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Abstract

There have been many results concerning claw-free graphs and hamiltonicity.

Recently, Jackson and Wormald have obtained more general results on walks in

claw-free graphs. In this paper, we consider the family of almost claw-free graphs

that contains the previous one, and give some results on walks, especially on shortest

covering walks visiting only once some given vertices.

Throughout the paper, we deal with simple undirected graphs without loops and

multiple edges. A (x

0

; x

l

)-walk (or simply a walk) in G is a sequence of vertices C =

x

0

x

1

:::x

l

such that x

i

x

i+1

2 E(G) for every i = 0; 1; :::; l� 1. If x 2 V (G) occurs in this

sequence, then we write x 2 C and we say that x is visited by C. The number l will be

called the length of C and denoted by l(C). If x

0

= x

l

, then we say that C is a closed walk.

For every closed walk C = x

0

x

1

:::x

l

and x 2 V (G), we put v(x;C) = jfi = 1; :::; l;x

i

= xgj.

If v(x;C) = t then we say that C visits t-times the vertex x. The length of the closed

walk can be expressed as l(C) =

X

x2C

v(x;C). A closed walk C such that v(x;C) � 1 for

every x 2 V (G) is said to be a covering walk of G (or simply a covering walk). A covering

walk C is said to be a k-walk of G or simply a k-walk (k being an integer), if v(x;C) � k

for every x 2 V (G). Clearly, every connected graph has a k-walk for some k � 1 and

every hamiltonian cycle is a 1-walk.

We consider every walk to be oriented in the natural way by increasing subscripts

(taken modulo l for closed walks) and, for any x 2 C, we denote by x

�

and x

+

the

predecessor and successor of x, respectively, on C in this orientation. If we consider a

walk C in the opposite orientation, then we denote it by

 

C

.

If C is a walk, every (a; b)-walk P such that P is a subwalk of C (i.e. a subsequence

of consecutive vertices of C) will be denoted by aCb. If moreover C is a closed walk and
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for a vertex x we have a

�

= x, b

+

= x and x =2 P , then the walk aCb will be called a

branch of C at x (i.e. branches of C at x are the \parts of C" between two consecutive

visits of x by C). The vertices a and b are the endvertices of the branch P . Clearly, for

every x 2 C, there are v(x;C) branches of C at x.

We say that the vertices x and y are related (denoted x � y), if x = y or xy 2 E(G).

When x � y then

c

xy denotes the sequence xy or the single vertex x, respectively.

For anyM � V (G), hMi denotes the subgraph induced byM in G. For any x 2 V (G),

the neighbourhood of x, denoted by N(x), is the set of vertices which are adjacent to x.

If hN(x)i is connected then we say that x is a locally connected vertex. The graph G is

locally connected if all its vertices are locally connected.

A set A � V (G) is independent if any x; y 2 A are non-adjacent. The size of a

maximum independent set in G is denoted by �(G) and referred to as the independence

number of G. A set B � V (G) is dominating if every vertex of G belongs to B or has a

neighbour in B. The size of a minimum dominating set is called the domination number

of G and denoted by 
(G). If 
(G) � k, we say that G is k-dominated.

If H is a graph, then G is said to be H-free if G does not contain a copy of H as

an induced subgraph. The complete bipartite graph K

1;3

will be referred to as the claw.

Clearly, G is claw-free if and only if �(hN(x)i) � 2 for every x 2 V (G).

Claw-free graphs are known to have many interesting properties. Oberly and Sumner

[6] proved the following result:

Theorem A: Every connected locally connected claw-free graph on at least three vertices

is hamiltonian.

Clark [2] showed that, under the same assumptions, G is vertex-pancyclic. Hendry [3]

further strengthened this result showing that G is fully cycle extendable.

Jackson and Wormald [4] removed the hypothesis \G is locally connected" and ob-

tained the following result:

Theorem B: Every connected claw-free graph has a 2-walk.

In [5], the class of claw-free graphs was extended in the following way: we say that G

is almost claw-free if there is an independent set A � V (G) such that �(hN(x)i) � 2 for

x =2 A and 
(hN(x)i) � 2 < �(hN(x)i) for x 2 A. Equivalently, G is almost claw-free if

the centers of induced claws are independent and their neighbourhoods are 2-dominated.

