Local connectivity and cycle extension
in claw-free graphs

R.J. Faudree
Department of Mathematical Sciences
Memphis State University
Memphis, TN 38152
U.S.A.

Zdenék Ryjacek Ingo Schiermeyer
Department of Mathematics Lehrstuhl C fiir Mathematik
University of West Bohemia Technische Hochschule Aachen

30614 Pilsen D-52056 Aachen

Czech Republic Germany
February 16, 1995

Abstract

Let G be a connected claw-free graph, M (G) the set of all vertices of G
that have a connected neighborhood, and (M (G)) the induced subgraph of G
on M(G). We prove that

() if M(G) dominates G and (M (G)) is connected, then G is vertex pan-
cyclic orderable,

(22) if M(G) dominates G, (M (()) is connected, and G\ M (G) is triangle-
free, then G is fully 2-chord extendable,

(232) if M (G) dominates G and the number of components of (M (G)) does
not exceed the connectivity of G, then G is hamiltonian.



1. INTRODUCTION

We consider only finite undirected graphs without loops and multiple edges. For
terminology and notation not defined here we refer to [2]. We say that a graph G
is claw-free if it does not contain a copy of the claw A3 as an induced subgraph.
For S C V(G), we denote by N(S) the set of all vertices © € V(G) \ S having
at least one neighbor in S and by (S5) the induced subgraph on 5. Let M(G) =
{z € V(G)|(N(x)) is connected}. If M(G) = V(G) then we say that G is locally
connected.

A graph G is hamiltonian if it contains a cycle of length |V(G)|. If G contains
cycles of all lengths ¢ for 3 < ¢ < |V(G)|, then we say that G is pancyclic, and
G is vertex pancyclic if every vertex of (G is contained in cycles of all lengths ¢ for
3 < < |V(G)|. We say that G has a pancyclic ordering if the vertices of G can
be ordered such that, for any j, 3 < 5 < |V((G)], the graph induced by the first j
vertices is hamiltonian. A graph G is vertex pancyclic orderable if for every x € V(G)
there is a pancyclic ordering of V() such that x is the first vertex of the ordering.

Clearly, every vertex pancyclic orderable graph is vertex pancyclic. An easy
example of a vertex pancyclic claw-free graph that is not vertex pancyclic orderable
can be obtained by joining two copies of a complete graph by a perfect matching.

A cycle C C G is extendable if there is a cycle C' C G (called the extension of C')
such that V(C) C V(C') and |V(C")| = |V(C)| + 1. If every nonhamiltonian cycle
C' C G is extendable, then G is said to be cycle extendable. We say that G is fully
cycle extendable if GG is cycle extendable and each of its vertices is on a triangle.

If C C Gisacycle, then every edge xy ¢ E(C) with x,y € V(C') is called a chord
of C. A cycle C" C (is a k-chord extension of a cycle C C G (k being an integer) if
(" is an extension of GG and F(C’) contains at most k chords of C, and G is k-chord
extendable if every nonhamiltonian cycle of G has a k-chord extension. Finally, G is
fully k-chord extendable if G is k-chord extendable and fully cycle extendable.

Oberly and Sumner [6] proved that every connected locally connected claw-free
graph with |[V(G)] > 3 is hamiltonian. Clark [3] strengthened this result showing
that, under the same conditions, (¢ is vertex pancyclic and Hendry [5] observed that
these assumptions imply that G is fully cycle extendable. Zhang [7] showed that
if every vertex cut set of a claw-free graph G contains a vertex with a connected
neighborhood, then G is pancyclic. Ainouche, Broersma and Veldman [1] observed
that these assumptions imply that G is vertex pancyclic. In the present paper
we proceed further with these considerations. Namely, we show that under the
assumptions of [1], a claw-free graph G is vertex pancyclic orderable. We find
conditions for (G to be fully 2-chord extendable and we find weaker conditions than
those in [1] which still imply hamiltonicity.



2. RESULTS

Proposition 1. Let G be a claw-free graph and C' C G a cycle. Suppose there is
a vertex v € V(C') such that N(v)\ V(C') # 0 and (N(v)) is connected. Then there
is a cycle C’ C G such that V(C') C V(C')U N(v) and C" is a 2-chord extension of
C.

