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Abstract

Let G be a graph on n > 3 vertices. Dirac’s minimum degree condition is the condition
1

that all vertices of G have degree at least 5n. This is a well-known sufficient condition
for the existence of a Hamilton cycle in G. We give related sufficiency conditions for
the existence of a Hamilton cycle or a perfect matching involving a restriction of Dirac’s
minimum degree condition to certain subsets of the vertices. For this purpose we define GG
to be 1-heavy (2-heavy) if at least one (two) of the end vertices of each induced subgraph of
G isomorphic to Ki 3 (a claw) has (have) degree at least %n Thus, every claw-free graph
is 2-heavy, and every 2-heavy graph i1s 1-heavy. We show that a 1-heavy or a 2-heavy graph
G has a Hamilton cycle or a perfect matching if we impose certain additional conditions on
G involving numbers of common neighbours, (local) connectivity, and forbidden induced
subgraphs. These results generalize or extend previous work of Broersma & Veldman,
Dirac, Fan, Faudree et al., Goodman & Hedetniemi, Las Vergnas, Oberly & Sumner, Ore,

Shi, and Sumner.
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1 Terminology and notation

We use [5] for terminology and notation not defined here and consider finite simple graphs
only.

Let G be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton
cycle, i.e. a cycle containing all vertices of GG. If X is a graph, we say that G is X -free if
G does not contain an induced subgraph isomorphic to X. Instead of K 3-free, we use the
more common term claw-free. An induced subgraph H of ¢ isomorphic to K3 is called a
claw, the vertex of degree 3 in H is called the center (of the claw), the other vertices of H
are the end vertices (of the claw). An induced subgraph of G isomorphic to K; 3 with one
additional edge is called a modified claw. Throughout the paper, whenever the vertices of a
claw are listed, its center is always the first vertex of the list. A vertex v of G is called heavy
if d(v) > in. A claw of G is called I-heavy (2-heavy) if at least one (two) of its end vertices is
(are) heavy. The graph G' is I-heavy (2-heavy) if all claws of G are 1-heavy (2-heavy). Note
that, in particular, every claw-free graph is 2-heavy, and that every 2-heavy graph is 1-heavy.
We use w(() to denote the number of components of G'. G is I-tough if w(G —5) < |S| for
every subset S of V(G) with w(G —5) > 1. We denote by (S5) the subgraph of G induced
by aset S CV(G). We use D (of deer) and H (of hourglass) to denote the graphs of Figure
1, and P7 for a path on 7 vertices.
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Figure 1

If v € V(G), then N(v) denotes the set of vertices adjacent to v (the neighbourhood
of v). A vertex v € V(G) is locally-connected if (N(v)) is connected, and the graph G is
locally-connected if all vertices of GG are locally-connected. G is called even (odd) if n is even
(odd). A perfect matching or 1-factor of GG is a set of %n edges of G no two of which have a

vertex in common.

2 Introduction

Generally spoken, there are two types of suffliciency conditions with respect to e.g. cyclic

properties of graphs. On one hand we distinguish socalled numerical conditions, of which



probably degree conditions are the most well-known; on the other hand there are what we call
structural conditions, of which forbidden subgraph conditions form a good example. We give
examples of both types of conditions in the sequel.

Our main objective here is to generalize existing results by combining the two types of
conditions, i.e. by restricting the numerical conditions to certain substructures. The following
example should give the reader the general flavour of the results. Consider the following two

results in hamiltonian graph theory.

Theorem 1 ( Dirac [8])
Let G be a graph on n > 3 vertices with § > %n Then G is hamiltonian.

Theorem 2 ( SHI [16])
Let G be a 2-connected graph on n > 3 vertices. If G is claw-free and |N(u) NN (v)| > 2 for

every pair of vertices u,v with d(u,v) =2, then G is hamiltonian.

