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Abstract

In [3], the closure cl(G) for a claw-free graph G is de�ned, and it is proved that G is

hamiltonian if and only if cl(G) is hamiltonian. On the other hand, there exist in�nitely many

claw-free graphs G such that G is not hamiltonian-connected (resp. homogeneously traceable)

while cl(G) is hamiltonian-connected (resp. homogeneously traceable). In this paper we de�ne

a new closure cl

k

(G) (k � 1) as a generalization of cl(G) and prove the following theorems. (1)

A claw-free graph G is hamiltonian-connected if and only if cl

3

(G) is hamiltonian-connected.

(2) A claw-free graph G is homogeneously traceable if and only if cl

2

(G) is homogeneously

traceable. We also discuss the uniqueness of the closure.
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1. Introduction.

For graph theoretic notation not de�ned in this paper, we refer the reader to [2]. A vertex

x of a graph G is said to be locally connected if the neighborhood N

G

(x) of x in G induces

a connected graph. A locally connected vertex x is said to be eligible if N

G

(x) induces a

noncomplete graph. For a vertex x of a graph G, we consider the operation of joining every

pair of nonadjacent vertices in N

G

(x) by an edge so that N

G

(x) induces a complete graph in

the resulting graph. This operation is called local completion of G at x. We shall consider a

series of local completions at eligible vertices. For a graph G, let G

0

= G. For i � 0, if G

i

is

de�ned and it has an eligible vertex x

i

, then apply local completion of G

i

at x

i

to obtain a

new graph G

i+1

. If G

i

has no eligible vertex, let cl(G) = G

i

and call it the closure of G. The

above operation was introduced and the following theorems were proved in [3].

Theorem A ([3]). If G is a claw-free graph, then

(1) a graph obtained from G by local completion is also claw-free, and

(2) cl(G) is uniquely determined. �

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if and only if cl(G) is

hamiltonian. �

Recently, several other properties on paths and cycles of a claw-free graph and those of its

closure were studied by Brandt et al. A graph G is said to be hamiltonian-connected if every

pair of distinct vertices of G can be joined by a hamiltonian path of G. And G is said to be

homogeneously traceable if every vertex of G is an endvertex of some hamiltonian path of G.

The following theorem was proved in [1].

Theorem C ([1]).

(1) A claw-free graph G is traceable if and only if cl(G) is traceable.

(2) There exist in�nitely many claw-free graphs G such that cl(G) is hamiltonian-connected

while G is not hamiltonian-connected.

(3) There exist in�nitely many claw-free graphs G such that cl(G) is homogeneously traceable

while G is not homogeneously traceable. �

However, if we impose some restrictions to the vertices used for local completion, homoge-

neous traceability and hamiltonian-connectivity may be preserved under closure. This is the

motivation of this paper.
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A vertex x of a graph G is said to be locally k-connected if N

G

(x) induces a k-connected

graph. We modify the closure so that we allow local completions only at locally k-connected

vertices. More precisely, consider a sequence of local completions G = G

0

; G

1

; : : : ; G

r

= H,

where G

i+1

is obtained from G

i

by local completion at a locally k-connected vertex for each i,

0 � i � r � 1. If H does not have an eligible locally k-connected vertex, we call H a k-closure

of G and denote it by cl

k

(G). We prove the following theorem.

Theorem 1. Let G be a claw-free graph. Then

(1) cl

k

(G) is uniquely determined for each k,

(2) G is hamiltonian-connected if and only if cl

3

(G) is hamiltonian-connected, and

(3) G is homogeneously traceable if and only if cl

2

(G) is homogeneously traceable.

We �rst prove (2) in Section 2. The we prove (3) in Section 3. We postpone the proof of (1)

until Section 4, where we discuss the uniqueness of the closure in a more generalized situation.

Before closing this section we introduce some notation which is used in the subsequent

arguments. For a graph G and S � V (G), the subgraph induced by S is denoted by G[S].

When we consider a path or a cycle, we always assign an orientation to it. Let P = x

0

x

1

� � �x

m

.

We call x

0

and x

m

the starting vertex and the terminal vertex of P , respectively. We de�ne

x

+(P )

i

= x

i+1

and x

�(P )

i

= x

i�1

. Furthermore, we de�ne x

++(P )

i

= x

i+2

. When it is obvious

which path is considered in the context, we sometimes write x

+

i

and x

�

i

instead of x

+(P )

i

and

x

�(P )

i

, respectively. For x

i

, x

j

2 V (P ) with i � j, we denote the subpath x

i

x

i+1

� � �x

j

by

x

i

!

Px

j

. The same path traversed in the opposite direction is denoted by x

j

()

Px

i

. We also use

the same notation for a cycle. A path having x and y as the starting and the terminal vertices,

respectively, is called an xy-path.

Given two graphs G and H, we denote by G[H the graph with the vertex set V (G)[V (H)

and the edge set E(G) [ E(H).

2. Hamiltonian Connectivity.

A graph G is said to be l-path-connected if for every pair of distinct vertices x and y 2 V (G)

there exists an xy-path of length at least l in G. Thus, a graph of order n is hamiltonian-

connected if and only if it is (n � 1)-path-connected. In this section, we prove a theorem on

l-path-connected graphs, which is stronger than Theorem 1 (2).
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Theorem 2. Let G be a claw-free graph and let l be a positive integer. Then G is l-path-

connected if and only if cl

3

(G) is l-path-connected.

The above theorem follows immediately from the following theorem.

Theorem 3. Let G be a claw-free graph and let x, a, b 2 V (G). Suppose a 6= b and N

G

(x)

induces a 3-connected graph in G. Let G

0

be the graph obtained from G by local completion

at x. If G

0

has an ab-path of length l, then G has an ab-path of length at least l.

We prove several lemmas before we prove the above theorem. The �rst one is an easy

observation.

Lemma 4. Let G be a claw-free graph, and let x 2 V (G). Then every induced path in

G[N

G

(x)] has length at most three.

