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Abstract

This work was motivated by many (recent) papers on hamiltonicity of
claw-free graphs, i.e. graphs that do not contain K3 as an induced sub-
graph. By combining ideas from these papers with some new observations,
we unify several of the existing sufficiency results, using a new sufficient con-
dition consisting of seven subconditions. If each pair of vertices at distance
two of a 2-connected claw-free graph (G satisfies at least one of these subcon-
ditions, then G is hamiltonian. We also present infinite classes of examples of
graphs showing that these subconditions are, in some sense, independent.
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1. TERMINOLOGY AND NOTATION

We use [1] for terminology and notation not defined here and consider finite
simple graphs only.

Let GG be a graph. We say that G is hamiltonian if G has a Hamilton cycle, i.e.
a cycle containing all vertices of GG. If X is a graph, we say that G is X-free if G
does not contain an induced subgraph isomorphic to X. Instead of K s-free, we use
the more common term claw-free. We denote by (5) the subgraph of G induced by
aset S C V(G). We use B (of bull), D (of deer), and H (of hourglass) to denote
the graphs of Figure 1, and P; for a path on 7 vertices. Let w and v be two distinct
vertices of . Then {u,v} is called an ¢-pair if the distance d(u,v) between u and
vise (1 =1,2,...);{u,v} is a B-pair (respectively D-pair, H-pair or P:-pair) if u
and v are the circled vertices of Figure 1 in an induced subgraph of G isomorphic
to B (respectively D, H or Pr).
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Figure 1

If v € V(G), then N(v) denotes the set of vertices adjacent to v (the neighborhood
of v). A vertex v € V() is locally-connected if (N(v)) is connected, and the graph
G is locally-connected if all vertices of GG are locally-connected.

2. INTRODUCTION

During the last two decades many results on hamiltonian properties of claw-free
graphs have appeared. We refer the reader to [4] for a recent survey. Most of these
results involve sufficient conditions in terms of degrees, neighborhoods, forbidden
subgraphs or (local) connectivity. These conditions are “significantly weaker” than
the corresponding sufficient conditions for general graphs. Nevertheless, these con-
ditions are still “strong” in the sense that many vertices (or vertex pairs, triples, ...)
are required to have the same property. Moreover, recent results also show that these
conditions sometimes can be relaxed significantly if some classes of nonhamiltonian
claw-free graphs are excluded.

Motivated by these observations, and in an attempt to unify existing results,



we considered a choice of several different types of conditions, in order to relax the
requirements for pairs of vertices.

We present our main result and its corollaries in the next section. The proof of
the main result is postponed to Section 5; it is self-contained but uses ideas from
older work together with some new observations. The corollaries should give the
reader a good indication as to where the ideas originate.

In Section 4 we present infinite classes of examples of graphs showing that the
subconditions in the main result are, in some sense, independent.

3. MAIN RESULT AND COROLLARIES

In the sequel we let (¢ denote a 2-connected claw-free graph on n vertices.

Theorem 1. If each 2-pair {u,v} C V() satisfies at least one of the following
conditions, then & is hamiltonian.

(1) minfd(u),d(v)} > S(n - 2);
(2) [N(u) N N(v)| > 2

(3) {u,v}is a 3-pair in ¢ —w, and there exists a path ua;a9v of length 3 in G —w
such that was € E(G), where w € N(u) N N(v);

4) {u,v} is neither a D-pair nor a Pr-pair in G;
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u, v} 1s neither an H-pair nor a Pr-pair in G
) P P )

(4)
(5)
(6) {u,v}isa 3-pair in G —w, and not a B-pair in G —w, where w € N(u)NN(v);
(7) {u,v}is a 3-pair in G —w, and there are at least two internally-disjoint (u, v)-

paths of length 3 in G — w, where w € N(u) N N(v).

Most of the corollaries that follow have been generalized or extended, sometimes
in several directions. We refer to [4] for more information. The corollaries that are
stated without proof are immediate.