Since the hypothesis of Theorem 1 implies G is 2-connected and |N(u) N N(v)| > 2 for
every pair of vertices u,v with d(u,v) =2, the following result, which we prove in Section 5,

obviously is a common generalization of Theorem 1 and Theorem 2.

Theorem 3
Let G be a 2-connected graph on n > 3 vertices. If G is 2-heavy and |N(u) N N(v)| > 2 for

every pair of vertices u,v with d(u,v) =2 and max(d(u),d(v)) < $n, then G is hamiltonian.

In fact, we can prove a slightly stronger version of the above theorem, in which we require
|N(u) NN (v)| > 2 only for every pair of vertices u, v in a modified claw of G with d(u,v) =2
and max(d(u),d(v)) < $n. This stronger version also generalizes the result of Goodman and
Hedetniemi [11], that every 2-connected graph on at least 3 vertices is hamiltonian if it does
not contain an induced claw or modified claw.

Using similar ideas we extend several known results on the existence of Hamilton cycles
and perfect matchings in claw-free graphs to the larger classes of 2-heavy or 1-heavy graphs.
We also discuss the sharpness of the results and pose some open problems. The results on
hamiltonicity are presented in Section 3, those on perfect matchings and toughness in Section 4.
We postpone most of the proofs to Section 5.

Related recent work is due to Bedrossian, Chen and Schelp [1]. They impose degree condi-
tions on all nonadjacent vertices of induced claws and modified claws to guarantee (strongly)

hamiltonian properties of graphs.

3 Hamilton cycles

In the previous section we stated our first result on hamiltonicity (Theorem 3), and we remarked
that it is a common generalization of known results by Dirac [8] and Shi [16]. Theorem 3 also

generalizes the following result.



Corollary 4 ( Fan [9])
If G is a 2-connected graph of order n > 3 such that max(d(u),d(v)) > in for each pair of

vertices u,v with d(u,v) =2, then G is hamiltonian.

Proof The hypothesis of Corollary 4 implies that there are no pairs of vertices u,v with
d(u,v) = 2 and max(d(u),d(v)) < sn. Next, considering the three different pairs of end
vertices of a claw, the hypothesis of Corollary 4 implies that at least two of the end vertices

are heavy. [ |
Corollary 4 (and Theorem 3) also generalizes the following well-known result (cf. [9]).

Corollary 5 ( Ore [15])
If G is a graph of order n > 3 such that d(u) + d(v) > n for each pair of nonadjacent

vertices u, v, then G is hamiltonian.

We cannot omit the condition on the vertices at distance 2 in Theorem 3, because there
exist 2-connected nonhamiltonian claw-free graphs. The graphs K; vV (2K; + K,,_4) and
KoV (K + Kn_y+ Kg_l) (where + denotes the disjoint union and V denotes the join of
graphs) sketched in Figure 2 respectively show we cannot relax 2-heavy to 1-heavy, and we

cannot relax the bound %n on the end vertices of claws in Theorem 3.

Figure 2

However, if we impose a stronger connectivity condition, we can replace 2-heavy in Theo-

rem 3 by the weaker condition 1-heavy.

Theorem 6
Let G be a 3-connected graph. If G is 1-heavy and |N (u)NN(v)| > 2 for every pair of vertices
u,v with d(u,v) =2 and max(d(u),d(v)) < in, then G is hamiltonian.



We cannot omit the condition on the vertices at distance 2 in Theorem 6, because there exist

3-connected nonhamiltonian claw-free graphs (See e.g. [13]). The graphs K3V (2K + 2K n-s)
2

sketched in Figure 3 show we cannot relax the bound 1n on the end vertices of claws in

2
Theorem 6.

Figure 3

We do not know whether the conclusion of Theorem 6 remains valid if we replace 3-
connected by 1-tough.

Next we examined whether we could replace the condition on the vertices at distance 2 in
the previous results by another condition.

The first condition we considered was motivated by the following result on claw-free graphs.

