2-Factors and Hamiltonicity

Zdeněk Ryjáček
Department of Mathematics University of West Bohemia
P. O. Box 314
30614 Plzeň
Czech Republic

Ingo Schiermeyer
Lehrstuhl für Diskrete Mathematik
und Grundlagen der Informatik
TU Cottbus
D-03013 Cottbus
Germany

February 24, 1997

Abstract

We prove the following generalization of a result of Faudree and van den Heuvel. Let G be a 2 -connected graph with a 2 -factor. If $d(u)+d(v) \geq n-2$ for all pairs of non-adjacent vertices u, v contained in an induced $K_{1,3}$, in an induced $K_{1,3}+e$ or as end-vertices in an induced P_{4}, then G is hamiltonian.

Keywords: 2-factor, Hamilton cycle, induced subgraph, degree condition.

1 Terminology and notation

We use [2] for terminology and notation not defined here and consider finite simple graphs only.

Let G be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton cycle, i.e. a cycle containing all vertices of G. If X is a graph, we say that G is X-free if G does not contain an induced subgraph isomorphic to X. In this paper we use $K_{1,3}$, $Z_{1} \simeq K_{1,3}+e$ and P_{4} to denote the graphs of Figure 1. According to the labeling of the vertices we will write $\langle a, b, c, d\rangle \simeq K_{1,3},\langle a, b, c, d\rangle \simeq Z_{1}$ and $\langle a, b, c, d\rangle \simeq P_{4}$, respectively.

We will use $\omega(G)$ to denote the number of components of G. A graph G is said to be t-tough (cf. [3]) if $t \cdot \omega(G-S) \leq|S|$ for every subset S of $V(G)$ with $\omega(G-S)>1$. If $v \in V(G)$, then $N(v)$ denotes the set of vertices adjacent to v (the neighborhood of v) and $d(v)=|N(v)|$ denotes the degree of v. If we restrict $N(v)$ and $d(v)$ to a subgraph

Figure 1.
$F \subset G$, then we will use $N_{F}(v)$ and $d_{F}(v)$, respectively. We say that a subgraph $H \subset G$ is a 2 -factor of G if H is a spanning subgraph of G and $d_{H}(v)=2$ for every $v \in V(G)$.

Let C be a cycle of G. If an orientation of C is fixed and $u, v \in V(C)$, then by $u \vec{C} v$ we denote the consecutive vertices on C from u to v in the orientation specified by the orientation of C. The same vertices, in reverse order, are given by $v \overleftarrow{C} u$. If $C \subset G$ is a cycle with a fixed orientation and $v \in V(C)$, then v^{+}and v^{-}denotes the successor and predecessor of v on C, respectively.

2 Main result

Our research was motivated by the following famous conjecture by Chvátal.
Conjecture [3]. Every 2-tough graph is hamiltonian.
For the class of 2-tough graphs Enomoto, Jackson, Katerinis and Saito proved the following result.

Theorem 1 [5]. Every 2-tough graph has a 2-factor.
Obviously, having a 2-factor is a necessary condition for a graph to be hamiltonian. Moreover, it can be decided in polynomial time whether a given graph G has a 2-factor (see [1]).

The first result for hamiltonicity of graphs having a 2 -factor is due to Hoede.
Theorem 2 [7]. Let G be a connected graph with a 2 -factor and let G_{1}, \ldots, G_{11} be the graphs shown in Fig. 2. If G is G_{1}, \ldots, G_{11}-free, then G is hamiltonian.

We now turn our attention to degree conditions. The following result by Faudree and van den Heuvel shows that Ore's [8] and Dirac's [4] degree conditions for hamiltonicity can be relaxed under the additional assumption that G has a 2 -factor.

Theorem 3 [6]. Let G be a 2-connected graph with a 2-factor. If $d(u)+d(v) \geq n-2$ for all pairs of non-adjacent vertices $u, v \in V(G)$, then G is hamiltonian.