Proof. Throughout the proof, whenever vertices of a claw are listed, its center
is always the first vertex of the list. Let the cycle C' C G and the vertex v € V()
satisfy the assumptions of Proposition 1 and suppose that there is no such cycle
C’. For any fixed orientation of C' and for any uy,us € V(C') denote by u;Cuy the
consecutive vertices on C' from uy to uy in the direction specified by the orientation

of C'. The same vertices, in reverse order, will be denoted by wu, 6 uy. For any
u € V(C) denote by u™ and u™ the predecessor and successor of u on C', respectively.

Choose a vertex x € N(v)\ V(C). As obviously zv™ ¢ F(G), zvt ¢ FE(G), and
(v,z,v%,v7) cannot be a claw, we have v™v™ € F((). Since (N(v)) is connected,
there is a path P in (N(v)) joining = to at least one of v, v*. Suppose that x and
P are chosen such that P is shortest possible. Let the orientation of C' be chosen
such that P is an z,v*-path and let 2 = zg,21,...,2, = vT be the vertices of P.
Since P is a shortest path, necessarily x;x; ¢ E(G) for |i — j| > 2. Hence we have
¢ < 3 (since otherwise (v, x,xq,x4) is a claw). As zv™ ¢ F(G), we have 2 < < 3.
By the choice of x and P, ; € V(C') for 1 < i < (. Since obviously zx] ¢ E(G)
and xzf ¢ E(G), from (z,27,2F, 2) we have x7 27 € E(G).

Suppose first that ¢ = 2. If x; and v' are consecutive on C, then the cy-
cle zz1C'v vtoz is a l-chord extension of '. Thus z7 # v™, but then the cycle
zrwtCayaf Cox is a 2-chord extension of C. Hence we have ¢ = 3.

We consider (v, x,x5,v7). Obviously v~ ¢ F(G) and since, by the choice of
P, also a9 ¢ E(G), we have xyv~ € FE(G). Thus, by symmetry, we can assume
without loss of generality that xy € vTCa7.

Since zzf{ ¢ E(G) and zay ¢ E(G), from (zy, 2,29, 27) we have 927 € E(G).
We show that x, cannot be consecutive on €' with any of z;, x7 and v*. Indeed,
if 3 and x; are consecutive on C' (i.e., ¥ = 27 ), then the cycle zvCxqv~ 6 17 18
a l-chord extension of C, if x5 and x] are consecutive on C (i.e., 7 = 27 ), then
the cycle zvCaqv~ 6 zfzT 22 is a 2-chord extension of (' and if 2 and vt are
consecutive on C' (i.e., z; = vT), then the cycle zvvtv™ E’ T 2yCz 12 is a 2-chord
extension of C. .

We now consider (xq, 23,27, v"). Obviously zfvt ¢ E(G) (otherwise xv (
afvtCaiz is a 1-chord extension of (). If 2fvt € E(G), then the cycle za, E’

efvtCayafCvz is a 2-chord extension of €' and if z§zf € E(G), then the cycle

— 7 ot : : + oot ot
zvCaw™ O afa3Cxix is a 2-chord extension of €. Hence (x4,27,27,v") is an

induced claw. This contradiction proves Proposition 1. i



An immediate consequence of Proposition 1 is the following corollary.

Corollary 2. Let (G be a claw-free graph, C' C G a cycle, and v € V(C) a
vertex of C' such that N(v)\ V(C) # 0 and (N(v)) is connected. Then, there is a

sequence of cycles Cy,...,C; such that ¢y = C, Ci14 is a 2-chord extension of C},
1<i<t—1,and V(Cy) = V(C)U N(v).

Theorem 3. Let (¢ be a claw-free graph on n > 3 vertices and put M(G) =
{z € V(G)|(N(x)) is connected}.

(1) If M(G) is a dominating set of GG and (M(()) is connected, then G is vertex
pancyclic orderable.

(12) If, moreover, G\ M(() is triangle-free, then ¢ is fully 2-chord extendable.