Proof. If G[N

G

(x)] has an induced path P = u

0

u

1

: : : u

l

with l � 4, then fx; u

0

; u

2

; u

4

g forms

a claw in G. This is a contradiction. �

Lemma 5. Let G be a claw-free graph and let x, a, b 2 V (G) with a 6= b. Let G

0

be

the graph obtained from G by local completion at x. If P is a longest ab-path in G

0

with

E(P ) \ (E(G

0

)� E(G)) 6= ;, then N

G

(x) [ fxg � V (P ).

Proof. Let N = E(G

0

) � E(G). Assume x =2 V (P ). Since E(P ) \ N 6= ;, uv 2 E(P ) \ N

for some u, v 2 V (G). We may assume u = v

�

. Then a

!

Puxv

!

Pb is an ab-path in G

0

, which is

longer than P . This is a contradiction. Therefore, x 2 V (P ).

Assume N

G

(x)�V (P ) 6= ;, say v 2 N

G

(x)�V (P ). If a 6= x, then x

�

exists and a

!

Px

�

vx

!

Pb

is an ab-path in G

0

, which is longer than P . If a = x, then a

+

2 N

G

0

(x) exists and ava

+

!

Pb is

an ab-path in G

0

, which is longer than P . Therefore, we have a contradiction in either case. �

Lemma 6. Let G be a claw-free graph and let x, a, b 2 V (G) with a 6= b. Let G

0

be the graph

obtained from G by local completion at x. Then there exists a longest ab-path P in G

0

with

jE(P ) \ (E(G

0

)� E(G))j � 1.

Proof. Let N = E(G

0

) � E(G), and choose a longest ab-path in G

0

so that jE(P ) \ N j is

as small as possible. Assume jE(P ) \ N j � 2, say e = u

1

v

1

, f = u

2

v

2

2 E(P ) \ N , e 6= f .

By Lemma 5, fxg [ N

G

(x) � V (P ). We may assume u

1

= v

�

1

, u

2

= v

�

2

and v

1

2 a

!

Pu

2

.

Then v

1

6= v

2

and u

1

6= u

2

(possibly v

1

= u

2

). Furthermore, fu

1

; v

1

g [ fu

2

; v

2

g � N

G

(x) and

fu

1

; v

1

g [ fu

2

; v

2

g induces a complete graph in G

0

.
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If v

1

v

2

2 E(G), let P

0

= a

!

Pu

1

u

2

()

Pv

1

v

2

!

Pb. Then P

0

is a longest ab-path in G

0

and E(P

0

) =

E(P ) [ fu

1

u

2

; v

1

v

2

g � fe; fg. Since fe; fg � N and v

1

v

2

=2 N , jE(P

0

) \ N j < jE(P ) \ N j.

This is a contradiction. Hence v

1

v

2

=2 E(G). Similarly, u

1

u

2

=2 E(G). If x 6= b, then x

+

exists

and x

+

, v

1

, v

2

are distinct neighbors of x. Since G is claw-free and v

1

v

2

=2 E(G), we either

have x

+

v

1

2 E(G) or x

+

v

2

2 E(G). We may assume x

+

v

1

2 E(G). If x

+

2 a

!

Pu

1

, then let

P

0

= a

!

Pxu

1

()

Px

+

v

1

!

Pb. If x

+

2 v

+

1

!

Pb, let P

0

= a

!

Pu

1

x

()

Pv

1

x

+

!

Pb. Then in either case P

0

is a

longest ab-path and E(P

0

) = (E(P )�fe; xx

+

g)[fu

1

x; v

1

x

+

g. Since fu

1

x; v

1

x

+

g\N = ; and

e 2 N , we have jE(P

0

) \N j < jE(P ) \N j. This is a contradiction.

If x = b, we can apply the same arguments as above to fb

�

; u

1

; u

2

g � N

G

(b) and obtain a

contradiction. Therefore, the lemma is proved. �

The proof of Theorem 3 is divided into two cases, which deal with x =2 fa; bg and x 2 fa; bg,

respectively. We present both cases as lemmas. Lemma 7 deals with the �rst case, while

Lemma 8 handles the second case.

Lemma 7. Let G be a claw-free graph and let x, a, b be distinct vertices in G. Suppose N

G

(x)

induces a 3-connected graph in G. Let G

0

be the graph obtained from G by local completion

at x. If G

0

has an ab-path of length l, then G has an ab-path of length at least l.

Proof. Let m be the length of a longest ab-path in G

0

. Then m � l. We prove that G has an

ab-path of length at least m. Assume, to the contrary, G has no ab-path of length at least m.

Let N = E(G

0

)� E(G). By the de�nition of local completion, if uv 2 N , then u, v 2 N

G

(x).

Let P be the set of all the longest ab-paths in G

0

. If E(P )\N = ; for some P 2 P, then P is

an ab-path of length m in G. This contradicts the assumption. Therefore, E(P ) \N 6= ; for

each P 2 P. Let P

0

= fP 2 P : jE(P ) \N j = 1g. By Lemma 6, P

0

6= ;.

Let P 2 P

0

. Then fxg [N

G

(x) � V (P ) by Lemma 5. Let E(P ) \N = fuvg with u = v

�

.

We may also assume x 2 a

+

!

Pu

�

(possibly x = u

�

). If x

�

x

+

2 E(G), then a

!

Px

�

x

+

!

Puxv

!

Pb

is an ab-path of length m in G. This contradicts the assumption. Thus, x

�

x

+

=2 E(G). If

ux

�

2 E(G), then a

!

Px

�

u

()

Pxv

!

Pb is an ab-path of length m in G, again a contradiction. Hence

ux

�

=2 E(G). If vx

+

2 E(G), then a

!

Pxu

()

Px

+

v

!

