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Abstract

We study the stability of some classes of graphs defined in terms of forbidden sub-
graphs under the closure operation introduced by the second author. Using these
results, we prove that every 2-connected claw-free and Pr-free, or claw-free and Z4-
free, or claw-free and eiffel-free graph is either hamiltonian or belongs to a certain
class of exceptions (all of them having connectivity 2).

1 Introduction

In this paper we consider only finite undirected graphs G = (V(G), E(G)) without loops
and multiple edges. For terminology and notation not defined here we refer to [3].

If Hy,...,Hy(k > 1) are graphs, then we say that a graph G is Hy ... Hy-free if ¢
contains no copy of any of the graphs Hi,..., H; as an induced subgraph; the graphs
Hy, ..., H; will be also referred to in this context as forbidden subgraphs. Specifically, the
four-vertex star K3 will be also denoted by €' and called the claw and in this case we
say that G is claw-free. Whenever we list vertices of an induced claw, its center, (i.e. its
only vertex of degree 3) is always the first vertex of the list. Further graphs that will be
often considered as forbidden subgraphs are shown in Fig. 1.
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If A C V(G), then the induced subgraph on A in G will be denoted by (A)s (or
simply by (A)). A 2-element cutset of G will be called a biarticulation of G and, if
A C V(@) is a biarticulation of ¢, then the components of the graph (V(G) \ A) will be
called the bicomponents of G. By a clique we mean a (not necessarily maximal) complete
subgraph of (. We denote by Py (k > 2) the path on k vertices, i.e. of length k£ — 1. For
A, B C V((@), a path in GG having one endvertex in A and the other in B will be referred
to as an (A, B)-path. The circumference of GG (i.e. the length of a longest cycle in () is

denoted by ¢(() and the independence number of (i (i.e. the size of a largest independent
set in (7) is denoted by a(G).

One of the first results on forbidden subgraphs and hamiltonicity is by Goodman and
Hedetniemi [12].

Theorem A [12]. Every 2-connected C Z;-free graph is hamiltonian.

This result was extended to the larger class of C'N-free graphs by Duffus, Gould and
Jacobson [T7].

Theorem B [7]. Every 2-connected C' N-free graph is hamiltonian.

Concerning other pairs and triples of forbidden subgraphs, the following results were

proved in [13], [5] and [11].



Theorem C.

(i) [13] Every 2-connected C Zy-free graph is hamiltonian.
(ii) [5] Every 2-connected C Ps-free graph is hamiltonian.
(iii) [13] Every 2-connected C H Zs-free graph is hamiltonian.
(iv) [5] Every 2-connected C D P;-free graph is hamiltonian.
(v) [11] Every 2-connected C H P;-free graph is hamiltonian.

Bedrossian [1] characterized all pairs of connected forbidden subgraphs X, Y such that
every 2-connected X, Y-free graph is hamiltonian.

Theorem D [1]. Let X and Y be connected graphs with X, Y # Ps, and let (¢ be a
2-connected graph that is not a cycle. Then, GG being XY -free implies G is hamiltonian
if and only if (up to symmetry) X = C and Y = Py, Ps, Ps,Cs, 71,75, B, N or W.

Following [6], we denote by P the class of all graphs that are obtained by taking two
vertex-disjoint triangles ({a1, a2, as}), ({b1,b2,b5}) and by joining every pair of vertices
{a;, b;} by a copy of a path Py, = a;clc?. .. cfi_Zbi for k; > 3 or by a triangle ({a;, b;, ¢;}).
We denote a graph from P by Py, ., 4., where x; = k; it a;, b; are joined by a copy of Py,
and x; =T, if a;,b; are joined by a triangle (see Fig. 2).
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Figure 2

Since, as shown in [9], Prrr and Ps g p are the only two 2-connected nonhamiltonian
C Zs-free graphs, Theorem D was extended by Faudree and Gould [10] in the following
way (where the proof of the "only if” part of Theorem E is now based on infinite families
of nonhamiltonian graphs).

Theorem E [10]. Let X and Y be connected graphs with X, Y # Ps, and let GG be a
2-connected graph of order n > 10. Then, GG being XY -free implies GG is hamiltonian if
an only if (up to symmetry) X = C and Y = Py, Ps, Ps,Cs, 71, 75, Z3, B, N or W.

