Closure and Hamiltonian-Connectivity of Claw-Free Graphs

Béla Bollobas
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.

e-mail: bollobas@msci.memphis.edu

Oliver Riordan
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.

e-mail: omrl0Q@cam.ac.uk

Zdenék Ryjacek
Department of Mathematics
University of West Bohemia
Univerzitni 22, 306 14 Plzen

Czech Republic
e-mail: ryjacek@kma.zcu.cz

Akira Saito
Department of Mathematics
Nihon University
Sakurajosui 3-25-40
Setagaya-ku, Tokyo 156
JAPAN
e-mail: asaito@math.chs.nihon-u.ac.jp

R.H. Schelp!
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.

e-mail: schelpr@mathsci.msci.memphis.edu

1Research partially supported by NSF Grant DMS-9400530

Typeset by ApS-TEX



Abstract

In [3], the closure cl(G) for a claw-free graph G is defined, and it is proved that G is
hamiltonian if and only if ¢/(G) is hamiltonian. On the other hand, there exist infinitely many
claw-free graphs G such that G is not hamiltonian-connected (resp. homogeneously traceable)
while ¢/(G) is hamiltonian-connected (resp. homogeneously traceable). In this paper we define
a new closure cli(G) (k > 1) as a generalization of ¢/(G) and prove the following theorems. (1)
A claw-free graph G is hamiltonian-connected if and only if ¢l3(G) is hamiltonian-connected.
(2) A claw-free graph G is homogeneously traceable if and only if ¢lo(G) is homogeneously

traceable. We also discuss the uniqueness of the closure.



1. Introduction.

For graph theoretic notation not defined in this paper, we refer the reader to [2]. A vertex
x of a graph G is said to be locally connected if the neighborhood Ng(z) of z in G induces
a connected graph. A locally connected vertex z is said to be eligible if Ng(x) induces a
noncomplete graph. For a vertex = of a graph G, we consider the operation of joining every
pair of nonadjacent vertices in Ng(z) by an edge so that Ng(z) induces a complete graph in
the resulting graph. This operation is called local completion of G at x. We shall consider a
series of local completions at eligible vertices. For a graph G, let Gy = G. For ¢ > 0, if G; is
defined and it has an eligible vertex x;, then apply local completion of G; at x; to obtain a
new graph G;41. If G; has no eligible vertex, let c/(G) = G; and call it the closure of G. The

above operation was introduced and the following theorems were proved in [3].

Theorem A ([3]). If G is a claw-free graph, then
(1) a graph obtained from G by local completion is also claw-free, and

(2) cl(G) is uniquely determined. [

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if and only if cl(G) is

hamiltonian. [

Recently, several other properties on paths and cycles of a claw-free graph and those of its
closure were studied by Brandt et al. A graph G is said to be hamiltonian-connected if every
pair of distinct vertices of G can be joined by a hamiltonian path of G. And G is said to be
homogeneously traceable if every vertex of GG is an endvertex of some hamiltonian path of G.

The following theorem was proved in [1].

Theorem C ([1]).
(1) A claw-free graph G is traceable if and only if cl(G) is traceable.
(2) There exist infinitely many claw-free graphs G such that cl(G) is hamiltonian-connected
while G is not hamiltonian-connected.
(3) There exist infinitely many claw-free graphs G such that cl(G) is homogeneously traceable

while G' is not homogeneously traceable. [J

However, if we impose some restrictions to the vertices used for local completion, homoge-
neous traceability and hamiltonian-connectivity may be preserved under closure. This is the

motivation of this paper.



A vertex x of a graph G is said to be locally k-connected if Ng(x) induces a k-connected
graph. We modify the closure so that we allow local completions only at locally k-connected
vertices. More precisely, consider a sequence of local completions G = Gy, G, ...,G, = H,
where G;41 is obtained from G; by local completion at a locally k-connected vertex for each 1,
0 <i<r—1. If H does not have an eligible locally k-connected vertex, we call H a k-closure

of G and denote it by cli(G). We prove the following theorem.

Theorem 1. Let G be a claw-free graph. Then
(1) cli(G) is uniquely determined for each k,
(2) G is hamiltonian-connected if and only if cl3(G) is hamiltonian-connected, and

(3) G is homogeneously traceable if and only if clo(G) is homogeneously traceable.

We first prove (2) in Section 2. The we prove (3) in Section 3. We postpone the proof of (1)
until Section 4, where we discuss the uniqueness of the closure in a more generalized situation.
Before closing this section we introduce some notation which is used in the subsequent
arguments. For a graph G and S C V(G), the subgraph induced by S is denoted by G[S].
When we consider a path or a cycle, we always assign an orientation to it. Let P = xox1 - - Tp,.
We call zy and x,, the starting vertex and the terminal vertex of P, respectively. We define

P ~(P) _ HHE)

i Ti+1 and w; = wj_1. Furthermore, we define x; When it is obvious

which path is considered in the context, we sometimes write :cj and z; instead of x;L(P) and
aci_(P), respectively. For z;, x; € V(P) with i < j, we denote the subpath z;z;y1---z; by
mlﬁmj The same path traversed in the opposite direction is denoted by mjﬁa:, We also use
the same notation for a cycle. A path having x and y as the starting and the terminal vertices,
respectively, is called an zy-path.

