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Abstract

There have been many results concerning claw-free graphs and hamiltonicity.
Recently, Jackson and Wormald have obtained more general results on walks in
claw-free graphs. In this paper, we consider the family of almost claw-free graphs
that contains the previous one, and give some results on walks, especially on shortest
covering walks visiting only once some given vertices.

Throughout the paper, we deal with simple undirected graphs without loops and
multiple edges. A (o, x;)-walk (or simply a walk) in G is a sequence of vertices €' =
xoty...x; such that ;2,41 € E(G) for every i =0, 1,..., [ — 1. If 2 € V(@) occurs in this
sequence, then we write z € (' and we say that z is visited by C'. The number [ will be
called the length of C' and denoted by I(C). If 2y = 21, then we say that C is a closed walk.
For every closed walk C' = xgx;...2;and @ € V(G), weput v(a,C)=|{i=1,..., 2, = a}|.
If v(z,C) =t then we say that C visits t-times the vertex x. The length of the closed
walk can be expressed as {(C') = > v(z,(). A closed walk C' such that v(z,C) > 1 for

zeC
every @ € V() is said to be a covering walk of G (or simply a covering walk). A covering

walk C' is said to be a k-walk of G or simply a k-walk (k being an integer), if v(z, C) < k
for every @ € V(G). Clearly, every connected graph has a k-walk for some k& > 1 and
every hamiltonian cycle is a 1-walk.

We consider every walk to be oriented in the natural way by increasing subscripts
(taken modulo { for closed walks) and, for any x € (', we denote by 2~ and z* the
predecessor and successor of x, respectively, on C' in this orientation. If we consider a
walk C'in the opposite orientation, then we denote it by 6

If C is a walk, every (a,b)-walk P such that P is a subwalk of C' (i.e. a subsequence
of consecutive vertices of C') will be denoted by aCb. If moreover C' is a closed walk and
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for a vertex z we have ¢~ = z, b" = x and x ¢ P, then the walk aCb will be called a
branch of C at x (i.e. branches of C' at x are the “parts of C” between two consecutive
visits of @ by C'). The vertices a and b are the endvertices of the branch P. Clearly, for
every © € C, there are v(x, (') branches of C at x.

We say that the vertices x and y are related (denoted = ~ y), if v = y or 2y € E(G).
When a ~ y then zy denotes the sequence xy or the single vertex x, respectively.

For any M C V((G), (M) denotes the subgraph induced by M in GG. For any « € V((),
the neighbourhood of x, denoted by N(x), is the set of vertices which are adjacent to x.
If (N(x)) is connected then we say that = is a locally connected vertex. The graph G is
locally connected if all its vertices are locally connected.

A set A C V(G) is independent if any x,y € A are non-adjacent. The size of a
maximum independent set in (i is denoted by a(() and referred to as the independence
number of G. A set B C V() is dominating if every vertex of (G belongs to B or has a
neighbour in B. The size of a minimum dominating set is called the domination number
of G and denoted by y(G). If v(G) < k, we say that G is k-dominated.

If H is a graph, then G is said to be H-free if ¢ does not contain a copy of H as
an induced subgraph. The complete bipartite graph K 3 will be referred to as the claw.
Clearly, G is claw-free if and only if a((N(z))) < 2 for every x € V().

Claw-free graphs are known to have many interesting properties. Oberly and Sumner
[6] proved the following result:

Theorem A: Every connected locally connected claw-free graph on at least three vertices
is hamiltonian.

Clark [2] showed that, under the same assumptions, (G is vertex-pancyclic. Hendry [3]
further strengthened this result showing that G is fully cycle extendable.

Jackson and Wormald [4] removed the hypothesis “G is locally connected” and ob-
tained the following result:

Theorem B: Every connected claw-free graph has a 2-walk.

In [5], the class of claw-free graphs was extended in the following way: we say that G
is almost claw-free if there is an independent set A C V() such that a((N(z))) < 2 for
x ¢ Aand y((N(2))) <2 < a(N(x))) for + € A. Equivalently, (¢ is almost claw-free if
the centers of induced claws are independent and their neighbourhoods are 2-dominated.
Clearly, every claw-free graph is almost claw-free.

