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Abstract

If G is a claw-free graph, then there is a graph cl(G) such that

(i) G is a spanning subgraph of cl(G),

(ii) cl(G) is a line graph of a triangle-free graph, and

(iii) the length of a longest cycle in G and in cl(G) is the same.

A su�cient condition for hamiltonicity in claw-free graphs, the equivalence of some

conjectures on hamiltonicity in 2-tough graphs and the hamiltonicity of 7-connected

claw-free graphs are obtained as corollaries.

1 Introduction

In this paper, a graph will be a �nite undirected graph G = (V (G); E(G)) without loops

and multiple edges. For terminology and notation not de�ned here we refer to [1]. For any

set A � V (G) we denote by hAi the induced subgraph on A, G�A stands for hV (G) nAi

and !(G�A) denotes the number of components of G�A. The (vertex) connectivity of

G will be denoted by �(G) and the circumference of G (i.e., the length of a longest cycle

in G) will be denoted by c(G). The line graph of a graph G will be denoted by L(G). By

a clique we mean a (not necessarily maximal) complete subgraph of G.

If H is a graph, then we say that a graph G is H-free if G contains no copy of H as

an induced subgraph. Speci�cally, the four-vertex star K

1;3

will be also called the claw

and in this case we say that G is claw-free. Whenever vertices of a claw are listed, its

center (i.e., the only vertex of degree 3) will be always the �rst vertex of the list. It is

well known (and can be easily checked) that every line graph is claw-free.
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For a vertex x 2 V (G), the set N

G

(x) = fy 2 V (G) : xy 2 E(G)g is called the

neighborhood of x in G. We say that x is a locally connected vertex if hN

G

(x)i is a

connected graph. The set of all locally connected vertices of G will be denoted byM

loc

(G).

If M

loc

(G) = V (G), then we say that G is locally connected.

Oberly and Sumner [7] proved that every connected, locally connected claw-free graph

on at least three vertices is hamiltonian. This result was later on strengthened in many

directions; from one of these results (see [4]) it e.g. follows that a claw-free graph G is

hamiltonian if M

loc

(G) is a dominating set (i.e., every vertex in V (G) nM

loc

(G) has a

neighbor in M

loc

(G)) and hM

loc

(G)i is connected.

A graph G is said to be t-tough (where t � 0 is a real number) if jSj � t �!(G�S) for

every set S � V (G) with !(G� S) > 1. The toughness � (G) of G is the maximum value

of t for which G is t-tough (� (K

n

) =1 for every n � 1). In [2], Chv�atal conjectured the

existence of an integer t

0

such that every t

0

-tough graph is hamiltonian. Since it is known

[3] that for every " > 0 there is a (2 � ")-tough graph on at least 3 vertices containing

no 2-factor, the smallest such value of t

0

can be 2. The following conjecture is usually

attributed to Chv�atal.

Conjecture A. Every 2-tough graph on at least three vertices is hamiltonian.

It is easy to observe that, for any graph G, � (G) � �(G)=2. Matthews and Sumner

[6] proved that if G is claw-free, then � (G) = �(G)=2. Conjecture A, if true, therefore

implies the following conjecture (by Matthews and Sumner).

Conjecture B [6]. Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free, the following conjecture by Thomassen [9] is a

special case of Conjecture B.

Conjecture C [9]. Every 4-connected line graph is hamiltonian.

The following conjecture is a special case of Conjecture C.

Conjecture D. Every 4-connected line graph of a triangle-free graph is hamiltonian.

Zhan [10] and independently Jackson [5] proved the analogue of Conjectures C and D

in the case of 7-connected line graphs.

Theorem E [10], [5]. Every 7-connected line graph is hamiltonian.

In the main result of this paper we show that for every claw-free graph G there is

a graph cl(G) such that G is a spanning subgraph of cl(G), cl(G) is a line graph of a

triangle-free graph and c(G) = c(cl(G)). In Section 3 we prove the following corollary of

this result.
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Theorem.

(i) Conjectures B, C and D are equivalent.

(ii) Every 7-connected claw-free graph is hamiltonian.

2 Main result

We begin with the following simple lemma.

Lemma 1. Let G be a graph such that, for every x 2 V (G), hN(x)i is either a clique or a

disjoint union of two cliques. Then there is a triangle-free graph H such that G = L(H).

