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Abstract

We prove the following generalization of a result of Faudree and van den Heuvel.

Let G be a 2-connected graph with a 2-factor. If d(u)+d(v) � n�2 for all pairs

of non-adjacent vertices u; v contained in an induced K

1;3

, in an induced K

1;3

+ e

or as end-vertices in an induced P

4

, then G is hamiltonian.

Keywords: 2-factor, Hamilton cycle, induced subgraph, degree condition.

1 Terminology and notation

We use [2] for terminology and notation not de�ned here and consider �nite simple graphs

only.

Let G be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton

cycle, i.e. a cycle containing all vertices of G. If X is a graph, we say that G is X-free

if G does not contain an induced subgraph isomorphic to X. In this paper we use K

1;3

,

Z

1

' K

1;3

+ e and P

4

to denote the graphs of Figure 1. According to the labeling of the

vertices we will write ha; b; c; di ' K

1;3

, ha; b; c; di ' Z

1

and ha; b; c; di ' P

4

, respectively.

We will use !(G) to denote the number of components of G. A graph G is said to

be t-tough (cf. [3]) if t � !(G � S) � jSj for every subset S of V (G) with !(G � S) > 1.

If v 2 V (G), then N(v) denotes the set of vertices adjacent to v (the neighborhood of v)

and d(v) = jN(v)j denotes the degree of v. If we restrict N(v) and d(v) to a subgraph
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Figure 1.

F � G, then we will use N

F

(v) and d

F

(v), respectively. We say that a subgraph H � G

is a 2-factor of G if H is a spanning subgraph of G and d

H

(v) = 2 for every v 2 V (G).

Let C be a cycle of G. If an orientation of C is �xed and u; v 2 V (C), then by u

!

C

v

we denote the consecutive vertices on C from u to v in the orientation speci�ed by the

orientation of C. The same vertices, in reverse order, are given by v

 

C

u. If C � G is a

cycle with a �xed orientation and v 2 V (C), then v

+

and v

�

denotes the successor and

predecessor of v on C, respectively.

2 Main result

Our research was motivated by the following famous conjecture by Chv�atal.

Conjecture [3]. Every 2-tough graph is hamiltonian.

For the class of 2-tough graphs Enomoto, Jackson, Katerinis and Saito proved the

following result.

Theorem 1 [5]. Every 2-tough graph has a 2-factor.

Obviously, having a 2-factor is a necessary condition for a graph to be hamiltonian.

Moreover, it can be decided in polynomial time whether a given graph G has a 2-factor

(see [1]).

The �rst result for hamiltonicity of graphs having a 2-factor is due to Hoede.

Theorem 2 [7]. Let G be a connected graph with a 2-factor and let G

1

; : : : ; G

11

be the

graphs shown in Fig. 2. If G is G

1

; : : : ; G

11

-free, then G is hamiltonian.

We now turn our attention to degree conditions. The following result by Faudree and

van den Heuvel shows that Ore's [8] and Dirac's [4] degree conditions for hamiltonicity

can be relaxed under the additional assumption that G has a 2-factor.

Theorem 3 [6]. Let G be a 2-connected graph with a 2-factor. If d(u) + d(v) � n � 2

for all pairs of non-adjacent vertices u; v 2 V (G), then G is hamiltonian.

Motivated by Theorem 2, we got the impression that it might be su�cient to require

the condition d(u) + d(v) � n � 2 for all pairs of non-adjacent vertices u; v which are
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Figure 2.

contained in an induced P

4

or Z

1

(cf. G

1

and G

2

in Fig. 2). However, examples can be

given showing that this is not the case even with the requirement d(u) + d(v) � n � 1.

A class of such graphs can be obtained by joining two additional vertices u; v to two

prescribed vertices of an arbitrary clique on at least 5 vertices (notice that u and v are

contained in an induced K

1;3

and have d(u) + d(v) = 4 � n � 3). Thus, the degree

condition required for the induced claw is necessary.