Theorem 7 ( OBERLY AND SUMNER [14])
Let G be a graph on n > 3 vertices. If GG is claw-free, connected and locally-connected, then

G' is hamiltonian.
We extended Theorem 7 to the class of 2-heavy graphs.

Theorem 8
Let G be a graph on n > 3 vertices. If GG is 2-heavy, connected and locally-connected, then

(G is hamiltonian.

We cannot omit the local connectivity condition in Theorem 8, because there exist con-
nected nonhamiltonian claw-free graphs. The graphs sketched in Figure 2 respectively show
we cannot relax 2-heavy to 1-heavy, and we cannot relax the bound %n on the end vertices of
claws in Theorem 8.

We do not know whether the conclusion of Theorem 8 remains valid if we replace connected
by 1-tough, and 2-heavy by 1-heavy.

The following result on claw-free graphs is implicit in [6], and motivated us to consider

forbidden subgraph conditions.



Theorem 9 ( BROERSMA AND VELDMAN [6])
Let G be a 2-connected graph. If G is claw-free, P;-free and D -free, then G is hamiltonian.

A similar result can be found in [10].

Theorem 10 ( FAUDREE, RYJACEK AND SCHIERMEYER [10])
Let G be a 2-connected graph. If G is claw-free, Pr-free and H -free, then G is hamiltonian.

We extended Theorem 9 and Theorem 10 to the class of 2-heavy graphs.

Theorem 11
Let G be a 2-connected graph. If G is 2-heavy, and moreover P;-free and D -free, or Pr-free

and H -free, then (G is hamiltonian.

The graphs Ky V (2K 4+ K,,—4) of Figure 2 show we cannot relax 2-heavy to 1-heavy in
Theorem 11.

4 Perfect matchings and toughness
We start this section with the following result that was proved independently in [12] and [17].

Theorem 12 (LLAs VERGNAS [12], SUMNER [17])
Let G be an even connected graph. If G is claw-free, then G has a perfect matching.

We extended Theorem 12 to the class of 2-heavy graphs.

Theorem 13
Let G be an even connected graph. If G is 2-heavy, then G has a perfect matching.

2 even

Figure 4



The graphs sketched in Figure 4(a) show that an even connected 1-heavy graph need not
have a perfect matching. The graphs in Figure 4(b) show we cannot relax the degree bound
1

sn on the end vertices of claws in Theorem 13. However, if we impose a stronger connectivity

condition, we can replace 2-heavy in Theorem 13 by the weaker condition 1-heavy.

Theorem 14
Let G be an even 2-connected graph. If G is 1-heavy, then G has a perfect matching.

The graphs of Figure 4(a) show we cannot replace 2-connected by connected in Theorem 14;
the graphs 2KV (2K + 2K§_2) sketched in Figure 5 show we cannot relax the bound % on

the end vertices of claws in Theorem 14.

5 odd

Figure 5

Using similar techniques, we prove the following two results on toughness.

Theorem 15
Every 2-connected 2-heavy graph is I-tough.

Theorem 16
Every 3-connected 1-heavy graph is I-tough.

The above results show that the condition on the vertices at distance 2 in Theorem 3
and Theorem 6 is not necessary if we replace the conclusion in these theorems by the weaker
conclusion that G is 1-tough.

The graphs K3V (2K; 4+ K,,—4) of Figure 2 show that a 2-connected 1-heavy graph need
not be 1-tough.

5 Proofs

We start this section with some preliminary results. But first we introduce some additional

terminology and notation.



Let G be a graph on n vertices and let C' be a cycle of G. We denote by 8 the cycle C'
with a given orientation, and by 5 the cycle €' with the reverse orientation. If u,v € V(C)
then u C v denotes the consecutive vertices of C' from u to v in the direction specified by C
The same vertices, in reverse order, are given by v C u. We will consider u 8 v and v C U
both as paths and as vertex sets. We use uT to denote the successor of u on C and u~ to
denote its predecessor. If A C V(C), then AT = {vt | v € A} and A~ = {v™ | v € A}.
Recall that a vertex v of GG is heavy if d(v) > %n; if v is not heavy we call it light. The cycle
C' is called heavy if it contains all heavy vertices of G'; it is called extendable if there exists a
longer cycle in G containing all vertices of C'. A set S C V(G) is called an antifactor set if

the number of odd components in G'— S exceeds |S5].

