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Abstract

In this paper we summarize known results on claw-free graphs. The paper is

subdivided into the following chapters and sections:

1. Introduction

2. Paths, cycles, hamiltonicity

a) Preliminaries

b) Degree and neighborhood conditions

c) Local connectivity conditions

d) Further forbidden subgraphs

e) Invariants

f) Squares

g) Regular graphs

h) Other hamiltonicity related results and generalizations

3. Matchings and factors

4. Independence, domination, other invariants and extremal problems

5. Algorithmic aspects

6. Miscellaneous

7. Appendix - List of all 2-connected nonhamiltonian claw-free graphs on n � 12

vertices.
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1. INTRODUCTION

Claw-free graphs have been a subject of interest of many authors in the recent years.

In this paper we try to summarize the known results concerning this family of graphs.

The �rst motivation for studying properties of claw-free graphs apparently appeared

from the Beineke's characterization of line graphs in [14] and [15]. However, the main

impulse that turned the attention of the graph theory community to the class of claw-free

graphs was given in late 70's and early 80's. During this period the matching properties

of such graphs were observed in [183], [120], and [184], and �rst results on hamiltonian

properties were proved in [85], [50], [148] and [155]. However, probably more importantly,

were the observations that the determination of the independence number is polynomial

(see [151] and [172]) and that the Berge's Perfect Graph Conjecture holds (see [158]) in

claw-free graphs.

In general, we follow the most common graph-theoretical terminology and notation,

and for concepts not de�ned here we refer to [20]. Unless otherwise mentioned, throughout

the paper by a graph we always mean a simple �nite undirected graph G with vertex set

V (G) and edge set E(G). We will always let n = jV (G)j and, unlike in [20], we denote

by hMi the subgraph induced by a set M � V (G). By �(G) and �(G) we will mean the

minimum degree and maximum degree of G respectively. For a subset A of V (G), N(A)

is the set of all vertices of G that are adjacent to at least one vertex of A. If H is a graph,

then we say that G is H-free if G does not contain a copy of H as an induced subgraph.

By the claw (denoted C) we mean the complete bipartite graph K

1;3

(see Fig. 1.1). Thus,

G is said to be claw-free if it does not contain an induced subgraph that is isomorphic to

C.

Some of the results surveyed here are also mentioned in the two former surveys on

claw-free graphs, one by Flandrin in [65] and the other by Li Mingchu and Liu Zhenhong

in [135], and in the survey paper on hamiltonicity by Gould [87].

t t

t

t

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

Figure 1.1: The claw C

Families of claw-free graphs

There are several well-known and important families of graphs that are also claw-free,

so we now recall some of these families.

�) Line graphs

If G is a graph, then the line graph of G, usually denoted by L(G), is obtained by

associating one vertex to each edge of G, and two vertices of L(G) being joined by an edge

if and only if the corresponding edges in G are adjacent. In [14] and also [15], Beineke

gives a characterization of line graphs in terms of forbidden induced subgraphs and the

claw is one (among nine) of those subgraphs. Thus, every line graph is claw-free.
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Solt�es [181] reduced the number of forbidden induced subgraphs characterizing con-

nected line graphs to 7 for n � 9, with the claw remaining one of those seven forbidden

subgraphs. In [182] line graphs are also characterized by 5 forbidden induced subgraphs

and by describing the structure of neighborhoods of vertices.

�) Complements of triangle-free graphs

It is easy to see G is a complement of a triangle-free graph if and only if its indepen-

dence number satis�es �(G) � 2 and that every such graph is claw-free.


) In
ation of a graph

By the in
ation of a graph H we mean a graph which is obtained by replacing each

vertex x by a complete graph K

d(x)

and joining each edge to a di�erent vertex of K

d(x)

.

Clearly, the in
ation of every graph H is a claw-free graph and if H is regular then so is

its in
ation. Moreover, the in
ation of an arbitrary planar cubic graph is a planar cubic

claw-free graph which is hamiltonian if and only if the original graph is hamiltonian.

�) Comparability graphs

Consider a �nite set of intervals on the real line such that no one completely contains

another one (see Gilmore and Ho�man [81]). A claw-free graph, called the comparability

graph (or also the interval graph - cf. [48] and Theorems 6.6 - 6.8), is obtained by

associating a vertex to each of these intervals and putting edges between vertices if and

only if the corresponding intervals have nonempty intersection.

") Middle graphs

The middle graph of H is obtained by inserting a vertex x

i

in the \middle" of each

edge e

i

, 1 � i � jE(H)j, and adding the edge x

i

x

j

for 1 � i < j � jE(H)j if and only if

e

i

and e

j

have a common vertex. The middle graph of every graph is also claw-free.

It is easy to see that all in
ations and middle graphs are line graphs, but, on the other

hand, the graphs H

1

and H

2

in Figure 1.2 are examples of a complement of a triangle-free

graph and of a comparability graph that are not line graphs.

�) Generalized line graphs

Graphs such that the neighborhood of each vertex can be partitioned into at most two

cliques are called generalized line graphs. They can also be characterized in the following

way (see Maurras [150]): A generalized line graph is the complement of a locally bipartite

graph (in [150] called \almost bipartite"), where a graph is locally bipartite if and only

if the neighborhood of each vertex induces a bipartite graph. It is easy to check that

this family contains all line graphs (and therefore also all middle graphs and in
ations).

Nevertheless, some complements of a triangle-free graphs are not generalized line graphs

(see H

1

in Fig. 1.2) and some generalized line graphs are not line graphs (see H

2

in

Fig.1.2).

For additional properties of these graphs, see Ben Rebea [16].

In the following we turn our attention to some properties of claw-free graphs that will

be useful in the next chapters. In many situations, it is useful to have local information
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Figure 1.2

about the structure of neighborhoods of vertices in a claw-free graph. It is an easy

observation to realize that a graph G is claw-free if and only if the neighborhood of every

vertex x 2 V (G) satis�es �(hN(x)i) � 2 (where �(H) is the independence number of H).

It is also easy to observe that, for every x 2 V (G), hN(x)i must be net-free (i.e.,

cannot contain as an induced subgraph a copy of the net N (see Fig. 1.3)). Since clearly

hN(x)i is also claw-free, we see that neighborhoods of vertices can be of the following

types:

- hN(x)i is disconnected and then, since �(hN(x)i) � 2, hN(x)i consists of two vertex-

disjoint cliques,

- hN(x)i has connectivity 1 and then, by a result of Du�us, Gould and Jacobson [50]

(see Theorem 2d), hN(x)i is traceable; moreover, hN(x)i can be covered by two vertex-

disjoint cliques such that all edges joining the cliques have a common vertex in one of the

cliques,

- hN(x)i is k-connected with k � 2 and then, again by Theorem 2d.2, hN(x)i is

hamiltonian.

Another related result was proved by Fouquet [76]. Recall that an odd hole or antihole

in G is an induced subgraph of G which is isomorphic to a chordless cycle of odd length

or to its complement, respectively.

Theorem 1.1 [76] (generalized Ben Rebea's lemma). Let G be a connected claw-free

graph with �(G) � 4. Then G does not contain any odd hole of size greater than 5.

Corollary 1.2 [76] Let G be a connected claw-free graph with �(G) � 3. Then every

vertex of G satis�es one (and only one) of the following conditions:

(i) N(v) is covered by two complete graphs,

(ii) N(v) contains an induced C

5

(i.e. an antihole of size 5).
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Figure 1.3

Another characterization was obtained by Shepherd ([177]).
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Theorem 1.3 [177] A connected graph G is claw-free if and only if for every minimal

cut set S and every v 2 S, hN(v)� Si is the disjoint union of two complete graphs.

Shepherd also introduced a subclass of the class of claw-free graphs by imposing a

condition that, for every vertex x 2 V (G), its neighborhood N

i

(X) at any distance i

has independence number at most two. Namely, G is said to be distance claw-free if

�(hN

i

(x)i) � 2 for every v 2 V (G) and for every i. It is surprising that this global

property can be fully characterized in terms of local conditions (for the ei�el and tripod,

see Fig. 1.3).

Theorem 1.4 [177] A graph G is distance claw-free if and only if G is claw-free, ei�el-free

and tripod-free.

Two interesting and useful consequences of Theorem 1.4 are the following.

Corollary 1.5 [177] For any graph G, claw-free and net-free ) distance claw-free )

claw-free.

Corollary 1.6 [177] A graph G is distance claw-free if and only if �(N

i

(v)) = 2 for i = 1

and i = 2.

Extensions

Together with claw-free graphs, we will examine properties of the following super-

classes:

a) Families of graphs de�ned in terms of a set of forbidden subgraphs such that each of

those forbidden subgraphs contains an induced claw, for example K

1;r

-free graphs, r � 4.

b) Graphs with some constraints on the claws including:

�) Locally claw-free graphs (see [167]).

A graph G is said to be locally claw-free if and only if hN(x)i is claw-free for every

x 2 V (G). It can be shown (see [167]) that a graph G is locally claw-free if and only if G

is crown-free (see Fig. 2b.4).

�) Almost claw-free graphs (see [167]).

We say that G is almost claw-free if the centers of induced claws in G are independent

and their neighborhoods are 2-dominated. More precisely, G is almost claw-free if there

is a (possibly empty) independent set A � V (G) such that �(N(x;G)) � 2 for x =2 A and


(N(x;G)) � 2 < �(N(x;G)) for x 2 A, where 
 denotes the domination number of a

graph. Clearly, every claw-free graph is almost claw-free.

The almost claw-free graphs are contained in some of the other classes of extensions

of claw-free graphs, as the next result indicates.

Proposition 1.7 [167]

(i) Every almost claw-free graph is locally claw-free.

(ii) Every almost claw-free graph is K

1;5

-free.


) Graphs with independent centers of claws (see [124]).
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�) Graphs without too many claws (see [74]).

c) L

i

-graphs (see [8]).

Asratian and Khachatrian [8] introduced the following classes of L

i

-graphs (L for

local). We say that G is a L

i

-graph (i being an integer) if, for each triple of vertices

u; v; w with d(u; v) = 2 and w 2 N(u) \N(v), d(u) + d(v) � jN(u)[N(v)[N(w)j � i,

or, equivalently, jN(u) \ N(v)j � jN(w)� (N(u) [ N(v))j � i. It can be shown (see [7])

that L

0

� L

1

� L

2

� : : : and that the class L

1

contains all claw-free graphs.

In the case of bipartite graphs, we also will be interested in the analogous concept of

biclaw-free graphs. A biclaw is de�ned as the graph obtained from two vertex disjoint

claws by adding an edge between the two vertices of degree 3 in each of the claws (see

Fig. 1.4) and a bipartite graph is said to be biclaw-free if it does not contain any biclaw

as an induced subgraph.
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Figure 1.4: The biclaw

It is easy to get claw-free graphs using the above constructions (along with possibly

choosing subgraphs of claw-free graphs, since the claw-free property remains when sup-

pressing vertices). It is also easy to recognize if a given graph is claw-free (more precisely,

it can be tested in a polynomial time with complexity at most O(n

4

) (see [5]). We can

hope that some of these classes of graphs will have good behavior in comparison to some

NP-complete problems for arbitrary graphs. Some results of this type have already been

proved and are summarized later in section 5.

2. PATHS, CYCLES, HAMILTONICITY AND RELATED PROBLEMS.

a) Preliminaries

Many of the results that are mentioned in this section are also included in the survey

by Gould [87].

If S � V (G), then by c(G � S) we denote the number of components of G � S. We

say that a graph G is t-tough if for every subset S � V (G) with c(G � S) > 1 we have

jSj � tc(G� S). The toughness of G, denoted by � (G), is the largest value of t such that

G is t-tough.

Chv�atal has shown in [40] that if G is not complete and has connectivity �(G), then

� (G) � �(G)=2. In the special case of claw-free graphs, Matthews and Sumner proved

that equality holds.

Theorem 2a.1 [148] If G is a noncomplete claw-free graph, then

� (G) = �(G)=2:
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Chv�atal originally conjectured that if � (G) > 3=2, then G is hamiltonian, but because

of a family of counterexamples the conjecture has now been modi�ed to the following.

Conjecture 2a.2 [40] Every 2-tough graph is hamiltonian.

Based on this conjecture (which is still open) and an observation by Sumner (see [148])

that states that every claw-free with connectivity at least n=4 is hamiltonian, Matthews

and Sumner [148] conjectured the following (which is also still open).

1

Conjecture 2a.3 [148] If G is a 4-connected claw-free graph, then G is hamiltonian.

Matthews and Sumner in [148] also showed that the assumption G is a 3-connected

claw-free graph does not imply hamiltonicity. In fact, an in�nite family of 3-connected

claw-free graphs that are not hamiltonian can be obtained from the cubic planar non-

hamiltonian claw-free graph of Tutte by successive in
ation. Matthews and Sumner also

showed that every 3-connected claw-free graph on less than 20 vertices is hamiltonian

and in [148] exhibited the following example (see Fig. 2a.1) of a smallest 3-connected

nonhamiltonian claw-free graph on 20 vertices (note that this graph is the line graph of a

graph that is obtained from the Petersen graph by subdividing a perfect matching).
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Figure 2a.1

Since a 3-connected claw-free graph G is not in general hamiltonian, it is natural to

ask how large a cycle G must have. This was done by Jackson and Wormald (see page 63

in [19]).

Theorem 2a.4 [19] Let G be a 3-connected claw-free graph on n vertices. Then G

contains a cycle of length at least n

c

for some positive constant c.

1

Recently, the following result was proved by Ryj�a�cek [171]:

If G is a claw-free graph, then there is a graph cl(G) such that

(i) G is a spanning subgraph of cl(G),

(ii) cl(G) is the line graph of a triangle-free graph, and

(iii) the length of a longest cycle in G and in cl(G) is the same.

This result implies that Conjecture 2a.3 is equivalent with the Thomassen's conjecture (every 4-connected

line graph is hamiltonian). Using a result of B. Jackson [104] and S. Zhan [195], this also implies that

every 7-connected claw-free graph is hamiltonian. Li Hao [127] improved this result to 6-connected graphs

with at most 33 vertices of degree 6.

7



In 2-connected claw-free graphs, Jackson [105] conjectured the following.

Conjecture 2a.5 [105] If G is a 2-connected claw-free graph, then G has a Tutte cycle.

(A Tutte cycle in G is a cycle C � G such that all bridges of C have at most three

vertices of attachment on C. A bridge B of C is an equivalence class of the equivalence

relation de�ned on E(G) � E(C) by saying that e is equivalent to f if and only if there

is a e; f -walk which is internally vertex disjoint from C, and the vertices of attachment of

B are the elements of V (B) \ V (C)).