Clearly, every claw-free graph is almost claw-free.

It can be shown (see [5]) that every almost claw-free graph is K

1;5

-free and K

1;1;3

-free

and that, for every x 2 A, 
(hN(x)i) = 2. In [5] and [1], several results in claw-free

graphs are extended to the class of almost claw-free graphs.

In the present paper we proceed on in the investigations which were done in [4]. Our

theorem 7 is a common generalization of Theorems A and B.

First we show that in almost claw-free graphs every covering walk can be shortened

2



until it becomes a 2-walk.

Proposition 1 (reduction lemma): Let G be an almost claw-free graph, x 2 V (G)

and C a covering walk. If v(x;C) � 3 then there exists a covering walk C

0

such that

l(C

0

) � l(C)� 1, v(x;C

0

) = v(x;C)� 1 and v(y;C

0

) � v(y;C) 8y 6= x.

Proof: Suppose that v(x;C) � 3 and denote by P

1

,. . ., P

s

(s � 3) the branches of C at x

and by x

k

i

the endvertices of P

i

(i = 1; :::; s; k = 1; 2) in accordance with the orientation

of C.

If there are i; j; k; h such that i 6= j and x

k

i

� x

h

j

, then we can suppose without loss

of generality (changing if necessary the orientation of some branches and the order of the

branches) that i = 1, j = 2, k = 2 and h = 1. The closed walk C

0

= xP

1

d

x

2

1

x

1

2

P

2

xP

3

x:::P

s

x,

obtained from C by deleting the edges x

2

1

x and xx

1

2

and adding the edge or vertex

d

x

2

1

x

1

2

,

has the required property.

We thus suppose that x

k

i

and x

h

j

are not related for all i 6= j, i; j 2 f1; 2; :::; sg and

for all k; h 2 f1; 2g (but x

1

i

and x

2

i

can be related). This implies x 2 A. Hence there

are vertices d

1

and d

2

in N(x) such that every vertex in N(x) is adjacent to d

1

or d

2

.

As the set A is independent, neither d

1

nor d

2

can center a claw and therefore at least

one of them (say, d

1

) is adjacent to both endvertices of some P

i

(say, P

1

) and to at least

one other vertex x

k

j

(say, x

1

2

). Since C is a covering walk, there exists a branch P

i

0

that

visits d

1

. Clearly d

1

=2 fx

1

i

0

; x

2

i

0

g for otherwise endvertices of di�erent branches would be

related.

If d

+

1

� d

�

1

, then C

0

is obtained from C by replacing the subwalk d

�

1

d

1

d

+

1

by

d

d

�

1

d

+

1

and the subwalk x

2

1

xx

1

2

by x

2

1

d

1

x

1

2

.

Henceforth d

�

1

and d

+

1

are not related.

If d

1

2 P

1

, then, considering hd

1

; d

�

1

; d

+

1

; x

1

2

i and the fact that d

1

=2 A, we see

that d

�

1

� x

1

2

or d

+

1

� x

1

2

. In the �rst case we take C

0

= x

1

1

P

1

d

d

�

1

x

1

2

P

2

xP

3

x:::P

s

x

 

P

1

d

1

x

1

1

which is obtained from C by deleting the edges xx

1

1

, xx

1

2

, d

�

1

d

1

and adding

d

d

�

1

x

1

2

and d

1

x

1

1

.

In the second case similarly C

0

= xP

1

d

1

x

2

1

 

P

1

d

d

+

1

x

1

2

P

2

xP

3

x:::P

s

x.

If d

1

2 P

i

for some i � 2, then, considering hd

1

; d

�

1

; d

+

1

; x

1

1

i, we see that d

�

1

� x

1

1

or d

+

1

� x

1

1

. In the �rst case C

0

= x

1

1

P

1

x

2

1

d

1

P

i

xP

i+1

x:::P

s

xP

2

x:::P

i�1

xP

i

d

d

�

1

x

1

1

is obtained

from C by deleting the edges xx

1

1

, x

2

1

x, d

�

1

d

1

and adding x

2

1

d

1

and

d

d

�

1

x

1

1

. In the second

case, C

0

= xP

2

xP

3

x:::P

i

d

1

x

2

1

 

P

1

d

x

1

1

d

+

1

P

i

xP

i+1

x:::P

s

x is obtained from C by deleting the

edges xx

1

1

, x

2

1

x, d

1

d

+

1

and adding x

2

1

d

1

and

d

x

1

1

d

+

1

.