Motivated by Theorem 2, we got the impression that it might be sufficient to require the condition $d(u)+d(v) \geq n-2$ for all pairs of non-adjacent vertices u, v which are

Figure 2.
contained in an induced P_{4} or Z_{1} (cf. G_{1} and G_{2} in Fig. 2). However, examples can be given showing that this is not the case even with the requirement $d(u)+d(v) \geq n-1$. A class of such graphs can be obtained by joining two additional vertices u, v to two prescribed vertices of an arbitrary clique on at least 5 vertices (notice that u and v are contained in an induced $K_{1,3}$ and have $\left.d(u)+d(v)=4 \leq n-3\right)$. Thus, the degree condition required for the induced claw is necessary.

Next consider the class of graphs $G_{p, q, r}$ which consist of three complete graphs K_{p}, K_{q}, K_{r} for $p \geq q \geq r \geq 3$ and the additional edges $u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}$ for $i=1,2$ and vertices $u_{1}, u_{2} \in V\left(K_{p}\right), v_{1}, v_{2} \in V\left(K_{q}\right)$ and $w_{1}, w_{2} \in V\left(K_{r}\right)$. These graphs are 2-connected, claw-free with a 2-factor, but the degree condition is not satisfied for all induced P_{4} and induced Z_{1}.

Finally, the complete bipartite graph $K_{p, q}$ with $p=\left\lfloor\frac{n-1}{2}\right\rfloor$ and $q=\left\lceil\frac{n+1}{2}\right\rceil$ for $n \geq 5$ is 2-connected, satisfies $d(u)+d(v) \geq n-2$ for every pair of nonadjacent vertices u, v, but it has no 2 -factor.

These examples show that all the assumptions of the following theorem are, in some sense, best possible.

Theorem 4. Let G be a 2-connected graph with a 2-factor. If $d(u)+d(v) \geq n-2$ for all pairs of non-adjacent vertices u, v contained in a $K_{1,3}$, in a Z_{1} or as endvertices in a P_{4}, then G is hamiltonian.

Example. Let $i_{0}, i_{1}, i_{2}, i_{3}, i_{4}$ be integers such that $i_{0}, i_{4} \geq 1, i_{2} \geq 2, i_{1} \geq i_{2}+i_{4}-$ $1, i_{3} \geq i_{0}+i_{2}-1$. Let G be the graph obtained by taking vertex-disjoint graphs $H_{0}, H_{1}, H_{2}, H_{3}, H_{4}$, where $H_{j} \simeq K_{i_{j}}$ for $j=0,1,3,4$ and $H_{2} \simeq \overline{K_{i_{2}}}$, and by adding all edges $x y$ for $x \in V\left(H_{i}\right), y \in V\left(H_{i+1}\right), i=0,1,2,3$. Then the graph G satisfies the assumptions of Theorem 4, but not of Theorem 3. Note that G has diameter $\operatorname{diam}(G)=4$ while the assumptions of Theorem 3 imply $\operatorname{diam}(G) \leq 3$.

3 Proofs

We first prove some lemmas which will be useful for the proof of Theorem 4.
Lemma 1. Let C_{p}, C_{q} and C be three vertex-disjoint cycles with $V\left(C_{p}\right)=\left\{u_{1}, \ldots, u_{p}\right\}$ and $V\left(C_{q}\right)=\left\{v_{1}, \ldots, v_{q}\right\}$. If $u_{p} v_{q} \in E(G)$ and $d_{C}\left(u_{1}\right)+d_{C}\left(v_{1}\right) \geq|V(C)|+1$, then there is a cycle C^{\prime} such that $V\left(C^{\prime}\right)=V\left(C_{p}\right) \cup V\left(C_{q}\right) \cup V(C)$.
Proof. Since $d_{C}\left(u_{1}\right)+d_{C}\left(v_{1}\right) \geq|V(C)|+1$, there exists a pair of consecutive vertices $w_{1}, w_{2} \in V(C)$ such that $u_{1} w_{1}, v_{1} w_{2} \in E(G)$ or $u_{1} w_{2}, v_{1} w_{1} \in E(G)$ and we can easily construct the desired cycle C^{\prime}.