Given two graphs G and H, we denote by GU H the graph with the vertex set V(G)UV (H)
and the edge set E(G)U E(H).

2. Hamiltonian Connectivity.

A graph G is said to be I-path-connected if for every pair of distinct vertices z and y € V(G)
there exists an xy-path of length at least [ in G. Thus, a graph of order n is hamiltonian-
connected if and only if it is (n — 1)-path-connected. In this section, we prove a theorem on

[-path-connected graphs, which is stronger than Theorem 1 (2).
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Theorem 2. Let G be a claw-free graph and let | be a positive integer. Then G is l-path-

connected if and only if cl3(G) is l-path-connected.
The above theorem follows immediately from the following theorem.

Theorem 3. Let G be a claw-free graph and let x, a, b € V(G). Suppose a # b and Ng(x)
induces a 3-connected graph in G. Let G' be the graph obtained from G by local completion
at x. If G’ has an ab-path of length [, then G has an ab-path of length at least [.

We prove several lemmas before we prove the above theorem. The first one is an easy

observation.

Lemma 4. Let G be a claw-free graph, and let © € V(G). Then every induced path in
G[N¢(x)] has length at most three.

Proof. If G[Ng(x)] has an induced path P = uguy ...w; with I > 4, then {x, ug, s, us} forms

a claw in . This is a contradiction. U

Lemma 5. Let G be a claw-free graph and let x, a, b € V(G) with a # b. Let G' be
the graph obtained from G by local completion at x. If P is a longest ab-path in G’ with
E(P)N(E(G") — E(G)) # 0, then Ng(z)U{z} C V(P).

Proof. Let N = E(G') — E(G). Assume z ¢ V(P). Since E(P)NN # 0, ww € E(P)NN
for some u, v € V(G). We may assume u = v~. Then aPuzvPb is an ab-path in G’, which is
longer than P. This is a contradiction. Therefore, x € V(P).

Assume Ng(z) —V(P) # 0, say v € Ng(z) —V(P). If a # z, then £~ exists and aPrvzPb
is an ab-path in G’, which is longer than P. If a = z, then a™ € Ng/(x) exists and avat P is

an ab-path in G’, which is longer than P. Therefore, we have a contradiction in either case. [

Lemma 6. Let G be a claw-free graph and let z, a, b € V(G) witha # b. Let G' be the graph
obtained from G by local completion at z:. Then there exists a longest ab-path P in G' with
[E(P)N(E(G) - E(G)| < 1.

Proof. Let N = E(G’) — E(G), and choose a longest ab-path in G’ so that |E(P) N N| is
as small as possible. Assume |E(P)NN| > 2, say e = ujvy, f = ugva € E(P)N N, e # f.
By Lemma 5, {z} U Ng(z) C V(P). We may assume u; = v], us = v, and v € aﬁuz.
Then vy # vy and uy # ug (possibly v = ug). Furthermore, {uy,v1} U {u2,v2} C Ng(z) and

{u1,v1} U {usz,v2} induces a complete graph in G’.
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If vive € E(G), let P! = a]?ulquvlvz]_jb. Then P’ is a longest ab-path in G’ and E(P') =
E(P) U {ujug,v1v2} — {e, f}. Since {e, f} C N and vive ¢ N, |E(P')NN| < |E(P)N N]|.
This is a contradiction. Hence vivy ¢ E(G). Similarly, uyus ¢ E(G). If z # b, then o exists
and zt, vy, ve are distinct neighbors of z. Since G is claw-free and viv ¢ E(G), we either
have ztv; € E(G) or ztve € E(G). We may assume ztv, € E(G). If zt € aﬁul, then let
P = aﬁxulgﬂ'vlﬁb. If 2t ¢ vfﬁb, let P = a]?ulxgvlaﬂ'ﬁb. Then in either case P’ is a
longest ab-path and E(P') = (E(P) —{e,zz}) U{uiz,v1zT}. Since {uiz,v12T} NN =) and
e € N, we have |[E(P')NN| < |[E(P)N N|. This is a contradiction.

If = b, we can apply the same arguments as above to {b™,u1,us} C Ng(b) and obtain a

contradiction. Therefore, the lemma is proved. [

The proof of Theorem 3 is divided into two cases, which deal with z ¢ {a, b} and x € {a, b},
respectively. We present both cases as lemmas. Lemma 7 deals with the first case, while

Lemma & handles the second case.

Lemma 7. Let G be a claw-free graph and let z, a, b be distinct vertices in G. Suppose Ng(z)
induces a 3-connected graph in G. Let G' be the graph obtained from G by local completion
at x. If G’ has an ab-path of length I, then G has an ab-path of length at least [.

