)=1$ for some 2 -walk, then x is not a cutvertex. So suppose that x is not a cutvertex and $v(x, C)=2$ for every 2 -walk. Let C be a 2 -walk. Denote by P, Q the two branches of C at x and by $p_{1}, p_{2}, q_{1}, q_{2}$ their endvertices, respectively.

If $p_{i} \sim q_{j}$ for some $i, j \in\{1,2\}$, for example $p_{2} \sim q_{1}$, then the walk $C^{\prime}=x p_{1} P \widehat{p_{2} q_{1} Q q_{2} x}$ obtained from C by deleting the edges $x p_{2}, x q_{1}$ and adding $\widehat{p_{2} q_{1}}$ satisfies $v\left(x, C^{\prime}\right)=1$; thus vertices p_{i} and q_{j} are not related $\forall i, j \in\{1,2\}$.

If $p_{1} \sim p_{2}$ then we observe that, as x is not a cutvertex of G, there are vertices $a \in P$ and $b \in Q$ such that $a \sim b$. If we put $C^{\prime}=p_{1} P \widehat{a b} Q q_{2} x q_{1} Q \widehat{b a P} \widehat{p_{2} p_{1}}$ (deleting from C the edges $x p_{1}, x p_{2}$ and adding $\widehat{p_{2} p_{1}}$ and twice $\left.\widehat{a b}\right)$, then $v\left(x, C^{\prime}\right)=1$ and, by Corollary 4, there is a 2 -walk that visits x exactly once. Consequently, p_{1} and p_{2} are not related and similarly q_{1} and q_{2} are not related.

Hence no two of the vertices $p_{1}, p_{2}, q_{1}, q_{2}$ are related and thus $x \in A$. As G is almost claw-free,$\langle N(x)\rangle$ is 2-dominated. Let $\left\{d_{1}, d_{2}\right\}$ be a dominating set of $\langle N(x)\rangle$.

Suppose first that d_{1} is adjacent to some p_{i} and $q_{j}, i, j \in\{1,2\}$, for example p_{2} and q_{1}. In this case, for the walk $C^{\prime}=x p_{1} P p_{2} d_{1} q_{1} Q q_{2} x$, obtained from C by deleting the edges $x p_{2}, x q_{1}$ and adding $d_{1} p_{2}$ and $d_{1} q_{1}$, we have $v\left(x, C^{\prime}\right)=1$ and (using, if necessary, Corollary 4), we have a contradiction.

Thus some of the d_{i} 's (say d_{1}) dominates p_{1} and p_{2} and the other one, d_{2}, dominates q_{1} and q_{2}. We again find vertices $a \in P$ and $b \in Q$ such that $a \sim b$ (note that the edge $a b$ may be one of the edges $d_{1} q_{i}$ or $d_{2} p_{j}$). If we put $C^{\prime}=x p_{1} P \widehat{a b} Q q_{2} d_{2} q_{1} Q \widehat{b a} P p_{2} x$ (deleting in C the edges $x q_{1}, x q_{2}$ and adding $d_{2} q_{1}, d_{2} q_{2}$ and twice $\widehat{a b}$) then $v\left(x, C^{\prime}\right)=1$ and, by Corollary 4, we can again construct a 2 -walk that visits x exactly once. This contradiction achieves the proof of Proposition 5.

We now turn our attention to shortest covering walks, i.e., to 2 -walks with as few edges as possible. The number of vertices which are visited twice by such a 2 -walk is as small as possible. The following lemma studies the structure of the neighborhood of the vertices which are visited twice by a shortest 2 -walk.

Lemma 6: Let G be a connected almost claw-free graph, C a shortest covering walk of G and x a vertex of G which is visited twice by C. Let P and Q be the two branches of C at x with endvertices $p_{1}, p_{2}, q_{1}, q_{2}$, respectively. Then
(i) $\forall i, j \in\{1,2\}, p_{i}$ and q_{j} are not related
(ii) If moreover $x \notin A$, then $p_{1} \sim p_{2}, q_{1} \sim q_{2}$ and $\forall i, j \in\{1,2\}$, every vertex of $N\left(p_{i}\right) \cap N\left(q_{j}\right) \cap N(x)$ centres a claw.