Next consider the class of graphs G

p;q;r

which consist of three complete graphs K

p

; K

q

;

K

r

for p � q � r � 3 and the additional edges u

i

v

i

; u

i

w

i

; v

i

w

i

for i = 1; 2 and vertices

u

1

; u

2

2 V (K

p

); v

1

; v

2

2 V (K

q

) and w

1

; w

2

2 V (K

r

). These graphs are 2-connected,

claw-free with a 2-factor, but the degree condition is not satis�ed for all induced P

4

and

induced Z

1

.

Finally, the complete bipartite graph K

p;q

with p = b

n�1

2

c and q = d

n+1

2

e for n � 5 is

2-connected, satis�es d(u) + d(v) � n � 2 for every pair of nonadjacent vertices u; v, but

it has no 2-factor.

These examples show that all the assumptions of the following theorem are, in some

sense, best possible.

Theorem 4. Let G be a 2-connected graph with a 2-factor. If d(u) + d(v) � n � 2 for

all pairs of non-adjacent vertices u; v contained in a K

1;3

, in a Z

1

or as endvertices in a

P

4

, then G is hamiltonian.
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Example. Let i

0

; i

1

; i

2

; i

3

; i

4

be integers such that i

0

; i

4

� 1, i

2

� 2, i

1

� i

2

+ i

4

�

1, i

3

� i

0

+ i

2

� 1. Let G be the graph obtained by taking vertex-disjoint graphs

H

0

; H

1

; H

2

; H

3

; H

4

, where H

j

' K

i

j

for j = 0; 1; 3; 4 and H

2

' K

i

2

, and by adding

all edges xy for x 2 V (H

i

), y 2 V (H

i+1

), i = 0; 1; 2; 3. Then the graph G satis�es the

assumptions of Theorem 4, but not of Theorem 3. Note that G has diameter diam(G) = 4

while the assumptions of Theorem 3 imply diam(G) � 3.

3 Proofs

We �rst prove some lemmas which will be useful for the proof of Theorem 4.

Lemma 1. Let C

p

, C

q

and C be three vertex-disjoint cycles with V (C

p

) = fu

1

; : : : ; u

p

g

and V (C

q

) = fv

1

; : : : ; v

q

g. If u

p

v

q

2 E(G) and d

C

(u

1

) + d

C

(v

1

) � jV (C)j+ 1, then there

is a cycle C

0

such that V (C

0

) = V (C

p

) [ V (C

q

) [ V (C).

Proof. Since d

C

(u

1

) + d

C

(v

1

) � jV (C)j + 1, there exists a pair of consecutive vertices

w

1

; w

2

2 V (C) such that u

1

w

1

; v

1

w

2

2 E(G) or u

1

w

2

; v

1

w

1

2 E(G) and we can easily

construct the desired cycle C

0

.

Lemma 2. Let C

p

and C

q

be vertex-disjoint cycles with vertices labeled u

1

; : : : ; u

p

and

v

1

; : : : ; v

q

. Suppose u

p

v

q

2 E(G); u

p

v

1

; u

1

v

q

; u

1

v

1

=2 E(G). If d

C

p

[C

q

(u

1

) + d

C

p

[C

q

(v

1

) �

p+ q � 1, then there is a cycle C such that V (C) = V (C

p

) [ V (C

q

).

Proof. Suppose there is no such cycle. Then v

1

u

p�1

; v

q�1

u

1

=2 E(G). Let

S = fij v

1

u

i

2 E(G); 2 � i � p � 2g; T = fij u

1

u

i+1

2 E(G); 1 � i � p � 2g:

If there is some i 2 T \ S, then C = v

1

u

i

 

C

p

u

1

u

i+1

!