Proof. Let m be the length of a longest ab-path in G’. Then m > [. We prove that G has an
ab-path of length at least m. Assume, to the contrary, G has no ab-path of length at least m.
Let N = E(G') — E(G). By the definition of local completion, if uv € N, then u, v € Ng(z).
Let P be the set of all the longest ab-paths in G'. If E(P)N N = () for some P € P, then P is
an ab-path of length m in G. This contradicts the assumption. Therefore, F(P)N N # () for
each P € P. Let Py ={P € P: |E(P)NN|=1}. By Lemma 6, Py # (.

Let P € Py. Then {z} U Ng(z) C V(P) by Lemma 5. Let E(P)N N = {uv} with u = v™.
We may also assume z € ot Pu (possibly z = u™). If z~ 2% € E(G), then aPr~ 1+ PuzvPb
is an ab-path of length m in G. This contradicts the assumption. Thus, z~z% ¢ E(G). If
uzr~ € E(G), then al_jx_ungﬁb is an ab-path of length m in GG, again a contradiction. Hence
ur~ ¢ E(G). If va™ € E(G), then aPruPztoPh is an ab-path of length m in G. This is a
contradiction, and hence vzt ¢ E(G). If u # x*, then {z,v,u,z T} does not form a claw in
G, and hence uz™ € E(G). By the assumption v # z~, and since {z,z~,u,v} does not form

a claw in G, vz~ € E(G).



Suppose {a,b} # {v,z~} for some choice of P € Py. Since Ng(x) induces a 3-connected
graph in G, there is a path @ which starts at {u, 2"} and ends at {v,z~} —{a, b} in G[Ng(z)—
{a,b}]. Choose such P € Py and the path @ so that @ is as short as possible. Since
{uv, 27zt x 7 u,zTv} C N, we can use aﬁx_afrﬁuajvﬁb, aPruPztvPb and aPr—uPzvPb
instead of P to switch the role of u and z™. Similarly, we can switch the role of v and x~.
Therefore, we may assume () starts at u and ends at v. Let a; = w7 (@). Note that a; € Ng (x)
and hence ayv € F(G’). Furthermore, a; € V(P) by Lemma 5. First, suppose a; € x+?u.
By the minimality of Q, a; € o+ Pu—. This implies u # xT. If aIL(P)al_(P) € E(G), let
P = aﬁx‘xm*’ﬁaf(ma;r(P)I?ualv]?b. ifaf Pz € E(G), let P’ = aﬁac‘acaﬁp)]?ux+ﬁalvﬁb.
If al_(P):c € E(G), then let P’ = a]?x_:cal_(P)ga:Jrugalv]_jb. Then in each case P’ € P,
|[E(P')NN| <1 and alav is shorter than (). This contradicts the choice of (P, Q). Thus,
{af(P), al_(P), x} C Ng(ay) is an independent set. Since G is claw-free, this is a contradiction.
Therefore, we have a; ¢ x+?u. This implies a; € aﬁx_ U v]?b.

Suppose a; € oPr~. Since a ¢ V(Q) and 2= ¢ Ng(u), a1 € ot Pr. T al_(P)aIr(P) €
E(G), let P' = aﬁal_(P)af(P)ac_ac:ﬁ?ualv?b. Then P € P, |[E(P')NN| <1 and alc—jv is
shorter than (. If af(P)m € E(G), then aﬁalulngra:af(P)?m_vﬁb is an ab-path of length m
inG. If al_(P)ac € E(G), then aﬁa;(P)xx+ﬁua1ﬁx_vﬁb is an ab-path of length m in G. Hence
we have a contradiction in each case. Therefore, {al_(P), air(P), x} C Ng(aq) is an independent
set in GG. Since G is claw-free, this is a contradiction. If a; € Uﬁb, we have a contradiction by
similar arguments.

Therefore, we have {a,b} = {z~,v} for each P € Py. Then a =z~ and b = v. We consider
a path @ in Ng(z) from {zt,u} to {a,b}. Choose P € Py and @ so that @ is as short as
possible. We may assume @ starts at u and ends at b. Let a; = u+(@). Since {a,b}NNg(u) = 0,
ay ¢ {a,b}. Thus, a; € 2+ Pu. Then we have a contradiction by applying the same arguments

as in the previous paragraph to {z, al_(P), af(P)} C Ng(ap). O

A sequence L = xgxq...x; of vertices is said to be a lollipop if
(1) woxy...x;_1 is a path, and
(2) zj—12; € E(G) and z; = z; for some i, 1 <7 <[ —2.
We say L starts at xp and ends at z;. We also say that [ is the length of L. We call the
subsequence z;%;11 . ..z the candy of L, and the path zy, z1, ..., x; the stick of L, respectively.

If ¢ <1 — 2 the candy is a cycle. If ¢ =1 — 2, then the candy is just one edge traversed twice.
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In this case we say that L is a trivial lollipop.

Lemma 8. Let G be a claw-free graph and let © and a be distinct vertices of G. Suppose
Ng(x) induces a 3-connected graph in G, and let G’ be the graph obtained from G by local
completion at x. If G' has an ax-path of length [, then G has an ax-path of length at least [.