The following theorem was proved in [6].

Theorem F [6]. Every nonhamiltonian 2-connected claw-free graph contains an induced

subgraph H € P.

Note that Theorem F implies the ”if” part of Theorem E as an immediate corollary.
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For any z € V(&) and any i > 1, the set N5(z) = {y € V(G)]| dist(z,y) = i} (where
dist(x, y) denotes the distance of x and y) is called the neighborhood of x at distance 1.
The neighborhood of x at distance 1 will be simply called neighborhood of x and denoted
by Ne(x).

It is easy to see that a graph G is claw-free if and only if a({Ng(x))) < 2 for every
x € V(). Shepherd [15] introduced the following concept.

A graph ( is said to be distance claw-free if a({Ng(x))) < 2 for every x € V() and
i > 1. The following theorem was proved in [15].

Theorem G [15].
(i) A graph G is distance claw-free if and only if G is C ET-free.
(ii) Every 2-connected distance claw-free graph is traceable.
(iii) Every 3-connected distance claw-free graph is hamiltonian.

We say that a vertex @ € V() is locally connected (eligible, simplicial, locally dis-
connected) if the subgraph (Ng(x)) is connected (connected noncomplete, complete, dis-
connected). The set of all locally connected (eligible, simplicial, locally disconnected)
vertices of G will be denoted by Vi (G) (Ver(G), Vsi(G), Vip(G)), respectively. Thus,
the sets Ve (G), Vsr(G), Vip(G) are pairwise disjoint, Ve (G) U Vsi(G) = Vie(G) and
Vie(G)U Vip(G) = V(G).

For an eligible vertex « € Vg (G) set B, = {uv] u,v € Ng(x),uv ¢ E(G)} and let G,
be the graph with vertex set V(G”) = V(G') and with edge set F(G)) = E(G)U B, (i.e.,
(. is obtained from GG by adding to (Ng(2))« the set B, of all missing edges). The graph
G is called the local completion of GG at x. The following statement was proved in [14].

Proposition H [14]. Let (G be a claw-free graph and let © € Vgi(G) be an eligible
vertex of GG. Then
(i) the graph G is claw-free,

(i) o(G,) = ().
The following concept was introduced in [14].

Let G be a claw-free graph. We say that a graph H is a closure of (G, denoted
H =c(G), if
(i) there is a sequence of graphs G, ..., Gy and vertices vy, ..., x,_1 such that Gy = G,
Gy = H, T; € VEL(Gz) and Gi-l—l = (Gz);“ 1= 1,...,t—1,
(ii) Vg(H) = 0.

(Equivalently, cl((Z) is obtained from (' by recursively repeating the operation of local
completion, as long as this is possible).

Theorem K [14]. Let GG be a claw-free graph. Then
(i) the closure cl((G) is well-defined,
(ii) there is a triangle-free graph H such that cl((G) is the line graph of H,
(iii) ¢(G) = e(c(G)).



Remarks. 1. Specifically, part (¢) of Theorem K implies that cl(G') does not depend
on the order of eligible vertices used during the construction of cl(G).

2. It is easy to see that cl((G) can be equivalently characterized as the minimum
(K4 — e)-free graph on V() containing .

3. If in some step (; of the closure process, a vertex z has a complete neighborhood
(N(2))a,, then at the end of the process, its neighborhood in cl(() is also complete. In
particular, if z € Vg (G;) for some ¢, ¢ <17 <t — 1, then z € Vs;(cl(G)) (since otherwise
the closure process could be continued by a local completion at z).

We say that a claw-free graph G is closed if G = cl(G). Thus, G is closed if and
only if Vgi(G) =0 (i.e., V(G) = Vsi(G) U Vip(G)). By Theorem K(i7), if G is a closed
claw-free graph, then every simplicial vertex of (G belongs to exactly one maximal clique
of G, and every locally disconnected vertex @ € Vpp(G) belongs to exactly two maximal
cliques K'(z) and K?*(x) such that V(K'(z)) N V(K?*(z)) = {z} and there are no edges
between V(K*(z)\ {z}) and V(K?*(z) \ {z}).