C

p

u

p

v

q

 

C

q

v

1

would be the desired

cycle. Hence we can assume that S \ T = ;. Now d

C

p

(v

1

) = jSj and d

C

p

(u

1

) = jT j+ 1,

from which d

C

p

(u

1

)+d

C

p

(v

1

) = jSj+ jT j+1 = jS[T j+1 � p�1: By the same argument

we obtain d

C

q

(u

1

) + d

C

q

(v

1

) � q � 1 and thus d

C

p

[C

q

(u

1

) + d

C

p

[C

q

(v

1

) � p + q � 2, a

contradiction.

Let C

1

, C

2

be two vertex-disjoint cycles. We say that a vertex v 2 V (C

1

) is C

2

-

universal, if v is adjacent to all vertices of C

2

.

Assume now that there are two vertex-disjoint cycles C

1

; C

2

and a C

2

-universal vertex

v 2 V (C

1

). If v

�

or v

+

has a neighbor on C

2

, then we can again easily construct a cycle

C such that V (C) = V (C

1

) [ V (C

2

).

Lemma 3. Let G be a non-hamiltonian graph with a 2-factor consisting of k � 2 cycles

C

1

; C

2

; : : : ; C

k

, where k is minimal. Then for every pair of cycles C

i

; C

j

; 1 � i < j � k,

and every C

j

-universal vertex v 2 V (C

i

), neither v

�

nor v

+

has a neighbor on C

j

.
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Corollary 4. Let G be a non-hamiltonian graph with a 2-factor consisting of k � 2 cycles

C

1

; C

2

; : : : ; C

k

, where k is minimal. Then for every pair of cycles C

i

; C

j

; 1 � i < j � k,

all C

j

-universal vertices of V (C

i

) are pairwise non-consecutive.

Corollary 5. Let G be a non-hamiltonian graph with a 2-factor consisting of k � 2

cycles C

1

; C

2

; : : : ; C

k

, where k is minimal. Then there is no pair of cycles C

i

; C

j

; 1 �

i < j � k, such that there is both a C

j

-universal vertex v

i

2 V (C

i

) and a C

i

-universal

vertex v

j

2 V (C

j

).

We will also use the following simple lemma.

Lemma 6. Let C be a cycle in a graph G and let x; y 2 V (C) be such that there is no

x; y-path P with V (P ) = V (C). Then x

+

y

+

=2 E(G) and d

C

(x

+

) + d

C

(y

+

) � jV (C)j.

Proof. If x

+

y

+

2 E(G), then P = x

 

C

y

+

x

+

!

C

y is a x; y-path with V (P ) = V (C). Hence

x

+

y

+

=2 E(G). Put M = fz 2 V (C)j zx

+

2 E(G)g and N = fz 2 x

++

!

C

y

+

j z

�

y

+

2

E(G)g [ fz 2 y

++

!

C

xj z

+

y

+

2 E(G)g. Then jM j = d

C

(x

+

), jN j = d

C

(y

+

) � 1 and

x

+

=2 M [ N . Thus, if d

C

(x

+

) + d

C

(y

+

) � jV (C)j + 1, there is a vertex z 2 M \ N ,

but then the path x

 

C

y

+

z

�

 

C

x

+

z

!

C

y (if z 2 x

+

!

C

y

+

) or x

 

C

z

+

y

+

!

C

zx

+

!

C

y (if

z 2 y

+

!

C

x

+

) yields a contradiction. Hence d

C

(x

+

) + d

C

(y

+

) � jV (C)j.

Proof of Theorem 4. Assume G is not hamiltonian and choose a 2-factor of G with

k � 2 cycles C

1

; C

2

; : : : ; C

k

such that k is minimal. We distinguish the following cases.

Case 1. There are two cycles C

t

1

; C

t

2

; 1 � t

1

< t

2

� k, which are connected by

two vertex-disjoint edges.

Subcase A. There is an edge xy such that x 2 V (C

t

1

); y 2 V (C

t

2

) and neither

x is C

t

2

-universal nor y is C

t

1

-universal.