The circumference of 2-connected claw-free graphs was investigated by Broersma, Van

den Heuvel, Jung, and Veldman in [24]. The following upper and lower bounds on c(G)

were proved using the relationship between the toughness and connectivity of a K

1;r

-free

graph.

Theorem 2a.6 [24] If G is a 2-connectedK

1;r

-free graph on n vertices with circumference

c(G), then

c(G) � 4 log

r�1

(n)�A =

4

log(r � 1)

� log(n)�A;

where A is an appropriate absolute constant.

In [24] there is a construction that shows that for every r; r � 3, and su�ciently large

n, there exists a 2-connected K

1;r

-free graph H

r;n

on n vertices such that

c(H

r;n

) <

8

<

:

4

log(r�2)

� log(n) + 4 if r � 3;

8 log(n + 6)� 8 log(3) � 2 if r = 3:

Hence, the order of magnitude of the lower bound in Theorem 2a.6 is best possible.

In some of the superclasses of the class of claw-free graphs that were de�ned in the

introduction, the toughness of a graph can be smaller than the half of its connectivity. In

K

1;r

-free graphs, Broersma, Van den Heuvel, Jung, and Veldman in [24] (and also later

and independently Chen and Schelp in [33]) proved the following.

Theorem 2a.7 [24], [33] If G is a non-complete K

1;r

-free graph of connectivity �(G),

then

�(G)

r � 1

� � (G) �

�(G)

2

:

In almost claw-free graphs a bound on the toughness as a function of the connectivity

was proved by Broersma, Ryj�a�cek and Schiermeyer in [26].

Theorem 2a.8 [26] If G is a noncomplete almost claw-free graph with connectivity �,

then

� (G) � minf1;

1

2

�g:

Also, an example is given in [26] showing that the equality � (G) =

1

2

�(G) fails in

almost claw-free graphs with connectivity � > 2.

Asratian, Broersma, Van den Heuvel, and Veldman in [7] proved an analogue for

L

1

-graphs.

Theorem 2a.9 [7] If G is a 2-connected L

1

-graph then G is 1-tough.

8



An example is given in [7] of an in�nite family of 1-tough L

1

-graphs of arbitrary

connectivity that are not (1 + �)-tough for any � > 0.

b) Degree and neighborhood conditions

For 1 � k � n we denote by �

k

(G) the minimum of the degree sum d(x

1

) + :::+ d(x

k

)

and by U

k

(G) the minimum of the neighborhood union jN(x

1

) [ ::: [ N(x

k

)j, where the

minimum is taken over all subsets fx

1

; :::; x

k

g of k independent vertices of V (G). We will

keep the notation � for the common value of �

1

and U

1

. The two parameters �

k

and U

k

have been frequently used in su�cient conditions for hamiltonian properties in graphs.

For the sake of clarity and ease of reference the results concerning traceability, hamil-

tonicity and pancyclicity in claw-free graphs as a function of �, �

k

and U

k

have been placed

in tables (depending on the connectivity of the graph). An \S" (for sharp) in the table

indicates that the bound cannot be improved. Even early results that have been improved

are included in the table in order to exhibit the development of the area. Sharpness of

some of these bounds can be checked using the graphs in Fig. 2b.1.
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1-connected claw-free graphs:

� �

n�2

3

�

3

� n� 2 U

2

>

2n�4

3

U

2

�

2n�5

3

Traceability [149] (S) [21], [137] (S) [54] [11] (S)

When the connected graph G is not traceable, then Matthews and Sumner ([149])

have shown that the longest path has length at least 2� + 2, and this was improved to

�

2

+ 2 by Liu, Tian and Wu in [137].

2-connected claw-free graphs:

� �

n�2

3

�

2

�

2n�5

3

�

3

� n� 2

Hamiltonicity [149] (S) [69] [21], [137] (S)

Pancyclicity [68]
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U

2

>

2n�2

3

U

2

�

2n�3

3

U

2

�

2n�5

3

U

2

�

n�2

2

Traceability [54]

Hamiltonicity [54] [11] (S)

Pancyclicity [54]

In the following two results, the bounds on degree in the previous results are improved

in the presence of some additional assumptions. Liu and Wu in [138] assume regularity.

Theorem 2b.1 [138] If G is claw-free, 2-connected and �-regular such that � � (n�1)=4,

then G is hamiltonian.

Li Hao in [122] excludes the family F

1

de�ned as follows: If G is in F

1

, then G can be

decomposed into three disjoint subgraphs G

1

, G

2

, G

3

such that for any i 6= j, 1 � i; j � 3,

E

G

(G

i

; G

j

) = fu

i

u

j

; v

i

v

j

g, where u

i

; v

i

2 G

i

, (see also F

1

in Fig. 2b.3).

Theorem 2b.2 [122] If G is a 2-connected claw-free graph with minimumdegree � � n=4

which does not belong to F

1

, then G is hamiltonian. The bound n=4 is sharp.

For non-hamiltonian 2-connected graphs, the circumference is proved to be at least

2� + 4 by Matthews and Sumner ([149]), and this was improved to �

2

+ 4 by Flandrin,

Fournier, Germa ([69]) and also by Liu, Tian and Wu ([137]). Assuming only n=2 + k

vertices of degree at least k, Dang ([46]) also gets the bound 2k+4, except for a forbidden

family of graphs. Denote by F

0

the family of 13 graphs which are obtained from G

1

; G

2

or G

3

(see Fig. 2b.2) by possibly adding some of the intermittent edges. Note that these

graphs are all in the family F

1

de�ned by Li in [122].

t t

t

t t

t

t t

�

�

�

�

�
�

X

X

X

X

X
X

�

�

�

�

P

P

P

P

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

�

�

�

�

�

�

t

t

�

�

�

�

�

�

X

X

X

X

X

X

�

�

�

�

�

�

H

H

H

H

H

H

G

1

t t

t

t t

t

t t

�

�

�

�

�
�

X

X

X

X

X
X

�

�

�

�

P

P

P

P

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

�

�

�

�

�

�

t t

t t

�

�

�

Z

Z

Z

Z

Z

Z

�

�

��

�

�

�

�

�Z

Z

Z

Z

Z

Z

��

��

�
�

��

��

��

XX

X
X

XX

XX

XX

XX

XX

XX

X
X

XX

XX

XX

��

�
�

��

��

��

��

G

2

t t

t

t t

t

t t

�

�

�

�

�
�

X

X

X

X

X
X

�

�

�

�

P

P

P

P

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

�

�

�

�

�

�

t t

t t

�

�

�

Z

Z

Z

Z

Z

Z

�

�

��

�

�

�

�

�Z

Z

Z

Z

Z

Z

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

�

�

�

�

�

�

�

�

G

3

Figure 2b.2

Theorem 2b.3 [46] Let G be a 2-connected claw-free graph having at least n=2 + k

vertices of degree k for some integer k. Then either G 2 F

0

and G has a cycle of length

at least 2k + 3 or else G has a cycle of length at least minfn; 2k + 4g.

Corollary 2b.4 [46] Let G be a 2-connected claw-free graph with n � 13 having at least

n=2 + k vertices of degree k for some integer k. Then G has a cycle of length at least

minfn; 2k + 4g.

In another direction Tian in [188] also gets a lower bound on the circumference by

10



placing some restrictions on the induced subgraphs isomorphic to P

4

(path with four

vertices).

Theorem 2b.5 [188] Let G be a 2-connected claw-free graph and S

c

be the set of vertices

with degree at least c=2, 3 � c � n. If jV (L) \ S

c

j � 1 for each induced subgraph L

isomorphic to P

4

, then G has circumference at least c.

3-connected claw-free graphs:

� �

n+10

5

� �

n+5

5

� �

n+7

6

�

3

� n+ 1 U

2

�

11(n�7)

21

Traceability [126]

Hamiltonicity [66] [130] [121] [126]

Hamilton Connectedness [194], [71]

For non-hamiltonian 3-connected claw-free graphs, Li Mingchu [128] veri�ed 4� as a

lower bound for the circumference and Wang ([192]) showed that the value �

4

� 4 is also

a lower bound if � � 8.

k-connected claw-free graphs:

� >

2n

2k+1

� 2 �

k+1

� n� k �

k+2

� n � k � 1 U

t

� t

n�1

t+1

, t � k

Traceability [1]

Hamiltonicity [126] [196], [1] conjecture in [54]

proof in [126]

For nonhamiltonian k-connected claw-free graphs, Flandrin, Fournier and Germa in

[68] proved that the circumference is at least

2�

k+1

k+1

+ 4 if k � 2.

There are several additional degree and neighborhood conditions that imply hamilto-

nian type properties in k-connected claw-free graphs for k � 2. Fraisse in [77] has shown

that for any graph G (without the assumption of claw-freeness), if U

t

> t

n�1

t+1

for some

integer t, 1 � t � k, then G is hamiltonian.

Li and Virlouvet considered the same type of neighborhood union condition for claw-

free graphs in [126], and proved the following result, which has several interesting corol-

laries, some of which have already been mentioned.

Theorem 2b.6 [126] Let G be a k-connected (k � 3) claw-free graph. If there is some

integer t; t � 2k, such that

U

t

(G) >

t(4k � t+ 1)

2k(2k + 1)

(n� 2k � 1);

then G is hamiltonian.

Li Mingchu in [129] gave a degree sum condition for claw-free graphs of su�ciently

large order under which hamiltonicity implies pancyclicity.

Theorem 2b.7 [129] If G is a hamiltonian claw-free graph of order n > 100 and �

3

�

(n� 2)=3, then G is pancyclic.

11



Considering not only subsets of independent vertices but arbitrary sets of vertices,

Faudree, Gould, Lesniak, Lindquester ([55]) de�ne the generalized r-degree, �

r

(G), of a

graph G by

�

r

(G) = min

S�V (G);jSj=r

j [

u2S

N(u)j:

In [58] Faudree, Gould, Jacobson, Lesniak, Lindquester used the generalized 2-degree

�

2

to give su�cient conditions for hamiltonian type properties.

Theorem 2b.8 [58] Let G be a claw-free graph.

a) If G is connected and �

2

(G) � (n+1)=3, then for n su�ciently large G is traceable.

b) If G is 2-connected and �

2

(G) � (n + 1)=3, then for n su�ciently large G is

hamiltonian.

c) If G is 3-connected and �

2

(G) � (n + 24)=3, then for n su�ciently large G is

hamiltonian-connected.

d) If G is 3-connected, then there is a constant c such that if �

2

(G) � n=3 + c, then G

is pancyclic.

In the presence of a graph with bounded independence number, the generalized degree

�

r

is used in [55] to give additional su�cient conditions for hamiltonian type properties

(see also Theorem 2b.16).

Theorem 2b.9 [55] Let G be a graph of order n. Then for each pair of integers r and

m (1 � r � n and 3 � m < n), and for each non-negative function f(r;m) there exists a

constant C = C(r;m; f(r;m)) such that if �

r

(G) � n=3 + C and �(G) � f(r;m), then

(i) G is traceable if �(G) � r and G is connected,

(ii) G is hamiltonian if �(G) � r + 1 and G is 2-connected, and

(iii) G is hamiltonian-connected if �(G) � r + 2 and G is 3-connected.

Generalizations to larger classes

�) K

1;4

-free graphs.

In 2-connected K

1;4

-free graphs, Markus [144] proved the following minimum degree

condition is su�cient for hamiltonicity.

Theorem 2b.10 [144] Let G be a 2-connected K

1;4

-free graph with � � (n+2)=3. Then

G is hamiltonian.

Chen and Schelp [33] extended the previous result for K

1;4

-free graphs of connectivity

at least 2 by considering a sum of degrees condition.

Theorem 2b.11 [33] Let G be a k-connected K

1;4

-free graph of order n � 3.

(i) If �

k+1

(G) � n+ k, then G is hamiltonian.

(ii) If �

k

(G) � n+ k + 1, then G is hamiltonian-connected.

From this result, we get as a corollary the following minimum degree conditions.

Corollary 2b.12 [33] Let G be a k-connected K

1;4

-free graph of order n � 3.

(i) If �(G) � (n+ k)=(k + 1), then G is hamiltonian.

(ii) If �(G) � (n+ k + 1)=k, then G is hamiltonian-connected.

12



�) K

1;r

-free (r � 5) graphs.

Markus [144] proved the following minimum degree condition for hamiltonicity in 2-

connected K

1;r

-free graphs.

Theorem 2b.13 [144] Let G be a 2-connected K

1;r

-free graph (r � 5) with � � (n +

r � 3)=3. Then G is hamiltonian unless n = 2r � 3 and G � E(G � T ) is isomorphic to

K

r�1;r�2

, where T is any largest independent set in G.

Chen and Schelp [33] proved the following strengthening of this result. We say that

G is q-edge-hamiltonian if for every set F of q edges of G which induce a set of vertex

disjoint paths of G, there is a hamiltonian cycle in G containing all edges of F .

Theorem 2b.14 [33] Let k; q be nonnegative integers such that k � q + 1 and let

G be a K

1;r

-free graph of order n � (r � 1)(k + 1)(k + 1 � q) + q � 1. If G satis�es

�

k�q+1

� n+ q + (k � q � 1)k, then G is q-edge-hamiltonian.

The following degree conditions for hamiltonicity and hamilton-connectedness follow

immediately from Theorem 2b.14 for q = 0 and q = 1.

Theorem 2b.15 [33] Let G be a k-connected K

1;r

-free graph of order n and let k � 1

and r � 2 be integers.

(i) If n � (k + 1)

2

(r � 1)� 1 and �

k+1

� n+ (k � 1)k, then G is hamiltonian.

(ii) If n � k(k+1)(r�1) and �

k

� n+(k�2)k+1, then G is hamiltonian-connected.

Using the fact that a generalized degree condition �

t

(G) � pn (p > 0) in a K

1;r

-free

graph G implies that the independence number �(G) is bounded, Faudree, Gould, Lesniak

and Lindquester [55] obtained the next result, which is really a corollary of Theorem 2b.9.

Theorem 2b.16 [55] Let G be a K

1;r

-free graph of order n where 3 � r < n. For each

integer t, 1 � t � n, there exists a constant C = C(t; r) such that if �

t

(G) � n=3 + C,

then

(i) G is traceable if �(G) � t and G is connected,

(ii) G is hamiltonian if �(G) � t+ 1 and G is 2-connected, and

(iii) G is hamiltonian-connected if �(G) � t+ 2 and G is 3-connected.