Let C be a subclass of the class of claw-free graphs. Following [4], we say that the class
C is stable under the closure (or simply stable) if cl(G) € C for every (¢ € C (equivalently,
the class C is stable if the closure operation is internal on C).

Specifically, C is stable if G!. € C for every G € C and every @ € V(). Thus, the
class of k-connected claw-free graphs is an example of a stable class for any £ > 1 and, by
Theorem K, both the class of hamiltonian claw-free graphs and the class of 2-connected
nonhamiltonian claw-free graphs are also stable. However, in Theorem 3 we will see that
this sufficient condition is, in general, not necessary.

In this paper we first observe the stability of some classes of graphs defined in terms of
forbidden induced subgraphs and then, using these results and making use of the special
structure of closed claw-free graphs ( = line graphs of triangle-free graphs), we extend

Theorems B, C and G(iz), (7¢7).

2 Main results

We first consider the stability of some classes defined in terms of forbidden induced sub-
graphs. We denote by (see also Fig. 3):

Zi  (>1) — the graph which is obtained by identifying a vertex of a triangle
with an endvertex of a path of length 2,

B, (j=i>1) — the generalized (¢,7)-bull, i.e. the graph which is obtained by
identifying each of some two distinct vertices of a triangle with an
endvertex of one of two vertex-disjoint paths of lengths z, 5,

Nijk (k>j>1> 1) the generalized (i, j, k)-net, i.e. the graph which is obtained by
identifying each vertex of a triangle with an endvertex
of one of three vertex-disjoint paths of lengths ¢, 7, k.
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Thus, B171 ~ B7 BLQ ~ W, B272 ~ l)7 NLLl ~ N and NLLQ ~ F. We will ELIWELYS
keep the labelling of the vertices of the graphs Z;, B; ; and N, as shown in Figure 3.

Theorem 1. Let GG be a C P;-free graph (i > 1) and let « € Vgi,(G). Then the graph G,
1s C P;-free.

Proof. If (G is C'Pi-free, then, by Proposition H, G, is claw-free. Suppose that H =
({a1,...,a;})q is an induced path in G, and let B, = E(G")\ E(G). Then, since GG is P;-
free, [E(H)NB,| > 1. Since (Ng(x))q: is a clique and H is triangle-free, |E(H)NB,| < 1.
Let thus E(H) N B, = asas41 (1 < s < ¢ —1). Since H is an induced path, = ¢
V(H). If za; € FE(G) for some t # s,s + 1, then asas, as41a;, € E(H), which again
contradicts the fact that H is an induced path; hence Ng(x) N H = {as, as41}. But then
({ar,...,as,2,a541,...,0a;})c is an induced path of length ¢ in G, which contradicts the
fact that GG is P;-free. [ |

Corollary 2. The class of C P;-free graphs is a stable class for any ¢ > 3.

We now turn our attention to the class of C'Z;-free graphs (¢ > 1). Consider the
graph G; shown in Fig. 4. When ¢ > 3, the graph G, is clearly CZ;-free, while
({b1,02,2,01,...,a;})c =~ Z;. This example shows that for > 3, the analogue of Theo-
rem 1 for the class of C'Z;-free graphs fails. Nevertheless, we can still prove the analogue
of Corollary 2 in this case.

Theorem 3. The class of C'Z;-free graphs is a stable class for any ¢ > 1.

Proof of Theorem 3 will be given in Section 3.
The following proposition is an analogue of Proposition 1 in the case of C'NN;; j-free

graphs.

Theorem 4. Let GG be a CN, j-free graph (k> j > ¢ > 1) and let @ € Vgi(G). Then
the graph G’ is C'N, j j-free.
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Proof. Suppose that N;;, ~ H = ({by,by,b3,al,... a},al,..., a%, ai,....a5 e C G
Similarly as in the proof of Theorem 1 we can show that neither any of the edges bsal (s =
1,2,3) nor any of the edges a’a’t* (s=1land 1 <r<i—l,ors=2and 1 <r<j—1,

ors=3and 1 <r <k —1) can be in B, (since if e.g. aja;™' € B, for some 7, 1 <
r <i—1, then obviously = ¢ V(H) and ({by, by, b3,al,....a}, x,a}t", ... a7 al,. .., a,

al,....af}) e ~ N; ;i — a contradiction). Hence BHY = B, N E(H) C {b1by, b1bs, bybs}.

