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Abstract

We prove the following generalization of a result of Faudree and van den Heuvel.

Let G be a 2-connected graph with a 2-factor. If d(u)+4d(v) > n—2 for all pairs
of non-adjacent vertices u, v contained in an induced K3, in an induced K3+ €
or as end-vertices in an induced Py, then G is hamiltonian.
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1 Terminology and notation

We use [2] for terminology and notation not defined here and consider finite simple graphs
only.

Let GG be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton
cycle, i.e. a cycle containing all vertices of GG. If X is a graph, we say that G' is X-free
if G does not contain an induced subgraph isomorphic to X. In this paper we use K 3,
Zy ~ Ky 3+ e and Py to denote the graphs of Figure 1. According to the labeling of the
vertices we will write (a,b, ¢, d) ~ K3, (a,b,c,d) ~ Z; and (a,b,¢,d) >~ Py, respectively.

We will use w(() to denote the number of components of (. A graph G is said to
be t-tough (cf. [3]) if t - w(G — 5) < |S] for every subset S of V(G) with w(G — S) > 1.
If v € V((G), then N(v) denotes the set of vertices adjacent to v (the neighborhood of v)
and d(v) = |N(v)| denotes the degree of v. If we restrict N(v) and d(v) to a subgraph
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Figure 1.

F C G, then we will use Np(v) and dp(v), respectively. We say that a subgraph H C (¢
is a 2-factor of GG if H is a spanning subgraph of G and dy(v) = 2 for every v € V(G).

%
Let C be a cycle of . If an orientation of C' is fixed and u,v € V(C'), then by u C' v
we denote the consecutive vertices on C' from u to v in the orientation specified by the

F
orientation of C'. The same vertices, in reverse order, are given by v C' u. If €' C G is a
cycle with a fixed orientation and v € V(C'), then v* and v~ denotes the successor and
predecessor of v on (', respectively.

2 Main result

Our research was motivated by the following famous conjecture by Chvatal.

Conjecture [3]. Every 2-tough graph is hamiltonian.

For the class of 2-tough graphs Enomoto, Jackson, Katerinis and Saito proved the
following result.

Theorem 1 [5]. Every 2-tough graph has a 2-factor.

Obviously, having a 2-factor is a necessary condition for a graph to be hamiltonian.
Moreover, it can be decided in polynomial time whether a given graph G has a 2-factor

(see [1]).

The first result for hamiltonicity of graphs having a 2-factor is due to Hoede.
Theorem 2 [7]. Let G be a connected graph with a 2-factor and let Gy, ..., Gy be the
graphs shown in Fig. 2. If G is Gy, ...,G1-free, then GG is hamiltonian.

We now turn our attention to degree conditions. The following result by Faudree and
van den Heuvel shows that Ore’s [8] and Dirac’s [4] degree conditions for hamiltonicity
can be relaxed under the additional assumption that G has a 2-factor.

Theorem 3 [6]. Let (¢ be a 2-connected graph with a 2-factor. If d(u) 4+ d(v) > n — 2
for all pairs of non-adjacent vertices u,v € V((), then GG is hamiltonian.

Motivated by Theorem 2, we got the impression that it might be sufficient to require
the condition d(u) 4 d(v) > n — 2 for all pairs of non-adjacent vertices u,v which are
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contained in an induced Py or Z; (cf. GGy and (5 in Fig. 2). However, examples can be
given showing that this is not the case even with the requirement d(u) + d(v) > n — 1.
A class of such graphs can be obtained by joining two additional vertices u,v to two
prescribed vertices of an arbitrary clique on at least 5 vertices (notice that u and v are
contained in an induced Kj3 and have d(u) 4+ d(v) = 4 < n — 3). Thus, the degree
condition required for the induced claw is necessary.

Next consider the class of graphs GG, ;. which consist of three complete graphs K,,, K,
K, for p > ¢ > r > 3 and the additional edges w;v;, w;w;, v;w; for 1 = 1,2 and vertices
u,ug € V(K,), v1,v2 € V(K,) and wy,wy € V(K,). These graphs are 2-connected,
claw-free with a 2-factor, but the degree condition is not satisfied for all induced P, and
induced Z;.

Finally, the complete bipartite graph K, , with p = [251| and ¢ = [2L] for n > 5 is
2-connected, satisfies d(u) + d(v) > n — 2 for every pair of nonadjacent vertices u, v, but
it has no 2-factor.

These examples show that all the assumptions of the following theorem are, in some
sense, best possible.

Theorem 4. Let ¢ be a 2-connected graph with a 2-factor. If d(u) + d(v) > n — 2 for
all pairs of non-adjacent vertices u,v contained in a K3, in a Z; or as endvertices in a
Py, then (G is hamiltonian.