Pb is an ab-path of length m in G. This is a

contradiction, and hence vx

+

=2 E(G). If u 6= x

+

, then fx; v; u; x

+

g does not form a claw in

G, and hence ux

+

2 E(G). By the assumption v 6= x

�

, and since fx; x

�

; u; vg does not form

a claw in G, vx

�

2 E(G).
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Suppose fa; bg 6= fv; x

�

g for some choice of P 2 P

0

. Since N

G

(x) induces a 3-connected

graph in G, there is a path Q which starts at fu; x

+

g and ends at fv; x

�

g�fa; bg in G[N

G

(x)�

fa; bg]. Choose such P 2 P

0

and the path Q so that Q is as short as possible. Since

fuv; x

�

x

+

; x

�

u; x

+

vg � N , we can use a

!

Px

�

x

+

!

Puxv

!

Pb, a

!

Pxu

()

Px

+

v

!

Pb and a

!

Px

�

u

()

Pxv

!

Pb

instead of P to switch the role of u and x

+

. Similarly, we can switch the role of v and x

�

.

Therefore, we may assume Q starts at u and ends at v. Let a

1

= u

+(Q)

. Note that a

1

2 N

G

(x)

and hence a

1

v 2 E(G

0

). Furthermore, a

1

2 V (P ) by Lemma 5. First, suppose a

1

2 x

+

!

Pu.

By the minimality of Q, a

1

2 x

++

!

Pu

�

. This implies u 6= x

+

. If a

+(P )

1

a

�(P )

1

2 E(G), let

P

0

= a

!

Px

�

xx

+

!

Pa

�(P )

1

a

+(P )

1

!

Pua

1

v

!

Pb. If a

+(P )

1

x 2 E(G), let P

0

= a

!

Px

�

xa

+(P )

1

!

Pux

+

!

Pa

1

v

!

Pb.

If a

�(P )

1

x 2 E(G), then let P

0

= a

!

Px

�

xa

�(P )

1

()

Px

+

u

()

Pa

1

v

!

Pb. Then in each case P

0

2 P,

jE(P

0

) \ N j � 1 and a

1

!

Qv is shorter than Q. This contradicts the choice of (P;Q). Thus,

fa

+(P )

1

; a

�(P )

1

; xg � N

G

(a

1

) is an independent set. Since G is claw-free, this is a contradiction.

Therefore, we have a

1

=2 x

+

!

Pu. This implies a

1

2 a

!

Px

�

[ v

!

Pb.

Suppose a

1

2 a

!

Px

�

. Since a =2 V (Q) and x

�

=2 N

G

(u), a

1

2 a

+

!

Px

��

. If a

�(P )

1

a

+(P )

1

2

E(G), let P

0

= a

!

Pa

�(P )

1

a

+(P )

1

x

�

xx

+

!

Pua

1

v

!

Pb. Then P

0

2 P, jE(P

0

) \ N j � 1 and a

1

!

Qv is

shorter than Q. If a

+(P )

1

x 2 E(G), then a

!

Pa

1

u

()

Px

+

xa

+(P )

1

!

Px

�

v

!

Pb is an ab-path of length m

in G. If a

�(P )

1

x 2 E(G), then a

!

Pa

�(P )

1

xx

+

!

Pua

1

!

Px

�

v

!

Pb is an ab-path of length m in G. Hence

we have a contradiction in each case. Therefore, fa

�(P )

1

; a

+(P )

1

; xg � N

G

(a

1

) is an independent

set in G. Since G is claw-free, this is a contradiction. If a

1

2 v

!

Pb, we have a contradiction by

similar arguments.

Therefore, we have fa; bg = fx

�

; vg for each P 2 P

0

. Then a = x

�

and b = v. We consider

a path Q in N

G

(x) from fx

+

; ug to fa; bg. Choose P 2 P

0

and Q so that Q is as short as

possible. We may assume Q starts at u and ends at b. Let a

1

= u

+(Q)

. Since fa; bg\N

G

(u) = ;,

a

1

=2 fa; bg. Thus, a

1

2 x

+

!

Pu. Then we have a contradiction by applying the same arguments

as in the previous paragraph to fx; a

�(P )

1

; a

+(P )

1

g � N

G

(a

1

). �

A sequence L = x

0

x

1

: : : x

l

of vertices is said to be a lollipop if

(1) x

0

x

1

: : : x

l�1

is a path, and

(2) x

l�1

x

l

2 E(G) and x

l

= x

i

for some i, 1 � i � l � 2.

We say L starts at x

0

and ends at x

l

. We also say that l is the length of L. We call the

subsequence x

i

x

i+1

: : : x

l

the candy of L, and the path x

0

; x

1

; : : : ; x

i

the stick of L, respectively.

If i < l � 2 the candy is a cycle. If i = l � 2, then the candy is just one edge traversed twice.
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In this case we say that L is a trivial lollipop.

Lemma 8. Let G be a claw-free graph and let x and a be distinct vertices of G. Suppose

N

G

(x) induces a 3-connected graph in G, and let G

0

be the graph obtained from G by local

completion at x. If G

0

has an ax-path of length l, then G has an ax-path of length at least l.

Proof. Let m be the length of a longest ax-path in G

0

. Then m � l. We prove that G

has an ax-path of length at least m. Assume G has no ax-path of length at least m. Let

N = E(G

0

)� E(G). By the assumption and Lemma 6, there exists a longest ax-path P in G

0

with jE(P )\N j = 1. Let E(P )\N = fuvg with u = v

�

. Then fu; vg � N

G

(x) and a

!

Pux

()

Pvx

is a lollipop of length m + 1 in G which starts at a and ends at x. Let L be the set of all the

lollipops of length m+ 1 starting at a and ending at x in G. We consider two cases.

Case 1. There exists a nontrivial lollipop in L.

Let L 2 L be a nontrivial lollipop. Let P be the stick of L and C be the candy of L.

Let u = x

�(P )

, v = x

+(C)

and w = x

�(C)

. Since L is nontrivial, w 6= v. If uv 2 E(G),

then a

!

Puv

!