Corollary 1.1. ([6]).
If §(G) > L(n — 2), then G is hamiltonian.



Corollary 1.2. ([8]).
If |[N(u) N N(v)| > 2 for all 2-pairs {u,v} C V(G), then GG is hamiltonian.

Corollary 1.3. ([7]).

If GG is locally-connected, then G is hamiltonian.

Proof. Consider a 2-pair {u,v} of G with w € N(u) N N(v). If |[N(u) N N(v)| > 2,
then {u,v} satisfies condition (2) of Theorem 1. Assuming N(u) N N(v) = {w},
consider a shortest (u,v)-path P in (N(w)). If P has length at least 4, then G
contains an induced K3 (induced by u,v,w, and a vertex of P at distance at least
2 from w and v on P). Hence P has length 3, and {u,v} satisfies condition (3) of
Theorem 1. ||

The next corollary is implicit in the proof of Theorem 8 of [3].

Corollary 1.4.
If G is D-free and P;-free, then (G is hamiltonian.

Corollary 1.5. ([5]).
If G is H-free and Pr-free, then G is hamiltonian.

4. EXAMPLES

In this section we present eight infinite classes of graphs Cy,Cs,...,Cs. For 1 =
1,...,7, the class C; consists of (hamiltonian) graphs satisfying the hypothesis of
Theorem 1, and in which at least one pair of vertices satisfies condition (¢) of The-
orem 1 only. This shows that none of the conditions (1)—(7) is superfluous. The
class Cg consists of nonhamiltonian claw-free graphs showing that, in some sense, we
cannot relax the conditions (1)—(7) of Theorem 1.

The graphs of Cy,Cs,...,Cr are sketched in Figure 2; those of Cg in Figure 3. In
the figures, the vertices are represented by black circles and the other circles repre-
sent complete subgraphs. Whenever the circles overlap, the number of common ver-
tices of the corresponding subgraphs is indicated in the overlapping region; the sub-
graphs contain at least as many vertices as shown in the corresponding circles (but
possibly more in non-overlapping regions). Arrows indicate a repetition of the sug-
gested pattern in the obvious way. In each of the sketched graphs corresponding to C;



(t=1,...,7) a 2-pair {u, v} satisfying only condition (i) of Theorem 1 is indicated.
In C; the subgraphs should be chosen in such a way that min{d(u),d(v)} > L(n—2),
in Cs,Cs,C4,Cs and C; such that min{d(u),d(v)} < %(n — 3). We leave the details

concerning Cy,...,Cr; to the reader.

Figure 2: the classes Cy,...,C7

For Cs (see Figure 3) consider the 2-pair {u,v}. Then it is easy to check that
min{d(u),d(v)} = d(u) = +(n — 3), N(u) N N(v) = {w}, there is precisely one
(u,v)-path of length 3 in G — w, it contains = ¢ N(w), ({a,b,¢,d,u,v,w}) =

D, ({b,e,u,v,w}) = H, and ({b,c,u,v,2}) = B.
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Figure 3: the class Cg

5. PROOF

Before we present a proof of the main result, we first introduce some additional
notation.

Let GG be a graph and let (' be a cycle of G. We denote by 8’ the cycle C
with a given orientation, and by 6 the cycle C' with the reverse orientation. If
u,v € V(C), then u 8 v denotes the consecutive vertices of C' from u to v in the
direction specified by 8 The same vertices, in reverse order, are given by v E’ u.
We will consider u 8 v and v E’ u both as paths and as vertex sets. We use u* to

%
denote the successor of v on (' and u~ to denote its predecessor.
We use the following result which is a consequence of Theorem 5 of [2].