Example. Let ig,11,129,13,24 be integers such that 19,14 > 1, 19 > 2, 11 > 15 + 14 —
1, 13 > 194+ 12 — 1. Let GG be the graph obtained by taking vertex-disjoint graphs
Ho, Hy, Hy, Hs, Hy, where H; ~ K; for j = 0,1,3,4 and H; ~ K;,, and by adding
all edges xy for @ € V(H,;), y € V(H;11), © = 0,1,2,3. Then the graph G satisfies the
assumptions of Theorem 4, but not of Theorem 3. Note that G has diameter diam(G) = 4
while the assumptions of Theorem 3 imply diam(G) < 3.

3 Proofs

We first prove some lemmas which will be useful for the proof of Theorem 4.

Lemma 1. Let C,, C, and C be three vertex-disjoint cycles with V(C,) = {uy, ..., u,}
and V(Cy) ={v1,...,v,}. [fuyw, € E(G) and de(uq) + de(vy) > [V(C)| + 1, then there
is a cycle C" such that V(C') = V(C,) UV(C,) UV (C).

Proof. Since de(uy) + de(vy) > |V(C)| + 1, there exists a pair of consecutive vertices
wy,we € V(C) such that uywy,viwy € E(G) or ujws, viwy € E(G) and we can easily
construct the desired cycle C". [ |

Lemma 2. Let C, and C, be vertex-disjoint cycles with vertices labeled uy, ..., u, and
V1,...,0q. Suppose uyv, € E(G); upvr, ugvg, uqvr ¢ E(G). If do,ue,(ur) + deyue,(v1) >
p+q— 1, then there is a cycle C such that V(C) = V(C,) U V(C,).

Proof. Suppose there is no such cycle. Then viu,_1,v,_1us ¢ E(G). Let
S ={i]l v € E(G),2<:<p-=2}, T ={i] wqui41 € E(G),1 <1 <p-—2}.

If there is some ¢ € T'N S, then €' = vyu; C: Uiy 5p UpVy C: v; would be the desired
cycle. Hence we can assume that SN7T = 0. Now dg,(v1) = |S] and d¢, (u1) = |1+ 1,
from which de¢, (u1)+de,(v1) = |S|+|T|+1=|SUT|+1 < p—1. By the same argument
we obtain de, (uy) + do,(v1) < ¢ — 1 and thus de,ue, (1) + doyuc, (1) < p+q—2, a
contradiction. [ |

Let C', C? be two vertex-disjoint cycles. We say that a vertex v € V(C') is C?-
universal, if v is adjacent to all vertices of C?.

Assume now that there are two vertex-disjoint cycles O, C'? and a C'*-universal vertex
v e V(CY). If v~ or vT has a neighbor on C?, then we can again easily construct a cycle

C such that V(C) = V(CHu V(C?).

Lemma 3. Let GG be a non-hamiltonian graph with a 2-factor consisting of k > 2 cycles
C', C?,..., C*, where k is minimal. Then for every pair of cycles C?, C7, 1 <i < j <k,
and every C’-universal vertex v € V(C"), neither v~ nor v’ has a neighbor on C7.



Corollary 4. Let ¢ be a non-hamiltonian graph with a 2-factor consisting of k > 2 cycles
C', C?,..., C*, where k is minimal. Then for every pair of cycles C?, C7, 1 <i < j <k,
all C/-universal vertices of V(C*) are pairwise non-consecutive.

Corollary 5. Let G be a non-hamiltonian graph with a 2-factor consisting of k > 2
cycles Ct, C?, ..., C*, where k is minimal. Then there is no pair of cycles C*, C7, 1 <
i < j <k, such that there is both a C’-universal vertex v; € V(C*) and a C'-universal
vertex v; € V(CY).

We will also use the following simple lemma.

Lemma 6. Let C be a cycle in a graph G and let x, y € V(C') be such that there is no
x,y-path P with V(P) = V(C). Then zTy* ¢ E(G) and dc(a) + do(yt) < |V(C)].
— —
Proof. If atyt € E(G), then P = o ¢ y*tat C yisaz,y-path with V(P) = V(C'). Hence
eTyt ¢ E(G). Put M = {z € V(C)| za® € E(G)} and N = {z € 2T C ytl =7yt €
E(G}YU{z € ytt C x| ztyt € E(G)}. Then |M| = do(a™), |N| = de(y™) — 1 and
xt ¢ M UN. Thus, if de(2t) + de(y™) > |[V(C)| 4 1, there is a vertex z € M N N,
— < = — — — —

but then the path @ ¢ y*2~ C atz Cy (ifz € at CyT)orz C ztyT C za™ C y (if
z eyt 8’ xT) yields a contradiction. Hence de(z7) 4 de(y™) < |V(C)|. [ ]

Proof of Theorem 4. Assume G is not hamiltonian and choose a 2-factor of GG with
k> 2 cycles Ct, C%, ..., C* such that k is minimal. We distinguish the following cases.