Cx is an ax-path of length m in G. This contradicts the assumption. Therefore,

uv =2 E(G). Similarly, uw =2 E(G). Since fx; u; v; wg does not form a claw in G, vw 2 E(G).

We consider two subcases.

Subcase 1.1 a 6= u for some choice of a nontrivial lollipop L 2 L.

Since N

G

(x) induces a 3-connected graph, there exists a path Q which joins v and u in

N

G

(x) � fa; wg. Furthermore, there exists a path R which joins w and u in N

G

(x) � fa; vg.

Choose such L, Q and R so that

(1) Q is as short as possible, and

(2) R is as short as possible, subject to (1).

Since uv, uw =2 E(G), both Q and R have length at least two. On the other hand, since

Q and R are induced paths in N

G

(x), both of them have length at most three by Lemma 4.

Since a

!

Puv

!

Cwx is an ax-path of length m in G

0

and uv 2 E(G

0

)� E(G), N

G

(x) � V (L) by

Lemma 5. Therefore, V (Q) [ V (R) � V (L). However, possibly V (Q) \ V (R)� fug 6= ;.

Let a

1

= v

+(Q)

. Then a

1

2 v

!

Cw or a

1

2 a

!

Pu

�

.

Claim 1. a

1

2 a

!

Pu

�

Proof. Assume a

1

2 v

!

Cw. Since a

1

=2 fv; wg, a

1

2 v

+

!

Cw

�

. If a

+(C)

1

a

�(C)

1

2 E(G), let

8



C

0

= xa

1

v

!

Ca

�(C)

1

a

+(C)

1

!

Cx. Then P [ C

0

2 L, fx

+(C

0

)

; x

�(C

0

)

g = fw; a

1

g and a

1

!

Qu is shorter

than Q and avoids w. This contradicts the choice of (L;Q). If a

+(C)

1

x 2 E(G), then let C

0

=

xa

1

()

Cvw

()

Ca

+(C)

1

x. Then P [C

0

2 L and fx

+(C

0

)

; x

�(C

0

)

g = fa

1

; a

+(C)

1

g. Since a

1

!

Qu is shorter

than Q, this contradicts the choice of (L;Q) if a

+(C)

1

=2 V (Q). Thus, we have a

+(C)

1

2 V (Q).

Since the length of Q is at most three, this implies Q = va

1

a

+(C)

1

u. Then a

!

Pua

+(C)

1

!

Cwv

!

Ca

1

x

is an ax-path of length m in G. This is a contradiction. By a similar argument we have a

contradiction if a

�(C)

1

x 2 E(G). Thus, fx; a

+(C)

1

; a

�(C)

1

g is an independent set in G. Since

fx; a

+(C)

1

; a

�(C)

1

g � N

G

(a

1

) and G is claw-free, this is a contradiction. Therefore, the claim is

proved. �

Claim 2. a

�(P )

1

a

+(P )

1

=2 E(G), a

+(P )

1

v =2 E(G) and a

�(P )

1

v 2 E(G)

Proof. First, note a

�(P )

1

and a

+(P )

1

exist since a

1

=2 fa; xg. Suppose a

�(P )

1

a

+(P )

1

2 E(G). Then

let P

0

= a

!

Pa

�(P )

1

a

+(P )

1

!

Px and C

0

= xa

1

v

!

Cx. Then P

0

[C

0

2 L and fx

+(C

0

)

; x

�(C

0

)

g = fa

1

; wg.

Since a

1

!

Qu is shorter than Q and avoids w, this contradicts the choice of (L;Q).

Next, suppose a

+(P )

1

v 2 E(G). If a

1

w 2 E(G), then a

!

Pa

1

w

()

Cva

+(P )

1

!

Px is an ax-path of

length m in G. If a

1

u 2 E(G), then a

!

Pa

1

u

()

Pa

+(P )

1

v

!

Cwx is an ax-path of length m in G.

Both contradict the assumption, and hence a

1

w, a

1

u =2 E(G). Then since uw =2 E(G) and

fu;w; a

1

g � N

G

(x) (note u 6= a

1

), fx; u; w; a

1

g forms a claw in G. This is a contradiction.

Therefore, a

+(P )

1

v =2 E(G).

Since fa

�(P )

1

; a

+(P )

1

; vg � N

G

(a

1

), a

�(P )

1

a

+(P )

1

=2 E(G), and a

+(P )

1

v =2 E(G), we have

a

�(P )

1

v 2 E(G). �

Claim 3. a

1

u 2 E(G)

Proof. If a

1

w 2 E(G), then a

!

Pa

�(P )

1

v

!

Cwa

1

!

Px is an ax-path of length m in G, a contradiction.

Since uw =2 E(G) and fx; a

1

; w; ug does not form a claw, we have a

1

u 2 E(G). �

Since a

1

u 2 E(G), we have Q = va

1

u.

Let b

1

= w

+(R)

(possibly b

1

2 V (Q)). Then b

1

2 a

+

!

Pu

�

or b

1

2 v

+

!

Cw

�

. Because of the

nonsymmetric choice of Q and R, the proof of the next claim is di�erent from that of Claim 1.

Claim 4. b

1

2 a

+

!

Pu

�

Proof. Assume b

1

2 v

+

!

Cw

�

. First, we claim b

+(C)

1

x 2 E(G). Assume the contrary. Since

fb

1

; x; b

+(C)

1

; b

�(C)

1

g does not form a claw in G, b

+(C)

1

b

�(C)

1

2 E(G) or xb

�(C)

1

2 E(G). If

9



b

+(C)

1

b

�(C)

1

2 E(G), then let C

0

= xv

!

Cb

�(C)

1

b

+(C)

1

!

Cwb

1

x. Then P[C

0

2 L and fx

�(C

0

)

; x

+(C

0

)

g

= fv; b

1

g. Since Q = va

1

u avoids b

1

and b

1

!