It can be shown (see [5]) that every almost claw-free graph is K s-free and K s-free
and that, for every © € A, v((N(x))) = 2. In [5] and [1], several results in claw-free
graphs are extended to the class of almost claw-free graphs.

In the present paper we proceed on in the investigations which were done in [4]. Our
theorem 7 is a common generalization of Theorems A and B.

First we show that in almost claw-free graphs every covering walk can be shortened



until it becomes a 2-walk.

Proposition 1 (reduction lemma): Let GG be an almost claw-free graph, = € V(G)
and C' a covering walk. If v(z,C') > 3 then there exists a covering walk C’ such that

[(C) <lC)—1,v(x,C") =v(x,C) =1 and v(y,C") < v(y,C) Yy # x.

Proof: Suppose that v(x,C') > 3 and denote by Py,..., Ps (s > 3) the branches of C at «
and by =¥ the endvertices of P; (i = 1,...,s; k=1, 2) in accordance with the orientation

of C.

If there are i, j, k, h such that i # j and z¥ ~ :1; , then we can suppose without loss

of generality (changmg if necessary the orlentatlon of some branches and the order of the

branches) that e =1, j = 2, k =2 and h = 1. The closed walk ¢ = xPlx/%;%PQxP;),x...Psx,
obtained from C' by deleting the edges xiz and zx} and adding the edge or vertex :1;/%;%,
has the required property.

We thus suppose that z% and :1;? are not related for all ¢ # 5, ¢, 7 € {1, 2,...,s} and
for all k, b € {1, 2} (but 2! and 27 can be related). This implies # € A. Hence there
are vertices d; and dy in N(x) such that every vertex in N(z) is adjacent to dy or d.
As the set A is independent, neither d; nor d; can center a claw and therefore at least
one of them (say, dy) is adjacent to both endvertices of some P; (say, P1) and to at least
one other vertex l’k (say, ¥3). Since C' is a covering walk, there exists a branch P, that
visits dy. Clearly d1 ¢ {x , x} } for otherwise endvertlces of different branches would be
related. .

If df ~ di, then C’ is obtained from C' by replacing the subwalk dy didf by dy df
and the subwalk zizxd by aid; 3.
Henceforth di and df are not related.

If d, € Py, then, considering (d;, dy, df, xl) and the fact that d; ¢ A, e see
that df ~ z} or di ~ x3. In the first case we take C’ = :1;1P1d wiPx Pax.. P x P1 dixl
which is obtained from C' by deleting the edges :1;:1;1, va}, di dy and adding d r} and dy 1.
In the second case similarly €' = x Pyd, 23 P1 d"' 1PyaPyx... Pox.

If dy € P; for some i > 2, then, considering (d;, di, df, z}), we see that di ~ 71
or dff ~ z1. In the first case C' = x} Pixid, P Piyyx... Py Pyx...Pi_x Pidy x1 is obtained
from C' by deleting the edges xx%,/g%x, didy and adding zid; and dyx1. In the second
case, C' = v Pya Pax...Pid,2? ]gl 2idf PixPpyx...Pyx is obtained from C' by deleting the

edges zx!, v3z, didf and adding 22d; and zidf.
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In all cases, the new walk C’ has the required properties. O

If we apply the reduction lemma while there exists some vertex which is visited at
least three times by C', we obtain the following three corollaries. The second one extends

Theorem A.

Corollary 2: Every shortest covering walk of a connected almost claw-free graph is a

2-walk.



Corollary 3: Every connected almost claw-free graph has a 2-walk.

Corollary 4: In a connected almost claw-free graph, if there is a covering walk visiting
exactly once the vertex z, then there is a 2-walk visiting = exactly once.

In the following, we are interested in those vertices which are visited exactly once by
some 2-walk. It is easy to see that such vertices cannot be cutvertices of G. The next
proposition shows that in almost claw-free graphs this trivial necessary condition is also
sufficient.

Proposition 5: Let (¢ be a connected almost claw-free graph and @ € V(). Then there
is a 2-walk €' such that v(z,C') =1 if and only if @ is not a cutvertex of G.

Proof: Clearly if v(x,C') = 1 for some 2-walk, then x is not a cutvertex. So suppose that
x is not a cutvertex and v(x,C') = 2 for every 2-walk. Let C' be a 2-walk. Denote by P,
() the two branches of ' at  and by p1, p2, ¢q1, g2 their endvertices, respectively.