Proof. Let m be the length of a longest az-path in G’. Then m > [. We prove that G
has an az-path of length at least m. Assume G has no az-path of length at least m. Let
N = E(G") — E(G). By the assumption and Lemma 6, there exists a longest az-path P in G’
with |[E(P)NN|=1. Let E(P)NN = {uv} with u = v~. Then {u,v} C Ng(z) and o PuzPox
is a lollipop of length m + 1 in G which starts at a and ends at x. Let £ be the set of all the

lollipops of length m + 1 starting at a and ending at x in G. We consider two cases.
Case 1. There exists a nontrivial lollipop in L.

Let L € L be a nontrivial lollipop. Let P be the stick of L and C be the candy of L.
Let u = 2= v = 27 and w = 27(©). Since L is nontrivial, w # v. If uv € E(G),
then aﬁuvax is an ax-path of length m in G. This contradicts the assumption. Therefore,
uwv ¢ E(G). Similarly, uw ¢ E(G). Since {z,u,v,w} does not form a claw in G, vw € E(G).

We consider two subcases.
Subcase 1.1 a # u for some choice of a nontrivial lollipop L € L.

Since Ng(z) induces a 3-connected graph, there exists a path @ which joins v and w in
Ng(x) — {a,w}. Furthermore, there exists a path R which joins w and u in Ng(x) — {a,v}.
Choose such L, () and R so that

(1) @ is as short as possible, and
(2) R is as short as possible, subject to (1).

Since uv, uw ¢ E(G), both @ and R have length at least two. On the other hand, since
@ and R are induced paths in Ng(z), both of them have length at most three by Lemma 4.
Since aPuvCuwz is an az-path of length m in G’ and wv € E(G") — E(G), Ng(xz) C V(L) by
Lemma 5. Therefore, V(Q) U V(R) C V(L). However, possibly V(Q) NV (R) — {u} # 0.

%
Let a; = v7 (@), Then a; € vaw or a; € aPu~.
%
Claim 1. a1 € aPu™
Proof. Assume a; € vChw. Since ar ¢ {v,w}, a1 € vt Cw=. If a;r(c)al_(c) € E(G), let
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C' = xalvaal_(c)a;r(o)ax. Then PUC’ € £, {z+(©) 27} = {w, a;} and alc—ju is shorter
than @ and avoids w. This contradicts the choice of (L, Q). If af(c)m € E(G), then let C" =
acalnggaf(c)x. Then PUC’ € £ and {zT(©) 2=} = {a,, ai(o)}. Since alc_ju is shorter
than @, this contradicts the choice of (L, Q) if af(c) ¢ V(Q). Thus, we have af(c) e V(Q).
Since the length of @) is at most three, this implies () = Ualaf(c)u. Then aﬁuaf(c)ﬁwvﬁalm
is an ax-path of length m in . This is a contradiction. By a similar argument we have a
contradiction if al_(c)a: € E(G). Thus, {=z, ai(o),a;(o)} is an independent set in G. Since
{z, af(c), al_(c)} C Ng(aq) and G is claw-free, this is a contradiction. Therefore, the claim is

proved. [J
Claim 2. o] D" ¢ E(G), o Pv ¢ B(G) and af Tv € E(G)

Proof. First, note al_(P) and af(P) exist since a1 ¢ {a,x}. Suppose al_(P)aIL(P) € E(G). Then
let P/ = aﬁal_(P)air(P)?x and C' = acalvax. Then P'UC" € £ and {z+(€), 2=} = {a;, w}.
Since alau is shorter than @ and avoids w, this contradicts the choice of (L, Q).

Next, suppose aIL(P)v € E(G). If ayw € E(G), then aﬁalwgvai(mﬁac is an az-path of
length m in G. If ayu € E(G), then aﬁaluﬁaf(mvawx is an az-path of length m in G.
Both contradict the assumption, and hence ajw, aiju ¢ E(G). Then since uw ¢ E(G) and
{u,w,a1} C Ng(x) (note u # a1), {x,u,w,a;} forms a claw in G. This is a contradiction.
Therefore, ail—(P)v ¢ E(G).

Since {al_(P),aIL(P),U} C Ng(aq), al_(P)aIL(P) ¢ E(G), and aIL(P)U ¢ E(G), we have
al_(P)v c E(G). O

Claim 3. a1u € F(G)

- _ -
Proof. If ayw € E(G), then aPa; (P)UﬁwalPa: is an az-path of length m in G, a contradiction.