Ru is shorter than R, this contradicts the choice

of (L;Q;R). Thus, we have xb

�(C)

1

2 E(G). Consider fx; u; w; b

�(C)

1

g. Since uw =2 E(G), we

have ub

�(C)

1

2 E(G) or wb

�(C)

1

2 E(G). If ub

�(C)

1

2 E(G), then a

!

Pub

�(C)

()

Cvw

()

Cb

1

x is an

ax-path of length m in G, a contradiction. If wb

�(C)

1

2 E(G), let C

0

= xv

!

Cb

�(C)

1

w

()

Cb

1

x. Then

P [C

0

2 L and fx

�(C

0

)

; x

+(C

0

)

g = fv; b

1

g. Since Q = va

1

u avoids b

1

and b

1

!

Ru is shorter than

R, this contradicts the choice of (L;Q;R). Therefore, we have b

+(C)

1

x 2 E(G).

If ub

+(C)

1

2 E(G), then a

!

Pub

+(C)

1

!

Cwv

!

Cb

1

x is an ax-path of length m in G, a contradiction.

Therefore, since uv =2 E(G) and fx; u; v; b

+(C)

g does not form a claw in G, we have vb

+

1

2 E(G).

If a

�(P )

1

v

+(C)

2 E(G), then a

!

Pa

�(P )

1

v

+(C)

!

Cwva

1

!

Pux is an ax-path of length m in G, a

contradiction. If a

�(P )

1

b

+(C)

1

2 E(G), then a

!

Pa

�(P )

1

b

+(C)

1

!

Cwb

1

()

Cva

1

!

Pux is an ax-path of length

m, a contradiction. If v

+(C)

b

+(C)

1

2 E(G), let C

0

= xvw

()

Cb

+

1

v

+(C)

!

Cb

1

x. Then P [ C

0

2 L is a

lollipop of length l and fx

�(C

0

)

; x

+(C

0

)

g = fv; b

1

g. Since Q = va

1

u avoids b

1

and b

1

Ru is shorter

than R, this contradicts the choice of (L;Q;R). Therefore, fa

�(P )

1

; v

+(C)

; b

+(C)

1

g � N

G

(v) is

an independent set in G. Since G is claw-free, this is a contradiction. Therefore, the claim

follows. �

Claim 5. b

�(P )

1

b

+(P )

1

=2 E(G), b

+(P )

1

w =2 E(G), b

�(P )

1

w 2 E(G) and b

1

u 2 E(G).

Proof. Note b

�(P )

1

and b

+(P )

1

exist since b

1

=2 fa; xg. We �rst prove b

�(P )

1

b

+(P )

1

=2 E(G).

This trivially follows from Claim 2 if a

1

= b

1

. Hence we may assume a

1

6= b

1

. Assume

b

�(P )

1

b

+(P )

1

2 E(G). Let P

0

= a

!

Pb

�(P )

1

b

+(P )

1

!

Px and C

0

= xv

!

Cwb

1

x. Then P

0

[ C

0

2 L and

fx

+(C

0

)

; x

�(C

0

)

g = fv; b

1

g. Since a

1

6= b

1

, Q = va

1

u avoids b

1

. Since b

1

!

Ru is shorter than R,

this contradicts the choice of (L;Q;R). Thus, we have b

�(P )

1

b

+(P )

1

=2 E(G).

Once we have b

�(P )

1

b

+(P )

1

=2 E(G), we obtain b

+(P )

1

w =2 E(G), b

�(P )

1

w 2 E(G) and b

1

u 2

E(G) by the same arguments as those in the proofs of Claim 2 and Claim 3. �

If a

1

2 a

!

Pb

�(P )

1

, then a

!

Pa

�(P )

1

v

!

Cwb

�(P )

1

()

Pa

1

u

()

Pb

1

x is an ax-path of length m. If a

1

2

b

+(P )

1

!

Pu

�

, then a

!

Pb

�(P )

1

w

()

Cva

�(P )

1

()

Pb

1

u

()

Pa

1

x is an ax-path of length m in G. Finally, if

a

1

= b

1

, then a

!

Pa

�(P )

1

v

!

Cwa

1

!

Px is an ax-path of length m in G. Therefore, we have a

contradiction in each case, and the proof is complete in this subcase.

Subcase 1.2 a = u for any choice of a nontrivial lollipop L 2 L.
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There exists a path Q from fv; wg to a in G[N

G

(x)]. Choose nontrivial L 2 L and Q so that

Q is as short as possible. We may assume Q starts at v. Since av

!

Cx is an ax-path of lengthm in

G

0

, V (Q) � V (L) by Lemma 5. Let a

1

= v

+(Q)

. Then a

1

2 v

+

!

Cw

�

. If a

�(C)

1

a

+(C)

1

2 E(G), let

C

0

= xa

1

v

!

Ca

�(C)

1

a

+(C)

1

!

Cwx. If a

+(C)

1

x 2 E(G), let C

0

= xa

1

()

Cvw

()

Ca

+(C)

1

x. If a

�(C)

1

x 2 E(G),

let C

0

= xa

1

!

Cwv

!

Ca

�(C)

1

x. Then in each case ax [ C

0

2 L and a

1

!

Qa is shorter than Q. This

contradicts the choice of (L;Q).

Case 2. All the lollipops in L are trivial.

Since G has no ax-path of length at least m, m � 2. Let L 2 L and let P be the stick of L

and xv be the candy of L. Let u = x

�(P )

. If uv 2 E(G), then a

!

Puvx is an ax-path of length

m in G, a contradiction. Thus, uv =2 E(G). If m = 2, then a = u and hence a 2 N

G

(x). Then

since N

G

(x) induces a connected graph in G, there exists a vu-path in G[N

G

(x)], and hence G

has an ax-path of length at least two. Therefore, m � 3. In particular, a 6= u.

Since x is a locally 3-connected vertex, there exists a vu-path Q in G[N

G

(x)]� fa; u

�(P )

g

(or G[N

G

(x)]� a if a = u

�(P )

). Let a

1

= v

+(Q)

. Since a

!