In all cases, the new walk C

0

has the required properties. 2

If we apply the reduction lemma while there exists some vertex which is visited at

least three times by C, we obtain the following three corollaries. The second one extends

Theorem A.

Corollary 2: Every shortest covering walk of a connected almost claw-free graph is a

2-walk.
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Corollary 3: Every connected almost claw-free graph has a 2-walk.

Corollary 4: In a connected almost claw-free graph, if there is a covering walk visiting

exactly once the vertex x, then there is a 2-walk visiting x exactly once.

In the following, we are interested in those vertices which are visited exactly once by

some 2-walk. It is easy to see that such vertices cannot be cutvertices of G. The next

proposition shows that in almost claw-free graphs this trivial necessary condition is also

su�cient.

Proposition 5: Let G be a connected almost claw-free graph and x 2 V (G). Then there

is a 2-walk C such that v(x;C) = 1 if and only if x is not a cutvertex of G.

Proof: Clearly if v(x;C) = 1 for some 2-walk, then x is not a cutvertex. So suppose that

x is not a cutvertex and v(x;C) = 2 for every 2-walk. Let C be a 2-walk. Denote by P ,

Q the two branches of C at x and by p

1

; p

2

; q

1

; q

2

their endvertices, respectively.

If p

i

� q

j

for some i; j 2 f1; 2g, for example p

2

� q

1

, then the walk C

0

= xp

1

P

d

p

2

q

1

Qq

2

x

obtained from C by deleting the edges xp

2

; xq

1

and adding

d

p

2

q

1

satis�es v(x;C

0

) = 1;

thus vertices p

i

and q

j

are not related 8i; j 2 f1; 2g.

If p

1

� p

2

then we observe that, as x is not a cutvertex of G, there are vertices a 2 P

and b 2 Q such that a � b. If we put C

0

= p

1

P

c

abQq

2

xq

1

Q

c

baP

d

p

2

p

1

(deleting from C the

edges xp

1

; xp

2

and adding

d

p

2

p

1

and twice

c

ab), then v(x;C

0

) = 1 and, by Corollary 4,

there is a 2-walk that visits x exactly once. Consequently, p

1

and p

2

are not related and

similarly q

1

and q

2

are not related.

Hence no two of the vertices p

1

; p

2

; q

1

; q

2

are related and thus x 2 A. As G is almost

claw-free , hN(x)i is 2-dominated. Let fd

1

; d

2

g be a dominating set of hN(x)i.

Suppose �rst that d

1

is adjacent to some p

i

and q

j

, i; j 2 f1; 2g, for example p

2

and

q

1

. In this case, for the walk C

0

= xp

1

Pp

2

d

1

q

1

Qq

2

x, obtained from C by deleting the

edges xp

2

; xq

1

and adding d

1

p

2

and d

1

q

1

, we have v(x;C

0

) = 1 and (using, if necessary,

Corollary 4), we have a contradiction.

Thus some of the d

i

's (say d

1

) dominates p

1

and p

2

and the other one, d

2

, dominates

q

1

and q

2

. We again �nd vertices a 2 P and b 2 Q such that a � b ( note that the

edge ab may be one of the edges d

1

q

i

or d

2

p

j

). If we put C

0

= xp

1

P

c

abQq

2

d

2

q

1

Q

c

baPp

2

x

(deleting in C the edges xq

1

; xq

2

and adding d

2

q

1

; d

2

q

2

and twice

c

ab) then v(x;C

0

) = 1

and, by Corollary 4, we can again construct a 2-walk that visits x exactly once. This

contradiction achieves the proof of Proposition 5. 2

We now turn our attention to shortest covering walks, i.e., to 2-walks with as few

edges as possible. The number of vertices which are visited twice by such a 2-walk is as

small as possible. The following lemma studies the structure of the neighborhood of the

vertices which are visited twice by a shortest 2-walk.
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Lemma 6: Let G be a connected almost claw-free graph, C a shortest covering walk of

G and x a vertex of G which is visited twice by C. Let P and Q be the two branches of

C at x with endvertices p

1

; p

2

; q

1

; q

2

, respectively. Then

(i) 8i; j 2 f1; 2g, p

i

and q

j

are not related

(ii) If moreover x =2 A, then p

1

� p

2

, q

1

� q

2

and 8i; j 2 f1; 2g, every vertex of

N(p

i

) \N(q

j

) \ N(x) centres a claw.