Case 1. There are two cycles C'', C%, 1 < t; < ty < k, which are connected by
two vertex-disjoint edges.

Subcase A. There is an edge zy such that z € V(C"), y € V(C"™) and neither
x is C'2-universal nor y is C*'-universal.

Subcase B. Every vertex z € V(C") with N(z) N V(C®%) #£ () is C"2-universal.

Case 2. No pair of cycles €%, 7, 1 <i < j < k, is connected by two vertex-disjoint
edges.

By Corollary 5, no other possibilities can occur.
Throughout the proof, we denote n; = |V(C%)|, 1 < i < k. For convenience we set
p=mny and ¢ = ns.

Case 1. We can without loss of generality suppose that C't = C* ~ C, with vertices
labeled wy, ...,u,, C'? = C? ~ C, with vertices labeled vy, ...,v,, u,v, € E(G) and
uv; € E(G) for some i, 7 with 1 <i:<p—-1,1<j<qg—1.

Subcase A. Suppose (without loss of generality) that w,vy, uiv,, urvy ¢ FE(G). Thus
(uy, up, vy, v1) = Py, from which d(uy)+d(vy) > n—2. Since k is minimal, by Lemma 1 and
Lemma 2 we have dei (uq) +dei(v1) = p—1, dez(uy) +de2(v1) = ¢—1. I uguipr, 010541 €



— — — —
E(G), then the cycle uju;yy C uyv, C* vipvy CF vju; C1uy contradicts the minimality
of k. Hence we can without loss of generality assume that wju;11 ¢ F(G). Since equality
holds in Lemma 2, this implies vju; € E(G) and thus 2 < i < p — 2. Moreover, since
vity—1 & F(G), there exists r > 7 such that w,_1v1, u,41u; € F(G) and uyu,, viu, ¢ E(G).
Since there is no cycle C' such that V(C') = V(C*) U V(C?), we have u,vq, u,v, ¢ E(G).

F
By symmetry and since u,v; ¢ FE(G), we conclude w,v,_y ¢ E(G). Now C = vju,_y C!
— —

w41 Ct uyv, C* vy is a cycle such that V(C) = V(CHUV(CH\ {u, }. If v, upuigy €
E(G) for some ¢ with 2 <i¢ <r—2orr+1<:<p-—1, then u, can be inserted into
the cycle C' by replacing the edge w;u;11 by the path w;u,u; ;. Hence we conclude that
Upllp—g, Uptlp o & E(G) and dei(u,) < p/2. Likewise w, can be inserted if w,v;, u,v;41 €
E(G) for some ¢ with 2 <4 < ¢ —3. Hence de2(u,) < (¢—4+1)/2 =(¢—3)/2. For any
other cycle C7, 3 < 7 < k, if u,wy, u,wy € E(G) for two consecutive vertices wy, wy on CV,
then u, can be inserted into C”, contradicting the minimality of k. Hence d¢;(u,) < n;/2
and thus d(u,) < p/2 + (¢ —3)/2 + Zf::)) nij/2 = (n — 3)/2. Now (Up_1,tUr—2, U, V1)
and (Up41, Uy, Uppo,ur) are isomorphic to Kis or Z; implying d(vy) > (n — 1)/2 and
d(uy) > (n—1)/2. Altogether we obtain n—1 < d(uq)+d(vy) < p—l—q—Z—I—ZfZ3 n; =n-—2,

a contradiction.

Subcase B. Let M = {z € V(C"')| Ng2(x) # 0}. Then, by the assumptions of Case
L, M| > 2, u, € M and (recall Corollary 5 and Corollary 4), no two vertices in M
are consecutive on C''. Suppose first that there are z,y € M, v # y, such that both
x7zt ¢ E(G) and y~y* ¢ E(G). Then, since (by Lemma 3) both (z, 27, 2%, v,) ~ K3
and (y,y~,y", vg) = K3, we have d(a™) +-d(2 ) +d(y™) +d(y") = 2(n—=2) > 2(p+q—2+
n—p—q)>2(p+1)+2(n—p—q). On the other hand, by the minimality of k, there is no
hamiltonian x, y-path in G[V(C")] and hence, by Lemma 6, dc1 (27) +der (yT) +der (z7) +
dei(y™) < 2p. Together we obtain 2(p+1)42(n—p—q) < d(z)+d(yt)+d(z7)+d(y™) <
2p 4 2(n — p — q), which is a contradiction.
Hence we can suppose that 2727 € F(G) for every x € M, x # u,. But then, for any
=

v € M,z # u,, we have uyr ¢ E(G) and uyztt ¢ E(G) (otherwise the cycles uyzv, C?
— — — — —
vu, Ct ate™ CY wy and wat™ O wyv, CF vizate™ C! uy contradict the minimality