) Almost claw-free graphs.

For 2-connected almost claw-free graphs, Broersma, Ryj�a�cek and Schiermeyer [26] get

the same minimum degree for hamiltonicity as in claw-free graphs.

Theorem 2b.17 [26] If G is a 2-connected almost claw-free graph with �(G) � (n�2)=3;

then G is hamiltonian.

Considering triples of independent vertices, they proved in [26] that if G is a 2-

connected almost claw-free graph with �

3

(G) � n; then G is hamiltonian, and they

conjectured that �

3

(G) � n � 2 implies hamiltonicity in 2-connected almost claw-free

graphs. This conjecture was veri�ed for n � 79 by Li and Tian in [125] (see Theorem

2b.19).

�) Graphs with independent claw centers.
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In graphs in which all centers of claws are independent, Hao Li, Mei Lu and Zhiren

Sun [124] recently proved a result in which they further decreased the lower bound on

minimum degree under an additional assumption that G does not belong to a speci�ed

family of graphs. Namely, G 2 F if G can be decomposed into three vertex disjoint

subgraphs G

1

; G

2

; G

3

plus (2, 1 or 0) additional vertices u

i

(i.e. G is a subgraph of one of

the graphs F

1

;F

2

;F

3

in Fig 2b.3).

Theorem 2b.18 [124] Let G be a 2-connected graph such that the set of vertices that

are centers of induced claws in G is independent. If �(G) � (n+ 3)=4, then either G 2 F

or G is hamiltonian.
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Figure 2b.3

Li Hao and Tian Feng proved the following result that generalizes several degree con-

ditions for hamiltonicity in claw-free graphs and also veri�es the conjecture of Broersma,

Ryj�a�cek and Schiermeyer on almost claw-free graphs for n � 79.

Theorem 2b.19 [125] Let G be a 2-connected graph on n � 79 vertices such that the

set of vertices that are centers of induced claws in G is independent. If �

3

(G) � n � 2,

then either G 2 F

2

[ F

3

or G is hamiltonian.

For graphs of higher connectivities, Shen, Tian and Wei [178] proved the following

result.

Theorem 2b.20 [178] Let G be a k-connected graph (k � 2) such that the set of

vertices that are centers of induced claws in G is independent. If �

k+1

(G) � n + k, then

G is hamiltonian.

") K

1;1;3

and K

2;3

-free graphs.

These classes of graphs also contain the class of claw-free graphs. In [70], Flandrin,

Jung and Li obtained:

Theorem 2b.21 [70] Let G be a 2-connected crown-free and K

2;3

-free graph such that

�

3

� n+ 1. Then G is hamiltonian.

�) Graphs with not too many claws.

The �-condition for hamiltonicity of Matthews and Sumner [149] can be extended if

G does not have \too many claws". For any two independent vertices u; v of G, denote
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by n

c

(u; v) the number of claws containing both u and v and by n

c

(G) the maximum of

n

c

(u; v) taken over all pairs of nonadjacent vertices of G. Flandrin and Li in [74] proved:

Theorem 2b.22 [74] Let G be a 2-connected graph of order n � 29 and minimumdegree

�. Let l be an integer. If one of the following conditions is veri�ed,

1. � = (n� 2)=3 and n

c

(G) < �=2,

2. � = (n+ l)=3; �1 � l � 1 and n

c

(G) < � � 1, or

3. � = (n+ l)=3; 2 � l � (n� 3)=2 and n

c

(G) < �(l+ 2) � 2,

then G is hamiltonian.

�) Modi�ed Fan condition

Bedrossian, Chen and Schelp [13] de�ne property PC(k) as follows: G is said to satisfy

PC(k) if maxfd(x); d(y)g � k=2 for every pair (x; y) of nonadjacent vertices that belong

to an induced claw or an induced K

1;3

+ e in G. They prove the following three results:

Theorem 2b.23 [13] If G is a 2-connected graph of order n � 3 satisfying PC(k); k � n,

then G has circumference at least k.

Theorem 2b.24 [13] If G is a 2-connected graph of order n � 3 satisfying PC(n), then

G is either a cycle, a pancyclic graph, K

n=2;n=2

, K

n=2;n=2

� e, or the graph in Fig. 2b.5.

Theorem 2b.25 [13] If G is a 3-connected graph of order n � 3 satisfying PC(n + 1),

then G is hamiltonian connected.

u u u u u u

u u u u u u

: : :

�

�

�

�

K

2r

Figure 2b.5

#) Conditions on independent triples with a common neighbor

Flandrin, Li and Schiermeyer in [75] combined a neighborhood intersection property

along with a global degree condition to get the following two results.

Theorem 2b.26 [75] LetG be a 2-connected graph of order n � 27 with minimumdegree

� �

n�2

3

. If for all triples of independent vertices u; v; w such that N(u)\N(v)\N(w) 6= ;

we have maxfd(u); d(v); d(w)g � n=2, then G is hamiltonian.
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Theorem 2b.27 [75] Let G be a 2-connected graph of order n � 3 with �

3

� n + 2. If

for all triples of independent vertices u; v; w such that N(u) \N(v) \N(w) 6= ; we have

maxfd(u); d(v); d(w)g � n=2, then G is hamiltonian.

�) Conditions on independent triples.

Flandrin, Jung and Li in [70] considered all triples of independent vertices and obtained

the following general results.

Theorem 2b.28 [70] If G is a 2-connected graph of order n such that d(u)+d(v)+d(w) �

n+ jN(u) \N(v) \N(w)j for any independent set fu; v; wg, then G is hamiltonian.

Theorem 2b.29 [70] If G is a connected graph of order n such that d(u)+d(v)+d(w) �

n� 1 + jN(u) \ N(v) \ N(w)j for any independent set fu; v; wg, then G is traceable.

�) Biclaw-free bipartite graphs.

An analogous result to those concerning the claw-free property and hamiltonicity is

obtained for biclaw-free graphs by Flandrin, Fouquet, Li in [67].

Theorem 2b.30 [67] If G is connected, bipartite, balanced, biclaw-free with � �

max(9; (n+ 14)=6), then G is hamiltonian.

The corresponding result for dominating cycles was proved by Barraez, Flandrin, Li

and Ordaz in [10].

Theorem 2b.31 [10] If G is connected, bipartite, balanced, biclaw-free with � �

max(24; (n + 69)=8), then every longest cycle in G is dominating.

The following is conjectured by Li Hao [123].

Conjecture 2b.32 [123] There exists a constant c such that every connected bipartite

biclaw-free graph G with �(G) � c is hamiltonian.

c) Local connectivity conditions.

It is easy to see that every graph satisfying a global degree condition must have limited

diameter, i.e., every global lower bound on degrees implies at the same time an upper

bound on the diameter of G (e.g., Ore's condition �

2

� n implies that G must have

diameter at most 2). Local conditions, however, are applicable to graphs with arbitrarily

large diameter.

If P is a property, then we say that G is locally P if, for every x 2 V (G), hN(x)i has

the property P. As mentioned in the introduction, every locally connected claw-free graph

is locally traceable and every locally 2-connected claw-free graph is locally hamiltonian.

In this section we will be mainly interested in global consequences of local connectivity

conditions.

Oberly and Sumner [155] proved the following result.

Theorem 2c.1 [155] If G is a connected, locally connected claw-free graph on n � 3
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vertices, then G is hamiltonian.

Several authors observed that the assumptions of Theorem 2c.1 imply stronger cycle

properties. Clark [44] (and also independently later on Shi Rong Hua [179] and Zhang

[197]) proved the following.

Theorem 2c.2 [44] Every connected, locally connected claw-free graph on at least three

vertices is vertex pancyclic.

Hendry [96] introduced the following concept. We say that G is cycle extendable if

for every cycle C with jV (C)j � n � 1 there is a cycle C

0

such that V (C) � V (C

0

) and

jV (C

0

)j = jV (C)j+ 1. G is fully cycle extendable if it is cycle extendable and each vertex

is on a triangle.

Hendry [96] (and, later on, independently Ambartsumian, Asratian and Sarkisian [6])

proved the following.

Theorem 2c.3 [96] Every connected, locally connected claw-free graph on at least three

vertices is fully cycle extendable.

A graph G is a chordal graph if each cycle C

k

in G of length k � 4 has a chord, (i.e.,

an edge that joins two nonconsecutive vertices of C

k

). Balakrishnan and Paulraja in [9]

showed that every 2-connected chordal graph is locally connected and from this and the

result by Oberly and Sumner, they proved that every 2-connected claw-free chordal graph

is hamiltonian. By the result of Hendry [96], we can, moreover, conclude the following.

Theorem 2c.4 [9], [96] Every 2-connected claw-free chordal graph is fully cycle extend-

able.

If we assume higher local connectivity, we can obtain stronger cycle and path proper-

ties. First result in this direction is by Chartrand, Gould and Polimeni [31] who proved

that if G is a connected, locally 3-connected claw-free graph then G is hamiltonian-

connected. This result was improved by Clark in [44] who proved that (i) any connected,

locally 3-connected claw-free graph is panconnected and (ii) if G is a connected, locally

2-connected claw-free graph of diameter d then G is (3; d)-panconnected (we say that G

is (r; s)-panconnected if for each pair u; v of vertices with r � d(u; v) � s and for each m

satisfying d(u; v) � m � n� 1 there is a u; v-path of length m).

Finally, Kanetkar and Rao in [112] proved the following.

Theorem 2c.5 [112] If G is a connected, locally 2-connected claw-free graph, then G is

panconnected.

Broersma and Veldman in [28] conjectured that in 3-connected claw-free graphs, the

assumption can be further relaxed.

Conjecture 2c.6 [28] Let G be a connected, locally connected claw-free graph of order

at least 4. Then G is panconnected if and only if G is 3-connected.

We say that G is k-hamiltonian if G � U is hamiltonian for every subset U of V (G)

with 0 � jU j � k (k � 0). The following was observed by Chartrand, Gould and Polimeni

in [31].
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Theorem 2c.7 [31] If G is a connected, locally (k + 1)-connected claw-free graph, then

G is k-hamiltonian.

Broersma and Veldman conjectured in [28] and then Zhou in [198] proved the following

result.

Theorem 2c.8 [198] Let G be a connected, locally k-connected claw-free graph (k � 1).

Then G is k-hamiltonian if and only if G is (k + 2)-connected.

On the other hand, there are several results in which the assumptions of the Oberly-

Sumner theorem are replaced by weaker conditions which still imply hamiltonicity.

We say that G is quasilocally connected if every vertex cut set of G contains a vertex

with a connected neighborhood. Zhang [197] proved that every quasilocally connected

claw-free graph of order at least three is pancyclic. Ainouche, Broersma and Veldman

[2] strengthened this result showing that every quasilocally connected claw-free graph

of order at least 3 is vertex pancyclic. They, moreover, showed that every vertex of a

quasilocally connected claw-free graph of order n � 3 is on a special cycle of length i

for each i with 3 � i � n (we say that a cycle C is special if C contains a vertex with

connected neighborhood).

We say that G has a pancyclic ordering if V (G) can be ordered such that the subgraph

induced by the �rst k vertices is hamiltonian for any k, 3 � k � n. The graph G is vertex

pancyclic orderable if for every x 2 V (G), G has a pancyclic ordering such that x is the

�rst vertex. Clearly, every vertex pancyclic orderable graph is vertex pancyclic. A graph,

that is obtained by joining two cliques of the same order by a perfect matching, is an

example of a vertex pancyclic claw-free graph that is not vertex pancyclic orderable.

A generalization of Hendry's concept of cycle extension was introduced in [56]. A

nonhamiltonian cycle C is k-chord extendable if it can be extended to a cycle C

0

that has

one additional vertex and uses at most k chords of C. A graph G is k-chord extendable

if each nonhamiltonian cycle C � G is k-chord extendable. The graph G is fully k-chord

extendable if G is k-chord extendable and every vertex of G is on a triangle.

Let M(G) be the set of all vertices of G that have connected neighborhood. It is easy

to observe that G is quasilocally connected if and only if M(G) is a dominating set and

hM(G)i is connected. Faudree, Ryj�a�cek and Schiermeyer [60] further strengthened the

results of [197] and [2] proving the following.

Theorem 2c.9 [60] Let G be a claw-free graph and put M(G) = fx 2 V (G)jhN(x)i

is connectedg.

(i) If M(G) is a dominating set, hM(G)i has r components and r � �(G), then G is

hamiltonian.

(ii) If M(G) is a dominating set and hM(G)i is connected, then G is vertex pancyclic

orderable.

(iii) If M(G) is a dominating set, hM(G)i is connected and G�M(G) is triangle-free,

then G is fully 3-chord extendable.

In [197], Zhang conjectured the following.

Conjecture 2c.10 [197] If G is a 3-connected claw-free graph such that each vertex cut

set is not an independent set, then G is hamiltonian.

Another approach is based on the idea of modifying the concept of vertex neighbor-
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hood. We say that an edge xy is a neighboring edge of a vertex v if x 6= v 6= y and x or y is

adjacent to v. The edge induced subgraph on the set of all neighboring edges of v will be

called the neighborhood of the second type of v in G and denoted by N

2

(v;G) (this concept

was �rst introduced by Sedl�a�cek in [174]). The neighborhood (in the obvious sense) of G

will be in this context referred to as the neighborhood of the �rst type of v and denoted

by N

1

(v;G). A graph G is said to be N

2

-locally connected if N

2

(v;G) is connected for

every v 2 V (G). Clearly, every locally connected graph is N

2

-locally connected. Ryj�a�cek

in [165] and [166] used this concept to prove the next theorem.

We say that G satis�es assumption (A) if for every induced subgraph H of G which

is isomorphic to either G

1

or G

2

(see Fig. 2c.1), there is at least one vertex v 2 V (G) of

degree 4 in H such that N

1

(v;G) is connected.
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Theorem 2c.11 [165], [166] Let G be a connected, N

2

-locally connected claw-free graph

with minimum degree �(G).

(i) If �(G) � 2, then G has a 2-factor.

(ii) If, moreover, G satis�es the assumption (A), then G is hamiltonian.

(iii) If, moreover, G is 3-connected, then G is pancyclic.

It is conjectured in [166] that the assumption (A) is not needed in Theorem 2c.11 for

3-connected graphs.

Conjecture 2c.12 [166] Every 3-connected N

2

-locally connected claw-free graph is

hamiltonian.