Proof. Suppose G satis�es the assumptions of the lemma. We can suppose without

loss of generality that G is connected (otherwise we apply the proof to every component

of G) and E(G) 6= ; (otherwise apparently G = L(K

2

)). Let K = fK

1

; : : : ;K

`

g be the

collection of maximal cliques inG. By the assumptions of the lemma, jV (K

i

)\V (K

j

)j � 1

for every i 6= j, and jfK

i

: x 2 V (K

i

)gj � 2 for every x 2 V (G). Let X = fx

1

; : : : ; x

k

g

be the set of vertices of G which lie in exactly one clique of K and let H be the graph

with vertex set V (H) = X [ K and with edge set E(H) = fK

i

K

j

: jV (K

i

) \ V (K

j

)j =

1; i 6= jg [ fx

m

K

j

: x

m

2 V (K

j

)g. It is straightforward to check that G = L(H).

Suppose that H contains a triangle T . Then, by the de�nition of H, V (T ) � K

(since vertices from X have degree 1 in H). Let V (T ) = fK

i

1

;K

i

2

;K

i

3

g and let v 2

V (K

i

1

)[ V (K

i

2

). Then v is locally connected (in G) and thus, by the assumptions of the

lemma, hN

G

(v)i is a clique. This implies K

i

1

= K

i

2

, a contradiction.

The following proposition shows that replacing the neighborhood of a locally con-

nected vertex of a claw-free graph G by a clique a�ects neither the claw-freeness nor the

circumference of G.

Proposition 2. Let G be a claw-free graph and let x be a locally connected vertex of

G such that hN

G

(x)i is not complete. Let N

0

= fuv : u; v 2 N

G

(x); uv =2 E(G)g and let

G

0

be the graph with vertex set V (G

0

) = V (G) and with edge set E(G

0

) = E(G) [ N

0

.

Then

(i) the graph G

0

is claw-free,

(ii) c(G

0

) = c(G).

Proof. (i) Suppose G

0

is not claw-free and let H be a claw in G

0

. Since G is claw-free,

jE(H)\N

0

j � 1; since hN

G

0

(x)i is a clique, jE(H)\N

0

j � 1. Denote H = hfz; y

1

; y

2

; y

3

gi,

where zy

1

2 N

0

. Then xy

2

=2 E(G) (since otherwise y

2

2 N

G

(x) and, by the construction

of G

0

, y

1

y

2

2 E(G

0

)), and similarly xy

3

=2 E(G). But then hfz; x; y

2

; y

3

gi is a claw in G,

which is a contradiction. Hence G

0

is claw-free.

(ii) We show that c(G) = c(G

0

). Since obviously c(G) � c(G

0

), it is su�cient to

prove that for every longest cycle C

0

in G

0

there is a cycle C in G such that V (C

0

) =
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V (C). Let, on the contrary, C

0

be a longest cycle in G

0

such that there is no cycle C

in G with V (C

0

) = V (C). Then E(C

0

) \ N

0

6= ; (since otherwise C

0

is a cycle in G)

and N

G

(x) [ fxg � V (C

0

) (since hN

G

0

(x)i is complete and C

0

is a longest cycle in G

0

).

Denote by P

1

; : : : ; P

k

the components of the graph (V (C

0

) n fxg; E(C

0

� x) nN

0

) and put

P(C

0

) = fP

1

; : : : ; P

k

g. Then each P

i

is a (trivial or nontrivial) path in G with endvertices

in N

G

(x). Suppose that the cycle C

0

is chosen such that, among all cycles in G

0

with

vertex set V (C

0

), k = jP(C

0

)j is minimum.

Choose one of the orientations of C

0

and, for any v 2 V (C

0

), denote by v

�

and v

+

the predecessor and successor of v on C

0

, respectively. For any v

1

; v

2

2 V (C

0

), denote by

v

1

C

0

v

2

or v

1

 

C

0

v

2

the consecutive vertices on C

0

from v

1

to v

2

in the same or opposite

orientation with respect to the orientation of C

0

(if v

1

= v

2

, then we de�ne both v

1

C

0

v

2

and v

1

 

C

0

v

2

as a single vertex). Denote by y

1

i

, y

2

i

the endvertices of P

i

, i = 1; : : : ; k (not

excluding the possible case y

1

i

= y

2

i

) and let the numbering of the paths P

i

and of their

endvertices be chosen such that y

1

1

= x

+

, y

2

k

= x

�

and y

1

i+1

= (y

2

i

)

+

; i = 1; : : : ; k � 1.