Since uw ¢ FE(G) and {z, a1, w,u} does not form a claw, we have aju € E(G). O

Since a1u € E(G), we have Q = vayu.
Let by = wt( (possibly by € V(Q)). Then by € ot Pu~ or by € vt Clw~. Because of the

nonsymmetric choice of ( and R, the proof of the next claim is different from that of Claim 1.
%
Claim 4. b; € atPu~

Proof. Assume b; € v*’ﬁw‘. First, we claim bi(o)x € FE(G). Assume the contrary. Since

(b1, 2,07 679} does not form a claw in @, b7 7D € E(G) or 279 € E(G). 1f
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bf(c)b;(c) € E(G), thenlet C' = xvﬁb;(c)bf(c)awblx. Then PUC' € £ and {z~(©) z+(C)}
= {v,b1}. Since @ = vaju avoids b; and b1}—2>u is shorter than R, this contradicts the choice
of (L,Q, R). Thus, we have :cbl_(o) € E(G). Consider {x,u,w,bl_(c)}. Since vw ¢ E(G), we
have ubl_(o) € E(G) or wbl_(c) € EG). If ubl_(c) € E(G), then a?ub_(c)nggblx is an
azx-path of length m in G, a contradiction. If wbl_(c) € E(G),let C' = xvﬁbl_(c)wgblm. Then
PUC € £ and {z=(©) zHC)} = {v,b;}. Since Q = vayu avoids by and blﬁu is shorter than
R, this contradicts the choice of (L, Q, R). Therefore, we have bf(c)x € E(G).

If ubf(c) € E(G), then aﬁubf(c)ﬁwvﬁblm is an ax-path of length m in G, a contradiction.
Therefore, since uv ¢ E(G) and {z,u, v, bt} does not form a claw in G, we have vb € E(G).

If al_(P)v+(C) € E(G), then aﬁal_(P)er(C)awvalﬁua: is an az-path of length m in G, a
contradiction. If al_(P)b;r(C) € E(G), then aﬁa;(P)bf(c)ﬁwblgvalﬁum is an az-path of length
m, a contradiction. If v+ € B(@), let ¢’ = wigbvar(C)ablx. Then PUC’ € L is a
lollipop of length [ and {m_(cl), $+(C')} = {v,b1}. Since @) = vaju avoids by and by Ru is shorter
than R, this contradicts the choice of (L, @, R). Therefore, {al_(P),v+(C), bf(c)} C Ng(v) is
an independent set in GG. Since G is claw-free, this is a contradiction. Therefore, the claim

follows. O
Claim 5. b; Vb7 ¢ B(@), 07D w ¢ E(G), b7 Pw € BE(G) and byu € E(G).

Proof. Note bl_(P) and bf(P) exist since by ¢ {a,z}. We first prove bl_(P)bf(P) ¢ E(G).
This trivially follows from Claim 2 if a; = b;. Hence we may assume a; # b;. Assume
bl_(P)bf(P) € E(G). Let P’ = aﬁbl_(P)b;r(P)?x and C' = acvawblx. Then P UC" € L and
{m“cl),x_(cl)} = {v,b1}. Since ay # by, Q = vaju avoids b;. Since blﬁu is shorter than R,
this contradicts the choice of (L, @, R). Thus, we have bl_(P)bIL(P) ¢ E(G).

Once we have bl_(P)bf(P) ¢ E(G), we obtain bf(P)w ¢ E(G), bl_(P)w € F(G) and bju €
E(G) by the same arguments as those in the proofs of Claim 2 and Claim 3. O

— - _ _
If a; € aPby (P), then aPay (P)vawbl (P)galugblx is an az-path of length m. If a; €
— — _ «
bf(P)Pu_, then aPb, (P)wC’val (P)gblugalx is an az-path of length m in G. Finally, if
- _ —
a; = by, then aPa; (P)UﬁwalPa: is an ax-path of length m in G. Therefore, we have a

contradiction in each case, and the proof is complete in this subcase.

Subcase 1.2 a = u for any choice of a nontrivial lollipop L € L.
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There exists a path @ from {v,w} to a in G[Ng(z)]. Choose nontrivial L € £ and @ so that
() is as short as possible. We may assume () starts at v. Since avaa: is an ax-path of length m in
G',V(Q) C V(L) by Lemma 5. Let a; = v+(@). Then a; € vt Cuw=. T al_(c)air(c) € E(G), let
C' = xalvaal_(c)af(c)awx. If af(c)x € E(G), let C' = xalnggai(o)x. If al_(c):c € E(G),
let ¢! = malﬁwvﬁaf(c)m. Then in each case ax UC’ € £ and alaa is shorter than (). This
contradicts the choice of (L, Q).

Case 2. All the lollipops in £ are trivial.

Since G has no ax-path of length at least m, m > 2. Let L € £ and let P be the stick of L
and zv be the candy of L. Let u = =), If uv € E(G), then aPuvz is an az-path of length
m in G, a contradiction. Thus, uv ¢ E(G). If m = 2, then a = v and hence a € Ng(z). Then
since Ng(x) induces a connected graph in G, there exists a vu-path in G[Ng(z)], and hence G
has an ax-path of length at least two. Therefore, m > 3. In particular, a # u.