Puvx is an ax-path of length m in G

0

,

V (Q) � V (L) by Lemma 5 and hence a

1

2 V (P )�fa; u; u

�(P )

g. Consider fa

1

; a

�(P )

1

; a

+(P )

1

; xg.

If a

�(P )

1

a

+(P )

1

2 E(G), then let P

0

= a

!

Pa

�(P )

1

a

+(P )

1

!

Pux and C

0

= xva

1

x. If a

�

1

x 2 E(G), then

let P

0

= a

!

Pa

�(P )

1

x and C

0

= xva

1

!

Pux. Suppose a

+(P )

1

x 2 E(G). Since a

1

6= u

�(P )

, a

+(P )

1

6= u.

Let P

0

= a

!

Pa

1

vx and C

0

= xa

+

1

!

Pux. Then in each case P

0

[C

0

2 L and it is nontrivial. This

contradicts the assumption of the case, and the lemma is proved. �

3. Homogeneous Traceability.

We prove Theorem 1 (2) by using the same proof strategy as that given in Section 2. A

path starting at a vertex v is said to be a v-path. We prove the following theorem, which is

similar to Theorem 3 in Section 2.

Theorem 9. Let G be a claw-free graph and let x, a 2 V (G). Suppose N

G

(x) induces a

2-connected graph in G. Let G

0

be the graph obtained from G by local completion at x. If G

0

has an a-path of length l, then G has an a-path of length l.

Actually, its proof is almost the same as those of Lemmas 7 and 8 in Section 2.

Proof. Let m be the length of a longest a-path in G

0

. Then m � l. We prove that G

has an a-path of length at least m. Assume, to the contrary, G has no a-paths of length

11



at least m. Let N = E(G

0

) � E(G). Let P be the set of all the longest a-paths in G

0

.

If P 2 P, then fxg [ N

G

(x) � V (P ) by Lemma 5 since P is a longest ab-path for some

b 2 V (G) � fag. Furthermore, by the assumption and Lemma 6, jE(P ) \ N j = 1 for some

P 2 P. Let P

0

= fP 2 P : jE(P ) \N j = 1g.

Let P 2 P

0

and let E(P ) \ N = fuvg with u = v

�

. Let b be the terminal vertex of P .

First, suppose a 6= x. If x = b, then a

!

Pux

()

Pv is an a-path of length m in G. This contradicts

the assumption. Therefore, x 2 a

+

!

Pu

�

[ v

+

!

Pb

�

. Suppose x 2 a

+

!

Pu

�

. Then by the same

arguments as in the proof of Lemma 7, we have fx

�

x

+

; x

�

u; vx

+

g \ E(G) = ;, vx

�

2 E(G),

and ux

+

2 E(G) if u 6= x

+

. Since G[N

G

(x)] is 2-connected, there exists a path Q with

V (Q) � N

G

(x)� fag which starts at fu; x

+

g and ends at fv; x

�

g � fag. Now choose P 2 P

0

and Q so that Q is as short as possible. Since we can use a

!

Px

�

x

+

!

Puxv

!

Pb instead of P to

switch the role of x

+

and u, we may assume Q starts at u. Let a

1

= u

+(Q)

. If a

1

6= b, then

we can follow the same arguments as in the proof of Lemma 7, and obtain a contradiction.

If a

1

= b, then a

!

Pub

()

Pv is an a-path of length m in G. This is a contradiction. We reach a

contradiction by similar arguments if x 2 v

+

!

Pb

�

.

Next, suppose a = x. Then b

()

Pvx

!

Pux is a lollipop of length m + 1 which starts at b and

ends at x in G. Let L be the set of all the lollipops of length m + 1 starting at b and ending

at x.

Suppose L has a nontrivial lollipop L. Let P and C be the stick and the candy of L,

respectively, and u = x

�(P )

, v = x

+(C)

and w = x

�(C)

. By the same argument as in the proof

of Lemma 8, we have fuv; uwg \ E(G) = ; and vw 2 E(G).

If b 6= u for some choice of L 2 L, choose such L, a path Q in N

G

(x) � fwg which joins v

and u, and a path R in N

G

(x)� fvg which joins w and u so that

(1) Q is as short as possible, and

(2) R is as short as possible, subject to (1).

Let a

1

= v

+(Q)

and b

1

= w

+(R)

. If b =2 fa

1

; b

1

g, we can follow the same arguments as in

Subcase 1.1 of the proof of Lemma 8, and obtain a contradiction. If a

1

= b, then xw

()

Cvb

!

Pu

is a path of length m in G. If b

1

= b, then xv

!

Cwb

!

Pu is a path of length m in G. Therefore,

we have a contradiction in each case. If b = u for any choice of L 2 L, then we can follow the

same arguments as in Subcase 1.2 of the proof of Lemma 8 to obtain a contradiction.

Suppose all the lollipops in L are trivial. Then m � 2. Let P be the stick of L and let xv

12



be the candy of L. Let u = x

�(P )

. Then by the same argument as in the proof of Lemma 8,

we have uv =2 E(G), m � 3 and b 6= u. Let Q be a vu-path in G[N

G

(x) � fu

�(P )

g] and let

a

1

= v

+(Q)

. If a

1

6= b, we can follow the same arguments as in Case 2 of the proof of Lemma

8, and obtain a contradiction. If a

1

= b, then x

()

Pbv is a path of length m in G. This is a �nal

contradiction, and the theorem follows. �

4. The Uniqueness of the Closure

In this section we consider the uniqueness of a closure in a more generalized situation. For

a vertex x in a graph G we shall write G

x

for the graph induced by N

G

(x). Let Ghxi be

the graph obtained from G by local completion at x. For x

1

, x

2

; : : : ; x

r

2 V (G), we write

Ghx

1

; x

2

; : : : ; x

r

i for Ghx

1

ihx

2

i : : : hx

r

i. Given a property P of graphs, we shall say that G can

be completed at x with respect to P if G

x

satis�es P. Thus, if P

0

is the property of being

connected and noncomplete, an eligible vertex is a vertex which can be completed with respect

to P

0

. A graph G is said to be P-closed if G

x

is complete for every vertex x with G

x

satisfying

P. For x

1

; : : : ; x

r

2 V (G), if G = Ghx

1

; : : : ; x

r

i is P-closed, we shall say that G is a P-closure

of G. In this context, a k-closure is a P-closure, where P is the property of k-connectedness.