We show that y

r

i

y

s

j

=2 E(G) for every r; s 2 f1; 2g and i; j 2 f1; : : : ; kg; i 6= j. Indeed,

if e.g. y

2

1

y

1

2

2 E(G), then, replacing in P(C

0

) the paths P

1

; P

2

by the path y

1

1

P

1

y

2

1

y

1

2

P

2

y

2

2

,

we have a contradiction with the minimality of k. Other cases are similar.

Now, if k � 3, then hfx; y

1

1

; y

1

2

; y

1

3

gi is a claw in G and if k = 1, then C = xy

1

1

P

1

y

2

1

x is

a cycle in G with V (C) = V (C

0

). Hence k = 2 and P(C

0

) = fP

1

; P

2

g.

If y

1

1

6= y

2

1

and y

1

1

y

2

1

=2 E(G), then hfx; y

1

1

; y

2

1

; y

1

2

gi is a claw in G. Hence either y

1

1

= y

2

1

or y

1

1

y

2

1

2 E(G) and, by symmetry, y

1

2

= y

2

2

or y

1

2

y

2

2

2 E(G).

Since hN

G

(x)i is connected, there is a path Q(C

0

) in hN

G

(x)i joining one of y

1

1

; y

2

1

to

one of y

1

2

; y

2

2

. Suppose that C

0

is chosen such that, among all cycles in G

0

with vertex

set V (C

0

) and with k = jP(C

0

)j = 2, Q(C

0

) is shortest possible and assume without

loss of generality that Q(C

0

) is a y

2

1

; y

1

2

-path (otherwise we can modify the cycle C

0

in

hN

G

0

(x)i in an obvious way). Let y

2

1

= x

0

; x

1

; : : : ; x

`

= y

1

2

be the vertices of Q(C

0

). Since

y

2

1

y

1

2

=2 E(G), ` � 2. Note that, since hN

G

(x)i � V (C

0

), V (Q(C

0

)) � V (C

0

).

We now consider hfx

1

; x

�

1

; x

+

1

; xgi. Suppose �rst that x

�

1

x 2 E(G) or x

+

1

x 2 E(G).

If x

1

2 V (P

2

), then jV (P

2

)j � 3 (since we already know that x

1

=2 fy

1

2

; y

2

2

g) and the

cycle C = xy

1

1

C

0

y

2

1

x

1

C

0

y

2

2

y

1

2

C

0

x

�

1

x (if x

�

1

x 2 E(G)) or C = xy

1

1

C

0

y

2

1

x

1

 

C

0

y

1

2

y

2

2

 

C

0

x

+

1

x

(if x

+

1

x 2 E(G)) is a cycle in G with V (C) = V (C

0

), which is a contradiction. Hence

x

1

2 V (P

1

), but then similarly jV (P

1

)j � 3 and the cycle C

00

= xx

�

1

 

C

0

y

1

1

y

2

1

 

C

0

x

1

y

1

2

C

0

y

2

2

x

(if x

�

1

x 2 E(G)) or C

00

= xx

+

1

C

0

y

2

1

y

1

1

C

0

x

1

y

1

2

C

0

y

2

2

x (if x

+

1

x 2 E(G)) is a cycle in G

0

with V (C

00

) = V (C

0

), jP(C

00

)j = 2 and such that jV (Q(C

00

))j = jV (Q(C

0

))j � 1, which

contradicts the minimality of Q(C

0

). Hence x

�

1

x =2 E(G) and x

+

1

x =2 E(G). Finally,

if x

�

1

x

+

1

2 E(G), then similarly the path P

i

containing x

1

has at least 3 vertices and

C

00

= xy

1

1

C

0

x

�

1

x

+

1

C

0

y

2

1

x

1

y

1

2

C

0

y

2

2

x (if x

1

2 V (P

1

)) or C

00

= xy

1

1

C

0

y

2

1

x

1

y

1

2

C

0

x

�

1

x

+

1

C

0

y

2

2

x (if

x

1

2 V (P

2

)) is again a cycle in G

0

with V (C

00

) = V (C

0

), jP(C

00

)j = 2 and such that

jV (Q(C

00

))j = jV (Q(C

0

))j � 1. Hence hfx

1

; x

�

1

; x

+

1

; xgi is a claw. This contradiction

proves Proposition 2.
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We can now proceed to the de�nition of the main concept of this paper.