If | BZ| = 3, then ({2, b1, bs,b3}) ~ C; hence |BH| < 2. On the other hand, if | BX| =
1, then e.g. for |BI| = {bby} we have ({b3, by, by,a}})s ~ C; other cases are similar.
Hence |BX| = 2. Suppose without loss of generality that |BX| = {b;by,b1b3}. Then evi-
dently @ ¢ V(H) (otherwise by, 2by € E(G), which is impossible), and Ng(z)NV(H) =
{b1,b2,b3} (since if e.g. xal € E(G), then ajby, alb, € E(G), which is impossible). But

then ({x, by, b3, b1, al, ... a7 ak ... a),ab ... af})g ~ N;;j — a contradiction. [ |
Corollary 5. The class of C'N; ; y-free graphs is a stable class for any ¢, 5, k, k > j > 1> 1.

It G is claw-free and triangle-free, then (G is a disjoint union of paths and cycles and
hence (& is closed. This implies that the class of claw-free and triangle-free graphs is also
(trivially) stable. In the list given in Theorem E, it thus remains to consider the classes
of C'B-free and C'W-free graphs. The following statement shows that, surprisingly, none
of these classes is stable.

Proposition 6. The class of C'B; ;-free graphs is not stable for any 1,7, 7 > 1 > 1.

Proof. Let 2,5 > 1 and let (;;; be the graph obtained by identifying each of the two
vertices of a copy of a diamond K4 — e with one endvertex of a path P, with £ > ¢+ 75+ 3
and let @ be one of the two eligible vertices of Gi; ;1 (for i = j = 2 and k = 7 see Fig. 5).
Then G is CB; ;-free while GG’ is closed (hence G/, = cl((7)) and contains an induced
subgraph isomorphic to B, ;. [ |
Now, suppose e.g. that GG is a 2-connected nonhamiltonian €' P;-free graph. By The-
orems D, E such graphs G exist; by Theorem K and by Corollary 2, cl(() is also a
2-connected nonhamiltonian C Pr-free graph. By Theorem F, cl(G) contains an induced
subgraph H € P and, using the properties of the closure, it is possible to describe the
structure of cl(G). This basic idea, applied to the classes of C Pr-free, C'Z-free and
C' Ny 2 2N1 1 ,5-free graphs, yields the following Theorems 7 — 9, extending Theorems B, C
and G(2), (¢42). Proofs of Theorems 7 — 9 and of Corollary 10 are given in Section 3.
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Figure 5

Denote by Fi,...,Fs the classes of graphs shown in Fig. 6 (where the elliptical parts
represent cliques of size at least 3 and the remark "odd” above the dots indicates that
the total number of maximal cliques in F; and F; is odd).

Fi Fs Fe

Figure 6

Theorem 7. Let G be a 2-connected C P;-free graph. Then either GG is hamiltonian or
Cl(G) € Fl.

Theorem 8. Let (¢ be a 2-connected C Z4-free graph. Then either G is hamiltonian, or
G e{Psrr, Pssr, Psss, Pirr}, or cl(G) € F.



Theorem 9. Let G be a 2-connected C Ny 33N5 1 3-free graph. Then either GG is hamil-
tonian, or G ~ Ps 33, or cl(G) € F3 U Fy U Fs.

Since the eiffel £ = Ny ;5 is an induced subgraph of both Ny 5 5 and Vq 1 3, the following
statement is a special case of Theorem 9 for the class of C'E-free graphs.

Corollary 10. Let G be a 2-connected C E-free graph. Then either G is hamiltonian or
G e Fe.

Since all the (nonhamiltonian) exceptional graphs in Theorems 7 — 9 and in Corol-
lary 10 are of connectivity 2, we immediately obtain the following corollary.

Corollary 11.
(i) Every 3-connected C P:-free graph is hamiltonian.
(ii) Every 3-connected C Zy-free graph is hamiltonian.
(iii) Every 3-connected C' Ny 35Ny 1 3-free graph is hamiltonian.
(iv) Every 3-connected C E-free graph is hamiltonian.