Chen and Xue [36] showed that if G is an N

2

-locally connected claw-free graph satis-

fying (A), then every vertex of G is on a 3-cycle or a 4-cycle which can be extended to a

hamiltonian cycle by a series of 1-extensions or 2-extensions (here, by a k-extension of a

cycle C we mean a cycle C

0

such that V (C) � V (C

0

) and jV (C

0

)� V (C)j = k ).

Li Mingchu [133] used a similar idea to that of Zhang [197] to extend the main result

of [166]. He proved that if �(G) � 3, G satis�es (A) and is N

2

-quasilocally connected

(i.e., if every vertex cut set of G contains a vertex with connected N

2

-neighborhood), then

every x 2 V (G) with connected N

2

(x) is contained in cycles of all possible lengths (and,

speci�cally, G is pancyclic). In [132], Li Mingchu slightly further relaxed the assumption

of local connectivity and proved a hamiltonicity result with replacing the condition (A)

by an analogous one but with 6 induced subgraphs.

Chen Yufu, Li Guojun and Liu Zhenhong [34] introduced the following concept. For

every x 2 V (G) with disconnected hN(x)i denote by K

i

(x) (i = 1; 2) the two components

of hN(x)i. G is said to be strong 2-order neighbor connected if for every x 2 V (G) with

disconnected hN(x)i there are y

i

2 V (G) � fxg (i = 1; 2) such that jN(y

i

) \K

i

(x)j � 2

and jN(y

i

) \N(K

i+1

(x))� fxgj � 2 (i modulo 2).
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Theorem 2c.13 [34] Every connected, strong 2-order neighbor connected claw-free graph

is hamiltonian.

There are also several extensions to larger classes of graphs. In almost claw-free graphs,

Ryj�a�cek [167] showed the following.

Theorem 2c.14 [167] Every connected, locally connected K

1;4

-free almost claw-free

graph is fully cycle extendable.

The paper by Oberly and Sumner [155] contains the following conjecture on a gener-

alization to K

1;r

-free graphs.

Conjecture 2c.15 [155] If G is a connected, locally r-connected K

1;r+2

-free graph, then

G is hamiltonian.

Shi Ronghua [180] observed that if G is a claw-free graph and if for every pair of

vertices x; y with d(x; y) = 2, jN(x) \ N(y)j � 2, then G is hamiltonian. Asratian,

Broersma, Van den Heuvel and Veldman in [7] extended this result to L

1

-graphs in the

following way.

Theorem 2c.16 [7] Let G be a connected L

1

-graph of order at least 3 such that jN(u)\

N(v)j � 2 for every pair of vertices u; v with d(u; v) = 2. Then the following is true:

(a) G is hamiltonian unless G 2 fG j K

p;p+1

� G � K

p

_K

p+1

for some p � 2g, and

(b) each pair of vertices x; y with d(x; y) � 3 is connected by a hamiltonian path of G.

d) Further forbidden subgraphs

We begin this section by listing some additional connected claw-free graphs that

have appeared as forbidden subgraphs in conditions that imply hamiltonian properties

in graphs. Although the notation for such graphs is not standard, we will attempt to

follow the most commonly used terms.

We denote by:

A, the antenna { the unique claw-free graph with degree sequence 333221,

B, the bull { the unique graph with degree sequence 33211,

D, the deer { the graph obtained from a bull by subdividing its bridges,

E, the ei�el { the graph obtained from a net by subdividing one bridge of the net,

H, the hourglass { the graph which is obtained by identifying a vertex in 2 distinct

copies of K

3

,

N , the net { the unique graph with degree sequence 333111,

S, the station { the unique claw-free graph with degree sequence 443331,

T , the tripod { the graph obtained from a K

4

by attaching 3 independent edges,

W ,the wounded { the graph obtained from a bull by subdividing one of the bridges

of the bull,

Z

i

, (i � 1) { the graph which is obtained by identifying a vertex of K

3

with an

end-vertex of a path of length i.

These graphs appear in Fig. 2d.1. (The graph Z

1

is also called the paw (see Olariu

[156])).
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Any connected graph G of order n � 3 that is P

3

-free must be complete, so we will

avoid P

3

as a forbidden subgraph.

One of the earliest forbidden subgraph results for hamiltonicity in claw-free graphs is

due to Goodman and Hedetniemi [85].

Theorem 2d.1 [85] If G is a 2-connected graph that is CZ

1

-free, then G is hamiltonian.

The CZ

1

-free property is also very strong, and it can be shown that any connected

graph that is CZ

1

-free is either a path, a cycle, or a complete graph with at most a

matching missing. Thus, for a CZ

1

-free, connectivity implies it is traceable, 2-connectivity

implies it is either a cycle or is pancyclic, and 3-connectivity implies it is panconnected.

The larger class of CN -free graphs were studied by Du�us, Gould, and Jacobson in

[50], where they proved the following.

Theorem 2d.2 [50] Let G be a CN -free graph.

(i) If G is connected, then G is traceable.

(ii) If G is 2-connected, then G is hamiltonian.

Continuing in the same vein, Gould and Jacobson considered CZ

i

-free graphs for

k = 2; 3 in [88] and veri�ed the following.

Theorem 2d.3 [88] Let G be a 2-connected claw-free graph.
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a) If G is Z

2

-free, then G is a cycle or is pancyclic.

b) If G is Z

3

-free and H-free, then G is hamiltonian.

c) If G is H-free of diameter � 3, then G is homogeneously traceable.

In the doctoral thesis of Gould [86] diameter 2 claw-free graphs were investigated and

the following proved.

Theorem 2d.4 [86] If G is a C-free graph of diameter at most 2, then G is hamiltonian.

As was noted in subsection 2c, Hendry introduced the concepts of cycle extendable

and fully cycle extendable in [96], and extended the result of Gould and Jacobson by

proving the following.

Theorem 2d.5 [96] If G is a 2-connected CZ

2

-free graph of order n � 10, then G is

cycle extendable.

Broersma and Veldman generalized several of the forbidden subgraph conditions for

hamiltonian and pancyclic results in [29]. In particular one consequence of these results

is the following (cf. Theorem 2d.19(iii)).

Theorem 2d.6 [29] If G is a 2-connected CP

6

-free or CDP

7

-free graph, then G is

hamiltonian.

A wide variety of authors have shown that various pairs of connected forbidden sub-

graphs imply that a graph G is hamiltonian or pancyclic. These pairs all included the

claw as one of the forbidden subgraphs. This was not by accident as the following result

of Bedrossian in [12], which characterizes all such pairs of graphs that avoid a P

3

, shows.

Theorem 2d.7 [12] Let X and Y be connected graphs with X, Y 6= P

3

, and let G be a

2-connected graph that is not a cycle. Then, G being XY -free implies G is hamiltonian

if an only if (up to symmetry) X = C and Y = P

4

; P

5

; P

6

; C

3

; Z

1

; Z

2

; B;N or W .

Note that each of the possible subgraphs for Y in the previous theorem are induced

subgraphs of either P

6

, N , or W , and that CP

6

-free graphs were shown to be hamiltonian

in [29], and CN -free graphs in [50]. Thus, the previous result gives one new graph W

such that CW -free implies a 2-connected graph is hamiltonian, and characterizes all pairs

of connected forbidden graphs in a 2-connected graph that imply hamiltonicity.

A pancyclic version of the previous theorem was also proved by Bedrossian in [12].

Theorem 2d.8 [12] Let X and Y be connected graphs with X, Y 6= P

3

, and let G be a

2-connected graph that is not a cycle. Then, G being XY -free implies G is pancyclic if

and only if (up to symmetry) X = C and Y = P

4

; P

5

; Z

1

, or Z

2

.

The maximal pairs in the pancyclic case are CP

5

and CZ

2

, and it was proved in [88]

that 2-connected CZ

2

-free graphs are pancyclic or a cycle. The previous result adds the

pair CP

5

to those forbidden graphs that imply pancyclicity and characterizes those pairs

of forbidden graphs that imply pancyclicity.

Problem 2d.9 It would be interesting to characterize those pairs of connected graphs
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X and Y such that if G is a connected (3-connected) XY -free graph, then G is traceable

(hamiltonian connected). Other hamiltonian properties such as homogeneously traceable,

panconnected, pancyclic ordering, and fully cycle extendable could also be considered.

In general, 2-connected CP

6

-free graphs are not pancyclic, but Faudree, Ryj�a�cek, and

Schiermeyer in [59] proved that the only exceptions are graphs of order at most 9. A

graph G has a k-pancyclic ordering if the vertices of G can be ordered such that the

graph induced by the �rst j vertices (j � k) is hamiltonian. Thus a graph with a

3-pancyclic ordering has a pancyclic ordering. The following result in [59] gives some

forbidden subgraph conditions for a k-pancyclic ordering.

Theorem 2d.10 [59] Let G be a 2-connected C-free graph of order n.

(i) If G is P

5

-free, then G is pancyclic and has a 5-pancyclic ordering.

(ii) If G is P

6

-free and n � 10, then G is pancyclic and has a 6-pancyclic ordering.

(iii) If G is DP

7

-free and n � 13, then G is pancyclic and has a 8-pancyclic ordering.

The following theorem shows that together with P

7

, the hourglass H can be also

considered as a forbidden subgraph to obtain hamiltonian properties.

Theorem 2d.11 [59] Let G be a 2-connected C-free graph of order n.

(i) If G is HP

7

-free, then G is hamiltonian.

(ii) If G is HP

7

-free and n � 13, then G is pancyclic or missing only one cycle.

An example of a CHP

7

-free graph that is missing exactly one cycle is the graph in

Fig. 2b.5.

Recall that a graph G is k-chord extendable if each nonhamiltonian cycle C in G can

be extended to a cycle C

0

that has one additional vertex and uses at most k chords of

C. The following result of Faudree, Ryj�a�cek, and Schiermeyer generalizes the result of

Hendry [96]

Theorem 2d.12 [59] If G is a 2-connected CZ

2

-free graph of order at least 10, then G

is 2-chord extendable.

For any property that implies that a graph G is cycle extendable, it is natural to ask

what is the smallest nonnegative integer k such that the same property implies that the

graph G is k-chord extendable (or if such a k actually exists).

Shepherd in [176] and [177] investigated additional hamiltonian properties for CN -free

graphs. In particular, the following was proved.

Theorem 2d.13 [176] If G is a 3-connected CN -free graph, then G is pancyclic.

A graph G is k-leaf-connected, k � 2, if for each subset S of k vertices, there is a

spanning tree T of G whose leaves (i.e. the vertices of degree 1) are exactly the vertices

in S. Thus, 2-leaf connected is just hamiltonian connected. The relationship between

connectivity and leaf-connectivity was investigated by Shepherd in [177].

Theorem 2d.14 [177] Let G be a CN -free graph, k � 2. Then, G is (k + 1)-connected

if and only if G is k-leaf-connected.

Corollary 2d.15 Let G be a CN -free graph. Then G is hamiltonian-connected if and
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only if G is 3-connected.

The results on CN -free graphs are further extended by Shepherd in [177] to the class

of distance claw-free graphs. Recall that the vertices at a distance i from v is denoted by

N

i

(v) and called the distance i neighborhood of a vertex v. Clearly G is claw-free if and

only if �(N

1

(v)) = 2 for every v 2 V (G) (where �(H) denotes the independence number

of H) and G is distance claw-free if �(N

i

(v)) = 2 for every v 2 V (G) and for every i.

As mentioned in the introduction, G is distance claw-free if and only if it is claw-free,

ei�el-free and tripod-free (see [177]). From this it follows immediately that

Proposition 2d.16 [177] CN -free ) distance claw-free ) claw-free.

With this characterization Shepherd proved the following in [177].

Theorem 2d.17 [177] Let G be a distance claw-free graph.

(i) If G is 2-connected, then G is traceable.

(ii) If G is 3-connected, then G is hamiltonian.

Also in [177] Shepherd proved the following characterization of CN -free graphs. A

graph G is said to be distance 2-complete centered at v if G� v has two components and

in each component C and for each positive integer i, the vertices at distance i from v in

hC [ vi induce a complete graph.

Theorem 2d.18 [177] A connected graph G is CN -free if and only if for every minimal

cut set S and every v in S, G � (S � fvg) is distance 2-complete centered at v.

Broersma and Veldman in [29] generalized some of the previous results by admitting

additional induced subgraphs but under special conditions on common neighbors of some

of their vertices. If H is a subgraph of G and x; y 2 V (H), then we say that H has the

property �(x; y) if x and y have a common neighbor outside H. See Fig. 2d.1. for the

induced graphs of the remaining theorems of this section.

Theorem 2d.19 [29] Let G be a 2-connected claw-free graph.

(i) If every induced Z

1

of G satis�es �(a; b

1

) _ �(a; b

2

), then G is a cycle or G is

pancyclic.

(ii) If every induced Z

2

of G satis�es �(a; b

1

) ^ �(a; b

2

), then G is a cycle or G is

pancyclic.

(iii) If every induced subgraph of G isomorphic to P

7

or to D satis�es �(a; b

1

) _

�(a; b

2

) _ (�(a; c

1

) ^ �(a; c

2

)), then G is hamiltonian.

(iv) If every induced B of G satis�es �(a

1

; a

2

) _ f[�(a

1

; b

2

) _ �(a

1

; c)] ^ [�(a

2

; b

1

) _

�(a

2

; c)]g, and every induced F of G satis�es �(a; b

1

)_�(a; b

2

)_�(a; b

3

)_�(a; b

4

), then

G is hamiltonian.

(v) If G is H-free and every induced Z

3

of G satis�es �(a

1

; b

1

)_�(a

1

; b

2

)_�(a

2

; b

1

)_

�(a

2

; b

2

) _ [�(a

3

; b

1

) ^ �(a

3

; b

2

)], then G is hamiltonian.

In the paper of Broersma and Veldman [29] the following was conjectured and then

proved by Zhiquan Hu in [102].

Theorem 2d.20 [102] Let G be a 2-connected claw-free graph. If every induced N of G

satis�es (�(a

1

; a

2

)^�(a

1

; a

3

))_ (�(a

1

; a

2

)^�(a

2

; a

3

))_ (�(a

1

; a

3

)^�(a

2

; a

3

)), then G is

hamiltonian.
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A weaker version of this statement, saying that \a 2-connected claw-free graph G is

hamiltonian provided every induced B of G satis�es �(a

1

; a

2

)" was also conjectured in

[29], and then proved independently in [168].