Subcase B. Every vertex x 2 V (C

t

1

) with N(x) \ V (C

t

2

) 6= ; is C

t

2

-universal.

Case 2. No pair of cycles C

i

; C

j

; 1 � i < j � k, is connected by two vertex-disjoint

edges.

By Corollary 5, no other possibilities can occur.

Throughout the proof, we denote n

i

= jV (C

i

)j; 1 � i � k. For convenience we set

p = n

1

and q = n

2

.

Case 1. We can without loss of generality suppose that C

t

1

= C

1

' C

p

with vertices

labeled u

1

; : : : ; u

p

, C

t

2

= C

2

' C

q

with vertices labeled v

1

; : : : ; v

q

, u

p

v

q

2 E(G) and

u

i

v

j

2 E(G) for some i; j with 1 � i � p� 1, 1 � j � q � 1.

Subcase A. Suppose (without loss of generality) that u

p

v

1

; u

1

v

q

; u

1

v

1

=2 E(G). Thus

hu

1

; u

p

; v

q

; v

1

i ' P

4

, from which d(u

1

)+d(v

1

) � n�2. Since k is minimal, by Lemma 1 and

Lemma 2 we have d

C

1
(u

1

)+d

C

1
(v

1

) = p�1; d

C

2
(u

1

)+d

C

2
(v

1

) = q�1. If u

1

u

i+1

; v

1

v

j+1

2

5



E(G), then the cycle u

1

u

i+1

!

C

1

u

p

v

q

 

C

2

v

j+1

v

1

!

C

2

v

j

u

i

 

C

1

u

1

contradicts the minimality

of k. Hence we can without loss of generality assume that u

1

u

i+1

=2 E(G). Since equality

holds in Lemma 2, this implies v

1

u

i

2 E(G) and thus 2 � i � p � 2. Moreover, since

v

1

u

p�1

=2 E(G), there exists r > i such that u

r�1

v

1

; u

r+1

u

1

2 E(G) and u

1

u

r

; v

1

u

r

=2 E(G).

Since there is no cycle C such that V (C) = V (C

1

) [ V (C

2

), we have u

r

v

2

; u

r

v

q

=2 E(G).

By symmetry and since u

r

v

1

=2 E(G), we conclude u

r

v

q�1

=2 E(G). Now C = v

1

u

r�1

 

C

1

u

1

u

r+1

!

C

1

u

p

v

q

 

C

2

v

1

is a cycle such that V (C) = V (C

1

)[V (C

2

) n fu

r

g. If u

r

u

i

; u

r

u

i+1

2

E(G) for some i with 2 � i � r � 2 or r + 1 � i � p � 1, then u

r

can be inserted into

the cycle C by replacing the edge u

i

u

i+1

by the path u

i

u

r

u

i+1

. Hence we conclude that

u

r

u

r�2

; u

r

u

r+2

=2 E(G) and d

C

1
(u

r

) � p=2. Likewise u

r

can be inserted if u

r

v

i

; u

r

v

i+1

2

E(G) for some i with 2 � i � q � 3. Hence d

C

2

(u

r

) � (q � 4 + 1)=2 = (q� 3)=2. For any

other cycle C

j

; 3 � j � k, if u

r

w

1

; u

r

w

2

2 E(G) for two consecutive vertices w

1

; w

2

on C

j

,

then u

r

can be inserted into C

j

, contradicting the minimality of k. Hence d

C

j
(u

r

) � n

j

=2

and thus d(u

r

) � p=2 + (q � 3)=2 +

P

k

j=3

n

j

=2 = (n � 3)=2: Now hu

r�1

; u

r�2

; u

r

; v

1

i

and hu

r+1

; u

r

; u

r+2

; u

1

i are isomorphic to K

1;3

or Z

1

implying d(v

1

) � (n � 1)=2 and

d(u

1

) � (n�1)=2. Altogether we obtain n�1 � d(u

1

)+d(v

1

) � p+q�2+

P

k

j=3

n

j

= n�2;

a contradiction.