Since z is a locally 3-connected vertex, there exists a vu-path Q in G[Ng(z)] — {a,u= (")}
(or G[Ng(z)] —a if a = u=). Let a; = v+ (@), Since oPuvz is an az-path of length m in G,
V(Q) € V(L) by Lemma 5 and hence a; € V(P)—{a,u,u”")}. Consider {a;, al_(P), af(P), z}.
If al_(P)aIr(P) € E(G), then let P! = aﬁal_(P)air(P)ﬁux and C' = zvayz. If ay © € E(G), then
let P’ = a]?al_(P)ac and C' = acvalﬁua:. Suppose a;r(P):c € E(G). Since ay # u~P), a;r(P) # u.
Let P’ = a]_3>alv$ and C' = a:a{’]?ux. Then in each case P’ UC’ € £ and it is nontrivial. This

contradicts the assumption of the case, and the lemma is proved. [
3. Homogeneous Traceability.

We prove Theorem 1 (2) by using the same proof strategy as that given in Section 2. A
path starting at a vertex v is said to be a v-path. We prove the following theorem, which is

similar to Theorem 3 in Section 2.

Theorem 9. Let G be a claw-free graph and let z, a € V(G). Suppose Ng(x) induces a
2-connected graph in G. Let G' be the graph obtained from G by local completion at x. If G’
has an a-path of length [, then G has an a-path of length [.

Actually, its proof is almost the same as those of Lemmas 7 and 8 in Section 2.

Proof. Let m be the length of a longest a-path in G’. Then m > [. We prove that G

has an a-path of length at least m. Assume, to the contrary, G has no a-paths of length
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at least m. Let N = E(G') — E(G). Let P be the set of all the longest a-paths in G’.
If P € P, then {z} U Ng(x) C V(P) by Lemma 5 since P is a longest ab-path for some
b € V(G) — {a}. Furthermore, by the assumption and Lemma 6, |[E(P) N N| = 1 for some
PeP.Let Py={PeP:|E(P)NN|=1}.

Let P € Py and let E(P) NN = {uv} with u = v~. Let b be the terminal vertex of P.
First, suppose a # x. If x = b, then aﬁuxﬁv is an a-path of length m in G. This contradicts
the assumption. Therefore, z € ot Pu— U vt P, Suppose T € o+ Pu~. Then by the same
arguments as in the proof of Lemma 7, we have {z~ 2%, 27 u, vz} N E(G) = 0, vz~ € E(G),
and uzt € F(G) if u # zt. Since G[Ng(x)] is 2-connected, there exists a path @ with
V(Q) C Ng(z) — {a} which starts at {u,z%} and ends at {v,27} — {a}. Now choose P € P,
and () so that () is as short as possible. Since we can use a]?x_x‘*?u:cvﬁb instead of P to
switch the role of z and u, we may assume @ starts at u. Let aq = ut(@), If aq # b, then
we can follow the same arguments as in the proof of Lemma 7, and obtain a contradiction.
If a; = b, then aﬁubﬁv is an a-path of length m in G. This is a contradiction. We reach a
contradiction by similar arguments if = € vt Ph-.

Next, suppose a = x. Then bﬁvmﬁum is a lollipop of length m + 1 which starts at b and
ends at  in G. Let £ be the set of all the lollipops of length m + 1 starting at b and ending
at x.

Suppose £ has a nontrivial lollipop L. Let P and C' be the stick and the candy of L,
respectively, and v = 2= ) v = £7(©) and w = 2~ (©). By the same argument as in the proof
of Lemma 8, we have {uv,uw} N E(G) =0 and vw € E(G).

If b # wu for some choice of L € L, choose such L, a path @ in Ng(z) — {w} which joins v
and u, and a path R in Ng(x) — {v} which joins w and u so that

(1) @ is as short as possible, and

(2) R is as short as possible, subject to (1).
Let a; = vt (@ and b; = wt@® ., If b ¢ {a1,b1}, we can follow the same arguments as in
Subcase 1.1 of the proof of Lemma 8, and obtain a contradiction. If a; = b, then mwgvbﬁu
is a path of length m in G. If by = b, then xvawb]?u is a path of length m in G. Therefore,
we have a contradiction in each case. If b = u for any choice of L € L, then we can follow the
same arguments as in Subcase 1.2 of the proof of Lemma 8 to obtain a contradiction.

Suppose all the lollipops in £ are trivial. Then m > 2. Let P be the stick of L and let zv
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be the candy of L. Let v = z=("). Then by the same argument as in the proof of Lemma 8,
we have uv ¢ E(G), m > 3 and b # u. Let Q be a vu-path in G[Ng(z) — {u=F)}] and let
a1 = v @, If ay # b, we can follow the same arguments as in Case 2 of the proof of Lemma
8, and obtain a contradiction. If a; = b, then xﬁbv is a path of length m in G. This is a final

contradiction, and the theorem follows. [
4. The Uniqueness of the Closure

In this section we consider the uniqueness of a closure in a more generalized situation. For
a vertex x in a graph G we shall write G, for the graph induced by Ng(z). Let G(z) be
the graph obtained from G by local completion at . For z1, xo,...,z, € V(G), we write
G(z1,x2,...,2z,.) for G{z1){xs)...(x,). Given a property P of graphs, we shall say that G can
be completed at x with respect to P if G, satisfies P. Thus, if Py is the property of being
connected and noncomplete, an eligible vertex is a vertex which can be completed with respect
to Py. A graph G is said to be P-closed if G, is complete for every vertex x with G, satisfying
P. For x1,...,z,. € V(Q), if G = G{x1,...,r,) is P-closed, we shall say that G is a P-closure
of G. In this context, a k-closure is a P-closure, where P is the property of k-connectedness.