Lemma 17 ( BOLLOBAS AND BRIGHTWELL [2], SHI [16])

Every 2-connected graph contains a heavy cycle.

The two observations in the following lemma are respectively implicit in work of CHVATAL
AND ERDOs [7] and BoNDY [3].

Lemma 18
Let 3 be a nonextendable cycle in a graph G of order n, H a component of G — V(C'), and
A the set of neighbours of H on C'. Then

() ANA= =0, ANAT =0, and A~ and A%t are independent sets.

(b) Each pair of vertices from A~ or AT has degree sum smaller than n.

The following lemma is a variation of the closure lemma by BoNDY AND CHVATAL [4].

Lemma 19
Let G be a graph and u,v € V(G') be two nonadjacent heavy vertices. If GG + uv has a cycle

C' containing all heavy vertices of GG, then G has a cycle containing all vertices of C'.

Proof Assume G does not have a cycle containing all vertices of (. Consider a path from
u to v in G containing all vertices of C'. Clearly, v and v have no common neighbour in
V(G)\ V(P), and by a standard argument (See e.g. [4]) the degree sum of u and v on P is

smaller than |V (P)|. Hence at most one of » and v is heavy. [ |

Proof of Theorem 3 By Lemma 17, G contains a heavy cycle. Consider a longest heavy
cycle C' of GG, fix an orientation on ', and assume ( is not hamiltonian. Since G is 2-
connected, there exists a path P between two vertices wy € V(C) and wq € V(C') internally-
disjoint with C' and such that |V(P)| > 3. By the choice of C', all internal vertices on P

are light, and by Lemma 18(b) we may assume wi" is light. Since G is 2-heavy, w; is not a



center of a claw, implying that wl_wi" € F(G). Let v denote the successor of wy on P, and
let = denote a vertex in (N (w) N N(v))\ {wi}. It is clear that = € V(C). If 272t € E(G),
then wf’ﬁw‘w"’@wlvxwf’ contradicts the choice of C'. So #2727 ¢ F(G). By Lemma 18(a)
wizt ¢ F(G). Hence {z,v,wf, 27} induces a claw such that both v and w] are light,
contradicting that G is 2-heavy. |

For a proof of the stronger version mentioned in Section 2 we only need to add the obser-

vation that {wj,wy, w,v} induces a modified claw in G.

Proof of Theorem 6 By Lemma 17, G contains a heavy cycle. Consider a longest heavy
cycle € of G, fix an orientation on ', and assume ( is not hamiltonian. Let H be a
component of G — V(C'). Since G is 3-connected, there are at least 3 distinct neighbours
wy, we, ws of H on C'. By Lemma 18(b), we know that for at least one 7 € {1,2,3} both
w; and w] are light. Assume without loss of generality that w] and wj are light. Denote
a neighbour of wy in H by w. Since G is l-heavy and v is light, wl_wi" € F(G). As
in the proof of Theorem 3, the hypothesis of Theorem 6 implies there exists a vertex z €
(N(w) N N(v)) \ {w;} on C such that 2~2t ¢ E(G). Now since G is 1-heavy, using
Lemma 18(b) and considering {z,v,w], 2%}, we obtain that z% is heavy. Since G is 3-
connected, there is a neighbour y # wy,x of H on C'. Since 2% is heavy, Lemma 18(b)
yields that yT* is light. Denote by z a neighbour of y in H. As before, the hypothesis of the
theorem implies there exists a vertex p € N(z) N N(yT) on V(C) such that p~p* ¢ E(G).
Now since (7 is 1-heavy, using Lemma 18(b) and considering {p, z, pt,yT}, we obtain that p*
is heavy. This leads to a contradiction with Lemma 18(b) unless p = x. In the latter case,
{z,wi,y*, v} induces a claw with light end vertices only, contradicting that G is I-heavy.