Subcase B. Let M = fx 2 V (C

1

)j N

C

2
(x) 6= ;g. Then, by the assumptions of Case

1, jM j � 2, u

p

2 M and (recall Corollary 5 and Corollary 4), no two vertices in M

are consecutive on C

1

. Suppose �rst that there are x; y 2 M , x 6= y, such that both

x

�

x

+

=2 E(G) and y

�

y

+

=2 E(G). Then, since (by Lemma 3) both hx; x

�

; x

+

; v

q

i ' K

1;3

and hy; y

�

; y

+

; v

q

i ' K

1;3

, we have d(x

�

)+d(x

+

)+d(y

�

)+d(y

+

) � 2(n�2) � 2(p+q�2+

n�p� q)� 2(p+1)+2(n�p� q):On the other hand, by the minimality of k, there is no

hamiltonian x; y-path in G[V (C

1

)] and hence, by Lemma 6, d

C

1

(x

+

)+d

C

1

(y

+

)+d

C

1

(x

�

)+

d

C

1
(y

�

) � 2p: Together we obtain 2(p+1)+2(n�p�q) � d(x

+

)+d(y

+

)+d(x

�

)+d(y

�

) �

2p + 2(n� p � q); which is a contradiction.

Hence we can suppose that x

�

x

+

2 E(G) for every x 2M , x 6= u

p

. But then, for any

x 2 M , x 6= u

p

, we have u

1

x =2 E(G) and u

1

x

++

=2 E(G) (otherwise the cycles u

1

xv

1

!

C

2

v

q

u

p

 

C

1

x

+

x

�

 

C

1

u

1

and u

1

x

++

!

C

1

u

p

v

q

 

C

2

v

1

xx

+

x

�

 

C

1

u

1

contradict the minimality

of k). Now x

++

=2 M , since x

++

!

C

1

x

�

x

+

x is a hamiltonian path in G[V (C

1

)]. Since

also (by Lemma 6) u

1

x

+

=2 E(G) and, by Lemma 3, d

C

2
(u

1

) = 0, we have d

C

1

[C

2
(u

1

) �

p�1�3(jM j�1): Since every vertex inM is C

2

-universal, we have d

C

1

[C

2
(v

q

) � q�1+jM j:

If there is a cycle C

i

, 3 � i � k, such that u

1

and v

q

have consecutive neighbors on C

i

,

then we easily construct a cycleC

0

with V (C

0

) = V (C

1

)[V (C

2

)[V (C

i

), contradicting the

minimality of k; hence d

C

3

[:::[C

k(u

1

)+ d

C

3

[:::[C

k(v

q

) � jV (C

3

)[ : : :[V (C

k

)j = n� p� q:

Since hu

p

; v

q

; v

1

; u

1

i ' Z

1

, we have d(u

1

) + d(v

q

) � n � 2. Altogether we obtain n � 2 �

d(u

1

) + d(v

q

) � p � 1 � 3(jM j � 1) + q � 1 + jM j+ n � p � q, from which jM j � 3=2, a

contradiction.

Case 2. Since G is 2-connected, there are m cycles, 3 � m � k, say, C

1

; C

2

; : : : ; C

m

,

with vertices labeled v

i

1

; : : : ; v

i

n

i

, and pairs of vertices v

i

r

i

; v

i

s

i

2 V (C

i

) such that v

i

s

i

v

i+1

r

i+1

2

E(G) (modulo m). If s

i

= r

i

� 1 for all 1 � i � m, then there is a cycle C such that
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V (C) = [

m

i=1

V (C

i

), e.g. C = v

1

s

1

v

2

r

2

!

C

2

v

2

s

2

v

3

r

3

: : : v

m

s

m

v

1

r

1

!