If P-closures are to be unique, then we expect that if G can be completed at either of x and
y with respect to P, then it can be completed at both — i.e. that G(z) can be completed at y

with respect to P. Motivated by this observation, we introduce the following definition.

For vertices x1, o, ..., z, in G we shall say that G(z1, z2, ..., x,) is defined with respect to
P if
G can be completed at x; with respect to P ifr=1
G(xy,...,x,—1) is defined with respect to P
and G(x1,...,x,_1) can be completed at z, with respect to P if r > 2.

If the property P is clear in the context, we sometimes omit “with respect to P”, and simply
say that “G(z1,xq,...,z,) is defined”. A property P of graphs G is said to be well-behaved if
G(z,y) is defined whenever both G(x) and G(y) are defined with respect to P.

If P is a well-behaved property of graphs and both G(x) and G(y) are defined with respect
to P, then both G(z,y) and G(y,z) are defined with respect to P. Furthermore, due to the
nature of local completion, they are the same.

For a set S, let Kg be the complete graph whose vertex set is S.
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Lemma 10. Let P be a property of graphs. For a graph G and z, y € V(G), if both G(z,y)
and G(y,x) are defined, then G(z,y) = G(y, ).

Proof. If zy ¢ E(G), then
Glz,y) = GUKng@) U KNo(y) = GU KN @) U KNG (o) = Gy, )
If zy € E(G), then

G(r,y) = G U KN, (2)UNe () U{z,y} = G U KNG (y)uNG (@) Ufz,yy = Gy, z). O

Note that we do not assume that P is well-behaved in the above lemma. This lemma holds
even if P is not well-behaved.

Now we prove the following theorem.

Theorem 11. Let P be a well-behaved property of graphs, and let G be a graph and
T1yeoeyTpy21,-.-,25 € V(G). If both G(x1,...,x,) and G(zy,...,zs) are defined with re-
spect to P, then both G{x1,...,%p, 21,...,2s) and G{z1,...,2s,%1,..., o) are defined, and

they are the same.

Proof. We proceed by induction on r+s. If r = s = 1, then the theorem follows by the assump-
tion and Lemma 10. Suppose r+s > 2. By symmetry we may assume r > 1. By the assumption

G(x1,...,z,_1) is defined. Then by the induction hypothesis both G{x1,...,z._1,21,...,2s)

and G(z1,...,2s,21,...,%,—1) are defined and they are the same. Since G(z1,...,x,_1){x,)
and G(x1,...,2,—1){(21,...,2s) are defined, we can apply the induction hypothesis again to see
that G{x1,..., 21,2, 21,...,2s) and G(x1,...,2m_1,21,..., 25, T,) are defined, and they are

the same. However, since

G{T1,. . Tpe1,21, ey 25, Xp) = G(T1y e ooy Tpe1y 21y - - - Z5) (T
:G<Z17"'7Z87$17"'7x7‘—1><w7‘>7
G(z1,...,25,%1,..., %) is also defined, and
G(Z1y. ey 25y 1y o oy Ty = G{T1, oo Tp 1,20, 0oy 25, Tp) = G{X1, ooy Ty 20,000y 25)

The uniqueness of a well-behaved closure is deduced immediately from Theorem 11.

14



Corollary 12. Let P be a well-behaved property of graphs. Let G be a graph and x1, ..., ©,,
z1...,2s € V(G). If both Gy = G{x1,...,x,) and G2 = G(z,...,zs) are P-closures of G,
then G = G5.

Proof. First, note that if H; C Hy and both Hy(y1,...,y:) and Hao(y1, ..., y:) are defined for
Y1,.--, Yt € V(Hy), then Hi{yy,...,y¢) C Ho(yr, ..., ys)-

By Theorem 11, Gi{z1,...,2s) is defined, and since G C Gy, Gy = G{z1,...,25) C
G1(z1,...,2s). However, since G is P-closed, G1(z1,...,2s) = G1. Hence we have G2 C G;.

By symmetry, we also have G; C G2, and hence G; = G3. [

Let H and H' be graphs. If either (a) H' is obtained from H by adding edges (i.e. H is
a spanning subgraph of H'), or (b) H' = H U Kg for some S C V(H') (possibly S ¢ V(H))
with Ng(x) C S for some x € V(H) N S, then we shall say that H' is an extension of H. We
shall also say that a property P is extendable if P is closed under extension. More precisely,

suppose P satisfies the following condition.
(x) If H is a graph satisfying P and H' is an extension of H, then H' satisfies P.
Then P is said to be an extendable property.