Lemma 2. Let C_{p} and C_{q} be vertex-disjoint cycles with vertices labeled u_{1}, \ldots, u_{p} and v_{1}, \ldots, v_{q}. Suppose $u_{p} v_{q} \in E(G) ; u_{p} v_{1}, u_{1} v_{q}, u_{1} v_{1} \notin E(G)$. If $d_{C_{p} \cup C_{q}}\left(u_{1}\right)+d_{C_{p} \cup G_{q}}\left(v_{1}\right) \geq$ $p+q-1$, then there is a cycle C such that $V(C)=V\left(C_{p}\right) \cup V\left(C_{q}\right)$.
Proof. Suppose there is no such cycle. Then $v_{1} u_{p-1}, v_{q-1} u_{1} \notin E(G)$. Let

$$
S=\left\{i \mid v_{1} u_{i} \in E(G), 2 \leq i \leq p-2\right\}, T=\left\{i \mid u_{1} u_{i+1} \in E(G), 1 \leq i \leq p-2\right\} .
$$

If there is some $i \in T \cap S$, then $C=v_{1} u_{i} \overleftarrow{C_{p}} u_{1} u_{i+1} \vec{C}_{p} u_{p} v_{q} \overleftarrow{C}_{q} v_{1}$ would be the desired cycle. Hence we can assume that $S \cap T=\emptyset$. Now $d_{C_{p}}\left(v_{1}\right)=|S|$ and $d_{C_{p}}\left(u_{1}\right)=|T|+1$, from which $d_{C_{p}}\left(u_{1}\right)+d_{C_{p}}\left(v_{1}\right)=|S|+|T|+1=|S \cup T|+1 \leq p-1$. By the same argument we obtain $d_{C_{q}}\left(u_{1}\right)+d_{C_{q}}\left(v_{1}\right) \leq q-1$ and thus $d_{C_{p} \cup C_{q}}\left(u_{1}\right)+d_{C_{p} \cup C_{q}}\left(v_{1}\right) \leq p+q-2$, a contradiction.

Let C^{1}, C^{2} be two vertex-disjoint cycles. We say that a vertex $v \in V\left(C^{1}\right)$ is C^{2} universal, if v is adjacent to all vertices of C^{2}.

Assume now that there are two vertex-disjoint cycles C^{1}, C^{2} and a C^{2}-universal vertex $v \in V\left(C^{1}\right)$. If v^{-}or v^{+}has a neighbor on C^{2}, then we can again easily construct a cycle C such that $V(C)=V\left(C^{1}\right) \cup V\left(C^{2}\right)$.

Lemma 3. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \geq 2$ cycles $C^{1}, C^{2}, \ldots, C^{k}$, where k is minimal. Then for every pair of cycles $C^{i}, C^{j}, 1 \leq i<j \leq k$, and every C^{j}-universal vertex $v \in V\left(C^{i}\right)$, neither v^{-}nor v^{+}has a neighbor on C^{j}.

Corollary 4. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \geq 2$ cycles $C^{1}, C^{2}, \ldots, C^{k}$, where k is minimal. Then for every pair of cycles $C^{i}, C^{j}, 1 \leq i<j \leq k$, all C^{j}-universal vertices of $V\left(C^{i}\right)$ are pairwise non-consecutive.

Corollary 5. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \geq 2$ cycles $C^{1}, C^{2}, \ldots, C^{k}$, where k is minimal. Then there is no pair of cycles $C^{i}, C^{j}, 1 \leq$ $i<j \leq k$, such that there is both a C^{j}-universal vertex $v_{i} \in V\left(C^{i}\right)$ and a C^{i}-universal vertex $v_{j} \in V\left(C^{j}\right)$.