Broersma, Ryj�a�cek and Schiermeyer proved in [27] the following common generaliza-

tion of the minimum degree condition for hamiltonicity and of Theorems 2c.1, 2d.6 and

2d.11(i). For any u; v 2 V (G) we say that fu; vg is a

2-pair if u; v are at distance 2 in G,

B-pair if u; v are vertices of degree 1 in an induced subgraph of G isomorphic to B,

H-pair if u; v are nonadjacent vertices of degree 2 in an induced subgraph of G iso-

morphic to H,

D-pair if fu; vg = fa; c

1

g or fu; vg = fa; c

2

g in an induced subgraph of G isomorphic

to D,

P

7

-pair if fu; vg = fa; c

1

g or fu; vg = fa; c

2

g in an induced subgraph of G isomorphic

to P

7

.

Theorem 2d.21. [27] LetG be a 2-connected claw-free graph on n vertices. If each 2-pair

fu; vg � V (G) satis�es at least one of the following conditions, then G is hamiltonian.

(1) minfd(u); d(v)g �

1

3

(n � 2);

(2) jN(u) \N(v)j � 2;

(3) fu; vg is a 3-pair in G � w, and there exists a path ux

1

x

2

v of length 3 in G � w

such that wx

2

2 E(G); where w 2 N(u) \ N(v);

(4) fu; vg is neither a D-pair nor a P

7

-pair in G;

(5) fu; vg is neither an H-pair nor a P

7

-pair in G;

(6) fu; vg is a 3-pair in G � w, and not a B-pair in G� w, where w 2 N(u) \ N(v);

(7) fu; vg is a 3-pair in G�w, and there are at least two internally-disjoint (u; v)-paths

of length 3 in G �w, where w 2 N(u) \N(v):

e) Invariants

The well-known theorem by Chv�atal and Erd}os in [42] states that if G satis�es �(G) �

�(G), then G is hamiltonian (or, equivalently, every nonhamiltonian graph of connectivity

� contains an independent set with � + 1 vertices). Flandrin and Li in [72] proved that

in a 3-connected claw-free graph the assumptions can be weakened.

Theorem 2e.1 [72] If G is a claw-free graph with connectivity � � 3 and �(G) � 2�,

then G is hamiltonian.

Ainouche, Broersma and Veldman [2] showed that every nonhamiltonian claw-free

graph contains an independent set I of �+ 1 vertices such that no two vertices of I have

a common neighbor. Thus, they proved the following.

Theorem 2e.2 [2] If G is a k-connected claw-free graph (k � 2) with �(G

2

) � k, then

G is hamiltonian.

Examples are given in [2] showing that Theorem 2e.2 and the result of Flandrin and

Li in [72] are independent. This theorem also extends the result of Zhang in [196] (saying

that, in k-connected claw-free graphs, �

�+1

� n�� implies hamiltonicity) and the theorem

that every 2-connected claw-free graph of diameter at most 2 is hamiltonian (which is
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originally by Gould [86]). It also implies the following observation (where 
(G) denotes

the domination number of G).

Corollary 2e.3 [167] If G is a k-connected claw-free graph (k � 2) with 
(G) � k, then

G is hamiltonian.

The result of Gould in [86] was extended by Flandrin and Li [73] in the following way.

Denote by D(G) the diameter of G and put D

0

(G) = maxfD(hV (G)�fxgi) j x 2 V (G)g.

Let L be the class of graphs that are obtained by taking 2k + 1 (k � 1) vertex disjoint

cliques of size at least three, choosing a pair of vertices x

i

; y

i

(i = 1; : : : ; 2k + 1) in each

of them and making hx

1

; : : : ; x

2k+1

i and hy

1

; : : : ; y

2k+1

i complete graphs.

Theorem 2e.4 [73] Every 2-connected claw-free graph G with D

0

(G) � 3 is hamiltonian

except when G 2 L.

The following analogue of the Chv�atal-Erd}os' theorem for traceability was also proved

in [2].

Theorem 2e.5 [2] If G is a k-connected claw-free graph with �(G

2

) � k + 1, then G is

traceable.

The special case k = 1 gives the following corollary.

Corollary 2e.6 [2] Every connected claw-free graph of diameter at most 2 is traceable.

For any subgraph H � G denote by �

3

(H) the maximum number of vertices of H

that are pairwise at distance at least three in G. Broersma and Lu [25] further extended

Theorem 2e.2.

Theorem 2e.7 [25] Let G be a 2-connected claw-free graph and let H be a subgraph of

G. If �

3

(H) � �(G), the G has a cycle which contains all vertices of H.

Since �

k+1

(S) � n � k implies �

3

(S) � k, a consequence of Theorem 2c.7 is the

following.

Corollary 2e.8. [25] Let G be a k-connected claw-free graph (k � 2) of order n and let

S � V (G): If �

k+1

(S) � n� k; then G has a cycle which contains all vertices of S.

f) Squares

Harary and Schwenk in [93] characterized those trees whose squares are hamiltonian

in terms of the forbidden subgraph S(K

1;3

), the graph obtained from a claw K

1;3

by sub-

dividing each edge (see Fig. 2f.1). It is easily checked that (S(K

1;3

))

2

is not hamiltonian,

and consequently that the square of any tree with a S(K

1;3

) is not hamiltonian.

Theorem 2f.1 [93] If T is a tree of order at least 3, then the square T

2

is hamiltonian

if and only if T is S(K

1;3

)-free.

Although the square of a connected graph of even order is not, in general, hamiltonian,

it does have a perfect matching (see [32], [183], and [153]). However, much more can be
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said about the square of a connected claw-free graph. Matthews and Sumner in [148]

investigated the squares of claw-free graphs and proved the following.

Theorem 2f.2 [148] If G is a connected claw-free graph, then:

(i) G

2

is vertex pancyclic,

(ii) the total graph of G is hamiltonian.

The results of Matthews and Sumner were improved by Gould and Jacobson in [89]

by showing that G

2

is vertex pancyclic if G is a connected Y -free graph, where Y is the

graph obtained from S(K

1;3

) by deleting an endvertex (see Fig. 2f.2), or if G is connected,

S(K

1;3

)-free, and in addition, K

1;4

NR-free, whereN is the net and R is the graph obtained

by identifying a vertex of a K

3

with one of the central vertices of a P

4

(see Fig. 2f.2).
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Theorem 2f.3 [89]

(i) If G is a connected K

1;4

-free and Y -free graph, then G

2

is vertex pancyclic.

(ii) If G is a connected K

1;4

-free, S(K

1;3

)-free, N -free and R-free graph with n � 3,

then G

2

is vertex pancyclic.

Similar results were obtained by Flandrin in [64], where, in particular, (ii) of the

previous result was improved by replacing K

1;4

by R

1

, where R

1

is obtained from a K

1;4

by subdividing 1 edge, and replacing R by R

2

, where R

2

is obtained by identifying a

vertex of a K

3

with the central vertex of a P

5

, (see Fig. 2f.2).

Theorem 2f.4 [64] If G is a connected K

1;4

NR

1

R

2

-free graph, then G

2

is vertex pan-

cyclic.

The following, which improves the results of Gould and Jacobson and also of Flandrin,

was conjectured by Gould and Jacobson in [89] and proved by Hendry and Vogler [95].
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Theorem 2f.5 [95] If G is a connected S(K

1;3

)-free graph with at least three vertices,

then G

2

is vertex pancyclic.

Using the concept of a fully cycle extendable graph, the previous result was also

strengthened by Hendry in a later paper [96], and he also conjectured that if G is a

2-connected graph (without being claw-free), then G

2

is fully cycle extendable.

Theorem 2f.6 [96] If G is a connected S(K

1;3

)-free graph with at least three vertices,

then G

2

is fully cycle extendable.

Sekanina in [175] and independently later on Karaganis in [113] proved that for any

tree T , the cube T

3

is hamiltonian. Since the endvertices of the tree can be pruned, an

immediate consequence of this is the following result.

Theorem 2f.7 [175], [113] If G is a connected graph, then G

3

has a pancyclic ordering.

However, more can be said about the cube of a connected graph.

�

Solt�es (personal

communication) proved that such a graph is fully cycle extendable.

Theorem 2f.8 If G is a connected graph, then G

3

is fully cycle extendable.

It would be interesting to know if full cycle extendibility can be replaced by k-chord

cycle extendable for some small integer k, say, k � 3, in all or even some of the previous

results on the square and cube of a connected graph. At least k = 3 is necessary for the

cube of a graph.

g) Regular graphs

A strong motivation for considering claw-free regular graphs is the result of Jackson

on regular graphs in [103].

Theorem 2g.1 [103] Every 2-connected, k-regular graph of order n � 3k is hamiltonian.

The Petersen graph, which is non-hamiltonian and 3-regular of order 10, implies that

for k = 3 the degree of regularity in the previous result cannot be reduced. Also, for

k � 4 there are non-hamiltonian 2-connected k-regular graphs with 3k + 5 vertices, so

the degree of regularity cannot be reduced signi�cantly in the result of Jackson. A minor

improvement was made by Zhu, Liu and Yu in [139], where it was shown for k � 5 that

a 2-connected k-regular graph of order at most 3k + 3 is hamiltonian.

For claw-free graphs a smaller degree of regularity is su�cient to imply that a graph

is hamiltonian, as the following result of Liu and Wu in [138] proves.

Theorem 2g.2 [138] Every 2-connected, k-regular claw-free graph of order n � 4k + 1

is hamiltonian.

There is an example of a non-hamiltonian graph in [138] to show that for k = 4 the

previous result of Liu and Wu is sharp, but it is not known if this is true for large k.

Li Mingchu has also proved a sharp result on the circumference of a regular 2-connected

claw-free graph.
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Theorem 2g.3 [131] Every 2-connected, k-regular claw-free graph of order n � 4k � 2

has a cycle of length at least 4k � 2.

If the connectivity is increased, then a smaller degree of regularity is su�cient to give

hamiltonicity. This was shown by Li and Liu in [134].

Theorem 2g.4 [134] Every 3-connected, k-regular claw-free graph of order n � 5k � 5

is hamiltonian.

It is not known if the degree of regularity in the previous result is sharp. Of course, it

was conjectured by Matthews and Sumner in [148] that any 4-connected claw-free graph

is hamiltonian. The next result of Plummer in [163] is a special case of the conjecture of

Matthews and Sumner.

Theorem 2g.5 [163] If G is a 4-connected, 4-regular, claw-free graph containing a K

4

,

then G is hamiltonian.

The previous results comes out of a stronger result about the structure of 4-connected,

4-regular claw-free graphs that contain a K

4

. These results also lead to the next conjec-

ture.

Conjecture 2g.6 [163] Every 4-connected 4-regular claw-free graph in which each vertex

lies in exactly two triangles is hamiltonian.

It should be noted that the previous conjecture is equivalent to another well known

conjecture by Thomassen [187] that any 4-connected line graph is hamiltonian (see also

[177], p. 174) and that both these conjectures (if true) follow from Conjecture 2a.3 by

Matthews and Sumner.

The toughness of cubic graphs was investigated by Jackson and Katerinis in [106], and

they proved the following result.

Theorem 2g.7 [106] Let G be a cubic graph. Then G is 3=2-tough if and only if G = K

4

,

G = K

2

�K

3

, or G is the in
ation of a 3-connected graph.

Corollary 2g.8 [106] Every 3=2-tough cubic graph is claw-free.

Corollary 2g.8 and Theorem 2a.1 immediately give the following.

Corollary 2g.9 Let G be a cubic graph. Then G is 3=2-tough if and only if G is 3-

connected and claw-free.

h) Other hamiltonicity related results and generalizations

There are numerous generalizations of paths and cycles and hamiltonian properties in

graphs, and one of these generalizations is the k-walk. A k-walk in G is a closed spanning

walk that visits each vertex of G at most k-times, and if each vertex is visited exactly

k-times, then it is called an exact k-walk. Thus, if G has at least three vertices, then a

1-walk in G is a hamiltonian cycle of G.

Jackson and Wormald in [107] investigated k-walks in claw-free graphs. In particular

they proved the following, which implies the existence of k-walks in K

1;k+1

-free graphs.

Theorem 2h.1 [107] Let G be a connected K

1;k+1

-free graph. Then

(i) G has a k-walk, and
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(ii) if �(G) � k, then G has an exact k-walk.

In the special case k = 1, we obtain the following corollary.

Corollary 2h.2 [107] Every connected claw-free graph G has a 2-walk. If, moreover,

�(G) � 2, then G has an exact 2-walk.

As the connectivity of G increases, the restriction on the claw-free property can be

decreased, as the following result indicates.

Theorem 2h.3 [107] If j � 1, k � 3 and G is j-connected and K

1;j(k�2)+1

-free, then G

has a k-walk.

The previous general result does not imply the result for connected graphs that pre-

ceded it, but it is conjectured that the result can be sharpened so that this is true.

Conjecture 2h.4 [107] If j � 1, k � 2 and G is j-connected and K

1;jk+1

-free, then G

has a k-walk.

The previous conjecture and the conjecture of Matthews and Sumner in [148] leads to

the following question concerning r-connected K

1;r

-free graphs.

Question 2h.5 [107] If r � 4 and G is r-connected and K

1;r

-free, then does G have a

1-walk.

Oberly and Sumner in [155] proved that every connected, locally connected claw-free

graph is hamiltonian (Theorem 2c.1), so the following theorem is another extension of

that well-known result.

Theorem 2h.6 [107] For k � 1, every connected, locally connected K

1;k+2

-free graph

with at least three vertices has a k-walk.

The next conjecture is the locally connected analogue of one of the previous conjec-

tures.

Conjecture 2h.7 [107] If j � 1, k � 1 and G is connected, locally j-connected and

K

1;(j+1)k+1

-free, then G has a k-walk.

In [62] Favaron, Flandrin, Li, and Ryj�a�cek investigated k-walks in almost claw-free

graphs, and generalized some of the results for claw-free graphs of Jackson and Wormald

in [107]. Also, additional information on the nature of k-walks are given. Denote by

v(x;C) the number of visits by a k-walk C of a vertex x 2 V (G).

Theorem 2h.8 [62] If G is a connected almost claw-free graph of order n � 3, then

(i) G has a 2-walk,

(ii) for any x 2 V (G) there is a 2-walk C such that v(x;C) = 1 if and only if x is not

a cutvertex of G,

(iii) if hN(x)i is connected then there is a shortest 2-walk C such that v(x;C) = 1,

and

(iv) if B = fx 2 V (G)j hN(x)i is connected and x not the center of a clawg, then

there is a shortest 2-walk C such that v(x;C) = 1 for every x 2 B.

Part (iv) is a common generalization of results of Oberly and Sumner in [155] and of
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Jackson and Wormald in [107].

