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Abstract

The class of DCT-graphs is a common generalization of the classes of almost
claw-free and quasi claw-free graphs. We prove that every even (2p 4 1)-connected
DCT-graph GG is p-extendable, i.e. every set of p independent edges of G is contained
in a perfect matching of G. This result is obtained as a corollary of a stronger result
concerning factor-criticality of DCT-graphs.
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1 Introduction

In this paper we consider only finite undirected graphs G = (V(G), E(G)) without loops
and multiple edges. For any set A C V((G), (A) denotes the subgraph of GG induced on
A, G — A stands for (V(G) — A) and ¢(G — A) (or ¢,(G — A)) denotes the number of

components (odd components) of G — A, respectively (we say that a graph is odd or even
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if it has an odd or even number of vertices). A set A C V() such that ¢(G — A) > 1
will be called a cutset. If A, B C V((), then we denote N4(B) = {z € Alzy € E(G)
for some y € B}. If 2 € V(G), then we simply denote N(x) = Ny(e)({z}) and we put
Nlz] = N(z) U {a}. If H is a graph then we say that GG is H-free if ¢ does not contain
an induced subgraph isomorphic to H. If H C (' is an induced subgraph of G isomorphic
to the star Ky, (r > 3), then the only vertex of degree r in H is called the center of
H and the vertices of degree 1 in H are called the toes of H. In the special case r = 3
we say that H is a claw. Whenever vertices of a claw (or of an induced K ,) are listed,
the center is always the first vertex of the list. For other notation and terminology not
defined here we refer e.g. to [3].

Claw-free graphs have been intensively studied during the last decade. Sumner [11]
and independently Las Vergnas [5] proved that every even connected claw-free graph has
a perfect matching. In accordance with Tutte’s 1-factor theorem, we call a set S such
that ¢,(G — S) > |S| an antifactor set. Sumner [12] proved the following theorem.

Theorem 1.1 [12]. Let G be an even connected graph having no perfect matching and
let S C V(G) be a minimum antifactor set in (G. Then every vertex of S is adjacent to
vertices of at least three components of G — 5.

The following extension of the class of claw-free graphs was introduced in [9]. A graph
G is almost claw-free if the set of claw centers is independent and, for every claw center
r € V(G), (N(x)) is 2-dominated (i.e. there are vertices dy,dy € N(x) such that yd; €
E(G) or ydy € E(G) for every y € N(x)). We denote the class of almost claw-free graphs
by ACF. It was shown in [9] that every even connected graph G € ACF has a perfect
matching.

Another extension of the class of claw-free graphs was introduced in [1]. For two
nonadjacent vertices a and b of G, let J(a,b) = {y € N(a) N N(b)|N]y] C N[a] U N[b]}
(thus, in particular, J(a,b) = @ if @ and b are at distance more than 2). The vertices of
J(a,b) are called the dominators of the pair {a,b}. A graph G is quasi claw-free (denoted
G € QCF) if J(a,b) # () for every pair of vertices a, b at distance 2. It was shown in [1]
that

(1) every claw-free graph is quasi claw-free,

(17) both ACF \ QCF and QCF \ ACF are infinite and

(1i7) every even connected graph G € QCF has a perfect matching.

It is not difficult to observe that also the class (ACF N QCF) \ CF is infinite. A simple
example of a graph G € (ACFNQCF)\CF is in Fig. 1(a) (centers of claws are indicated
by double circles).

The class of DCT-graphs, containing all almost claw-free graphs and all quasi claw-free
graphs, was first introduced in [2] in the following way. A claw ({z, a1, a2, as}) is said to be
dominated (or undominated) if J(ay,az) U J(az,a3)U J(as,ar) £ 0 (or = 0), respectively.
The vertices of J(ay, az) U J(azg, as) U J(as,ar) are called the dominators of the claw. We
say that a graph G is a graph with dominated claw toes, or, briefly, a DCT-graph (denoted
G € DCT) [2] if every claw in (G is dominated. Clearly, QCF C DCT. It is easy to



see that also ACF C DCT. Indeed, let ({z,a1,az,as}) be a claw of an almost claw-free
graph G and, without loss of generality, y a neighbor of z adjacent to a; and a,. Since

it is adjacent to z, y does not center a claw and thus N(y) C N[a;] U N[az]. Therefore
J(ai,az) # 0 and G € DCT. It is easy to see that the class DCT \ (ACF U QCF) is
infinite. A simple example of a graph G € DCT \ (ACF U QCF) is shown in Fig. 1(b).
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Figure 1

It was proved in [2] that every even connected DCT-graph has a perfect matching.