|

Proof of Theorem 8 Since (G is connected and locally-connected, G is 2-connected. By
Lemma 17, G contains a heavy cycle. Consider a longest heavy cycle C' of G, fix an orientation
on C', and assume ' is not hamiltonian. As in the former proofs, we can find a vertex
z € V(G)\ V(C) in such a way that for some w € V(C), 2w € F(G), w~wt € F(G), and
w™ or wt is light. Assume without loss of generality that w™ is light. Since N(w) induces
a connected graph, denoted by W, there is a path in W connecting # and w™. Choose a
shortest path P in W between w™ and a vertex y in the component of G — V(') containing
x. Observe that all vertices of P except for y are on C'. Denote P :y =1yoy; ... = wh. By
Lemma 18(a), { > 2. We claim that [ = 3. Otherwise, if [ > 4, then {w,y,ys, wt} induces
a claw with y and w?t light, a contradiction; if { = 2, then {yy,y;,y,w"} induces a claw
contradicting the hypothesis that G is 2-heavy. Suppose w™ € V(P). Considering the claw
induced by {y1,y;,y,w™}, since GG is 2-heavy and y is light, we obtain that y; and w™ are
heavy, contradicting Lemma 18(b). Hence w™ ¢ V(P). We next observe that y1y, ¢ E(C).
Otherwise, if y, = yi", we contradict Lemma 18(a); if y; = y;, the cycle wyy Cw~wtCyw

contradicts the choice of C'. Now we distinguish two cases.



L yryf € B(G).
We claim that yfwt, y,yf ¢ F(G). Otherwise, if yfwt € F(G), the Cycle yggw"'y;ﬁ
Y1 Yq 3wyy1y2 (if yo € wTCly; _) or ygylngy;w"'ﬁyl—yf'@ (1f Y2 €y 310‘5 con-
tradicts the choice of C'; if yyf € F(G), the cycle ygwyylyQ yl yh gw wtClyy (if
Yo € w"’ﬁyf_) or ywyyys Cw-wt yl_yi"ﬁyg (if y2 € y1 w™ ) contradicts the
choice of C' (recall that we already know that y1 # yo, y1y2 € £(C) and w™ € V(P)).
Hence {ys,y1,y5,w"} induces a claw. Since G is 2-heavy and w™ is light, we obtain
that y; and yi are heavy. Clearly, G4y ys has a cycle C’ containing all heavy vertices
of GG, and such that C” is longer than C'. By Lemma 19, G has a cycle containing all

vertices of C, a contradiction with the choice of C'.

2. yryi € E(G).
Consider the claw induced by {yi,y7, 5, y}. Since G is 2-heavy and y is light, we
conclude that y; and y are heavy. The arguments we used in Case 1 can now be
applied to the graph G’ = G + y{ yi to conclude that G’ has a cycle C’ containing all
heavy vertices of G and such that C’ is longer than C'. Now Lemma 19 again yields a
contradiction with the choice of C'. (Note that the degrees of y; and y; do not change
if we add the edge yy i .)