Let G be a claw-free graph. We say that a graph H is a closure of G, denoted

H = cl(G), if

(i) there is a sequence of graphs G

1

; : : : ; G

t

such that G

1

= G, G

t

= H, V (G

i+1

) =

V (G

i

) and E(G

i+1

) = E(G

i

) [ fuv : u; v 2 N

G

i

(x

i

); uv =2 E(G

i

)g for some

x

i

2 V (G

i

) with connected noncomplete hN

G

i

(x

i

)i, i = 1; : : : ; t� 1,

(ii) no vertex of H has a connected noncomplete neighborhood.

(Equivalently, cl(G) is obtained from G by recursively repeating the construction de-

scribed in Proposition 2, as long as this is possible).

Theorem 3. Let G be a claw-free graph. Then

(i) the closure cl(G) is well-de�ned,

(ii) there is a triangle-free graph H such that cl(G) = L(H),

(iii) c(G) = c(cl(G)).

Proof. (i) Let H

1

;H

2

be two closures of G, suppose that E(H

1

) n E(H

2

) 6= ; and let

G

1

; : : : ; G

t

be the sequence of graphs that yieldsH

1

. Let j be the smallest integer for which

E(G

j

) nE(H

2

) 6= ; and let e = uv 2 E(G

j

) nE(H

2

). Then, since e 2 E(G

j

), the vertices

u; v have a common neighbor x in G

j�1

such that hN

G

j�1

(x)i is connected. But then,

since E(hN

G

j�1

(x)i) � E(G

j�1

) � E(H

2

), hN

H

2

(x)i is connected, hence e = uv 2 E(H

2

)

{ a contradiction.

(ii) By part (i) of Proposition 2, cl(G) is claw-free and hence, by the construction,

the neighborhood of every vertex of cl(G) is either a clique or is a disjoint union of two

cliques. By Lemma 1, cl(G) is a line graph of a triangle-free graph.

(iii) c(G) = c(cl(G)) immediately by part (ii) of Proposition 2.

3 Corollaries

Corollary 4. Let G be a claw-free graph. Then G is hamiltonian if and only if cl(G) is

hamiltonian.

The following corollary shows that Conjectures B, C and D are equivalent.

Corollary 5. The following statements are equivalent.

(i) Every 4-connected claw-free graph is hamiltonian.

(ii) Every 4-connected line graph is hamiltonian.

(iii) Every 4-connected line graph of a triangle-free graph is hamiltonian.
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Proof. Obviously (i) ) (ii) ) (iii). If G is a counterexample to (i), then, by Theorem 3

and by Corollary 4, cl(G) is a counterexample to (iii) and hence also (iii) ) (i).

Corollary 6. Every 7-connected claw-free graph is hamiltonian.

Proof. If G is a 7-connected nonhamiltonian claw-free graph, then cl(G) is a 7-connected

nonhamiltonian line graph, which contradicts Theorem E.

Corollary 7. Let G be a claw-free graph on at least three vertices.

(i) If cl(G) is a complete graph, then G is hamiltonian.

(ii) [4] If M

loc

(G) is dominating and hM

loc

(G)i is connected, then G is hamiltonian.

(iii) [7] If G is connected and locally connected, then G is hamiltonian.

Proof. The statement (i) follows immediately from Corollary 4; if G satis�es the assump-

tions of (ii) or of (iii), then cl(G) is complete and G is hamiltonian by (i).

Example. The graph in Figure 1 is an example of a claw-free graph with a complete

closure which satis�es the assumptions of neither part (ii) nor part (iii) of Corollary 7.
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Figure 1: A claw-free graph with a complete closure

Remarks. 1. It is easy to see that cl(G) can be equivalently characterized as the

minimum (K

4

� e)-free graph on V (G) containing G.

2. If a claw-free graph G is k-connected, or satis�es some of the degree conditions (ex-

pressed as a lower bound on �(G) or on �

i

(G) = minf

P

x2S

d(x) : S � V (G) independent;

jSj = ig in terms of a function of n = jV (G)j), or is N

2

-locally connected (see [8]) etc.,

then apparently so does the closure cl(G). Proofs of many known su�cient conditions for

hamiltonicity in claw-free graphs can be therefore simpli�ed by considering cl(G).

3. It would be of interest to observe the behavior of some graph parameters (such as e.g.

the independence number) during the process of constructing cl(G). Such observations

could possibly yield extensions of some line graph algorithms to the class of claw-free

graphs.
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