Proof: Assume that G, C, x, P and Q fulfil the hypotheses of Lemma 6 .
(i) If $p_{1} \sim q_{1}$, then the covering walk $C^{\prime}=p_{1} P p_{2} x q_{2} \stackrel{\leftarrow}{Q} \widehat{q_{1} p_{1}}$ is shorter than C.
(ii) Since $x \notin A,\left\langle x, p_{1}, p_{2}, q_{1}\right\rangle$ is not a claw and by (i), $p_{1} \sim p_{2}$. Similarly, $q_{1} \sim q_{2}$. Let a be a vertex of $N\left(p_{i}\right) \cap N\left(q_{j}\right) \cap N(x)$; we can suppose without loss of generality that $a \in P$ and $i=j=1$. If $a^{-} \sim a^{+}$, then the walk $p_{1} P \widehat{a^{-}}+P p_{2} x q_{2} \stackrel{\leftarrow}{Q} q_{1} a p_{1}$ is
 $a^{+} x q_{2} \overleftarrow{\leftarrow} q_{1} a \overleftarrow{(} \widehat{p_{1} p_{2}} \stackrel{\leftarrow}{P} a^{+}$is shorter than C, respectively. Therefore a centres the claw $\left\langle a, x, a^{-}, a^{+}\right\rangle$.

In the 2-connected almost claw-free graph of Figure 1, the length of a shortest 2-walk is 17 (e.g. bcdefnoghijaxmlxkb). In accordance with Proposition 5, the vertex x is visited once by some 2 -walk (e.g. by abcdecbkxlmnofghija of length 18) but it is visited twice by every shortest 2 -walk.

Figure 1

This example shows that, in the statement of Proposition 5, "2-walk" cannot be replaced by "shortest 2-walk". This, however, becomes possible with a good choice of the vertex x. Note that, in our counterexample, $\langle N(x)\rangle$ is not connected. Motivated by Therem A, we strengthen in Theorems 7 and 10 the result of Proposition 5 for the locally connected vertices of G, first restricting our considerations to those ones which do not centre a claw.