If P-closures are to be unique, then we expect that if G can be completed at either of x and

y with respect to P, then it can be completed at both { i.e. that Ghxi can be completed at y

with respect to P. Motivated by this observation, we introduce the following de�nition.

For vertices x

1

, x

2

; : : : ; x

r

in G we shall say that Ghx

1

; x

2

; : : : ; x

r

i is de�ned with respect to

P if

8

>

<

>

:

G can be completed at x

1

with respect to P if r = 1

Ghx

1

; : : : ; x

r�1

i is de�ned with respect to P

and Ghx

1

; : : : ; x

r�1

i can be completed at x

r

with respect to P if r � 2.

If the property P is clear in the context, we sometimes omit \with respect to P", and simply

say that \Ghx

1

; x

2

; : : : ; x

r

i is de�ned". A property P of graphs G is said to be well-behaved if

Ghx; yi is de�ned whenever both Ghxi and Ghyi are de�ned with respect to P.

If P is a well-behaved property of graphs and both Ghxi and Ghyi are de�ned with respect

to P, then both Ghx; yi and Ghy; xi are de�ned with respect to P. Furthermore, due to the

nature of local completion, they are the same.

For a set S, let K

S

be the complete graph whose vertex set is S.
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Lemma 10. Let P be a property of graphs. For a graph G and x, y 2 V (G), if both Ghx; yi

and Ghy; xi are de�ned, then Ghx; yi = Ghy; xi.

Proof. If xy =2 E(G), then

Ghx; yi = G [K

N

G

(x)

[K

N

G

(y)

= G [K

N

G

(y)

[K

N

G

(x)

= Ghy; xi:

If xy 2 E(G), then

Ghx; yi = G [K

N

G

(x)[N

G

(y)[fx;yg

= G [K

N

G

(y)[N

G

(x)[fx;yg

= Ghy; xi: �

Note that we do not assume that P is well-behaved in the above lemma. This lemma holds

even if P is not well-behaved.

Now we prove the following theorem.

Theorem 11. Let P be a well-behaved property of graphs, and let G be a graph and

x

1

; : : : ; x

r

; z

1

; : : : ; z

s

2 V (G). If both Ghx

1

; : : : ; x

r

i and Ghz

1

; : : : ; z

s

i are de�ned with re-

spect to P, then both Ghx

1

; : : : ; x

r

; z

1

; : : : ; z

s

i and Ghz

1

; : : : ; z

s

; x

1

; : : : ; x

r

i are de�ned, and

they are the same.

Proof. We proceed by induction on r+s. If r = s = 1, then the theorem follows by the assump-

tion and Lemma 10. Suppose r+s > 2. By symmetry we may assume r > 1. By the assumption

Ghx

1

; : : : ; x

r�1

i is de�ned. Then by the induction hypothesis both Ghx

1

; : : : ; x

r�1

; z

1

; : : : ; z

s

i

and Ghz

1

; : : : ; z

s

; x

1

; : : : ; x

r�1

i are de�ned and they are the same. Since Ghx

1

; : : : ; x

r�1

ihx

r

i

and Ghx

1

; : : : ; x

r�1

ihz

1

; : : : ; z

s

i are de�ned, we can apply the induction hypothesis again to see

that Ghx

1

; : : : ; x

r�1

; x

r

; z

1

; : : : ; z

s

i and Ghx

1

; : : : ; x

r�1

; z

1

; : : : ; z

s

; x

r

i are de�ned, and they are

the same. However, since

Ghx

1

; : : : ; x

r�1

; z

1

; : : : ; z

s

; x

r

i = Ghx

1

; : : : ; x

r�1

; z

1

; : : : ; z

s

ihx

r

i

= Ghz

1

; : : : ; z

s

; x

1

; : : : ; x

r�1

ihx

r

i;

Ghz

1

; : : : ; z

s

; x

1

; : : : ; x

r

i is also de�ned, and

Ghz

1

; : : : ; z

s

; x

1

; : : : ; x

r

i = Ghx

1

; : : : ; x

r�1

; z

1

; : : : ; z

s

; x

r

i = Ghx

1

; : : : ; x

r

; z

1

; : : : ; z

s

i �

The uniqueness of a well-behaved closure is deduced immediately from Theorem 11.
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Corollary 12. Let P be a well-behaved property of graphs. Let G be a graph and x

1

; : : : ; x

r

,

z

1

: : : ; z

s

2 V (G). If both G

1

= Ghx

1

; : : : ; x

r

i and G

2

= Ghz

1

; : : : ; z

s

i are P-closures of G,

then G

1

= G

2

.

Proof. First, note that if H

1

� H

2

and both H

1

hy

1

; : : : ; y

t

i and H

2

hy

1

; : : : ; y

t

i are de�ned for

y

1

; : : : ; y

t

2 V (H

1

), then H

1

hy

1

; : : : ; y

t

i � H

2

hy

1

; : : : ; y

t

i.

By Theorem 11, G

1

hz

1

; : : : ; z

s

i is de�ned, and since G � G

1

, G

2

= Ghz

1

; : : : ; z

s

i �

G

1

hz

1

; : : : ; z

s

i. However, since G

1

is P-closed, G

1

hz

1

; : : : ; z

s

i = G

1

. Hence we have G

2

� G

1

.