If p; ~ g; for some i, € {1,2}, for example py ~ ¢, then the walk C’ = xp, Ppaqi Q¢
obtained from C by deleting the edges xpy, x¢: and adding paqy satisfies v(z, C') = 1;
thus vertices p; and ¢; are not related Vi, j € {1,2}.

If py ~ p2 then we observe that, as x is not a cutvertex of (7, there are vertices a € P
and b € @ such that a ~ b. If we put " = p; PabQqrxq1QbaPpzp; (deleting from C' the
edges xpy, xpy and adding pyp; and twice 6/17)), then v(x,C’") = 1 and, by Corollary 4,
there is a 2-walk that visits = exactly once. Consequently, p; and p; are not related and
similarly ¢; and ¢, are not related.

Hence no two of the vertices p1, p2, q1, ¢ are related and thus € A. As (G is almost
claw-free , (N(x)) is 2-dominated. Let {d;, ds} be a dominating set of (N(x)).

Suppose first that d; is adjacent to some p; and ¢;, ¢,j € {1,2}, for example py and
¢1- In this case, for the walk C’ = ap; Ppydiq1Q ¢z, obtained from C' by deleting the
edges xpy, xq; and adding dyp; and dyq1, we have v(x,C’) = 1 and (using, if necessary,
Corollary 4), we have a contradiction.

Thus some of the d;’s (say d;) dominates p; and py and the other one, dy, dominates
¢ and ¢2. We again find vertices ¢ € P and b € Q) such that @« ~ b ( note that the
edge ab may be one of the edges dy¢; or dap;). If we put ¢’ = xplpc/z?)qudquQgc\Lszx
(deleting in C' the edges xq1, xq2 and adding daqy, d2g2 and twice aAb) then v(z,C’) =1
and, by Corollary 4, we can again construct a 2-walk that visits = exactly once. This
contradiction achieves the proof of Proposition 5. O

We now turn our attention to shortest covering walks, i.e., to 2-walks with as few
edges as possible. The number of vertices which are visited twice by such a 2-walk is as
small as possible. The following lemma studies the structure of the neighborhood of the
vertices which are visited twice by a shortest 2-walk.



Lemma 6: Let G be a connected almost claw-free graph, C' a shortest covering walk of
GG and x a vertex of G which is visited twice by €. Let P and ) be the two branches of
C at x with endvertices py, p2, q1, g2, respectively. Then
(i) V1,5 € {1,2}, p; and ¢; are not related
(i) If moreover @ ¢ A, then p; ~ py, 1 ~ ¢z and Vi, j € {1,2}, every vertex of
N(p:) N N(g;) N N(x) centres a claw.

Proof: Assume that GG, ', x, P and @) fulfil the hypotheses of Lemma 6.
F

(i) If p1 ~ q1, then the covering walk C" = p; Ppaxqe Q@ ¢ipy is shorter than C.
(ii) Since @ ¢ A, (v,p1,p2,q1) is not a claw and by (i), p1 ~ p2. Similarly, ¢; ~ go.
Let a be a vertex of N(p;) N N(g;) N N(x); we can suppose without loss of generality
F

that « € P and i = j = 1. If a= ~ a¥, then the walk plPafE—I—PprQQ Q qiap; is
F
shorter than C. If a”z € E(G) or atz € E(G), then the walk a”xqy Q qraPpspi Pa™ or

= — —
atxqy Q qra P pips P a™ is shorter than ', respectively. Therefore a centres the claw
(a,z,a,a*). O

In the 2-connected almost claw-free graph of Figure 1, the length of a shortest 2-walk is
17 (e.g. bede fnoghijaxmlakd). In accordance with Proposition 5, the vertex x is visited
once by some 2-walk (e.g. by abedecbkaxlmnofghija of length 18) but it is visited twice
by every shortest 2-walk.

Figure 1

This example shows that, in the statement of Proposition 5, “2-walk” cannot be re-
placed by “shortest 2-walk”. This, however, becomes possible with a good choice of the
vertex x. Note that, in our counterexample, (N(x)) is not connected. Motivated by
Therem A, we strengthen in Theorems 7 and 10 the result of Proposition 5 for the locally
connected vertices of G, first restricting our considerations to those ones which do not
centre a claw.