Lemma 5.1. A 2-connected claw-free graph G on n vertices has a cycle containing
all vertices of degree at least ”3;2

Proof of Theorem 1.
Let G be a 2-connected claw-free graph on n vertices and suppose (G is nonhamil-

tonian. By Lemma 5.1, G has a cycle containing all vertices of degree at least ”3;2
Among all cycles with this property, choose a longest cycle €. By the assumption,
G has a vertex u € V(G) \ V(C) with a neighbor w € V(C). Fix an orientation

on C. Let v be the first vertex occurring on w* ' w™ such that wo* ¢ E(G). We
may assume without loss of generality that v = w™. (If this is not the case, we can
replace C' by the cycle v 8’ w-w”T 8’ v wv.) Obviously, for all such triples {u, v, w},
the choice of C' implies d(u,v) = 2 and w™w' € E(G) (using the claw-freeness of
(/). Assume {u, v} satisfies one of the conditions (1)—(7) of Theorem 1.

Clearly, the choice of €' implies



n;Z (1)

Suppose |N(u) N N(v)| > 2, and let @ € (N(u) N N(v)) \ {w}. Then, by the
choice of C,ax € V(C) and wx ¢ E(C). Also by the choice of C, uz” ¢ E( ) and

uzt ¢ FE(G). Since G is claw-free, 72t € E(G). Now the cycle v C Tt C WU
contradicts the choice of €. Hence

[N (u) N N(v)] = L. (2)

Before we proceed, we first prove the following lemma.

d(u) <

Lemma 5.2 If P = uxixq9v is a path of length 3 in G — w, then a1, 22 € V(C), 23 €
s x7, and wxy ¢ E(G).

Proof of Lemma 5.2

Let P = uxjz9v be a path of length 3 in G —w. Then clearly the choice of C' implies
{z1,22} NV(C) # 0. Suppose first that z; ¢ V(C). Then x5 € V(C') and the choice
of C implies was ¢ FE(C). By similar arguments as before, the choice of C' and

—

the claw-freeness of G imply 2y 27 € F(G). Now the cycle v 8’ vyl C wurizo
contradicts the choice of C'. Hence x, € V(C).
Next suppose x5 ¢ V(C'). Then, by similar arguments as before, the choice of

- -
C and the claw-freeness of (¢ yields a cycle v (' 27 ] € wuz,xov contradicting the

choice of C'. Hence 1,25 € V(C).

Suppose x5 ¢ vt 8’ z7. Then z, € zf 8 w™. By standard arguments, x;xo ¢
E(C). If vaf € E(G), then the cycle v ¢ ryxf C ToX UW C zdv contradicts
the choice of C. Hence vay ¢ E(G). Also vr; ¢ E(G) by (2). Considering
<{v,:1:1,:1;2,:1;£}>, the claw-freeness of G implies z;25 € E(G). If uzd € E(G), then

- -
the cycle v ¢ 27z] C zoxyuzy O v contradicts the choice of C. If 2f2f € E(G),

— —
then the Cycle v O zuw O xgaf C x9v contradicts the choice of C'. Considering

({u, 21, 27,23 }), the claw-freeness of GG implies ux{ € E((G), an obvious contradic-

tion with the choice of C. Hence x1,z2 € V(C) and x5 € vt 8’ xy.

Supposing wxy € E(G) and considering ({w,z3, 29,23 }), we obtain that at
least one of the pairs {w,x; },{w,23} and {x;, 27} is joined by an edge. This
leads, respectively, to the following cycles contradicting the choice of C"

— — L2
vizwuxleCxlxl Cw v,
vC:z;leuwa C:Jc1 xf Cw v, and

v C Ty :1;2 C 4 :1;1" C WUT 1TV,



This completes the proof of Lemma 5.2. ||

We proceed with the proof of Theorem 1. From Lemma 5.2. we deduce that

there is no path P = uxxqv of length 3 in G — w such that wzy € E(G).  (3)