Theorem 7: Let G be a connected almost claw-free graph and put

$$
B=\{x \in V(G) \backslash A ;\langle N(x)\rangle \text { connected }\}
$$

Then there is a shortest 2 -walk C such that $v(x, C)=1$ for every $x \in B$.
Proof: Suppose, on the contrary, that for every shortest 2-walk C the set $M_{C}=\{x \in$ $B \mid v(x, C)=2\}$ is not empty. Let C be a shortest 2 -walk for which the cardinality of M_{C} is minimum and x a vertex of M_{C}. Let P and Q be the branches of C at x with endvertices p_{1}, p_{2} and q_{1}, q_{2} respectively. Since $\langle N(x)\rangle$ is connected, there is a shortest path R in $\langle N(x)\rangle$ which joins one of p_{1}, p_{2} to one of q_{1}, q_{2}. Assume that C is chosen so that, among all shortest 2 -walks with $x \in M_{C}$ and $\left|M_{C}\right|$ minimum, R is shortest possible. We can assume without loss of generality that R is a $\left(p_{1}, q_{1}\right)$-path and none of the vertices p_{2}, q_{2} is on R. Let $p_{1}, x_{1}, \ldots, x_{k}, q_{1}$ be the vertices of R. Since $x \notin A$ and R is a shortest path, $k \leq 2$ (otherwise $\left\langle x, p_{1}, x_{2}, q_{1}\right\rangle$ is a claw). By Lemma 6 (i), $k \geq 1$. If $k=1$, then, by Lemma 6 (ii), the vertex x_{1} belongs to A and the walk $p_{1} P p_{2} x q_{2} \overleftarrow{Q} q_{1} x_{1} p_{1}$ contradicts the minimality of M_{C}. Therefore $k=2$. Again by Lemma 6(ii), $p_{1} \sim p_{2}$ and $q_{1} \sim q_{2}$. Suppose now that $x_{2} \in P$. If $x_{2} \in A$, then for the walk $C^{\prime}=x q_{2} \stackrel{\leftarrow}{Q} q_{1} x_{2} P \widehat{p_{2} p_{1}} P x_{2} x$ we have $l\left(C^{\prime}\right)=l(C)$ and $\left|M_{C^{\prime}}\right|<\left|M_{C}\right|$. Hence $x_{2} \notin A$. We consider the induced subgraph $\left\langle x_{2}, x_{2}^{-}, x_{2}^{+}, x\right\rangle$. If $x_{2}^{-} \sim x_{2}^{+}$, then the walk $x p_{1} P \widehat{x_{2}^{-} x_{2}^{+}} P x x_{2} q_{1} Q q_{2} x$ is shorter than C or contradicts the minimality of R. If $x_{2}^{-} x \in E(G)$, then the walk $C^{\prime}=x q_{2} \stackrel{\leftarrow}{Q} q_{1} x_{2} P \widehat{p_{2} p_{1}} P x_{2}^{-} x$ is shorter than C and the same holds if $x_{2}^{+} x \in E(G)$ for the walk $C^{\prime}=x x_{2}^{+} P \widehat{p_{2} p_{1}} P x_{2} q_{1} Q q_{2} x$. Thus $\left\langle x_{2}, x_{2}^{-}, x_{2}^{+}, x\right\rangle$ is a claw, which contradicts the fact that $x_{2} \notin A$. Hence necessarily $x_{2} \notin P$ and similarly $x_{1} \notin Q$. As C is a covering walk, we have $x_{1} \in P$ and $x_{2} \in Q$. Since $x_{1} x_{2} \in E(G)$, at least one of x_{1}, x_{2} (say, x_{1}) is not in A. We now consider $\left\langle x_{1}, x_{1}^{-}, x_{1}^{+}, x\right\rangle$. If $x_{1}^{-} x_{1}^{+} \in E(G)$, then the walk $x x_{1} p_{1} P x_{1}^{-} x_{1}^{+} P p_{2} x q_{1} Q q_{2} x$ contradicts the minimality of R. The same holds for the walk $x x_{1}^{-} \stackrel{\leftarrow}{P} \widehat{p_{1} p_{2}} P x_{1} x q_{1} Q q_{2} x$ or $x x_{1}^{+} P \widehat{p_{2} p_{1}} P x_{1} x q_{1} Q q_{2} x$ if $x_{1}^{-} x \in E(G)$ or $x_{1}^{+} x \in E(G)$, respectively. Thus $\left\langle x_{1}, x_{1}^{-}, x_{1}^{+}, x\right\rangle$ is a claw, a contradiction.

We notice that Theorem 7 is a common extension of Theorems A and B and it also admits the following corollary.

Corollary 8: Let G be a connected almost claw-free graph and put

$$
B=\{x \in V(G) \backslash A ;\langle N(x)\rangle \text { connected }\}
$$

Then G can be vertex-covered by at most $n-|B|+1$ elementary cycles (where a closed walk of length 2 is considered as an elementary cycle of length 2).

Proof: By Theorem 7, there is a shortest 2-walk C that visits every vertex of B exactly once. We may obtain elementary cycles by cutting the 2 -walk at any vertex x with $v(x, C)=2$ in such a way that if P and Q are the two branches at x, then we cut the walk into $x P x$ and $x Q x$. There are at most $n-|B|+1$ such elementary cycles for we have at most $n-|B|$ vertices with $v(x, C)=2$. The graph G is vertex-covered by these cycles since their union gives a covering walk.

In the study of locally connected vertices which belong to A we use the following lemma.