Theorem 7: Let (¢ be a connected almost claw-free graph and put
B ={x e V(G)\ A; (N(x)) connected}.
Then there is a shortest 2-walk C such that v(z,C') =1 for every x € B.

Proof. Suppose, on the contrary, that for every shortest 2-walk C the set My = {z €
Blv(x,C) =2} is not empty. Let C be a shortest 2-walk for which the cardinality of M is
minimum and x a vertex of M. Let P and () be the branches of (' at  with endvertices
p1, pe and q1, g respectively. Since (N(z)) is connected, there is a shortest path R in
(N (x)) which joins one of py, ps to one of ¢, ¢e. Assume that C' is chosen so that, among
all shortest 2-walks with @ € Mg and |M¢| minimum, R is shortest possible. We can
assume without loss of generality that R is a (p1, ¢1)-path and none of the vertices ps, ¢z is
on R. Let py,ay, ..., 2k, q1 be the vertices of R. Since x ¢ A and R is a shortest path, & <2
(otherwise (x, p1, 22, q1) is a claw). By Lemma6(i), kK > 1. If k = 1, then, by Lemma 6(ii),

<

the vertex x; belongs to A and the walk p; Ppyxgs @) giz1py contradicts the minimality
of M¢. Therefore k = 2. Again by Lemma 6(ii), p; ~ ps and ¢1 ~ ¢2. Suppose now that
F

xq € P. If 25 € A, then for the walk C" = xqy Q qras Ppapi Pryx we have ((C) = [(C)

and |Mci| < |M¢|. Hence z; ¢ A. We consider the induced subgraph (z, 25,25, z).

If 25 ~ 2F, then the walk zp, Pz 23 Prx,q1(Qqux is shorter than C or contradicts the
F

minimality of R. If ;2 € E(G), then the walk C" = xqs Q qrasPpapi Pxy x is shorter
than €' and the same holds if 2§z € E(G) for the walk C' = xa3 Ppyp) Pr2giQqqx. Thus
(x9,25, 25, ) is a claw, which contradicts the fact that x5 ¢ A. Hence necessarily x4y ¢ P
and similarly z; ¢ (. As C is a covering walk, we have x; € P and a3 € (). Since
z175 € E(G), at least one of @1,z (say, z1) is not in A. We now consider (zy, 27,27, z).
If 272f € E(G), then the walk zxp; Py af PparqiQgqr contradicts the minimality of

F
R. The same holds for the walk zz] P pipyPri2qiQqx or xxf Ppypy PrixqiQqur if
z7x € E(G) or afx € E(G), respectively. Thus (zy, 27,27, ) is a claw, a contradiction.
O

We notice that Theorem 7 is a common extension of Theorems A and B and it also
admits the following corollary.

Corollary 8: Let ¢ be a connected almost claw-free graph and put

B ={x e V(G)\ A; (N(x)) connected}.
Then GG can be vertex-covered by at most n — |B| 4+ 1 elementary cycles (where a closed
walk of length 2 is considered as an elementary cycle of length 2).

Proof: By Theorem 7, there is a shortest 2-walk ' that visits every vertex of B exactly
once. We may obtain elementary cycles by cutting the 2-walk at any vertex = with
v(x,C) = 2 in such a way that if P and @) are the two branches at x, then we cut the
walk into Pz and xQz. There are at most n — |B| 4+ 1 such elementary cycles for we
have at most n — | B| vertices with v(x,C') = 2. The graph G is vertex-covered by these
cycles since their union gives a covering walk.



In the study of locally connected vertices which belong to A we use the following
lemma.

Lemma 9: Let (¢ be a connected almost claw-free graph, = a non-separating vertex which
is visited twice by every shortest covering walk of G and (' a shortest covering walk. Then,
with the same notation as in Lemma 6:

(i) p1 # p2 and @1 # o,

(ii) Vo, € {1,2}, N(p;)N N(q;) ={z}.

Proof. Assume that G,  and C fulfil the hypotheses of Lemma 9.