Remarks. 1. By the Shepherd’s characterization of distance claw-free graphs (The-
orem G(2)), Corollary 11(2v) extends Theorem G(ziz).

2. The graph G in Fig. 7 (a) belongs to neither F; nor F, while its closure cl(G)
belongs to both F; and F;,. Since GG is 2-connected, nonhamiltonian, claw-free and both
Pr-free and Zy-free, it shows that Theorems 7 and 8 fail if we replace the conclusion
c(G) € Fi (or c(G) € Fy) by G € Fy (or G € F), respectively. The graph in Fig. 7 (b)

gives a similar example for Theorem 9.

Figure 7

3. It is easy to see that the closure of a claw-free graph G is computable in polyno-
mial time, and the classes Fi,...,Fs are, due to their simple structure, recognizable in
polynomial time, too. Consequently, all the sufficient conditions for hamiltonicity given



in Theorems 7 — 10 and in Corollary 11 can be checked in polynomial time. On the other
hand, it is known that the decision whether ¢ is hamiltonian is NP-complete even in
line graphs (see [2], or, for more information on complexity results in claw-free graphs,
Chapter 5 of the survey paper [8]).

4. In the proofs of Theorems 7 — 9, the fact that the classes considered are stable
allows to assume that all graphs under consideration are closed (i.e., are line graphs of
triangle-free graphs) and to use the structural information given by this fact to reduce
the number of situations to be considered (see e.g. Lemma 12).

3 Proofs

Let G be a claw-free graph and let H be an induced subgraph of G. We say that H is a
permanent (or temporary) induced subgraph of G if (V(H))aq) ~ H (or (V(H))aw % H),

respectively.

Proof of Theorem 3. Let i > 1, let G be a C'Z;-free graph and suppose that cl(G)
is not Z;-free. Let Giq,..., G, be the sequence of graphs that yields cl(G) (i.e. G = Gy,
c(G) = Gy x5 € Vei(Gy) and G = (Gj);], J=1,...,t —1) and let » > 1 be the
smallest integer such that G, contains a permanent induced subgraph isomorphic to Z;.
For each such subgraph H, denote the vertices of H as in Fig. 3 (for simplicity, put
ag = by) and the path agay - - - @;, which is induced in G, as in cl(G), by P(H).

If for some 1 < k < r, some edge ajaj4q of P(H), with 0 < j < ¢ — 1, is missing in

G, then G, contains an a;a;41-path ij whose internal vertices, say y;,, ¥, ,¥j,, are
some of the vertices xy, €41, -+, ¢,—1. By Remark 3 (Section 1), the final neighborhood
in cl(G) of each y; ,yj,, -, y;, is a clique containing all the y;’s, a; and a;441. Hence no

yj, is equal or adjacent in Gy, to any vertex of V(H) \ {a;, a;11} for otherwise this would
contradict the property of H to be an induced subgraph of cl((Z). By the same reason, no
two interior vertices of two different paths ij,, ij,, (0 <j'<j” <i—1)can be adjacent in
G'x. Thus, by concatenating these different induced paths with the edges of the path of H
already existing in (i), we can find for each k& < r an induced path P* = yoyy...yi...y
of length [ > 7 such that yo = ag, y; = a;, and the vertices y; ...y; are adjacent in G to
neither by nor bs.

Let s(H) (1 < s(H) <) be the smallest integer for which the set {b1, by, b3} induces a
triangle in G/yzy. We choose H such that s(H) is smallest possible and we put s = s(H).
If s =1 (i.e., the vertices by, by and b3 induce a triangle already in ('), then, thanks
to P!, G contains an induced subgraph isomorphic to Z;, contradicting the hypothesis.
Hence s > 2. This implies that {b1ba, b1bs, b2bs} N B,._, # 0 (i.e., some of the edges of the
triangle ({b1,bs, b3})c, has been added during the step from G5_1 to G). If both byby €
E(Gs-q) and bibs € E(Gs_y), then bybs ¢ E(Gs_1), which implies ({b1, bs, b3, y1})6._, ~ C