We will also use the following simple lemma.
Lemma 6. Let C be a cycle in a graph G and let $x, y \in V(C)$ be such that there is no x, y-path P with $V(P)=V(C)$. Then $x^{+} y^{+} \notin E(G)$ and $d_{C}\left(x^{+}\right)+d_{C}\left(y^{+}\right) \leq|V(C)|$.

Proof. If $x^{+} y^{+} \in E(G)$, then $P=x \stackrel{\overleftarrow{C}}{y^{+} x^{+}} \vec{C} y$ is a x, y-path with $V(P)=V(C)$. Hence $x^{+} y^{+} \notin E(G)$. Put $M=\left\{z \in V(C) \mid z x^{+} \in E(G)\right\}$ and $N=\left\{z \in x^{++} \vec{C} y^{+} \mid z^{-} y^{+} \in\right.$ $E(G)\} \cup\left\{z \in y^{++} \vec{C} x \mid z^{+} y^{+} \in E(G)\right\}$. Then $|M|=d_{C}\left(x^{+}\right),|N|=d_{C}\left(y^{+}\right)-1$ and $x^{+} \notin M \cup N$. Thus, if $d_{C}\left(x^{+}\right)+d_{C}\left(y^{+}\right) \geq|V(C)|+1$, there is a vertex $z \in M \cap N$, but then the path $x \overleftarrow{C} y^{+} z^{-} \overleftarrow{C} x^{+} z \vec{C} y$ (if $z \in x^{+} \vec{C} y^{+}$) or $x \overleftarrow{C} z^{+} y^{+} \vec{C} z x^{+} \vec{C} y$ (if $\left.z \in y^{+} \vec{C} x^{+}\right)$yields a contradiction. Hence $d_{C}\left(x^{+}\right)+d_{C}\left(y^{+}\right) \leq|V(C)|$.

Proof of Theorem 4. Assume G is not hamiltonian and choose a 2-factor of G with $k \geq 2$ cycles $C^{1}, C^{2}, \ldots, C^{k}$ such that k is minimal. We distinguish the following cases.

Case 1. There are two cycles $C^{t_{1}}, C^{t_{2}}, 1 \leq t_{1}<t_{2} \leq k$, which are connected by two vertex-disjoint edges.

Subcase A. There is an edge $x y$ such that $x \in V\left(C^{t_{1}}\right), y \in V\left(C^{t_{2}}\right)$ and neither x is $C^{t_{2}}$-universal nor y is $C^{t_{1}}$-universal.

Subcase B. Every vertex $x \in V\left(C^{t_{1}}\right)$ with $N(x) \cap V\left(C^{t_{2}}\right) \neq \emptyset$ is $C^{t_{2}}$-universal.
Case 2. No pair of cycles $C^{i}, C^{j}, 1 \leq i<j \leq k$, is connected by two vertex-disjoint edges.

By Corollary 5, no other possibilities can occur.
Throughout the proof, we denote $n_{i}=\left|V\left(C^{i}\right)\right|, 1 \leq i \leq k$. For convenience we set $p=n_{1}$ and $q=n_{2}$.

Case 1. We can without loss of generality suppose that $C^{t_{1}}=C^{1} \simeq C_{p}$ with vertices labeled $u_{1}, \ldots, u_{p}, C^{t_{2}}=C^{2} \simeq C_{q}$ with vertices labeled $v_{1}, \ldots, v_{q}, u_{p} v_{q} \in E(G)$ and $u_{i} v_{j} \in E(G)$ for some i, j with $1 \leq i \leq p-1,1 \leq j \leq q-1$.