C

1

v

1

s

1

, if s

i

= r

i

+1 for 1 � i � m,

which contradicts the minimality of k.

Now suppose without loss of generality that s

1

6= r

1

� 1. Thus n

1

� 4. If v

1

r

1

+1

v

1

s

1

+1

2

E(G) or d

C

1
(v

1

r

1

+1

)+ d

C

1
(v

1

s

1

+1

) � n

1

+1, then, by Lemma 6, there is a hamiltonian path

in G[V (C

1

)] with endvertices v

1

r

1

; v

1

s

1

.

Suppose such a path does not exist. With a repeat of previous arguments we will

show that v

1

s

1

; v

1

r

1

are both universal vertices and that n

1

= 4. Suppose �rst that v

1

s

1

is

not universal. Then there is a vertex x 2 V (C

2

) such that v

1

s

1

x 2 E(G), but v

1

s

1

x

+

=2 E(G).

As in Subcase A we obtain this time d(v

1

s

1

+1

)+d(x

+

) � (n

1

�2)+(n

2

�1)+

P

k

j=3

n

j

< n�2,

a contradiction. The same argument holds for v

1

r

1

. Thus both v

1

s

1

and v

1

r

1

are universal

vertices. Suppose next that n

1

� 5. By Lemma 6 we have d

C

1
(v

1

s

1

+1

) + d

C

1
(v

1

r

1

+1

) � n

1

.

Hence we may assume that d

C

1
(v

1

s

1

+1

) � n

1

=2. But then hv

1

s

1

; x; x

+

; v

1

s

1

+1

i ' Z

1

for any

pair of consecutive vertices x; x

+

2 V (C

2

) and d

C

1

[C

2
(v

1

s

1

+1

)+d

C

1

[C

2
(x

+

) � n

1

=2+(n

2

�

1 + 1) +

P

k

j=3

n

j

< (n

1

� 2) + n

2

+

P

k

j=3

n

j

� n � 2, a contradiction. Hence n

1

= 4.

Let fs

1

; r

1

g = f2; 4g. Then d

C

1

(v

1

1

) = d

C

1

(v

1

3

) = 2 and both v

1

2

and v

1

4

are contained in

an induced Z

1

, say, hv

1

2

; v

1

1

; v

m

n

m

; v

m

1

i and hv

1

4

; v

1

3

; v

2

n

2

; v

2

1

i. Since N

C

m

(v

1

3

) = ;; N

C

m

(v

1

1

) =

;; N

C

2
(v

1

3

) = ;; N

C

2
(v

1

1

) = ;, we have d

C

1

[C

2

[C

3
(v

1

1

)+d

C

1

[C

2

[C

3
(v

1

3

) = 4, where n

1

+n

2

+

n

3

� 4+3+3 = 10. Since d(v

1

1

)+d(v

1

3

) � n�2, we have k � 4 and

P

k

j=4

d

C

i
(v

1

1

)+d

C

i
(v

1

3

) �

P

k

j=4

n

j

+ 4: Hence there exists a cycle C

j

and two consecutive vertices w

1

; w

2

on C

j

such that (without loss of generality) v

1

1

w

1

; v

1

3

w

2

2 E(G). Then C

a

= v

1

4

v

2

1

!

C

2

v

2

n

2

v

1

4

and

C

b

= v

1

1

v

1

2

v

1

3

w

2

!

C

j

w

1

v

1

1

are two cycles such that V (C

a

)[V (C

b

) = V (C

1

)[V (C

2

)[V (C

j

),

which contradicts the minimality of k.

This shows that, for each cycle C

i

, the vertices v

i

r

i

and v

i

s

i

are connected by a hamil-

tonian path in G[V (C

i

)]; 1 � i � m. But then there is a cycle C such that V (C) =

[

m

j=1

V (C

j

), contradicting again the minimality of k. This contradiction completes the

proof of Theorem 4.
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