=
of k). Now ztt ¢ M, since ™t C!' 272tz is a hamiltonian path in G[V(C")]. Since
also (by Lemma 6) ujz®™ ¢ F(G) and, by Lemma 3, de2(u1) = 0, we have dpiyo2(uy) <
p—1—=3(|M|—1). Since every vertex in M is C*-universal, we have dp1,¢c2(v,) < g—1+|M]|.
If there is a cycle C*, 3 <1 < k, such that u; and v, have consecutive neighbors on
then we easily construct a cycle C’ with V(C') = V(CHUV (CHUV(CY), contradicting the
minimality of k; hence dea_yox(u1) + dosy.uor(vy) < |[V(CPHU...UV(CH) | =n—p—q.
Since (uy, vy, v1,ur) ~ Zy, we have d(uy) + d(vy) > n — 2. Altogether we obtain n — 2 <
dur) +d(vy) <p—1-=3(IM|—=1)4+¢—1+ |M|+n—p—q, from which |M| < 3/2, a

contradiction.

Case 2. Since (@ is 2-connected, there are m cycles, 3 < m < k, say, C*, C% ..., C™,
with vertices labeled v, ..., v , and pairs of vertices v} ,v. € V(C") such that viivij;ll €

E(G) (modulo m). If s; = r; £ 1 for all 1 < ¢ < m, then there is a cycle C' such that
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— —
V(C)=Um, V(C),eg C=vivl C?olod ol ol Clol,ifs;=ri+1forl <i<m,
which contradicts the minimality of k.

Now suppose without loss of generality that s; # r; £ 1. Thus ny > 4. If U71»1+1U511+1 €
E(G) or der(v) ) +dei (v} 1) > ni+1, then, by Lemma 6, there is a hamiltonian path
in G[V(C")] with endvertices v} , v, .

Suppose such a path does not exist. With a repeat of previous arguments we will
show that v, ,v} are both universal vertices and that n; = 4. Suppose first that v is
not universal. Then thereis a vertex z € V(C?) such that v} = € E(G), but v} 2t ¢ E(G).
As in Subcase A we obtain this time d(Usl1+1)—|-d(:1?+) < (ny —2)—|—(n2—1)—|—2§:3 n; <n—2,
a contradiction. The same argument holds for v} . Thus both v, and v} are universal
vertices. Suppose next that n; > 5. By Lemma 6 we have dei(v; 1) + der(v) 1) < ny.
Hence we may assume that dei(v} ;) < ny/2. But then (v} ,z, 2t v} ) ~ Z; for any
pair of consecutive vertices z, 2T € V(C?) and doiycz (vy, 1) +derue (27) <nq /24 (ng —
I+1)+ Zf::a n; < (ni—2)+n2+ Zf::a n; <n — 2, a contradiction. Hence ny = 4.

Let {sy,71} = {2,4}. Then dg1(v1) = dpi(v3) = 2 and both vy and vy are contained in
an induced 7y, say, (v}, vf,v7  o") and (vg, 03,02 ,vf). Since Nem(vy) =0, Nem(vi) =
0, Ne2(vd) =0, Nez(vi) =0, we have deiyozuee (v]) +doipceuce (vi) = 4, where ny +ny +
ns > 4+3+3 = 10. Since d(v})+d(v}) > n—2, we have k > 4 and YF_, dei (v])+dei (v)) >

Zfﬂ n; + 4. Hence there exists a cycle 7 and two consecutive vertices wy,wy; on CY

=

such that (without loss of generality) viwy, viw, € E(G). Then C* = vjvi C? v2 vy and
-

C* = viviviw, C7 wivl are two cycles such that V(C“)UV(Cb) = V(Cl)UV(Cz)UV(Cj),

which contradicts the minimality of k.

This shows that, for each cycle C, the vertices vf,l, and v;, are connected by a hamil-
tonian path in G[V(C?)], 1 < i < m. But then there is a cycle ' such that V(C) =
U;”ZIV(Cj), contradicting again the minimality of k. This contradiction completes the
proof of Theorem 4. [ |
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