Subcase A. Suppose (without loss of generality) that $u_{p} v_{1}, u_{1} v_{q}, u_{1} v_{1} \notin E(G)$. Thus $\left\langle u_{1}, u_{p}, v_{q}, v_{1}\right\rangle \simeq P_{4}$, from which $d\left(u_{1}\right)+d\left(v_{1}\right) \geq n-2$. Since k is minimal, by Lemma 1 and Lemma 2 we have $d_{C^{1}}\left(u_{1}\right)+d_{C^{1}}\left(v_{1}\right)=p-1, d_{C^{2}}\left(u_{1}\right)+d_{C^{2}}\left(v_{1}\right)=q-1$. If $u_{1} u_{i+1}, v_{1} v_{j+1} \in$
$E(G)$, then the cycle $u_{1} u_{i+1} \vec{C}^{1} u_{p} v_{q} \overleftarrow{C}^{2} v_{j+1} v_{1} \vec{C}^{2} v_{j} u_{i} \overleftarrow{C}^{1} u_{1}$ contradicts the minimality of k. Hence we can without loss of generality assume that $u_{1} u_{i+1} \notin E(G)$. Since equality holds in Lemma 2, this implies $v_{1} u_{i} \in E(G)$ and thus $2 \leq i \leq p-2$. Moreover, since $v_{1} u_{p-1} \notin E(G)$, there exists $r>i$ such that $u_{r-1} v_{1}, u_{r+1} u_{1} \in E(G)$ and $u_{1} u_{r}, v_{1} u_{r} \notin E(G)$. Since there is no cycle C such that $V(C)=V\left(C^{1}\right) \cup V\left(C^{2}\right)$, we have $u_{r} v_{2}, u_{r} v_{q} \notin E(G)$. By symmetry and since $u_{r} v_{1} \notin E(G)$, we conclude $u_{r} v_{q-1} \notin E(G)$. Now $C=v_{1} u_{r-1} \overleftarrow{C^{1}}$ $u_{1} u_{r+1} \vec{C}^{1} u_{p} v_{q} \stackrel{\leftarrow}{C}^{\leftarrow} v_{1}$ is a cycle such that $V(C)=V\left(C^{1}\right) \cup V\left(C^{2}\right) \backslash\left\{u_{r}\right\}$. If $u_{r} u_{i}, u_{r} u_{i+1} \in$ $E(G)$ for some i with $2 \leq i \leq r-2$ or $r+1 \leq i \leq p-1$, then u_{r} can be inserted into the cycle C by replacing the edge $u_{i} u_{i+1}$ by the path $u_{i} u_{r} u_{i+1}$. Hence we conclude that $u_{r} u_{r-2}, u_{r} u_{r+2} \notin E(G)$ and $d_{C^{1}}\left(u_{r}\right) \leq p / 2$. Likewise u_{r} can be inserted if $u_{r} v_{i}, u_{r} v_{i+1} \in$ $E(G)$ for some i with $2 \leq i \leq q-3$. Hence $d_{C^{2}}\left(u_{r}\right) \leq(q-4+1) / 2=(q-3) / 2$. For any other cycle $C^{j}, 3 \leq j \leq k$, if $u_{r} w_{1}, u_{r} w_{2} \in E(G)$ for two consecutive vertices w_{1}, w_{2} on C^{j}, then u_{r} can be inserted into C^{j}, contradicting the minimality of k. Hence $d_{C^{j}}\left(u_{r}\right) \leq n_{j} / 2$ and thus $d\left(u_{r}\right) \leq p / 2+(q-3) / 2+\sum_{j=3}^{k} n_{j} / 2=(n-3) / 2$. Now $\left\langle u_{r-1}, u_{r-2}, u_{r}, v_{1}\right\rangle$ and $\left\langle u_{r+1}, u_{r}, u_{r+2}, u_{1}\right\rangle$ are isomorphic to $K_{1,3}$ or Z_{1} implying $d\left(v_{1}\right) \geq(n-1) / 2$ and $d\left(u_{1}\right) \geq(n-1) / 2$. Altogether we obtain $n-1 \leq d\left(u_{1}\right)+d\left(v_{1}\right) \leq p+q-2+\sum_{j=3}^{k} n_{j}=n-2$, a contradiction.