In the special case of claw-free graphs, there is the following corollary.

Corollary 2h.9 [62] Let G be a connected claw-free graph.

(i) If x 2 V (G), then there is a 2-walk that visits x exactly once if and only if x is not

a cutvertex of G.

(ii) There is a shortest 2-walk that visits once all vertices with a connected neighbor-

hood.

Some of the degree conditions that implied a graph was hamiltonian, such as those of

Ore and Dirac, were generalized by Bondy and Chv�atal by considering closure conditions

(adding an edge without changing the hamiltonian property of the graph). A closure-type

condition was considered by Broersma in [30] and, in claw-free graphs, this lead to the

following result. Two vertices u; v of G are said to be a K

4

-pair if u and v are the vertices

of degree two of an induced subgraph of G which is isomorphic to K

4

� e.

Theorem 2h.10 [30] Let fu; vg be a K

4

-pair of a claw-free graph G. Then G is hamil-

tonian if and only if G + uv is hamiltonian.

3. MATCHINGS AND FACTORS

The basic result concerning perfect matchings or 1-factors in claw-free graphs was

proved independently by Sumner in [183] and Las Vergnas in [120]

Theorem 3.1 [183], [120] If G is a connected claw-free graph of even order, then G has

a 1-factor.

Since the claw does not have a perfect matching, the previous result implies that each

connected subgraph of even order in a graph G has a 1-factor if and only if G is claw-free.

Another consequence is that if G is a connected graph of even order n without a 1-factor,

then for each 4 � k � n there is a connected subgraph of order k without a 1-factor.

The classical result of Tutte says that a graph G fails to have a 1-factor if and only

if there is some separating set S such that the number of odd components c

0

(G � S) in

G�S exceeds jSj. A set S with the property that c

0

(G�S) > jSj is called an antifactor

set. Sumner showed in [184] that in a graph G without a 1-factor, an antifactor set S can

be chosen such that each vertex in S is the center of a claw.

Theorem 3.2 [184] IfG is an even connected graph that does not have a perfect matching

then there is a set S � V (G) such that c

0

(G�S) > jSj and every vertex of S is adjacent

to vertices in at least three odd components of G� S.

In fact, if the antifactor set S is minimal, then each vertex of S is the center of a claw.

Corollary 3.3 [184] If G is a connected graph of even order that does not have a perfect

matching and S is a minimal antifactor set for G, then every element of S is a claw center.

Corollary 3.4 [184] If a k-connected graph G of even order has fewer than k claw centers,
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then G has a 1-factor.

The previous results imply that the theorem of Tutte can be restated in the following

form.

Theorem 3.5 A graph G has a 1-factor if and only if there does not exists a set S of

claw centers of G such that c

0

(G� S) > jSj

Additional properties of antifactor sets in graphs without 1-factors and the relationship

of antifactor sets and the block structure of a graph can be found in [184].

The result of Sumner and Las Vergnas can be improved signi�cantly as the connectivity

of the graph increases.

Theorem 3.6 [184] If r � 2, then every (r � 1)-connected K

1;r

-free graph of even order

has a 1-factor.

The result of Sumner and Las Vergnas for claw-free graphs has been generalized in

several ways, including the following two results due to Nebesk�y in [152] and Ryj�a�cek in

[167]. Each have the Sumner and Las Vergnas result as a corollary.

Theorem 3.7 [152] Let G be a graph of even order. Assume that there exists a connected

spanning subgraph F of G such that for every set U of four vertices in G, if hUi

F

is

isomorphic to the claw, then hUi

G

is isomorphic to K

4

. Then G has a 1-factor.

Theorem 3.8 [167] Every connected almost claw-free graph of even order has a 1-factor.

Recall that a graph is an L

1

-graph is for each triple of vertices u, v, w with d(u; v) = 2

and w 2 N(u)\N(v), then d(u)+d(v) � jN(u)[N(v)[N(w)j�1. The class of L

1

-graphs

includes the claw-free graphs, and Asratian, Broersma, Van den Heuvel and Veldman in

[7] extended the 1-factor result for claw-free graphs to L

1

-graphs.

Theorem 3.9 [7] If G is a connected L

1

-graph of even order, then G has a 1-factor.

If a graph G has odd order, then it cannot have a 1-factor (or perfect matching).

However, other factors that approximate 1-factors have been investigated for such graphs.

More generally, if H

1

, H

2

are graphs, then by a H

1

; fH

2

g-factor of G we mean a factor H

such that exactly one component of H is isomorphic to H

1

and all the other components

of H are isomorphic to H

2

. Also, a factor is said to be strong if its components are

induced subgraphs. Natural factors to consider for odd order graphs are K

3

; fP

2

g-factors,

P

3

; fP

2

g-factors, and C

2k+1

; fP

2

g-factors, which are called perfect 2-matchings. This type

of problem was investigated by Lonc and Ryj�a�cek in [140] and Ryj�a�cek in [165].

In [140], a complete characterization was given for classes of claw-free graphs of odd

order that fail to have

(i) a K

3

; fP

2

g-factor,

(ii) a strong P

3

; fP

2

g-factor,

(iii) a perfect 2-matching.

From these characterizations one can easily obtain the following assertion, which was

originally proved in [165].

Corollary 3.10 [165] Let G be a connected claw-free graph with odd number n � 3
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vertices. If G has at most one vertex of degree 1 then G has a perfect 2-matching.

If N

2

-locally connected is added to the claw-free property, then the existence of a

2-factor was also shown in [165], and mentioned in section 2c.

Theorem 3.11 [165] If G is a connected, N

2

-locally connected claw-free graph with

minimum degree �(G) � 2, then G has a 2-factor.

Less is known about the existence of k-factors in claw-free graphs for k � 2. However,

one of the �rst results was due to Choudum and Paulraj in [38].

Theorem 3.12 [38] Let k � 1 be an integer. If G is a connected claw-free graph with

kjV (G)j even and with minimum degree �(G) � 2k, then G has a k-factor.

The minimum degree condition su�cient to insure a k-factor in a claw-free graph was

weakened by Egawa and Ota in [52].

Theorem 3.13 [52] Let k � 2 be an integer. If G is a connected claw-free graph with

kjV (G)j even and with minimum degree �(G) � d(9k + 12)=8e, then G has a k-factor.

This previous theorem of Egawa and Ota is an extension of a result of Nishimura in

[154], in which the same lower bound on � was shown to imply the existence of a k-factor

in line graphs. Egawa and Ota also have an analogous result for K

1;r

-free graphs in the

same article.

Theorem 3.14 [52] Let r for (r � 3) and k be positive integers. If k is odd, we assume

that k � r � 1. Let G be a connected K

1;r

-free graph with kjV (G)j even, and suppose

that the minimum degree of G is at least (r

2

=4(r � 1))k + (3r� 6)=2 + (r � 1)=4k. Then

G has a k-factor.

Examples are given which verify that the condition k � r � 1 is necessary. Although

the minimum degree condition in the previous results might not be sharp, examples are

given to verify that they are of the correct order of magnitude.

If G is a graph with a perfect matching and 1 � k � (n � 2)=2, then we say that G

is k-extendable if every matching of size k is a subset of a perfect matching in G. Also, a

graph G is bicritical if G�u�v has a perfect matching for every pair of vertices u; v, so a

bicritical graph is 1-extendable. The extendibility of matchings was studied by Plummer

in [162], and the following two complementary results were proved.

Theorem 3.15 [162] If G is a k-extendable claw-free graph, then �(G) � 2k.

Theorem 3.16 [162] If G is a (2k+1)-connected claw-free graph, then G is k-extendable.

There are some interesting special cases of the previous results for planar graphs. For

example, it follows that every 3-connected claw-free graph is 1-extendable, but it is known

that no planar graph is 3-extendable. The following was proved in [162].

Theorem 3.17 [162]

(i) The only 2-extendable 3-connected claw-free planar graph is the icosahedron.

(ii) No toroidal claw-free graph is 3-extendable.
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In [170], Ryj�a�cek extended the minimum connectivity condition result for claw-free

graphs of Plummer in [162] to K

1;r

-free graphs with independent claw centers (and hence,

as a corollary, also to almost claw-free graphs).

Theorem 3.18 [170] Let G be an even (2k+1)-connectedK

1;k+3

-free graph such that the

set of vertices that are centers of induced claws is independent. Then G is k-extendable.

The extendibility of matchings for 3-connected and 4-regular 4-connected claw-free

graphs was studied by Plummer in [163]. This led to a series of results which give some

improvement on his more general previous results for 2-extendable graphs. First two

results for 3-connected graphs.

Theorem 3.19 [163] Let G be a 3-connected even order claw-free graph. Then G is

2-extendable if and only if G does not contain two independent edges e

i

= a

i

b

i

(i = 1; 2)

such that G� a

1

� a

2

� b

1

� b

2

consists of precisely two components which are both odd.

Theorem 3.20 [163] Let G be a 3-connected cubic even order claw-free graph and

fe

1

; e

2

g (e

i

= a

i

b

i

; i = 1; 2) a set of two independent edges in G. Then fe

1

; e

2

g extends to

a perfect matching of G if and only if G� a

1

� a

2

� b

1

� b

2

is not disconnected with one

of its components a single vertex.

Additional characterizations of cubic 3-connected claw-free graphs and 2-extendibility

of matchings can also be found in [163]. The conditions of the next result are also su�cient

for a graph to be hamiltonian (see Theorem 2g.2).

Theorem 3.21 [163] Let G be a 4-connected, 4-regular claw-free graph containing a K

4

.

Then either G = K

5

or G is 2-extendable.

Further general information on matchings and factors in graphs can be found in the

survey paper by Akiyama and Kano [3] and in the excellent book Matching Theory by

Lov�asz and Plummer [142].

4. INDEPENDENCE, DOMINATION, OTHER INVARIANTS AND EX-

TREMAL PROBLEMS

We begin with a discussion of independence, domination and irredundance in a graph.

Recall that a set S of vertices of a graph G is independent if no pair of vertices of S are

adjacent, is dominating if the closed neighborhood of S is V (G), and is redundant if the

closed neighborhood of some proper subset of S is the same as the closed neighborhood of

S. A set S is irredundant if it is not redundant. For any graph G we de�ne the following

parameters.

�(G) = the maximum cardinality of a maximal independent set in G

(i.e. the independence number of G),


(G) = the minimum cardinality of a minimal dominating set in G

(i.e. the domination number of G),

i(G) = the minimum cardinality of a maximal independent set in G
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(i.e., the independent domination number of G),

�(G) = the maximum cardinality of a minimal dominating set in G,

ir(G) = the minimum cardinality of a maximal irredundant set in G, and

IR(G) = the maximum cardinality of a maximal irredundant set in G.

Using the de�nitions, it is straightforward to verify the following relationships between

these parameters.

Theorem 4.1 For any graph G,

ir(G) � 
(G) � i(G) � �(G) � �(G) � IR(G):

In one of the �rst papers concerning independence and domination for claw-free graphs

Allan and Laskar proved in [4] (and, as mentioned in [61], it was also proved independently

by Jaeger and Payan) that 
(G) = i(G).

Theorem 4.2 [4] If G is claw-free, then 
(G) = i(G).

Since every induced subgraph of a claw-free graph is claw-free, it follows that claw-free

graphs are domination perfect, (i.e., if G is claw-free, then 
(H) = i(H) for every induced

subgraph H of G). The concept of domination perfect graphs was introduced by Sumner

and Moore in [186], and they showed that a graph G is domination perfect if and only if

each induced subgraph H of G with 
(G) = 2 has i(G) = 2.

Bollob�as and Cockayne in [18] extended the result of Allan and Laskar in [4] from

claw-free graphs to graphs that are K

1;r

-free.

Theorem 4.3 [18] If G is K

1;k+1

-free, then

i(G) � 
(G)(k � 1) � (k � 2):

Zverovich and Zverovich in [199] attacked the question of characterizing domination

perfect graphs. However, Fulman in [78] showed that the statement in [199] fails and

he gave counterexamples to it. In addition, as a generalization of the result of Allan

and Laskar [4], he proved that a graph G is domination perfect if it does not contain an

induced subgraph that is isomorphic to one of the eight graphs in Fig. 4.1. (Note that

both graphs G

6

and G

7

are not domination perfect graphs, so these 8 graphs do not give

a forbidden subgraph characterization of domination perfect graphs).

Topp and Volkmann in [189] generalized the result of Fulman by proving that 
(G) =

i(G) for a class of graphs that are characterized in terms of 16 forbidden subgraphs, each

of which has order at most 8 and contains as an induced subgraph some of the graphs in

Fig. 1. (Note that, in the notation of [189], the graphs H

2

and H

3

are redundant since

H

5

contains an induced H

2

and H

6

contains an induced H

3

.)

A forbidden subgraph characterization of graphs G such that 
(G) = i(G) is impossi-

ble, since adding a new vertex v adjacent to each vertex of any graph H gives a graph G

with 
(G) = 1 = i(G).
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The result of Bollob�as and Cockayne in [18] was extended by Zverovich and Zverovich

in [199], where it was shown that i(G) � 
(G)(k � 1) � (k � 2) provided G does not

contain two induced subgraphs K

1;k+1

having di�erent centers and an edge in common.

In [63] Fink and Jacobson also generalized the result of Allan and Laskar by considering

the more general concepts of k-domination and k-dependence. A set S � V (G) is k-

dependent if �(hSi) � k. A set D � V (G) is k-dominating if every x 2 V (G)�D has at

least k neighbors in D. The k-domination number of G, 


k

(G), is the minimumcardinality

of a k-dominating set in G, and the j-dependent-k-domination number i(j; k;G) of G is

the minimum cardinality of a j-dependent k-dominating set in G.

Note that i(j; k;G) does not exist for all pairs j; k; but, if it does exists, then 


k

(G) �

i(j; k;G). Furthermore, 
(G) = 


1

(G) and i(G) = i(0; 1;G). The following was proved

for claw-free graphs. Recall that a paw is a triangle and an edge sharing a vertex, and an

hourglass H is two triangles sharing a vertex (see Figure 2d.1).

Theorem 4.4 [63] If G is a claw-free graph, then

(i) if �(G) � k, then 


k

(G) < 


2k

(G),

(ii) i(2k � 2; k;G) = 


k

(G), and

(iii) if G is either paw-free or H-free and (H + e)-free, then i(k � 1; k;G) = 


k

(G).

Favaron in [61] proved su�cient conditions for equality of some of the previous pa-

rameters in terms of forbidden subgraphs. For example, the following was proved.