Proof of Theorem 11 By Lemma 17, G contains a heavy cycle. Consider a longest heavy
cycle C' of GG, fix an orientation on ', and assume ( is not hamiltonian. Since G is 2-
connected, there exists a path of length at least 2, internally-disjoint with C', that connects
two vertices of C'. Let P = wyz125...2,.wy be such a path of minimum length, implying that
P is an induced path unless wywq € E(G). For i = 1,2, let y; be the first vertex in w;" ws_;
satisfying y,w; ¢ F(G). Such a vertex exists; otherwise without loss of generality assume
wyw; € E(G). If wiw] € F(G), then ¢’ = w] 3102 Wiz . xrwgﬁwfwi" contradicts the
choice of C'; if wywi & E(G), then, since @, is light and G is 2-heavy, both w] and w} are
heavy. Then G 4 wj w; contains the cycle C’, and, by Lemma 19, G has a cycle containing
all vertices of C”, contradicting the choice of C'. By Lemma 18(b), at least one of the pairs
{wy,w} and {wy,w]} contains a light vertex. Without loss of generality assume {w] ,w; }
contains a light vertex. Then, since G is 2-heavy and =z; is light, wl_wi" € F(G). We

distinguish two cases.

1. wywi € E(G).
Let z; be an arbitrary vertex in w"'ayz (¢ =1,2) and let 2 be a vertex in V(P) \

{wy,w2}. Then we first show

(1) T2y, T 22, A We, Zaw1, 2122 € E(G).

10



If 221 € E(G), then wlwl...leﬁwl_wfﬁszl (if z1 # wi") or wlxl...leﬁwl (if
z1 = w]) is a cycle contradicting the choice of (. Hence z2z; ¢ E(G). Similarly,
rzy & E(G). If zywy € E(G), then the cycle wyay .. .xrwgzlﬁwz_wgﬁwfu)f Zy wy
(if = # wi") Or W1xy...T, W2 wz_w; wy (if 1 = wi") contradicts the choice of C.
Hence zjwy ¢ E(G). Similarly, 20wy ¢ E(G). Suppose 2122 € E(G). If z; # wi and
z9 # w;, then the cycle wiz; .. .$rw222_5w;—w2_52122 wl_wi"ﬁzl_wl contradicts the
choice of C'. Similarly, a heavy cycle longer than C can be indicated if z; = w] or
29 = w¥. Hence 2125 € E(G).

Now if r = 1, then by (1) and the choice of y; and ya, {z1,w1,y;,y1, w2,y5 , Y2} in-
duces Pr (if wywy ¢ E(G)) or D (if wywy € E(G)). In the latter case, it is easy
to check that {z,wy, wy,w],w]} induces H. Next assume r > 2. Then zjwy ¢
E(G). Suppose wywy € E(G). Then, by (1), using that G is 2-heavy and z; and
z, are light, the claws induced by {wy,wf, 21,w2} and {wz,w}, 2., w1} yield that
both wl and wj are heavy, contradicting Lemma 18(b). Hence wjwy ¢ E(G). Now
{z1,. .., 20, w1, Y7, Y1, we, Y5 , y2} induces Prig. So in all cases we find an induced sub-
graph isomorphic to P; or one isomorphic to D and one isomorphic to H , contradicting
the hypothesis of Theorem 11.

2. wywi € E(G).
Then {wy,wy,w},x,} induces a claw. Since G is 2-heavy and z, is light, wy and wj
are both heavy. If we apply the arguments of Case 1 to the graph G/ = G + w; w] , we
find a cycle C" in G’ containing all vertices of C' and longer than C'. (Note that the
edge wj w3 is not an edge of one of the induced subgraphs considered in Case 1.) By

Lemma 19, GG has a cycle containing all vertices of C”, contradicting the choice of C'.

|
The following lemma is implicit in [18].

Lemma 20 ( SUMNER [18])
Let G be an even connected graph without a perfect matching, and let S be a minimum
antifactor set of GG. Then every vertex of S is adjacent to vertices of at least three odd

components of G — S (and therefore centers a claw).

Lemma 21
Let G be a graph, and let S be a nonempty set of vertices of GG such that w(G — 5) > |9].

Then at most one component of G — .S contains a heavy vertex of GG.