(i) Since x is not a cutvertex of (7, there are vertices a € P and b € ) such that a ~ b.
If, e.g., p1 = p2, then for the walk ¢’ = quQ@Ppg(: pl)Pc/J)qux, which is obtained
from C' by deleting the edges xp;, xp; and adding twice aAb, we have [(C") < [(C) and
v(x,C") =1, a contradiction.

(ii) If, e.g., a € N(p1) N N(q1) and a # x, then the walk C" = ap, ]g praqiQ g also
yields a contradiction.

Theorem 10: Let (¢ be a connected almost claw-free graph and « € V(G). If (N(x)) is
connected then there is a shortest 2-walk C' such that v(x,C) = 1.

Proof. Let € V(') be such that v(x, C') = 2 for every shortest 2-walk C'. By Theorem 7,
it is sufficient to consider the case + € A. Choose C' in such a way that, among all shortest
2-walks €' with branches P and () at x and endvertices py, py and ¢y, g9, respectively, the
p1, i-path R in (N(x)) is shortest possible (i.e., there is no shortest 2-walk C’ containing
a path in (N(x)) between the disjoint sets {p1, p2} and {q¢1, ¢} that is shorter than R).
Let py, x1, ..., 2k, g1 be the vertices of R. Note that, since x € A and G is almost claw-free,
no vertex of N(x) centres a claw.

We first show that & = 2.

Let {dy,d>} be a dominating set of (N(x)). By Lemma 9(ii), one of dy, dy (say, dy)
dominates p; and p, and the other, i.e. d3, dominates ¢; and ¢».

Suppose now that z; € P and consider (v, 2y, o), z). If o) ~ xf, then the walk

apy Pay af PpaararqiQqqx is shorter than C' or contradicts the minimality of R. In the

case v, ¢ € F(G) the walk C' = ap P« ]g 2:¢1Qqex and in the case xfx € E(G) the
walk C' = xp; PrrqiQqurx; Ppax contradicts Lemma 6(i) or Lemma 9(ii) since p; and
pe are endvertices of two different branches of €’ that are dominated by the same vertex
dy. Thus (zg, 25,2}, 2) is a claw, which is a contradiction. Hence, as C' is a covering
walk, necessarily x), € Q and, by symmetry, z; € P. This implies that z; and ] are
not related for otherwise zapq Q) 2} Qquap; Ppax is shorter than €' or contradicts the
minimality of R. Similarly, z] and z] are not related.

We show that pips ¢ E(G) and q1q2 ¢ E(G). Let, e.g. q1q2 € E(G) and consider
(v 2,2, 2). If 2y2 € E(G) or 2fz € E(G), then the walk z2,Qqq Q) xp; Ppyz or
2 QquqiQxrzpy Ppax, respectively, contradicts the minimality of R. Thus (zy, z; , 2], )



is a claw, a contradiction which implies ¢1¢2 ¢ F(G') and, by symmetry, pips ¢ E(G).

Necessarily, d; is not in R since otherwise, as R is shortest possible, d; would centre
a claw. Moreover, z; is the only vertex among z1, x3, ...,z which can be adjacent to d;
(if @;, ¢ > 1 was adjacent to dy, then, from the hypothesis on R, (dy, p1, p2, x;) would be
a claw). Similarly, x4 is the only vertex among w1, xg, ..., x5 which can be adjacent to d
and hence k = 2.

We now consider the induced subgraphs (21, :1;1 o, xs) and (@9, 25, 23, 7). We know
from above that neither 27 and zf nor ; and zJ are related. As x € A, neither ; nor
x9 can centre a claw and then we have, up to symmetry, the following three possibilities.

Case The walk G
ryay € E(G) and x5 11 € E(G) xpy Pay Qg P Ty Q g1
zfzy, € E(G) and 25z, € E(G) xpy Pryxd qux P :1;1 T Q g1
zfzy € E(G) and 2y, € E(G) apy Py Q G1TP2 P T 2,Qq.

In each of these cases, p; and p, are endvertices of different branches of C” at a, which
contradicts Lemma 9. This contradiction completes the proof of Theorem 10. O

Corollary 11: Let G be a connected locally connected almost claw-free graph. Then for
every © € V() there is a shortest 2-walk C' such that v(x,C) =
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