By symmetry, we also have G

1

� G

2

, and hence G

1

= G

2

. �

Let H and H

0

be graphs. If either (a) H

0

is obtained from H by adding edges (i.e. H is

a spanning subgraph of H

0

), or (b) H

0

= H [K

S

for some S � V (H

0

) (possibly S 6� V (H))

with N

H

(x) � S for some x 2 V (H) \ S, then we shall say that H

0

is an extension of H. We

shall also say that a property P is extendable if P is closed under extension. More precisely,

suppose P satis�es the following condition.

(�) If H is a graph satisfying P and H

0

is an extension of H, then H

0

satis�es P.

Then P is said to be an extendable property.

Theorem 13.

(1) Every extendable property is well-behaved.

(2) Let P be an extendable property of graphs and let Q be a property of graphs. If H is

a Q-closure of a graph G and G can be completed at x with respect to P, then H can be

completed at x with respect to P.

Proof. First, we prove (1). Let x, y 2 V (G) and let P be an extendable property of graphs.

Suppose G can be completed at y with respect to P. Then since Ghxi

y

is an extension of G

y

and P is extendable, Ghxi can be completed at y with respect to P. Thus, P is well-behaved.

In order to prove (2), we �rst note that in the above argument we do not assume G can be

completed at x. Thus, if G can be completed at x with respect to P and H = Ghy

1

; : : : ; y

t

i

is a Q-closure, then H

x

is obtained from G

x

by a series of extensions and hence H can be

completed at x with respect to P. �

Now we give a proof of Theorem 1 (1) as a corollary of Theorem 13.
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Corollary 14. The k-closure of a graph is uniquely determined for each k.

Proof. Let C

k

be the property of being k-connected, and we prove that C

k

is an extendable

property. Then the uniqueness of the k-closure follows from Theorem 13 (1) and Corollary

12. Let G be a k-connected graph and let G

0

be an extension of G. If G

0

is obtained from G

by adding edges, then clearly G

0

is k-connected. Suppose G

0

is not obtained from G by edge-

addition. Then G

0

= G [ K

S

for some S � V (G

0

) with N

G

(x) � S for some x 2 V (G) \ S.

Since G is k-connected, jS \ V (G)j � jN

G

(x)[ fxgj � k+1. Thus, G

0

is also k-connected. �

As another application of Theorem 13, we consider the property of having bounded inde-

pendence number. Let Ind

<r

be the property of having independence number less than r.

Theorem 15. The property Ind

<r

is extendable.

Proof. Let G be a graph with �(G) < r and let G

0

be an extension of G. If G

0

is obtained

from G by adding edges, then clearly �(G

0

) < r. Suppose G

0

= G [K

S

for some S � V (G

0

)

with N

G

(x) � S for some x 2 V (G) \ S. Let T

0

be a maximum independent set of G

0

. Since

G

0

[S] is complete, jT

0

\ Sj � 1. On the other hand, since N

G

(x) � S, (T

0

� S) [ fxg is an

independent set of G. Therefore, jT

0

� Sj � �(G) � 1. Thus, jT

0

j � �(G), which implies

�(G

0

) � �(G) < r. �

Let G be a K

1;r

-free graph. Then G

x

satis�es Ind

<r

for each x 2 V (G). Since Ind

<r

is an

extendable property, we have the following corollary from Theorem 13 (2).

Corollary 16. The k-closure of a K

1;r

-free graph is K

1;r

-free for each k � 1. �

Theorem A (1) corresponds to the case r = 3 in the above corollary.

In order to demonstrate the usefulness of the notion of extendable properties, we prove the

following theorem on Ind

<3

-closure. Note that the Ind

<3

-closure is uniquely determined since

the property Ind

<3

is extendable.

Theorem 17. Let G be a graph. Then G has a 1-factor if and only if the Ind

<3

-closure of G

has a 1-factor.

Proof. Since G is a spanning subgraph of its Ind

<3

-closure, the \only if" part is trivial. In

order to prove the \if" part, we have only to prove the following statement.

(��) Let G be a graph and let x be a vertex of G with �(G

x

) < 3. Let G

0

be the graph obtained

from G by local completion at x. If G

0

has a 1-factor, then G has a 1-factor.
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Assume G has no 1-factor. Choose a 1-factor F of G

0

so that jF \ (E(G

0

) � E(G))j is as

small as possible. By the assumption F \ (E(G

0

)� E(G)) 6= ;, say ab 2 F \ (E(G

0

)� E(G)).

Then fa; bg � N

G

(x). Since F is a 1-factor of G

0

, xy 2 F for some y 2 V (G). Since x =2 N

G

(x),

xy 2 E(G). Since �(G

x

) < 3, fa; b; yg � N

G

(x) and ab =2 E(G), we have either ay 2 E(G) or

by 2 E(G). By symmetry we may assume by 2 E(G). Let F

0

= F � fab; xyg[ fax; byg. Then

F

0

is a 1-factor in G

0

with jF

0

\ (E(G

0

)�E(G))j = jF \ (E(G

0

)�E(G))j � 1. This contradicts

the minimality of jF \ (E(G

0

)� E(G))j. Thus, G has a 1-factor. �

If G is a connected claw-free graph, then G can be completed at every vertex with respect

to Ind

<3

. Since Ind

<3

is an extendable property, we can apply Theorem 13 (2) with P = Q =

Ind

<3

to see that the Ind

<3

-closure of G is complete. Therefore, we have the following result

by Sumner [4] as an immediate corollary.

Corollary 18 ([4]). Every connected claw-free graph of even order has a 1-factor. �

5. Concluding Remarks.

In Theorem 1 (3), we cannot replace \cl

2

(G)" by \cl

1

(G)" because of Theorem C (3). On the

other hand, in Theorem 1 (2), we have no claw-free graph G such that cl

2

(G) is hamiltonian-

connected while G is not hamiltonian-connected. Actually, we believe in the following conjec-

ture.

Conjecture 19. Let G be a claw-free graph. Then G is hamiltonian-connected if and only if

cl

2

(G) is hamiltonian-connected.
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