Proof. (i) Let € V() and suppose first that = has degree 1 in G. Let y be
the neighbor of x. Then « € M(G) and, as |V(G)| > 3, y ¢ M(G). Since M(G)
is dominating, there is z € M(G),z # x. But then every x,z-path in GG contains
y which contradicts the fact that (M((G)) is connected. Hence, we have §(G) > 2.
Consequently, every & € M((') is on a triangle.

Let now @ ¢ M(G). Since M () is dominating, there is y € M(() such that
ry € E(G). Since §(G) > 2, there is z € V() such that z # « and {z,z} C N(y).
As (N(y)) is connected, there is a triangle containing both = and y.

Thus, for every « € V() there is a triangle C' C G such that + € V(C) and
V(C)N M(G) #£ 0. The rest of the proof follows immediately from Corollary 2.

(17) It remains to prove that every nonhamiltonian cycle ¢ C G is 2-chord
extendable. If V(C) N M(G) # 0, then C is 2-chord extendable by Corollary 2.
Thus suppose that V(C) C V(G)\ M(G). Let @ € V(C). Denote by 2, 2" the
vertices consecutive to @ on C' and choose a vertex y € M(() such that zy € F(G)
(which exists since M () is dominating). Consider (x,2’, 2" y). Since G \ M(G) is
triangle-free, we have 2’2" ¢ E(G). This implies that ya' € E(G) or ya" € E(G),
but in both of these cases we obtain a cycle € which is a 0-chord extension of C. I

Remarks. 1. It is easy to observe that (G satisfies the assumptions of Theorem
3(¢) if and only if every cutset of ¢ contains a vertex & € M((). Indeed, if there is
a cutset S with SN M(G) =, then either (M(()) is disconnected or M((G) is not
dominating; conversely, if # ¢ M(G) and N(z) N M(G) = 0, then N(z) is a cutset
and if M; is one of the components of (M (7)), then also N(V(M;)) is a cutset with
N(V(My)) N M(G) = 0. Thus, the assumptions of Theorem 3(7) are equivalent to
those of [7] and [1], but they are easier to verify.

Moreover, from the proof of Theorem 3(i) we easily see that, under the same
assumptions, for each @ € V((), GG has a pancyclic ordering such that x is the first
vertex and every extension is a 2-chord extension.



2. Let £ > 3 be an integer and let G be a graph on n = 3k vertices which
is obtained by joining every vertex of a copy of K} to two different vertices of a
copy of Ky, where the pairs in the copy of Ky are chosen to be disjoint. Then ¢
is vertex pancyclic orderable but is not fully cycle extendable since every cycle of
length k in the copy of K} is nonextendable. Thus, the assumption that G\ M(G)
is triangle-free is essential in Theorem 3(:1).

In the case when (M(()) is disconnected we can prove the following.

Theorem 4. Let i be a claw-free graph of connectivity x(G) > 2 and M(G) =
{z € V(G)|(N(x)) is connected}. Suppose that M () is a dominating set of G and
(M(G)) has r components. If r < (), then G is hamiltonian.

Proof. Let Hy,..., H, be the components of (M(G)) and for every i,1 <i <r,
choose a vertex a; € V(H,;). We use the following theorem by Dirac (see, e.g. [4]).

Theorem. If (G is a graph of connectivity x(G) > 2 and {zq,..., 2} C V(G) is
a set of k < k() vertices, then there is a cycle C' C V(G) such that {xy,..., 2} C
V(C).

By this theorem, there is a cycle C' C G containing all vertices aq,...,a,. By
Corollary 2, C' can be extended to a hamiltonian cycle of G. I

Remarks. 1. Let Hy, Hy, H; be locally connected claw-free graphs on at least
3 vertices and a;,b; € V(H;) such that (N(a;)) and (N(b;)) are complete graphs
(1 =1,2,3). Construct a graph G by adding the edges a;a; and b;b; for 7,5 = 1,2,3,
i # 7. Then (G is a claw-free graph with connectivity x(G) = 2, M(() is dominating,
(M((G)) has 3 components, and G is not hamiltonian.

2. The graph in Figure 1 shows that the assumptions of Theorem 4 do not imply
pancyclicity.

Figure 1
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