Proof: Assume that G, C, x, P and Q ful�l the hypotheses of Lemma 6.

(i) If p

1

� q

1

, then the covering walk C

0

= p

1

Pp

2

xq

2

 

Q

d

q

1

p

1

is shorter than C.

(ii) Since x =2 A, hx; p

1

; p

2

; q

1

i is not a claw and by (i), p

1

� p

2

. Similarly, q

1

� q

2

.

Let a be a vertex of N(p

i

) \ N(q

j

) \ N(x); we can suppose without loss of generality

that a 2 P and i = j = 1. If a

�

� a

+

, then the walk p

1

P

d

a

�

a

+

Pp

2

xq

2

 

Q q

1

ap

1

is

shorter than C. If a

�

x 2 E(G) or a

+

x 2 E(G), then the walk a

�

xq

2

 

Q q

1

aP

d

p

2

p

1

Pa

�

or

a

+

xq

2

 

Q q

1

a

 

P

d

p

1

p

2

 

P

a

+

is shorter than C, respectively. Therefore a centres the claw

ha; x; a

�

; a

+

i. 2

In the 2-connected almost claw-free graph of Figure 1, the length of a shortest 2-walk is

17 (e.g. bcdefnoghijaxm`xkb). In accordance with Proposition 5, the vertex x is visited

once by some 2-walk (e.g. by abcdecbkx`mnofghija of length 18) but it is visited twice

by every shortest 2-walk.

t

a

t

b

t

c

t

d

te

t

f

t

g

t

h

t

i

tj

tk

t`

tm

tn

to

t

x

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

H

H

H

H

H

H

H

H

H

H

@

@

@

@

@

@

@

@

@

@

Figure 1

This example shows that, in the statement of Proposition 5, \2-walk" cannot be re-

placed by \shortest 2-walk". This, however, becomes possible with a good choice of the

vertex x. Note that, in our counterexample, hN(x)i is not connected. Motivated by

Therem A, we strengthen in Theorems 7 and 10 the result of Proposition 5 for the locally

connected vertices of G, �rst restricting our considerations to those ones which do not

centre a claw.
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Theorem 7: Let G be a connected almost claw-free graph and put

B = fx 2 V (G) nA; hN(x)i connectedg.

Then there is a shortest 2-walk C such that v(x;C) = 1 for every x 2 B.

Proof: Suppose, on the contrary, that for every shortest 2-walk C the set M

C

= fx 2

Bjv(x;C) = 2g is not empty. Let C be a shortest 2-walk for which the cardinality ofM

C

is

minimum and x a vertex of M

C

. Let P and Q be the branches of C at x with endvertices

p

1

; p

2

and q

1

; q

2

respectively. Since hN(x)i is connected, there is a shortest path R in

hN(x)i which joins one of p

1

; p

2

to one of q

1

; q

2

. Assume that C is chosen so that, among

all shortest 2-walks with x 2 M

C

and jM

C

j minimum, R is shortest possible. We can

assume without loss of generality that R is a (p

1

; q

1

)-path and none of the vertices p

2

; q

2

is

on R. Let p

1

; x

1

; :::; x

k

; q

1

be the vertices of R. Since x =2 A and R is a shortest path, k � 2

(otherwise hx; p

1

; x

2

; q

1

i is a claw). By Lemma 6(i), k � 1. If k = 1, then, by Lemma 6(ii),

the vertex x

1

belongs to A and the walk p

1

Pp

2

xq

2

 

Q q

1

x

1

p

1

contradicts the minimality

of M

C

. Therefore k = 2. Again by Lemma 6(ii), p

1

� p

2

and q

1

� q

2

. Suppose now that

x

2

2 P . If x

2

2 A, then for the walk C

0

= xq

2

 

Q q

1

x

2

P

d

p

2

p

1

Px

2

x we have l(C

0

) = l(C)

and jM

C

0

j < jM

C

j. Hence x

2

=2 A. We consider the induced subgraph hx

2

; x

�

2

; x

+

2

; xi.