Lemma 9: Let G be a connected almost claw-free graph, x a non-separating vertex which is visited twice by every shortest covering walk of G and C a shortest covering walk. Then, with the same notation as in Lemma 6:
(i) $p_{1} \neq p_{2}$ and $q_{1} \neq q_{2}$,
(ii) $\forall i, j \in\{1,2\}, \quad N\left(p_{i}\right) \cap N\left(q_{j}\right)=\{x\}$.

Proof. Assume that G, x and C fulfil the hypotheses of Lemma 9.
(i) Since x is not a cutvertex of G, there are vertices $a \in P$ and $b \in Q$ such that $a \sim b$. If, e.g., $p_{1}=p_{2}$, then for the walk $C^{\prime}=x q_{1} Q \widehat{b a} P p_{2}\left(=p_{1}\right) P \widehat{a b} Q q_{2} x$, which is obtained from C by deleting the edges $x p_{1}, x p_{2}$ and adding twice $\widehat{a b}$, we have $l\left(C^{\prime}\right) \leq l(C)$ and $v\left(x, C^{\prime}\right)=1$, a contradiction.
(ii) If, e.g., $a \in N\left(p_{1}\right) \cap N\left(q_{1}\right)$ and $a \neq x$, then the walk $C^{\prime}=x p_{2} \stackrel{\leftarrow}{P} p_{1} a q_{1} Q q_{2} x$ also yields a contradiction.

Theorem 10: Let G be a connected almost claw-free graph and $x \in V(G)$. If $\langle N(x)\rangle$ is connected then there is a shortest 2 -walk C such that $v(x, C)=1$.

Proof. Let $x \in V(G)$ be such that $v(x, C)=2$ for every shortest 2-walk C. By Theorem 7, it is sufficient to consider the case $x \in A$. Choose C in such a way that, among all shortest 2-walks C with branches P and Q at x and endvertices p_{1}, p_{2} and q_{1}, q_{2}, respectively, the p_{1}, q_{1}-path R in $\langle N(x)\rangle$ is shortest possible (i.e., there is no shortest 2-walk C^{\prime} containing a path in $\langle N(x)\rangle$ between the disjoint sets $\left\{p_{1}, p_{2}\right\}$ and $\left\{q_{1}, q_{2}\right\}$ that is shorter than $\left.R\right)$. Let $p_{1}, x_{1}, \ldots, x_{k}, q_{1}$ be the vertices of R. Note that, since $x \in A$ and G is almost claw-free, no vertex of $N(x)$ centres a claw.

We first show that $k=2$.
Let $\left\{d_{1}, d_{2}\right\}$ be a dominating set of $\langle N(x)\rangle$. By Lemma $9($ ii $)$, one of d_{1}, d_{2} (say, d_{1}) dominates p_{1} and p_{2} and the other, i.e. d_{2}, dominates q_{1} and q_{2}.

Suppose now that $x_{k} \in P$ and consider $\left\langle x_{k}, x_{k}^{-}, x_{k}^{+}, x\right\rangle$. If $x_{k}^{-} \sim x_{k}^{+}$, then the walk $x p_{1} P \widehat{x_{k}^{-}}{ }_{k}^{+} P p_{2} x x_{k} q_{1} Q q_{2} x$ is shorter than C or contradicts the minimality of R. In the case $x_{k}^{-} x \in E(G)$ the walk $C^{\prime}=x p_{1} P x_{k}^{-} x \stackrel{\leftarrow}{P} x_{k} q_{1} Q q_{2} x$ and in the case $x_{k}^{+} x \in E(G)$ the walk $C^{\prime}=x p_{1} P x_{k} q_{1} Q q_{2} x x_{k}^{+} P p_{2} x$ contradicts Lemma 6(i) or Lemma 9(ii) since p_{1} and p_{2} are endvertices of two different branches of C^{\prime} that are dominated by the same vertex d_{1}. Thus $\left\langle x_{k}, x_{k}^{-}, x_{k}^{+}, x\right\rangle$ is a claw, which is a contradiction. Hence, as C is a covering walk, necessarily $x_{k} \in Q$ and, by symmetry, $x_{1} \in P$. This implies that x_{k}^{-}and x_{k}^{+}are not related for otherwise $x x_{k} q_{1} Q \widehat{x_{k}^{-} x_{k}^{+}} Q q_{2} x p_{1} P p_{2} x$ is shorter than C or contradicts the minimality of R. Similarly, x_{1}^{-}and x_{1}^{+}are not related.