Theorem 4.5 [61] If G is claw-free and D-free (deer-free), then ir(G) = i(G).

Denote by L the graph which is obtained by taking two distinct copies of K

4

and

by adding three independent edges between these complete graphs. This leads to the

following su�cient condition for �(G) = IR(G).

Theorem 4.6 [61] If G is claw-free, D-free, and L-free, then �(G) = IR(G).

Gernert in [80] determined an upper bound on the domination number 
(G) of a

2-connected claw-free graph G.

Theorem 4.7 [80] If G is 2-connected and claw-free of order n, then 
(G) � dn=3e.

Also, this bound is sharp, since 
(C

n

) = dn=3e.
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We next consider the relationship between the chromatic number �(G) and the clique

number !(G) of a claw-free graph G. Sumner in [185] considered the relationship between

the chromatic number and the clique number for graphs with certain trees as forbidden

subgraphs. In particular the tree K

1;3

was considered, giving the next result.

Theorem 4.8 [185] If G is claw-free and is not an odd cycle, then �(G) � [((!(G))

2

+

1)=2].

Clearly, �(G) � !(G) in general, but it is of interest to determine conditions that

imply �(G) = !(G), or at least �(G) is close to !(G). The classical result of Vizing in

[191] implies that �(G) � !(G)+1 for any line graph G (recall that line graphs have been

characterized in terms of forbidden subgraphs, one being the claw, by Beineke in [14] and

more recently improved by

�

Solt�es in [181]). In [37], Choudum extended these results for

line graphs by determining a class of graphs de�ned in terms of forbidden subgraphs (one

also being a claw) for which �(G) � !(G) + 1, and this result was improved by Javdekar

in [108]. Also, in [108] it was conjectured that if G is a claw-free and (K

5

� e)-free graph,

then �(G) � !(G) + 1.

Kierstead and Schmerl in [116] showed that if G is a graph that is claw-free and

(K

5

�e)-free, then �(G) � !(G)+2. They, in fact, showed that if three additional graphs

were forbidden as induced subgraphs, then the stronger conclusion that �(G) � !(G)+ 1

is true. However, Kierstead improved on this result in [114] by proving the following.

Theorem 4.9 [114] If G is claw-free and (K

5

� e)-free, then �(G) � !(G) + 1.

If an appropriate restriction is placed on the maximum degree �(G) of a claw-free

and (K

5

� e)-free graph, then �(G) = !(G). This was proved by Kierstead and Schmerl

in [117].

Theorem 4.10 [117] If G is claw-free and (K

5

� e)-free with maximum degree at most

2!(G) � 5, then �(G) = !(G).

It should be noted that the previous result is sharp in the sense that for each k � 4

there is a graph G which is claw-free, (K

5

�e)-free and such that !(G) = k;�(G) = 2k�3

and �(G) = k + 1.

If the forbidden induced subgraph K

5

� e is replaced by the graph K

2s+3

� e in a

claw-free graph, then there is still a restriction on the chromatic number as a function

of the clique number. This was proved by Kierstead in [115]. In the following result,

R(n;m) denotes the Ramsey number for the pair of complete graphs K

n

and K

m

.

Theorem 4.11 [115] If G is claw-free and (K

2s+3

� e)-free, then

�(G) � maxf!(G) + s;R(3; 4s � 1)g:

Corollary 4.12 [115] If G is claw-free, (K

2s+3

� e)-free and !(G) is su�ciently large,

then

�(G) � !(G) + s:

It would be nice to be able to drop the condition that !(G) is su�ciently large in the

previous corollary, but that problem still remains open.
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Problem 4.13 [115] Show that if G is claw-free and (K

2s+3

� e)-free, then

�(G) � !(G) + s

(i.e. even when !(G) + s < R(3; 4s � 1)).

The result similar to that of Kierstead in [114] was proved by Dhurandhar in [49] by

replacing the graph K

5

� e by the graph K

5

�K

1;2

.

Theorem 4.14 [49] If G is a claw-free and K

5

�K

1;2

-free graph, then �(G) � !(G) + 1.

The independence number �(G) of claw-free graphs has also been investigated. While

considering neighborhood union properties in claw-free graphs that imply a graph is hamil-

tonian, Li and Virlouvet proved in [126] the following result involving the independence

number of a graph.

Theorem 4.15 [126] Let G be a claw-free graph of order n. Then for any integer t � �,

there exists some independent set H of t vertices in G such that

j [

v2H

N(v)j �

t(�(G)� t� 1)

�(G)(�(G) � 1)

(n� �(G)):

For the special case t = 1, this gives the following corollary.

Corollary 4.16 [126] For any claw-free graph G of order n we have �(G) � 2(n �

�(G))=�(G).

Also while investigating hamiltonian properties of K

1;r

-free graphs satisfying degree

or neighborhood type conditions, similar results to those of Li and Virlouvet on the inde-

pendence number of K

1;r

-free graphs were proved by Faudree, Gould, Jacobson, Lesniak,

and Lindquester in [57]. For the neighborhood union of pairs of vertices the following was

proved.

Theorem 4.17 [57] IfG is aK

1;r+1

-free graph with (r � 2) such that the cardinality of

the neighborhood union of each pair of non-adjacent vertices is at least k, then �(G) � s,

where s is the largest solution to

ks(s� 1) = r(n � s)(2s� r � 1):

The corresponding result for the sum of degrees of independent sets of vertices in

K

1;r

-free graphs is the following condition.

Theorem 4.18 [57] If G is a K

1;r+1

-free graph such that �

p

= px, for some p with

1 � p � �(G), then

�(G) � nr=(x + r):

In the special case when p = 1 (i.e. when �

p

(G) = �(G)), the previous result gives the

following corollary.

Corollary 4.19 [57] If G is a K

1;r+1

-free graph with minimum degree �, then

�(G) � nr=(� + r):
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In the special case of claw-free graphs (i.e., when r = 2 in the three previous results),

we have the following three consequences.

Theorem 4.20 [57] IfG is a claw-free graph such that the cardinality of the neighborhood

union of pairs of non-adjacent vertices is at least k, then �(G) � s, where s is the larger

solution to ks(s� 1) = 2(n� s)(2s � 3).

For example, for k = n=3+ c (where c is some small constant) this implies �(G) � 11.

Theorem 4.21 [57] If G is a claw-free graph such that �

p

= px, for some p with

1 � p � �(G), then �(G) � 2n=(x+ 2).

The next result was also proved independently by Li and Virlouvet in [126].

Corollary 4.22 [57], [126] If G is a claw-free graph with minimum degree �, then

�(G) � 2n=(� + 2).

In [169] Ryj�a�cek and Schiermeyer determined upper bounds on the independence num-

ber �(G) for K

1;r

-free graphs in terms of the number of edges of G, the degree sequence

of G, the number of vertices that are the centers of various size claws of G, and the

connectivity �(G) of G. In particular, for the number of edges, the following was proved.

Theorem 4.23 [169] Let G be a K

1;r+1

-free graph (r � 2) having n vertices and m

edges. Then

�(G) = 1 if m = (

n

2

);

�(G) �

1

2

�

2n + 2r � 1�

q

8m+ (2r � 1)

2

�

if 0 � m < (

n

2

):

If the degree sequence of the graph is known, then more can be said about the inde-

pendence number of the graph.

Theorem 4.24 [169] Let G be a K

1;r+1

-free graph (r � 2) with degree-sequence d

1

�

d

2

� : : : � d

n

. Then

�(G) � max

(

k j k +

1

r

k

X

i=1

d

i

� n

)

:

For the connectivity of G the following was proved.

Theorem 4.25 [169] Let G be a K

1;r+1

-free graph (r � 2) with connectivity �. Then

�(G) �

(r � 1)n� �+ 2

r

:

In the case of claw-free graph (i.e. when r = 2 in the previous results), we have the

following summary result.

Theorem 4.26 [169] Let G be a claw-free graph of order n, size m, connectivity � and

degree-sequence d

1

� d

2

: : : � d

n

. Then

(i) �(G) = 1 if m =

�

n

2

�

,

�(G) �

1

2

(2n+ 3 �

p

8m+ 9) if 0 � m <

�

n

2

�

;

(ii) �(G) � maxfk j k +

1

2

k

P

i=1

d

i

� ng;
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(iii) �(G) �

1

2

(n� �+ 2).

Any almost claw-free graph is K

1;5

-free, so the previous results give some bounds on

the independence number of an almost claw-free graph. However it was also proved in

[169] that the independence number of an almost claw-free graph with minimum degree

� can be at most

2

3

n if � = 1,

4

7

n if � = 2 and

2n

�+1

if � � 3.

The number of independent sets of vertices in claw-free graphs was investigated by

Hamidoune in [90]. Let s

k

(G) be the number of independent k-subsets of V (G) in the

graph G. Hamidoune proved that the sequence fs

k

g is log concave, and thus is unimodal,

and he veri�ed the following inequality.

Theorem 4.27 [90] If G is a claw-free graph, then

s

2

k

(G) � (1 + 1=k)s

k+1

(G)s

k�1

(G) + s

k

(G):

The following conjecture also appears in [90].

Conjecture 4.28 [90] If G is a claw-free graph, then

s

2

k

(G) � (1 +

1

k

)(1 +

1

�(G) � k

)s

k+1

(G)s

k�1

(G):

Woodall in [193]) introduced the concept of binding number, which is de�ned as follows:

bind(G) = minfjN(S)j=jSjg, where the minimum is taken over all nonempty subsets S �

V (G) such that N(S) 6= V (G), and where N(S) is the neighborhood of the set S. It was

proved byWoodall in [193] that for every graph G of order n, bind(G) � (n�1)=(n��(G)).

Goddard showed in [84] that the binding number bind(G) for claw-free graphs G with

some conditions on the connectivity and minimum degree could be determined precisely.

In particular, the maximum possible value of the binding number determined by Woodall

is attained for a large class of claw-free graphs, as the following result indicates.

Theorem 4.29 [84] Let G be a claw-free graph of order n. If the connectivity of G is at

least � � 1 and n 6= � + 2, then bind(G) = (n� 1)=(n � �).

Classical extremal problems such as the determination of Ramsey numbers and Tur�an

numbers can be considered for the family of claw-free graph. This was done by Matthews

in [146], where he introduced the concepts of claw-free Ramsey and Tur�an numbers by

adding the restriction that G is claw-free to the obvious de�nition. That is, the claw-free

Ramsey number rc(s; t) is the minimum integer n such that every claw-free graph on n

vertices contains K

s

or K

t

; similarly, the claw-free Tur�an number tc(n; s) is the minimum

integer n such that every claw-free graph having n vertices and tc(n; s) edges contains

K

s

. The next two theorems summarize the results obtained by Matthews on the extremal

numbers rc(s; t) and tc(n; s).

Theorem 4.30 [146]

(i) rc(s; t) � r(s; t),

(ii) rc(s; t) � rc(s� 1; 3) + rc(s; t� 1),
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(iii) rc(3; t) = (5t� 3)=2,

(iv) rc(s; 3) = r(s; 3),

(v) 6t� 9 � rc(4; t) �

(

4t� 3 if n � 1 (mod 3),

4t� 4 otherwise.

Theorem 4.31 [146]

(i) tc(n; 3) = n+ 1 for n > 3,

(ii) tc(12k + r; 4) =

8

>

>

>

<

>

>

>

:

30k + 1 for r = 0; 1,

30k + 2 for r = 2,

30k + 3r � 5 for r = 3; : : : ; 10,

30k + 26 for r = 11,

except tc(4; 4) = 6 and tc(5; 4) = 9,

(iii) tc(n; s) � (n=2)[r(s� 1; 3) � 1].

5. ALGORITHMIC ASPECTS

As noted in the introduction, it is obvious that claw-freeness in a given graph can

be tested in a polynomial time with complexity at most O(n

4

), since it is su�cient to

consider only all subgraphs induced by 4 vertices. However, Alon and Boppana [5], in the

context of boolean functions, point out that the recognition of a claw-free graph can be

done in time O(n

3:5

).

Theorem 5.1 [5] There is a algorithm for the recognition of a claw-free graph that can

be done in time O(n

3:5

).

If some additional assumptions are made, this bound can be lowered. For example,

Fouquet in [76] gets an easy algorithm to recognize a connected claw-free, W

5

-free graph

with independence number at least 3, where W

5

denotes the wheel with 5 spokes.

Theorem 5.2 [76] There is a O(n

3

)-algorithm to recognize a connected claw-free,W

5

-free

graph G with �(G) � 3.

We are now interested in determining for which problems the complexity of some

algorithms is improved (that is lowered) when dealing with a claw-free graph. Some

Results of this type can found in a survey article by Johnson in [109].

NP-Complete

Some problems that are NP-complete in general graphs still remain NP-complete

for the family of claw-free graphs. This is the case of the determination of domination

number 
(G), which was proved by Hedetniemi and Laskar in [94].

Theorem 5.3 [94] The determination of the domination number 
(G) of a claw-free

graph is NP-complete.

The computation of the chromatic number�(G) of a claw-free graph G is NP-complete,
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since it is even true for line graphs. This follows since a vertex coloring in L(G) corresponds

to an edge coloring in G, and determination of the edge chromatic number is NP-complete.

The maximum clique problem, although polynomial for line graphs (see the survey

article by Johnson [109], remains NP-complete for claw-free graphs since the maximum

independent set problem is NP-complete in triangle-free graphs (see Poljak [160]).

Theorem 5.4 [160] The determination of the maximum independent set is NP-complete

for triangle-free graphs, and so the maximal clique problem is NP-complete for claw-free

graphs.

Bertossi in [17] proved that the complexity of hamiltonian problems is not improved

for the class of claw-free, and in fact not even for line graphs.

Theorem 5.5 [17] Recognizing hamiltonian line graphs (and hence also recognizing

hamiltonian claw-free graphs) is an NP-complete problem.

However, there are some polynomial algorithms concerning cycle and path problems

in some subclasses of claw-free graphs de�ned by additional forbidden subgraphs. Zhang

considered extending cycles in connected, locally connected, and claw-free graphs in [197]

and proved the following.

Theorem 5.6 [197] There is a polynomial algorithm for constructing a cycle C

0

of length

jV (C)j+1 for any cycle C of length < n in a connected, locally connected claw-free graph.

In [177] Shepherd considered algorithms for �nding paths and cycles in CN -free graphs,

and proved the following.

Theorem 5.7 [177] There is an O(n

6

)-algorithm for �nding a hamiltonian path (respec-

tively hamiltonian cycle) in a connected (respectively 2-connected) CN -free graph.