Theorem 13.
(1) Every extendable property is well-behaved.
(2) Let P be an extendable property of graphs and let Q be a property of graphs. If H is
a Q-closure of a graph G and G can be completed at © with respect to P, then H can be

completed at x with respect to P.

Proof. First, we prove (1). Let x, y € V(G) and let P be an extendable property of graphs.
Suppose G can be completed at y with respect to P. Then since G(z), is an extension of G,
and P is extendable, G(x) can be completed at y with respect to P. Thus, P is well-behaved.

In order to prove (2), we first note that in the above argument we do not assume G can be
completed at x. Thus, if G can be completed at z with respect to P and H = G(y1,-..,¥s)
is a Q-closure, then H, is obtained from G, by a series of extensions and hence H can be

completed at x with respect to P. [

Now we give a proof of Theorem 1 (1) as a corollary of Theorem 13.
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Corollary 14. The k-closure of a graph is uniquely determined for each k.

Proof. Let Cy be the property of being k-connected, and we prove that Cx is an extendable
property. Then the uniqueness of the k-closure follows from Theorem 13 (1) and Corollary
12. Let G be a k-connected graph and let G’ be an extension of G. If G’ is obtained from G
by adding edges, then clearly G’ is k-connected. Suppose G’ is not obtained from G by edge-
addition. Then G' = G U Kg for some S C V(G') with Ng(z) C S for some z € V(G)N S.
Since G is k-connected, |SNV(G)| > |Ng(z)U{z}| > k+ 1. Thus, G’ is also k-connected. [

As another application of Theorem 13, we consider the property of having bounded inde-

pendence number. Let Ind., be the property of having independence number less than r.
Theorem 15. The property Ind., is extendable.

Proof. Let G be a graph with «(G) < r and let G’ be an extension of G. If G’ is obtained
from G by adding edges, then clearly a(G’) < r. Suppose G’ = G U Kg for some S C V(G’)
with Ng(x) C S for some z € V(G) N S. Let T' be a maximum independent set of G'. Since
G'[S] is complete, [T" N S| < 1. On the other hand, since Ng(z) C S, (T" — S) U {z} is an
independent set of G. Therefore, |77 — S| < a(G) — 1. Thus, |T7| < a(G), which implies
a(G) <a(G)<r. O

Let G be a K ,-free graph. Then G, satisfies Ind., for each € V(G). Since Ind<, is an
extendable property, we have the following corollary from Theorem 13 (2).

Corollary 16. The k-closure of a K, ,-free graph is K; ,-free for each k > 1. [

Theorem A (1) corresponds to the case 7 = 3 in the above corollary.
In order to demonstrate the usefulness of the notion of extendable properties, we prove the
following theorem on Ind3-closure. Note that the Ind3-closure is uniquely determined since

the property Ind.3 is extendable.

Theorem 17. Let G be a graph. Then G has a 1-factor if and only if the Ind . 3-closure of G

has a 1-factor.

Proof. Since GG is a spanning subgraph of its Ind.3-closure, the “only if” part is trivial. In

order to prove the “if” part, we have only to prove the following statement.

(xx) Let G be a graph and let x be a vertex of G with a(G;) < 3. Let G’ be the graph obtained
from G by local completion at x. If G’ has a 1-factor, then G has a 1-factor.
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Assume G has no 1-factor. Choose a 1-factor F' of G’ so that |[F N (E(G') — E(G))] is as
small as possible. By the assumption F'N (E(G') — E(G)) # 0, say ab € F N (E(G') — E(Q)).
Then {a,b} C Ng(z). Since F is a 1-factor of G', xy € F for some y € V(G). Since x ¢ Ng(x),
xy € F(G). Since a(Gy) < 3, {a,b,y} C Ng(z) and ab ¢ E(G), we have either ay € E(G) or
by € E(G). By symmetry we may assume by € E(G). Let Fy = F — {ab, zy} U {ax,by}. Then
Fy is a 1-factor in G’ with |[FyN(E(G') — E(G))| = |[FN(E(G') — E(G))| — 1. This contradicts
the minimality of |[FF N (E(G') — E(G))|. Thus, G has a 1-factor. O

If G is a connected claw-free graph, then G can be completed at every vertex with respect
to Ind<3. Since Ind.3 is an extendable property, we can apply Theorem 13 (2) with P = Q =
Ind<3 to see that the Ind.s-closure of G is complete. Therefore, we have the following result

by Sumner [4] as an immediate corollary.
Corollary 18 ([4]). Every connected claw-free graph of even order has a 1-factor. [
5. Concluding Remarks.

In Theorem 1 (3), we cannot replace “cla(G)” by “cl1(G)” because of Theorem C (3). On the
other hand, in Theorem 1 (2), we have no claw-free graph G such that cl3(G) is hamiltonian-
connected while G is not hamiltonian-connected. Actually, we believe in the following conjec-

ture.

Conjecture 19. Let G be a claw-free graph. Then G is hamiltonian-connected if and only if

cl2(G) is hamiltonian-connected.
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