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Abstract

Let G be a connected claw-free graph, M(G) the set of all vertices of G

that have a connected neighborhood, and hM(G)i the induced subgraph of G

on M(G). We prove that

(i) if M(G) dominates G and hM(G)i is connected, then G is vertex pan-

cyclic orderable,

(ii) if M(G) dominates G; hM(G)i is connected, and GnM(G) is triangle-

free, then G is fully 2-chord extendable,

(iii) if M(G) dominates G and the number of components of hM(G)i does

not exceed the connectivity of G, then G is hamiltonian.
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1. INTRODUCTION

We consider only �nite undirected graphs without loops and multiple edges. For

terminology and notation not de�ned here we refer to [2]. We say that a graph G

is claw-free if it does not contain a copy of the claw K

1;3

as an induced subgraph.

For S � V (G); we denote by N(S) the set of all vertices x 2 V (G) n S having

at least one neighbor in S and by hSi the induced subgraph on S. Let M(G) =

fx 2 V (G)jhN(x)i is connectedg. If M(G) = V (G) then we say that G is locally

connected.

A graph G is hamiltonian if it contains a cycle of length jV (G)j: If G contains

cycles of all lengths ` for 3 � ` � jV (G)j; then we say that G is pancyclic, and

G is vertex pancyclic if every vertex of G is contained in cycles of all lengths ` for

3 � ` � jV (G)j: We say that G has a pancyclic ordering if the vertices of G can

be ordered such that, for any j, 3 � j � jV (G)j; the graph induced by the �rst j

vertices is hamiltonian. A graph G is vertex pancyclic orderable if for every x 2 V (G)

there is a pancyclic ordering of V (G) such that x is the �rst vertex of the ordering.

Clearly, every vertex pancyclic orderable graph is vertex pancyclic. An easy

example of a vertex pancyclic claw-free graph that is not vertex pancyclic orderable

can be obtained by joining two copies of a complete graph by a perfect matching.

A cycle C � G is extendable if there is a cycle C

0

� G (called the extension of C)

such that V (C) � V (C

0

) and jV (C

0

)j = jV (C)j + 1: If every nonhamiltonian cycle

C � G is extendable, then G is said to be cycle extendable. We say that G is fully

cycle extendable if G is cycle extendable and each of its vertices is on a triangle.

If C � G is a cycle, then every edge xy =2 E(C) with x; y 2 V (C) is called a chord

of C. A cycle C

0

� G is a k-chord extension of a cycle C � G (k being an integer) if

C

0

is an extension of G and E(C

0

) contains at most k chords of C, and G is k-chord

extendable if every nonhamiltonian cycle of G has a k-chord extension. Finally, G is

fully k-chord extendable if G is k-chord extendable and fully cycle extendable.

Oberly and Sumner [6] proved that every connected locally connected claw-free

graph with jV (G)j � 3 is hamiltonian. Clark [3] strengthened this result showing

that, under the same conditions, G is vertex pancyclic and Hendry [5] observed that

these assumptions imply that G is fully cycle extendable. Zhang [7] showed that

if every vertex cut set of a claw-free graph G contains a vertex with a connected

neighborhood, then G is pancyclic. Ainouche, Broersma and Veldman [1] observed

that these assumptions imply that G is vertex pancyclic. In the present paper

we proceed further with these considerations. Namely, we show that under the

assumptions of [1], a claw-free graph G is vertex pancyclic orderable. We �nd

conditions for G to be fully 2-chord extendable and we �nd weaker conditions than

those in [1] which still imply hamiltonicity.
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2. RESULTS

Proposition 1. Let G be a claw-free graph and C � G a cycle. Suppose there is

a vertex v 2 V (C) such that N(v) nV (C) 6= ; and hN(v)i is connected. Then there

is a cycle C

0

� G such that V (C

0

) � V (C) [N(v) and C

0

is a 2-chord extension of

C:

Proof. Throughout the proof, whenever vertices of a claw are listed, its center

is always the �rst vertex of the list. Let the cycle C � G and the vertex v 2 V (C)

satisfy the assumptions of Proposition 1 and suppose that there is no such cycle

C

0

: For any �xed orientation of C and for any u

1

; u

2

2 V (C) denote by u

1

Cu

2

the

consecutive vertices on C from u

1

to u

2

in the direction speci�ed by the orientation

of C. The same vertices, in reverse order, will be denoted by u

2

 

C

u

1

. For any

u 2 V (C) denote by u

�

and u

+

the predecessor and successor of u on C, respectively.