Subcase B. Let $M=\left\{x \in V\left(C^{1}\right) \mid N_{C^{2}}(x) \neq \emptyset\right\}$. Then, by the assumptions of Case $1,|M| \geq 2, u_{p} \in M$ and (recall Corollary 5 and Corollary 4), no two vertices in M are consecutive on C^{1}. Suppose first that there are $x, y \in M, x \neq y$, such that both $x^{-} x^{+} \notin E(G)$ and $y^{-} y^{+} \notin E(G)$. Then, since (by Lemma 3) both $\left\langle x, x^{-}, x^{+}, v_{q}\right\rangle \simeq K_{1,3}$ and $\left\langle y, y^{-}, y^{+}, v_{q}\right\rangle \simeq K_{1,3}$, we have $d\left(x^{-}\right)+d\left(x^{+}\right)+d\left(y^{-}\right)+d\left(y^{+}\right) \geq 2(n-2) \geq 2(p+q-2+$ $n-p-q) \geq 2(p+1)+2(n-p-q)$. On the other hand, by the minimality of k, there is no hamiltonian x, y-path in $G\left[V\left(C^{1}\right)\right]$ and hence, by Lemma $6, d_{C^{1}}\left(x^{+}\right)+d_{C^{1}}\left(y^{+}\right)+d_{C^{1}}\left(x^{-}\right)+$ $d_{C^{1}}\left(y^{-}\right) \leq 2 p$. Together we obtain $2(p+1)+2(n-p-q) \leq d\left(x^{+}\right)+d\left(y^{+}\right)+d\left(x^{-}\right)+d\left(y^{-}\right) \leq$ $2 p+2(n-p-q)$, which is a contradiction.

Hence we can suppose that $x^{-} x^{+} \in E(G)$ for every $x \in M, x \neq u_{p}$. But then, for any $x \in M, x \neq u_{p}$, we have $u_{1} x \notin E(G)$ and $u_{1} x^{++} \notin E(G)$ (otherwise the cycles $u_{1} x v_{1} \vec{C}^{2}$ $v_{q} u_{p} \overleftarrow{C}^{\dot{1}} x^{+} x^{-} \overleftarrow{C}^{1} u_{1}$ and $u_{1} x^{++} \vec{C}^{1} u_{p} v_{q} \overleftarrow{C}^{\overleftarrow{ }} v_{1} x x^{+} x^{-} \overleftarrow{C}^{\overleftarrow{ }} u_{1}$ contradict the minimality of k). Now $x^{++} \notin M$, since $x^{++} \vec{C}^{1} x^{-} x^{+} x$ is a hamiltonian path in $G\left[V\left(C^{1}\right)\right]$. Since also (by Lemma 6) $u_{1} x^{+} \notin E(G)$ and, by Lemma $3, d_{C^{2}}\left(u_{1}\right)=0$, we have $d_{C^{1} \cup C^{2}}\left(u_{1}\right) \leq$ $p-1-3(|M|-1)$. Since every vertex in M is C^{2}-universal, we have $d_{C^{1} \cup C^{2}}\left(v_{q}\right) \leq q-1+|M|$. If there is a cycle $C^{i}, 3 \leq i \leq k$, such that u_{1} and v_{q} have consecutive neighbors on C^{i}, then we easily construct a cycle C^{\prime} with $V\left(C^{\prime}\right)=V\left(C^{1}\right) \cup V\left(C^{2}\right) \cup V\left(C^{i}\right)$, contradicting the minimality of k; hence $d_{C^{3} \cup \ldots \cup C^{k}}\left(u_{1}\right)+d_{C^{3} \cup \ldots \cup C^{k}}\left(v_{q}\right) \leq\left|V\left(C^{3}\right) \cup \ldots \cup V\left(C^{k}\right)\right|=n-p-q$. Since $\left\langle u_{p}, v_{q}, v_{1}, u_{1}\right\rangle \simeq Z_{1}$, we have $d\left(u_{1}\right)+d\left(v_{q}\right) \geq n-2$. Altogether we obtain $n-2 \leq$ $d\left(u_{1}\right)+d\left(v_{q}\right) \leq p-1-3(|M|-1)+q-1+|M|+n-p-q$, from which $|M| \leq 3 / 2$, a contradiction.