If x

�

2

� x

+

2

, then the walk xp

1

P

d

x

�

2

x

+

2

Pxx

2

q

1

Qq

2

x is shorter than C or contradicts the

minimality of R. If x

�

2

x 2 E(G), then the walk C

0

= xq

2

 

Q q

1

x

2

P

d

p

2

p

1

Px

�

2

x is shorter

than C and the same holds if x

+

2

x 2 E(G) for the walk C

0

= xx

+

2

P

d

p

2

p

1

Px

2

q

1

Qq

2

x. Thus

hx

2

; x

�

2

; x

+

2

; xi is a claw, which contradicts the fact that x

2

=2 A. Hence necessarily x

2

=2 P

and similarly x

1

=2 Q. As C is a covering walk, we have x

1

2 P and x

2

2 Q. Since

x

1

x

2

2 E(G), at least one of x

1

; x

2

(say, x

1

) is not in A. We now consider hx

1

; x

�

1

; x

+

1

; xi.

If x

�

1

x

+

1

2 E(G), then the walk xx

1

p

1

Px

�

1

x

+

1

Pp

2

xq

1

Qq

2

x contradicts the minimality of

R. The same holds for the walk xx

�

1

 

P

d

p

1

p

2

Px

1

xq

1

Qq

2

x or xx

+

1

P

d

p

2

p

1

Px

1

xq

1

Qq

2

x if

x

�

1

x 2 E(G) or x

+

1

x 2 E(G), respectively. Thus hx

1

; x

�

1

; x

+

1

; xi is a claw, a contradiction.

2

We notice that Theorem 7 is a common extension of Theorems A and B and it also

admits the following corollary.

Corollary 8: Let G be a connected almost claw-free graph and put

B = fx 2 V (G) nA; hN(x)i connectedg.

Then G can be vertex-covered by at most n� jBj+ 1 elementary cycles (where a closed

walk of length 2 is considered as an elementary cycle of length 2).

Proof: By Theorem 7, there is a shortest 2-walk C that visits every vertex of B exactly

once. We may obtain elementary cycles by cutting the 2-walk at any vertex x with

v(x;C) = 2 in such a way that if P and Q are the two branches at x, then we cut the

walk into xPx and xQx. There are at most n � jBj + 1 such elementary cycles for we

have at most n � jBj vertices with v(x;C) = 2. The graph G is vertex-covered by these

cycles since their union gives a covering walk.
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In the study of locally connected vertices which belong to A we use the following

lemma.

Lemma 9: Let G be a connected almost claw-free graph, x a non-separating vertex which

is visited twice by every shortest covering walk of G and C a shortest covering walk. Then,

with the same notation as in Lemma 6:

(i) p

1

6= p

2

and q

1

6= q

2

,

(ii) 8i; j 2 f1; 2g; N(p

i

) \N(q

j

) = fxg.

Proof. Assume that G, x and C ful�l the hypotheses of Lemma 9.

(i) Since x is not a cutvertex of G, there are vertices a 2 P and b 2 Q such that a � b.

If, e.g., p

1

= p

2

, then for the walk C

0

= xq

1

Q

c

baPp

2

(= p

1

)P

c

abQq

2

x, which is obtained

from C by deleting the edges xp

1

; xp

2

and adding twice

c

ab, we have l(C

0

) � l(C) and

v(x;C

0

) = 1, a contradiction.

(ii) If, e.g., a 2 N(p

1

) \ N(q

1

) and a 6= x, then the walk C

0

= xp

2

 

P

p

1

aq

1

Qq

2

x also

yields a contradiction.

Theorem 10: Let G be a connected almost claw-free graph and x 2 V (G). If hN(x)i is

connected then there is a shortest 2-walk C such that v(x;C) = 1.

Proof. Let x 2 V (G) be such that v(x;C) = 2 for every shortest 2-walk C. By Theorem 7,

it is su�cient to consider the case x 2 A. Choose C in such a way that, among all shortest

2-walks C with branches P and Q at x and endvertices p

1

; p

2

and q

1

; q

2

, respectively, the

p

1

; q

1

-path R in hN(x)i is shortest possible (i.e., there is no shortest 2-walk C

0

containing

a path in hN(x)i between the disjoint sets fp

1

; p

2

g and fq

1

; q

2

g that is shorter than R).