Choose a vertex x 2 N(v) n V (C). As obviously xv

�

=2 E(G), xv

+

=2 E(G), and

hv; x; v

+

; v

�

i cannot be a claw, we have v

�

v

+

2 E(G). Since hN(v)i is connected,

there is a path P in hN(v)i joining x to at least one of v

�

; v

+

: Suppose that x and

P are chosen such that P is shortest possible. Let the orientation of C be chosen

such that P is an x; v

+

-path and let x = x

0

; x

1

; : : : ; x

`

= v

+

be the vertices of P:

Since P is a shortest path, necessarily x

i

x

j

=2 E(G) for ji � jj � 2: Hence we have

` � 3 (since otherwise hv; x; x

2

; x

4

i is a claw). As xv

+

=2 E(G); we have 2 � ` � 3:

By the choice of x and P , x

i

2 V (C) for 1 � i � `: Since obviously xx

�

1

=2 E(G)

and xx

+

1

=2 E(G), from hx

1

; x

�

1

; x

+

1

; xi we have x

�

1

x

+

1

2 E(G).

Suppose �rst that ` = 2. If x

1

and v

+

are consecutive on C, then the cy-

cle xx

1

Cv

�

v

+

vx is a 1-chord extension of C. Thus x

�

1

6= v

+

, but then the cycle

xx

1

v

+

Cx

�

1

x

+

1

Cvx is a 2-chord extension of C. Hence we have ` = 3.

We consider hv; x; x

2

; v

�

i. Obviously xv

�

=2 E(G) and since, by the choice of

P , also xx

2

=2 E(G), we have x

2

v

�

2 E(G). Thus, by symmetry, we can assume

without loss of generality that x

2

2 v

+

Cx

�

1

.

Since xx

+

1

=2 E(G) and xx

2

=2 E(G), from hx

1

; x; x

2

; x

+

1

i we have x

2

x

+

1

2 E(G).

We show that x

2

cannot be consecutive on C with any of x

1

, x

�

1

and v

+

. Indeed,

if x

2

and x

1

are consecutive on C (i.e., x

2

= x

�

1

), then the cycle xvCx

2

v

�

 

C

x

1

x is

a 1-chord extension of C, if x

2

and x

�

1

are consecutive on C (i.e., x

+

2

= x

�

1

), then

the cycle xvCx

2

v

�

 

C

x

+

1

x

�

1

x

1

x is a 2-chord extension of C and if x

2

and v

+

are

consecutive on C (i.e., x

�

2

= v

+

), then the cycle xvv

+

v

�

 

C

x

+

1

x

2

Cx

1

x is a 2-chord

extension of C.

We now consider hx

2

; x

+

2

; x

+

1

; v

+

i. Obviously x

+

1

v

+

=2 E(G) (otherwise xv

 

C

x

+

1

v

+

Cx

1

x is a 1-chord extension of C). If x

+

2

v

+

2 E(G), then the cycle xx

1

 

C

x

+

2

v

+

Cx

2

x

+

1

Cvx is a 2-chord extension of C and if x

+

2

x

+

1

2 E(G), then the cycle

xvCx

2

v

�

 

C

x

+

1

x

+

2

Cx

1

x is a 2-chord extension of C. Hence hx

2

; x

+

2

; x

+

1

; v

+

i is an

induced claw. This contradiction proves Proposition 1.
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An immediate consequence of Proposition 1 is the following corollary.

Corollary 2. Let G be a claw-free graph, C � G a cycle, and v 2 V (C) a

vertex of C such that N(v) n V (C) 6= ; and hN(v)i is connected. Then, there is a

sequence of cycles C

1

; : : : ; C

t

such that C

1

= C, C

i+1

is a 2-chord extension of C

i

,

1 � i � t� 1; and V (C

t

) = V (C) [N(v):

Theorem 3. Let G be a claw-free graph on n � 3 vertices and put M(G) =

fx 2 V (G)jhN(x)i is connectedg.

(i) If M(G) is a dominating set of G and hM(G)i is connected, then G is vertex

pancyclic orderable.

(ii) If, moreover, G nM(G) is triangle-free, then G is fully 2-chord extendable.