We show that $p_{1} p_{2} \notin E(G)$ and $q_{1} q_{2} \notin E(G)$. Let, e.g. $q_{1} q_{2} \in E(G)$ and consider $\left\langle x_{k}, x_{k}^{-}, x_{k}^{+}, x\right\rangle$. If $x_{k}^{-} x \in E(G)$ or $x_{k}^{+} x \in E(G)$, then the walk $x x_{k} Q q_{2} q_{1} Q x_{k}^{-} x p_{1} P p_{2} x$ or $x x_{k}^{+} Q q_{2} q_{1} Q x_{k} x p_{1} P p_{2} x$, respectively, contradicts the minimality of R. Thus $\left\langle x_{k}, x_{k}^{-}, x_{k}^{+}, x\right\rangle$
is a claw, a contradiction which implies $q_{1} q_{2} \notin E(G)$ and, by symmetry, $p_{1} p_{2} \notin E(G)$.
Necessarily, d_{1} is not in R since otherwise, as R is shortest possible, d_{1} would centre a claw. Moreover, x_{1} is the only vertex among $x_{1}, x_{2}, \ldots, x_{k}$ which can be adjacent to d_{1} (if $x_{i}, i>1$ was adjacent to d_{1}, then, from the hypothesis on $R,\left\langle d_{1}, p_{1}, p_{2}, x_{i}\right\rangle$ would be a claw). Similarly, x_{k} is the only vertex among $x_{1}, x_{2}, \ldots, x_{k}$ which can be adjacent to d_{2} and hence $k=2$.

We now consider the induced subgraphs $\left\langle x_{1}, x_{1}^{-}, x_{1}^{+}, x_{2}\right\rangle$ and $\left\langle x_{2}, x_{2}^{-}, x_{2}^{+}, x_{1}\right\rangle$. We know from above that neither x_{1}^{-}and x_{1}^{+}nor x_{2}^{-}and x_{2}^{+}are related. As $x \in A$, neither x_{1} nor x_{2} can centre a claw and then we have, up to symmetry, the following three possibilities.

\[

\]

In each of these cases, p_{1} and p_{2} are endvertices of different branches of C^{\prime} at x, which contradicts Lemma 9. This contradiction completes the proof of Theorem 10.

Corollary 11: Let G be a connected locally connected almost claw-free graph. Then for every $x \in V(G)$ there is a shortest 2-walk C such that $v(x, C)=1$.

References

[1] H.J. Broersma, Z. Ryjáček, I. Schiermeyer, Hamiltonicity and toughness in almost claw-free graphs. Preprint, 1992
[2] L. Clark, "Hamiltonian properties of connected locally connected graphs", Congr. Numer. 32 (1981) 199-204.
[3] G.R.T. Hendry, "Extending cycles in graphs", Discrete Math. 85 (1990) 59-72.
[4] B. Jackson and N.C. Wormald, "k-walks of graphs", Australas. J. Combin. 2 (1991) 135-146.
[5] Z. Ryjáček, "Almost claw-free graphs", preprint, Univ. of West Bohemia, 1991, to appear.
[6] D.J. Oberly and D.P. Sumner, "Every connected locally connected nontrivial graph with no induced claw is hamiltonian", J. Graph Theory 3 (1979) 351-356.
[7] G. Pruesse, A generalization of hamiltonicity. Thesis, Univ. of Toronto, 1990.

[^0]: ${ }^{2}$ This research was done while the author was visiting L.R.I.
 ${ }^{3}$ Research partially supported by PRC Math.Info.