A graph G of even order n is p-extendable [6] if every set of p independent edges is
contained in a perfect matching of . The concept of extendability has been studied in
many classes of graphs. In particular, it is known that every (2p + 1)-connected claw-free
graph [7] or almost claw-free graph [10] is p-extendable. A survey on this topic can be
found in [8].

In the present paper we generalize these results to the class DCT. The main idea of
our proof consists in deleting any p independent edges from G and in showing that the
resulting graph has a perfect matching. But actually, when we delete the 2p end-vertices
of the prescribed edges, we no longer need the information that those vertices induced
themselves a graph with a perfect matching. Thus the deletion of any 2p vertices leads
to the same conclusion. Hence, what we get in our proof is much stronger than the p-
extendability and is related to the concept of k-factor-criticality. This property has been
defined [4] by an analogy with the concept of factor-critical and bicritical graphs. We say
that G is k-factor-critical if for every set X of k vertices of ¢, G — X induces a graph
with a perfect matching (or, equivalently, every induced subgraph of order n — k has a
perfect matching). With the convention that a graph of order 0 has a perfect matching,
it is easy to see that

(1) every graph of order n is n-factor-critical,

(17) a graph of order n can be k-factor-critical only if & and n are of the same parity,

(1i7) any k-factor-critical graph of order n (2 < k < n) is (k — 2)-factor-critical,

(1v) a graph G is O-factor-critical if and only if G has a perfect matching.

Any 2p-factor-critical graph is clearly p-extendable.



2 Main result

We first prove the following lemma.

Lemma 2.1. Let GG be a graph and H = ({z,x1,x9,...,2,.}) an induced subgraph of
isomorphic to K, for some r > 3. If every subclaw of H is dominated in ¢, then the set

J = Uicicj<r J (25, 2;) of the dominators of all the pairs {z;,z;} satisfies [J| > —7’(7’4_2).

Proof. By the definition of J(a,b), a dominator of a pair {x;,2;} cannot be adjacent
to a third vertex xj, (h ¢ {i,7}) and thus no two different pairs of toes of H can have a
common dominator. We construct a graph H' with vertex set V(H') = {ay,22,...,2,}
and edge set E(H') = {x;2; | J(a2;) # 0,1 <1 < j <r}. Hence H' has at most |J]|
edges. Since each subclaw of H = ({z, 21, 22,...,2,}) is dominated, the complement of

H' is triangle-free. By Turan’s theorem (see e.g. [3], Chapter 7.3), the maximum number
of edges in a triangle-free graph on r vertices is at most %, from which |[J| > (4) — % =
£(27’—2—7’) _ r(r=2) |
2\ 2 /T T a

Now we can state the main result of this paper.

Theorem 2.2. Let G be a k-connected DCT-graph of order n. Then:
(1) if n — k is odd and k£ > 1, then G is (k — 1)-factor-critical,
(17) if n — k is even and k > 2, then G is (k — 2)-factor-critical.

Proof. We first observe that the second statement of the theorem is an immediate
consequence of the first one. Indeed, if (G is k-connected with n — k even and k > 2, then,
setting &' = k — 1, we get that (7 is also k’-connected with n — k" odd and thus, by (i), G
is (k' — 1)-factor-critical. Hence it is sufficient to prove (7).

Suppose the statement (i) fails and let X be a set of & — 1 vertices of (G such that
n —k is odd and the even subgraph G/ = (G — X has no perfect matching. Let S C V(G')
be a minimum antifactor set in G' and put s = |S| (note that, because i is k-connected,
s > 1.) Denote by C1,...,C. (¢ > 3) the components of G'—S. Then, by parity, ¢ > s+42.
By Theorem 1.1, each vertex z of S is adjacent to at least three different components of
G' — S and thus centers a claw ({z,a;,,a;,,a,}), where a;; € V(Cy,), j = 1,2,3. Any
dominator of this claw, say y € J(a;,,a;,), is adjacent to a;, and a,,, but has no neighbor
in any other Cy, £ & {iy,i2}. Thus y ¢ U;_; V(C;) U S and hence y € X.