Proof. (i) Let x 2 V (G) and suppose �rst that x has degree 1 in G. Let y be

the neighbor of x: Then x 2 M(G) and, as jV (G)j � 3, y =2 M(G): Since M(G)

is dominating, there is z 2 M(G); z 6= x: But then every x; z-path in G contains

y which contradicts the fact that hM(G)i is connected. Hence, we have �(G) � 2:

Consequently, every x 2M(G) is on a triangle.

Let now x =2 M(G): Since M(G) is dominating, there is y 2 M(G) such that

xy 2 E(G): Since �(G) � 2, there is z 2 V (G) such that z 6= x and fx; zg � N(y):

As hN(y)i is connected, there is a triangle containing both x and y.

Thus, for every x 2 V (G) there is a triangle C � G such that x 2 V (C) and

V (C) \M(G) 6= ;. The rest of the proof follows immediately from Corollary 2.

(ii) It remains to prove that every nonhamiltonian cycle C � G is 2-chord

extendable. If V (C) \M(G) 6= ;; then C is 2-chord extendable by Corollary 2.

Thus suppose that V (C) � V (G) n M(G): Let x 2 V (C): Denote by x

0

; x

00

the

vertices consecutive to x on C and choose a vertex y 2M(G) such that xy 2 E(G)

(which exists since M(G) is dominating). Consider hx; x

0

; x

00

; yi: Since G nM(G) is

triangle-free, we have x

0

x

00

=2 E(G): This implies that yx

0

2 E(G) or yx

00

2 E(G);

but in both of these cases we obtain a cycle C

0

which is a 0-chord extension of C:

Remarks. 1. It is easy to observe that G satis�es the assumptions of Theorem

3(i) if and only if every cutset of G contains a vertex x 2 M(G): Indeed, if there is

a cutset S with S \M(G) = ;, then either hM(G)i is disconnected or M(G) is not

dominating; conversely, if x =2 M(G) and N(x) \M(G) = ;; then N(x) is a cutset

and if M

1

is one of the components of hM(G)i, then also N(V (M

1

)) is a cutset with

N(V (M

1

)) \M(G) = ;: Thus, the assumptions of Theorem 3(i) are equivalent to

those of [7] and [1], but they are easier to verify.

Moreover, from the proof of Theorem 3(i) we easily see that, under the same

assumptions, for each x 2 V (G); G has a pancyclic ordering such that x is the �rst

vertex and every extension is a 2-chord extension.
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2. Let k � 3 be an integer and let G be a graph on n = 3k vertices which

is obtained by joining every vertex of a copy of K

k

to two di�erent vertices of a

copy of K

2k

, where the pairs in the copy of K

2k

are chosen to be disjoint. Then G

is vertex pancyclic orderable but is not fully cycle extendable since every cycle of

length k in the copy of K

k

is nonextendable. Thus, the assumption that G nM(G)

is triangle-free is essential in Theorem 3(ii).

In the case when hM(G)i is disconnected we can prove the following.

Theorem 4. Let G be a claw-free graph of connectivity �(G) � 2 and M(G) =

fx 2 V (G)jhN(x)i is connectedg. Suppose that M(G) is a dominating set of G and

hM(G)i has r components. If r � �(G); then G is hamiltonian.

Proof. Let H

1

; : : : ;H

r

be the components of hM(G)i and for every i; 1 � i � r,

choose a vertex a

i

2 V (H

i

): We use the following theorem by Dirac (see, e.g. [4]).

Theorem. If G is a graph of connectivity �(G) � 2 and fx

1

; : : : ; x

k

g � V (G) is

a set of k � �(G) vertices, then there is a cycle C � V (G) such that fx

1

; : : : ; x

k

g �

V (C):

By this theorem, there is a cycle C � G containing all vertices a

1

; : : : ; a

r

: By

Corollary 2, C can be extended to a hamiltonian cycle of G.

Remarks. 1. Let H

1

;H

2

;H

3

be locally connected claw-free graphs on at least

3 vertices and a

i

; b

i

2 V (H

i

) such that hN(a

i

)i and hN(b

i

)i are complete graphs

(i = 1; 2; 3): Construct a graph G by adding the edges a

i

a

j

and b

i

b

j

for i; j = 1; 2; 3,

i 6= j: Then G is a claw-free graph with connectivity �(G) = 2, M(G) is dominating,

hM(G)i has 3 components, and G is not hamiltonian.

2. The graph in Figure 1 shows that the assumptions of Theorem 4 do not imply

pancyclicity.
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