Case 2. Since G is 2-connected, there are m cycles, $3 \leq m \leq k$, say, $C^{1}, C^{2}, \ldots, C^{m}$, with vertices labeled $v_{1}^{i}, \ldots, v_{n_{i}}^{i}$, and pairs of vertices $v_{r_{i}}^{i}, v_{s_{i}}^{i} \in V\left(C^{i}\right)$ such that $v_{s_{i}}^{i} v_{r_{i+1}}^{i+1} \in$ $E(G)$ (modulo m). If $s_{i}=r_{i} \pm 1$ for all $1 \leq i \leq m$, then there is a cycle C such that
$V(C)=\cup_{i=1}^{m} V\left(C^{i}\right)$, e.g. $C=v_{s_{1}}^{1} v_{r_{2}}^{2} \vec{C}^{2} v_{s_{2}}^{2} v_{r_{3}}^{3} \ldots v_{s_{m}}^{m} v_{r_{1}}^{1} \vec{C}^{1} v_{s_{1}}^{1}$, if $s_{i}=r_{i}+1$ for $1 \leq i \leq m$, which contradicts the minimality of k.

Now suppose without loss of generality that $s_{1} \neq r_{1} \pm 1$. Thus $n_{1} \geq 4$. If $v_{r_{1}+1}^{1} v_{s_{1}+1}^{1} \in$ $E(G)$ or $d_{C^{1}}\left(v_{r_{1}+1}^{1}\right)+d_{C^{1}}\left(v_{s_{1}+1}^{1}\right) \geq n_{1}+1$, then, by Lemma 6 , there is a hamiltonian path in $G\left[V\left(C^{1}\right)\right]$ with endvertices $v_{r_{1}}^{1}, v_{s_{1}}^{1}$.

Suppose such a path does not exist. With a repeat of previous arguments we will show that $v_{s_{1}}^{1}, v_{r_{1}}^{1}$ are both universal vertices and that $n_{1}=4$. Suppose first that $v_{s_{1}}^{1}$ is not universal. Then there is a vertex $x \in V\left(C^{2}\right)$ such that $v_{s_{1}}^{1} x \in E(G)$, but $v_{s_{1}}^{1} x^{+} \notin E(G)$. As in Subcase A we obtain this time $d\left(v_{s_{1}+1}^{1}\right)+d\left(x^{+}\right) \leq\left(n_{1}-2\right)+\left(n_{2}-1\right)+\sum_{j=3}^{k} n_{j}<n-2$, a contradiction. The same argument holds for $v_{r_{1}}^{1}$. Thus both $v_{s_{1}}^{1}$ and $v_{r_{1}}^{1}$ are universal vertices. Suppose next that $n_{1} \geq 5$. By Lemma 6 we have $d_{C^{1}}\left(v_{s_{1}+1}^{1}\right)+d_{C^{1}}\left(v_{r_{1}+1}^{1}\right) \leq n_{1}$. Hence we may assume that $d_{C^{1}}\left(v_{s_{1}+1}^{1}\right) \leq n_{1} / 2$. But then $\left\langle v_{s_{1}}^{1}, x, x^{+}, v_{s_{1}+1}^{1}\right\rangle \simeq Z_{1}$ for any pair of consecutive vertices $x, x^{+} \in V\left(C^{2}\right)$ and $d_{C^{1} \cup C^{2}}\left(v_{s_{1}+1}^{1}\right)+d_{C^{1} \cup C^{2}}\left(x^{+}\right) \leq n_{1} / 2+\left(n_{2}-\right.$ $1+1)+\sum_{j=3}^{k} n_{j}<\left(n_{1}-2\right)+n_{2}+\sum_{j=3}^{k} n_{j} \leq n-2$, a contradiction. Hence $n_{1}=4$.