Since (7 is 2-connected, u is connected by a path to another vertex (# w) of
C. Consider a shortest path ) = wuxy ...z, with 2, € V(C)\ {w} and internally-

disjoint with C'. Let y be the first vertex occurring on xf 8’ w™ such that z,y* ¢
E(G). As with the choice of v, similar arguments show we may assume y = z.
Ifr =1,set S = {u,v,0",w,zy,y,y*}. It is easy to check that the choice of '
implies that (S) is isomorphic to Pr or D: if, e.g., vTyT € E(G), then the cycle
vt 8 ] yruwow” 6 yTvT contradicts the choice of . We leave the other cases
to the reader. If » > 2, then the choice of @ implies ux, ¢ FE(G). If wz, €
E(G), then, considering ({w™,w,u,x,.}), we conclude that w~ax, € FE(G). But
—

then the cycle v 8’ v xt C wix,a._y ... zyuwv contradicts the choice of C'. Hence
wx, ¢ E(G). For r = 2, and r > 3, respectively, set S = {u,v, v, w, 1, x2,y} and
S = {u,v, v, w,xy, 29, x3}. It is again easy to check that the choice of C' implies
(S) = Pr. Hence in all cases we conclude that

{u,v} is a Pr-pair or a D-pair. (4)

If {u,v} is not a Pr-pair, then by (4) {u,v} is a D-pair, and from the above
observations we get that » = 1 and wx; € E(G). Now it is easy to check that
({u,v,w™,w,x1}) = H, and that {u,v} is an H-pair. Hence

{u,v} is a Pr-pair or an H-pair. (5)

By (2), |N(u) N N(v)| = 1, so d(u,v) > 3 in G — w. Suppose d(u,v) = 3 in

G'— w and let R = uxix9v be a (u,v)-path in G — w of length 3. By Lemma 5.2,

r1,19 € V(C), 2y € v 8’ a7, and wxy ¢ E(G). Considering ({u, 2y, 27, 249}), we

obtain xfxy € E(G). It is easy to check that ({u,v,zy, 2], z2}) = B, implying that
{u,v} is a B-pair in GG — w. Hence

if {u,v} is a 3-pair in G — w, then {u,v} is a B-pair in G — w. (6)

From (1)—(6), and the assumptions, we conclude that {u, v} satisfies condition
(7) of Theorem 1. Let R (as above) and R’ = uyjy2v be two internally-disjoint
(u,v)-paths in G — w of length 3. By Lemma 5.2, x1,22,11,y2 € V(C), 22 € v 8’
1,y € vt 8’ yr,wre ¢ F(G),wyy ¢ E(G), and, by the previous observations
for R, {[Eil;fz,yil—yz} C E(G). Clearly, 3 # v™, since otherwise the cycle vt 8’

ziuwvw™ O zfvt contradicts the choice of C'. Consider ({v,z, 25, 72}). As before,



vey ¢ E(G). If za; € E(G), then the cycle v 8’ T3 TrUuw E’ iy 6 x9v contradicts
the choice of C. Hence vy € FE((G), and similarly vy, € E(G)

We assume w1th0ut loss of generahty that =1 € y; C w. f wmay € FE(G),
F
then the cycle v C ryw” O xfay C roxyuwv contradicts the choice of €. Hence

w-xy; ¢ F(G), and similarly w™y; ¢ E(G). We complete the proof by showing that
in all possible cases x5y, ¢ E(G), implying that ({v,w™,23,y5 }) = K13, our final
comtradlictiom;> .

If 23 € v C y2 and 23y; € E(G), then the cycle v C T C ToXUW C a7 ©
yov contradicts the choice of C.

QT

If 23 € yo C w1 and 23y; € B(G), then the cycle v €'y a5 C yayruw C yiyp
z9v contradicts the choice of C.

— — — — —

If vg € yy C w and 27y, € E(G), then the cycle v C yy x5 C yiyr C yayruw

x9v contradicts the choice of C'. Note that x; # y1, since va; € F(G) and vy ¢

E(G) (because d(u,v) =3 in G — w). ||
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