Let p

1

; x

1

; :::; x

k

; q

1

be the vertices of R. Note that, since x 2 A and G is almost claw-free,

no vertex of N(x) centres a claw.

We �rst show that k = 2.

Let fd

1

; d

2

g be a dominating set of hN(x)i. By Lemma 9(ii), one of d

1

; d

2

(say, d

1

)

dominates p

1

and p

2

and the other, i.e. d

2

, dominates q

1

and q

2

.

Suppose now that x

k

2 P and consider hx

k

; x

�

k

; x

+

k

; xi. If x

�

k

� x

+

k

, then the walk

xp

1

P

d

x

�

k

x

+

k

Pp

2

xx

k

q

1

Qq

2

x is shorter than C or contradicts the minimality of R. In the

case x

�

k

x 2 E(G) the walk C

0

= xp

1

Px

�

k

x

 

P

x

k

q

1

Qq

2

x and in the case x

+

k

x 2 E(G) the

walk C

0

= xp

1

Px

k

q

1

Qq

2

xx

+

k

Pp

2

x contradicts Lemma 6(i) or Lemma 9(ii) since p

1

and

p

2

are endvertices of two di�erent branches of C

0

that are dominated by the same vertex

d

1

. Thus hx

k

; x

�

k

; x

+

k

; xi is a claw, which is a contradiction. Hence, as C is a covering

walk, necessarily x

k

2 Q and, by symmetry, x

1

2 P . This implies that x

�

k

and x

+

k

are

not related for otherwise xx

k

q

1

Q

d

x

�

k

x

+

k

Qq

2

xp

1

Pp

2

x is shorter than C or contradicts the

minimality of R. Similarly, x

�

1

and x

+

1

are not related.

We show that p

1

p

2

=2 E(G) and q

1

q

2

=2 E(G). Let, e.g. q

1

q

2

2 E(G) and consider

hx

k

; x

�

k

; x

+

k

; xi. If x

�

k

x 2 E(G) or x

+

k

x 2 E(G), then the walk xx

k

Qq

2

q

1

Qx

�

k

xp

1

Pp

2

x or

xx

+

k

Qq

2

q

1

Qx

k

xp

1

Pp

2

x, respectively, contradicts the minimality of R. Thus hx

k

; x

�

k

; x

+

k

; xi

7



is a claw, a contradiction which implies q

1

q

2

=2 E(G) and, by symmetry, p

1

p

2

=2 E(G).

Necessarily, d

1

is not in R since otherwise, as R is shortest possible, d

1

would centre

a claw. Moreover, x

1

is the only vertex among x

1

; x

2

; :::; x

k

which can be adjacent to d

1

(if x

i

; i > 1 was adjacent to d

1

, then, from the hypothesis on R, hd

1

; p

1

; p

2

; x

i

i would be

a claw). Similarly, x

k

is the only vertex among x

1

; x

2

; :::; x

k

which can be adjacent to d

2

and hence k = 2.

We now consider the induced subgraphs hx

1

; x

�

1

; x

+

1

; x

2

i and hx

2

; x

�

2

; x

+

2

; x

1

i. We know

from above that neither x

�

1

and x

+

1

nor x

�

2

and x

+

2

are related. As x 2 A, neither x

1

nor

x

2

can centre a claw and then we have, up to symmetry, the following three possibilities.

Case The walk C

0

x

�

1

x

2

2 E(G) and x

�

2

x

1

2 E(G) xp

1

Px

�

1

x

2

Qq

2

x

 

P

x

1

x

�

2

 

Q q

1

x.

x

+

1

x

2

2 E(G) and x

+

2

x

1

2 E(G) xp

1

Px

1

x

+

2

Qq

2

x

 

P

x

+

1

x

2

 

Q q

1

x.

x

+

1

x

2

2 E(G) and x

�

2

x

1

2 E(G) xp

1

Px

1

x

�

2

 

Q q

1

xp

2

 

P

x

+

1

x

2

Qq

2

x.

In each of these cases, p

1

and p

2

are endvertices of di�erent branches of C

0

at x, which

contradicts Lemma 9. This contradiction completes the proof of Theorem 10. 2

Corollary 11: Let G be a connected locally connected almost claw-free graph. Then for

every x 2 V (G) there is a shortest 2-walk C such that v(x;C) = 1.
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