Let G be the graph obtained from G’ by contracting every component C; to a vertex
¢; and by deleting possible multiple edges. We denote C = {¢1,¢z,...,¢.}. For every
subset A C X U S and for any i = 1,...,c denote e(c;, A) = [{ciz € E(G) | 2 € A}
and put e(C,A) = 3_ e(c;, A). (Equivalently, e(e¢;, A) equals the number of vertices
of attachment of the component (' in A). From above, each claw ({z,¢;,, ci,,ci,}) of G
centered at a vertex z of S is dominated by vertices of X and each dominator y of the
claw has exactly two neighbors in C. Let J C X be the set of all the dominators of all



the claws of  centered in S and with toes in €' and put j = |.J].

Since (i is k-connected and C' is independent, e(C, S U X) > ck. On the other hand,
e(C,S) < sr, where r is the largest integer (r > 3) such that there exist vertices z in S
and ¢;,, ¢y, .., ¢, in C for which ({z,¢,,¢,,...,¢,}) is isomorphic to Ky ,. Since every
vertex in J is adjacent to only two vertices of C', we have

(0, X) <2+ e|X] — ) = 2%+ e(k — 1 — ).
This yields
ck <e(C,5UX)=¢(C,5)+¢e(C,X)<sr+2j+clk—1-7),
from which ¢(j + 1) < sr + 25 and thus, since ¢ > s + 2,
s)+s+2<sr.
Hence j <r —1— % and thus, by the integrity of j, 7 <r — 2. Lemma 2.1 then implies

u<j<r_2_

From this we get that either r =4 and j = 2, or r = 3 and j = 1 (note that j > 0 implies
that r # 2). From sj +s+2 < sr we then get that in both these cases s > 2. We consider
these two cases separately.

Case l: =1, r=3, s >2, ¢>s+2.

Let J = {y} and assume without loss of generality that Ne(y) = {e1,¢2}. Each
claw ({z,¢i,, ¢, ¢, }) centered in S is dominated by y and thus every vertex z € S is
adjacent to both ¢; and ¢; and, since r = 3, to exactly one vertex ¢; € C'\ {¢1,¢2}. On
the other hand, since (i is k-connected, every ¢; has at least one neighbor in S. Since
|C\ {c1,e2}| > |51, this implies that | Ns(¢;)| = 1 for every 1,3 < < ¢. Let Ng(es) = {z}.
Then (X \ {y})U{z} is a cutset of G having | X| = k — 1 elements, a contradiction.

Case 2: =2, r=4, s >2, ¢>s+2.

Since r = 4, we have |N¢(J)| = 4, for otherwise we have an induced K 4 containing
an undominated claw. We can assume without loss of generality that J = {y;,y2} and
that Ne(y1) = {c1, 2}, Ne(y2) = {cs,ca} and Ne(z) = {e1, 2, ¢3, ¢4} with z € S. Then
1y ¢ E(G) (since otherwise y2 € N[y1] \ (N]e1] U N|eg]), contradicting the fact that
y1 € J(e1,¢2)), and every claw centered in S and with toes in C has {¢1,¢2} or {cs, ¢4} as
a pair of toes.

Suppose first that ¢ > 5 and put C’ = {¢s,...,¢c.}. Every vertex of S has at most one
neighbor in C’ for otherwise this vertex would center an undominated claw. On the other
hand, if there is a ¢; € C” such that |Ns(¢;)| < 2, then (X \ {y1,y2}) U Ns(¢;) is a cutset
of GG having at most | X| = k — 1 elements. Hence |Ng(¢;)| > 3 for every ¢; € C’. This
implies 3(c — 4) < e(C’, 5\ {z}) < s — 1, from which, using s < ¢—2, we get ¢ < 3, a
contradiction of the assumption ¢ > 5.



Therefore it remains to consider the case j =2, r =4, s =2, ¢ = 4. But then the
set (X \{y1,y2})US is a cutset of GG separating ({¢1,y1,¢c2}) and ({¢s, y2, ¢4}) and having
|X| =k — 1 elements. This contradiction completes the proof. ]

Corollary 2.3. Every even (2p + 1)-connected DCT-graph is p-extendable.

Remark. [t was also proved in [10] that if (G is a (2p + 1)-connected K ,43-free graph
such that the set of all claw centers is independent, then G is p-extendable. It can be
easily seen that this result and our Corollary 2.3 are independent since the claw centers
in a DCT-graph are not necessarily independent and, on the other hand, the claws in a
K pi3-free graph with independent claw centers are not necessarily dominated.
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