Let $\left\{s_{1}, r_{1}\right\}=\{2,4\}$. Then $d_{C^{1}}\left(v_{1}^{1}\right)=d_{C^{1}}\left(v_{3}^{1}\right)=2$ and both v_{2}^{1} and v_{4}^{1} are contained in an induced Z_{1}, say, $\left\langle v_{2}^{1}, v_{1}^{1}, v_{n_{m}}^{m}, v_{1}^{m}\right\rangle$ and $\left\langle v_{4}^{1}, v_{3}^{1}, v_{n_{2}}^{2}, v_{1}^{2}\right\rangle$. Since $N_{C^{m}}\left(v_{3}^{1}\right)=\emptyset, N_{C^{m}}\left(v_{1}^{1}\right)=$ $\emptyset, N_{C^{2}}\left(v_{3}^{1}\right)=\emptyset, N_{C^{2}}\left(v_{1}^{1}\right)=\emptyset$, we have $d_{C^{1} \cup C^{2} \cup C^{3}}\left(v_{1}^{1}\right)+d_{C^{1} \cup C^{2} \cup C^{3}}\left(v_{3}^{1}\right)=4$, where $n_{1}+n_{2}+$ $n_{3} \geq 4+3+3=10$. Since $d\left(v_{1}^{1}\right)+d\left(v_{3}^{1}\right) \geq n-2$, we have $k \geq 4$ and $\sum_{j=4}^{k} d_{C^{i}}\left(v_{1}^{1}\right)+d_{C^{i}}\left(v_{3}^{1}\right) \geq$ $\sum_{j=4}^{k} n_{j}+4$. Hence there exists a cycle C^{j} and two consecutive vertices w_{1}, w_{2} on C^{j} such that (without loss of generality) $v_{1}^{1} w_{1}, v_{3}^{1} w_{2} \in E(G)$. Then $C^{a}=v_{4}^{1} v_{1}^{2} \overrightarrow{C^{2}} v_{n_{2}}^{2} v_{4}^{1}$ and $C^{b}=v_{1}^{1} v_{2}^{1} v_{3}^{1} w_{2} \vec{C}^{j} w_{1} v_{1}^{1}$ are two cycles such that $V\left(C^{a}\right) \cup V\left(C^{b}\right)=V\left(C^{1}\right) \cup V\left(C^{2}\right) \cup V\left(C^{j}\right)$, which contradicts the minimality of k.

This shows that, for each cycle C^{i}, the vertices $v_{r_{i}}^{i}$ and $v_{s_{i}}^{i}$ are connected by a hamiltonian path in $G\left[V\left(C^{i}\right)\right], 1 \leq i \leq m$. But then there is a cycle C such that $V(C)=$ $\cup_{j=1}^{m} V\left(C^{j}\right)$, contradicting again the minimality of k. This contradiction completes the proof of Theorem 4.

References

[1] Anstee, R.P.: An algorithmic proof of Tutte's f-factor theorem. J. Algorithms 6 (1985), 112-131.
[2] Bondy, J.A.; Murty, U.S.R.: Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.
[3] Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5(1973), 215228.
[4] Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2 (1952) 69-81.
[5] Enomoto, H.; Jackson, B.; Katerinis, P.; Saito, A.: Toughness and the existence of k-factors. J. Graph Theory 9(1985), 87-95.
[6] Faudree, R.; van den Heuvel, J.: Degree sums, k-factors and Hamilton cycles in graphs. Graphs and Combinatorics 11(1995), 21-28.
[7] Hoede, C.: A comparison of some conditions for non-hamiltonicity of graphs. Ars Combinatoria (to appear).
[8] Ore, O.: Note on hamiltonian circuits. Amer. Math. Monthly 67 (1960), 55.