Polynomial

Some problems which were NP-complete in general graphs become polynomial in

claw-free graphs. The most well-known of them is the determination of the independence

number. Results of this type are detailed below.

Independence Number.

Three di�erent approaches have been taken in producing polynomial algorithms for

determining the independence number �(G) of a graph G. An important result under-

lying two of the approaches is due to Edmonds in [51], where he exhibited a polynomial

algorithm for �nding a maximal matching in a graph. A key idea that was used in [51]

was the notion of an augmenting path, which is, given a matchingM , a path whose edges

are alternately in M and E(G)�M , and whose end vertices are not incident to any edge

of M .

When going to the line graph of a graph, a maximum matching is transformed into a

maximum independent set. Using this idea Sbihi in [172] gives a polynomial algorithm for

�nding a maximum independent set in a claw-free graph, and Minty, in [151], describes a

di�erent but also polynomial algorithm to �nd an independent set with maximum weight

in a weighted claw-free graph.
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Theorem 5.8 [172], [151] There is a polynomial algorithm to �nd an independent set

of maximumweight in a weighted claw-free graph, and so there is a polynomial algorithm

to determine �(G).

Both of these algorithms use the idea of augmenting path de�ned as follows. For a

given independent set S in G, a path P is generated whose vertices are alternately in S

and G�S, V (P )\V (G�S) is an independent set, and the endvertices of P are in G�S

and have no neighbors in S that are not in P .

The second approach is to use directly the result of Edmonds in [51], which clearly

implies that �nding a maximum independent set in the line graph of a graph is polyno-

mial. Lov�asz and Plummer ([142], pages 479-480) de�ne a reduction procedure which is a

sequence of transformations such that at each step the independence number is decreased

by either one or two, and the �nal graph is a line graph. They also remark that the

resulting algorithm can be implemented with complexity O(n

4

).

Using techniques analogous to those of Lov�asz and Plummer, the existence of a poly-

nomial algorithm for the determination of the independence number was veri�ed for some

superclasses of claw-free graphs. De Simone and Sassano in [47] considered the class of

bull-free and chair-free graphs (where the chair is a graph which is obtained from the claw

by subdividing one of the edges), and proved the following.

Theorem 5.9 [47] There exists a polynomial algorithm that determines the independence

number �(G) of a bull-free and chair-free graph G.

Using analogous techniques that were developed independently, Hammer, Mahadev,

and de Werra also gave sharper polynomial algorithms for the determination of the in-

dependence number for special subclasses of claw-free graphs determined by additional

forbidden subgraphs. They considered CAN -free graphs in [91] and later CN -free graphs

in [92], and proved the next two results.

Theorem 5.10 [91] There is an O(n

3

)-algorithm for determining the independence num-

ber in CAN -free graphs.

Theorem 5.11 [91] There is an O(n

3

)-algorithm for determining the independence num-

ber in CN -free graphs.

More recently in [97] Hertz and de Werra exhibited an in�nite set of forbidden graphs

that characterize a class of graphs for which there exists a polynomial algorithm to de-

termine the independence number of the graph.

Theorem 5.12 [97] There is polynomial algorithm that determines the independence

number � for the class of graphs characterized by the in�nite set of forbidden subgraphs

(k � 0) in Fig. 5.1.

Finally, Giles and Trotter in [82] study the independence number problem as a max-

imization problem of a linear function on independent set polyhedra associated with

claw-free graphs.

Perfect Graphs.

43



u u u u

u

u u

: : :

�

�

�

�

�

�

@

@

@

@

@

@

0 1 2k 2k+1

u u u u

u

u

u

u

: : :

0 1 2k 2k+1

Figure 5.1

Perfect graphs are another class of graphs for which an NP-complete problem becomes

polynomial in the presence of claw-freeness. First let us recall some de�nitions, results,

and conjectures. Let �(G) be the minimum number of cliques to cover the vertices of

G. Recall that a graph G is said to be perfect if it satis�es one of the following three

equivalent properties:

(i) For every induced subgraph H of G , �(H) = !(H)

(ii) For every induced subgraph H of G , �(H) = �(H)

(iii) For every induced subgraph H of G, !(H)�(H) � jV (H)j.

Also, recall from the introduction that an odd hole (respectively antihole) in a graph

G is an induced subgraph of G which is isomorphic to a chordless cycle of odd length (re-

spectively its complement). Berge's strong perfect graph conjecture states the following.

Conjecture 5.13 (Strong Perfect Graph) A graph is perfect if and only if it does not

contain odd holes nor odd antiholes with at least 5 vertices.

Parthasarathy and Ravindra in [158] proved that claw-free graphs satisfy the strong

perfect graph conjecture, and subsequently an alternative proof was given by Giles and

Trotter in [82] and Giles, Trotter and Tucker in [83].

Theorem 5.14 [158], [82], and [83] Claw-free graphs satisfy the strong perfect graph

conjecture.

A graph G is critically imperfect if G is not perfect but each proper induced sugbraph

of G is perfect. In [158] the strong perfect graph conjecture was restated using the concept

of critically imperfect and Theorem 5.14.

Conjecture 5.15 [158] No critically imperfect graph contains an induced claw.

A related result is one of Olariu concerning the superclass of the k-pan-free graphs.

The k-pan is obtained from a chordless cycle C

k

, (k � 4), by adding a new vertex x and

precisely one edge between x and the cycle C

k

. Clearly, every claw-free graph is pan-free

but not conversely. In [157], Olariu proved the following for pan-free graphs

Theorem 5.16 [157] Pan-free graphs satisfy the strong perfect graph conjecture.

The problem of the recognition of non-perfect graphs is known to be in NP (see

[109]. If making the additional assumption of claw-freeness, Chv�atal and Sbihi in [43] get

a polynomial algorithm for the recognition of claw-free perfect graphs. Using the Ben

Rebea Lemma (If G is a connected claw-free graph with �(G) � 3, and if G contains an

odd antihole, then it contains a hole of length �ve.), they proved the following.

Theorem 5.17 [43] There is a polynomial algorithm for recognizing claw-free perfect
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graphs.

When one restricts consideration to just the subclass of the claw-free perfect graphs,

several problem which were NP-complete even for claw-free graphs become polynomial.

Hsu in [98] and jointly Hsu and Nemhauser in [99], [100], and [101] observed that for any

vertex u in a claw-free perfect graph G the complement of the subgraph of G induced

on N(u) is bipartite, and used this to prove the existence of polynomial algorithms. In

particular, the following was proved.

Theorem 5.18 [98] There is an O(n

4

)-algorithm for determining the chromatic number

�(G) (minimum vertex coloring) of a claw-free perfect graph G.

Theorem 5.19 [99]

i) There is an O(n

5:5

)-algorithm for determining a minimum clique cover in a claw-free

perfect graph.

ii) There is an O(n

3:5

)-algorithm for determining a maximum clique in a claw-free

perfect graph.

Theorem 5.20 [100] There is a polynomial algorithm for determining a minimum

weighted clique cover in a weighted claw-free perfect graph.

Using combinatorial arguments di�erent algorithms were described by Hsu and

Nemhauser in [101] to verify the following.

Theorem 5.21 [101] There is a polynomial algorithm (O(n

4

)) for determining a maxi-

mumweighted clique and a minimumweighted clique cover in a weighted claw-free perfect

graph. Also, there is a polynomial algorithm for determining a minimum cardinality ver-

tex coloring in a claw-free perfect graph.

Breadth �rst search tree.

In [147], Matthews made the following observation about the breadth �rst search tree

(BFS-tree) in a claw-free graph.

Lemma 5.22 [147] If u is an interior node in a BFS-tree in a claw-free graph with

children c

1

; c

2

; :::; c

k

, then the subgraph induced in G by c

1

; c

2

; :::; c

k

is a complete graph.

Using this observation Sumner gave e�cient algorithms for �nding perfect matchings

in connected claw-free graphs and hamiltonian cycles in the square of a claw-free graph.

Theorem 5.23 [147]. Let G be a claw-free graph with m edges.

i) There is an O(m)-algorithm for �nding a perfect matching in G, and

ii) an O(m)-algorithm for �nding a hamiltonian cycle in the square G

2

of G.

This algorithm in Theorem 5.23 can be modi�ed to provide an algorithm for �nding

a cycle of any length i, 3 � i � n, containing any speci�ed vertex.

6. MISCELLANEOUS
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Ellingham, Pyber and Yu [53] proved that the edge reconstruction conjecture is true

in the class of claw-free graphs, (i.e., every claw-free graph with at least four edges is

uniquely determined by the collection of its edge-deleted subgraphs).

Krasikov [119] extended the result of Ellingham, Pyber and Yu [53] toK

1;r

-free graphs:

Theorem 6.1 [119] Let G be a K

1;r

-free graph which is not edge reconstructible. Then

�(G) = O(r(log r)

1=2

).

Corollary 6.2 [119] If c is a su�ciently large constant, then every K

1;r

-free graph with

average degree > 2 log r + log log r + c is edge reconstructible.

Posa proved that, for n � 6, every graph with m � 3n � 6 contains two (vertex)

disjoint cycles and every graph with m � n + 4 contains two edge disjoint cycles; these

results are sharp. Matthews [146] improved the �rst result and showed that the second

one cannot be improved in the case of claw-free graphs.

Theorem 6.3 [146] If G is a claw-free graph with m � n + 6, then G contains at least

two disjoint cycles and this bound is sharp.

Markus [143] extended this result as follows.

Theorem 6.4 [143] Let G be a claw-free graph and let k � 1. If m � n+ (3k � 1)(3k �

4)=2 + 1, then G contains k disjoint cycles and this bound is sharp.

For K

1;r

-free graphs, Markus and Snevily [145] obtained the following extension.

Theorem 6.5 [145] If G is a K

1;r

-free graph with r � 4 and m � n + 2r � 1, then G

contains at least 2 disjoint cycles and this bound is sharp.

Paulraja in [159] proved that if G is a connected claw-free graph such that every edge

of G lies on a cycle C

k

of length k � 5, then G has a spanning eulerian subgraph.

In [136] Liu Yiping proved that ifG is a 2-connected claw-free graph with � � (n�5)=2,

then G contains a cycle with at least �(� � 1) diagonals.

Galeana-S�anchez [79] showed that if G is a digraph which is obtained as an orientation

of a claw-free graph such that each of its oriented cycles of length at least 5 has 2 diagonals,

then G has a kernel.

Knor, Niepel and

�

Solt�es [118] studied centers and peripheries in line graphs. They

proved, among others, that every line graph is a center of some line graph. The paper is

concluded with the following conjecture.

Conjecture 6.6 [118] Every claw-free graph is a center of some claw-free graph.

G is said to be perfectly orderable if V (G) admits a linear order < such that no induced

path with vertices a; b; c; d and edges ab; bc; cd has a < b and d < c. In connection with

characterization of totally balanced (0,1)-matrices, Chv�atal [41] characterized perfectly

orderable claw-free graphs in terms of nine well-described in�nite families of forbidden

induced subgraphs.

Recall that G is said to be k-extendable if every matching of size k in G is a subset of

a perfect matching, and G is bicritical if hV (G)�fu; vgi has a perfect matching for every

u; v 2 V (G). Plummer [161] characterized all maximal planar claw-free graphs and, from

this, he obtained the following:
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Theorem 6.7 [161] If G is a maximal planar claw-free graph with jV (G)j � 4 then G

is panconnected and, if G is even, then G is bicritical. Moreover, G is not 2-extendable

unless G is the icosahedron.

In [163], Plummer studied the structure of claw-free regular graphs with higher con-

nectivities and he proved the following.

Theorem 6.8 [163] A graph G is cubic, 3-connected and claw-free if and only if G = K

4

,

G = C

3

�K

2

, or G is the 3-in
ation of a cubic 3-connected graph H.

Theorem 6.9 [163] If G is a 4-connected 4-regular claw-free graph and G contains a

K

4

, then either G = K

5

or V (G) can be partitioned into disjoint sets of four vertices such

that each four-vertex set induces a K

4

in G.

Recently, Nebesk�y (personal communication) obtained the following result.

Theorem 6.10 Let G be a 2-connected claw-free graph such that every edge of G is on

a cycle of length at least 5, and let P be a partition of V (G) such that, for every X 2 P,

jXj � 2 and hXi is connected. Denote by E

P

the set of all edges of G which have vertices

in di�erent sets from P. Then

jE

P

j � 2(jPj � 1):

From this, Nebesk�y obtains the following corollary.

Corollary 6.11 Let G be a 2-connected claw-free graph such that every edge of G is on

a cycle of length at most 5. Then G is upper embeddable.
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7. APPENDIX

List of all 2-connected nonhamiltonian claw-free graphs on n � 12 vertices

1

n: number of vertices

(i): number of nonisomorphic connected claw-free graphs

(ii): number of nonisomorphic 2-connected claw-free graphs

(iii): number of nonisomorphic 2-connected nonhamiltonian claw-free graphs

n (i) (ii) (iii)

1 1 0 0

2 1 0 0

3 2 1 0

4 5 3 0

5 14 8 0

6 50 32 0

7 191 126 0

8 881 619 0

9 4 494 3 332 4

10 26 389 20 910 16

11 184 749 157 721 84

12 1 728 403 1 590 329 408

All 2-connected nonhamiltonian claw-free graphs on n � 12 vertices can be obtained

(up to isomorphism) by the following construction.

1. Take three (not necessarily distinct) vertex-disjoint copies H

1

; H

2

; H

3

of some

of the graphs in Fig. 7.2 and denote by H

1

j

;H

2

j

the two cliques induced by the double-

circled vertices of H

j

, j = 1; 2; 3.

2. Take two vertex disjoint graphs L

t

; L

b

on at least 3 vertices such that either

a) both are complete graphs or

b) one of them is complete and the other is isomorphic to L

1

or to L

2

in Fig. 7.3.

3. For each H

j

, identify H

1

j

and H

2

j

with some subclique in L

t

and L

b

or a one-element

H

k

j

with a double-circled vertex in L

i

in the case 2b, respectively.

Orders of H

j

and L

i

must be chosen and the identi�cation must be done such that

H

1

;H

2

;H

2

remain vertex disjoint and the resulting graph has at most 12 vertices (see

Fig. 7.1).
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1

Authors' thanks for this chapter are to O. Z�yka, Charles University, Prague, for providing computer

search, and to J. Brousek, University of West Bohemia, Pilsen, for checking all the possible cases.
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Figure 7.2: List of all possible graphs H
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