Proof Let Gy,G5,...,Gy be the components of G — S for some k > |S|+ 1, and suppose
that at least two components of G —.5 contain a heavy vertex of G. Without loss of generality

assume x; € V(G1) and zy € V(G3) are heavy. It is clear that each neighbour of z; is

11



in Gj orin S (i =1,2), hence |V(Gj)| — 1+ |S] > LV(G)| (i = 1,2), so that |V(G)]
V(GO + V(G + ST+ [V(G3)| + ...+ [V(GR)| = V(G + V(G) + S+ k=2 >
[V (G1)|+ [V (G2)| +2|S| = 1> |V(G)|+ 1, a contradiction. [ |

Proof of Theorem 13 Suppose that G has no perfect matching. Let S denote a min-
imum antifactor set. By Lemma 20 every vertex of S centers a claw with end vertices in
different components of G — 5. By Lemma 21 such a claw has at most one heavy end vertex,

contradicting the hypothesis that G is 2-heavy. [ |

Proof of Theorem 14 Suppose that GG has no perfect matching. Let S denote a minimum
antifactor set. Then S is not empty. Let s = |S| and let G, Gy, ..., Gy denote (all) the
components of G — 5. Since G is 2-connected, s > 2, and by Tutte’s Theorem and parity
arguments, k > s+ 2. By Lemma 20, every vertex of S centers a claw with end vertices in
different components of G — S. By Lemma 21 and the hypothesis that G is 1-heavy, exactly
one of the components of G — S contains a heavy vertex of G, Gy say, and every vertex of
S has a (heavy) neighbour in G. Moreover, by the same arguments, every vertex of S has
neighbours in exactly two other components of GG — 5. So, if we denote by r(z) the number
of components of G — S containing at least one neighbour of a vertex z € S, then we have

> r(z) = 3s. On the other hand, since G is 2-connected, every component of GG — S except
€S
(1 contributes one to r(z) and r(y) for at least two distinct vertices z,y € 5, while G4

contributes one to r(z) for all z € S. This implies )" r(z) > s+ 2(k — 1). Combining the
z€S
inequality and equality we obtain that & < s+ 1, a contradiction. [ |

We now prove the following variation of Lemma 20.

Lemma 22
Let G be a graph, and let S be a minimum set of vertices of G' such that w(G —5) > |9].
Then either |S| < 1 or every vertex of S is adjacent to vertices of at least three components

of G — S (and therefore centers a claw).

Proof Let Gy,G5,...,Gy be the components of G — .S and suppose that s = |S| > 2. First
suppose there exists a vertex z € S having neighbours in S and exactly one component of
G —S. Then w(G — (S\ {2})) =w(G —9), contradicting the minimality of S. Next suppose
there exists a vertex & € .S having neighbours in .S and exactly two components of G — 5.
Then w(G — (S\ {z})) =w(G —S) — 1, again contradicting the minimality of 5. [ |

Proof of Theorem 15 Suppose GG is a 2-connected graph and G is not 1-tough. Choose
a minimum set S for which w(G — S) > |S| > 2. By Lemma 22, every z € S centers a claw
with end vertices in different components of G — 5. But then, by Lemma 21, GG is not 2-heavy.

|

12



Proof of Theorem 16 Suppose G is a 3-connected graph and G is not 1-tough. Choose
a minimum set S for which w(G' — S5) > |9| > 3. Let s = |5| and let G1,Gy, ..., Gy be the
components of G — S, implying that £ > s+ 1. By Lemma 22, every € S centers a claw
with end vertices in different components of G —.5. By Lemma 21 and the hypothesis that
(' is 1-heavy, exactly one of the components of G — S, (7 say, contains a heavy vertex, and
every @ € S has a (heavy) neighbour in (G;. Moreover, by the same arguments, every z € S
has neighbours in exactly two other components of G — 5. As in the proof of Theorem 14, if
we let r(z) denote the number of components of G — S containing at least one neighbour of

xz € S, weobtain ) r(z) =3s. On the other hand, since G is 3-connected, every component
€S
of GG — S has at least three neighbours in S. Hence " r(z) > 3k > 3s+ 3, a contradiction.
€S
B
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