(where ¥, is the second vertex of the path P*'), a contradiction. By the symmetry, we
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can suppose that biby ¢ F(Gs_1), i.e. biby € B, _,. This implies by, by € Ng__ (25-1)
(note that x,_1 is possibly equal to bs). Let byzy...z,b be a shortest (by,bs)-path in
(Ng._(25-1))c._, (such a path exists since ;-1 € Vgr(Gs—1)). The vertex z; is eligible
in (G5_q since z; has two nonadjacent neighbors b; and z, or by lying in the same component
of its neighborhood. By Remark 3 of Section 1, the neighborhoods of zs_; and of z; in
cl(G) are cliques containing b; and by. Hence, and since H is a permanent 7y, x,_1 and
z1 are neither equal nor adjacent in cl((), and a fortiori in G, to any a;, 1 < 5 < 4.

Therefore the graph H' = ({xs_1,21,b1,a1,az2,---,a;})q, is isomorphic to a permanent
7. Since s(H') < s — 1, we get a contradiction to the choice of s.
Therefore cl(() is also Z;-free. [ |

Before proving Theorems 7 — 9, we first introduce some additional notation that will
be kept throughout the rest of the paper.

Let G be a closed 2-connected nonhamiltonian claw-free graph and let (by Theorem F)
H = P, 4,2, € P be an induced subgraph of . Recall that we keep the notation of

vertices a;, b;, ¢! as in Fig. 2. We denote by:

o K, the largest clique in (¢ containing the triangle ({ay, az, as})eq,
e K the largest clique in ¢ containing the triangle ({by, b2, b3})¢,

o for every: € {1,2,3} for which x; = T', by K; the largest clique in GG containing the
triangle ({a;, ¢, b},

e for every ¢ € {1,2,3} for which z; # T, by K; the path a;c}c?... cfi_Zbi and by K{
(j=1,...,k — 1) the largest clique in G containing the j-th edge of the path K;,

o foreveryi € {1,2,3}, Ky =K, ifa; =T, and K} = <U§":_11V(Kg)>g, itw; =T,
o H* = (V(K,)UV(Ky) U (U V(K)))a.

Note that since (&' is closed, all these sets are well-defined.
The following lemma summarizes basic properties of H*.

Lemma 12. Let (G be a closed 2-connected nonhamiltonian claw-free graph and let H €
P be an induced subgraph of (. Then the graph H* has the following properties.
(i) [V(A1)NV(Ag)| < 1 for every Ay, Ay € {K,, K, }U{K;| x;, = TYU{K!| 2; #T,1 <
J < — 1}7‘41 7£ A27
(ii) if x; = T for some i € {1,2,3}, then V(K;) N V(A) =0 for every A € {K;| z; =
TYU{K! 2 # TYU{K? | a; £ T}, A £ K,
(iii) if x; # T for some i € {1,2,3}, then V(K}) N V(K}) = 0 and V(K77') N
V(Kfj_l) = () for every j € {1,2,3} such that j #¢ and x; # T,
(iv) if x; = T for at least one i € {1,2,3}, then V(K,) NV (K;) = 0,

11



(v) a;, b, ¢t € Vip(G) for 1 <L < k;—2andi=1,2,3,
(vi) Ng(a;) C V(K,)UV(K?), Ng(b;) C V(Ky) UV(K?), No(c) = V(KH) U V(KT
for1 <l <k;—2and1=1,2,3.

Proof follows immediately from the claw-freeness of G and from the properties of the
closure operation. [ ]

Proof of Theorem 7. By Theorem K and by Corollary 2, it is sufficient to prove that if G
is a closed C' Pr-free graph, then GG € F;. Let thus GG be a closed C P;-free nonhamiltonian
graph. By Theorem F, (¢ contains an induced subgraph H € P. It is straightforward to
check that the only Pr-free graph in the class P is the graph Pr 1 r; hence H = Pr oy and
K = K;,©=1,2,3. Recall that by Lemma 12(iz), the cliques K; are pairwise disjoint,
and by Lemma 12(iv), V(K,) N V(K;) = 0.

Claim 1. There is no edge y,y; € E(G) with y; € V(K;) \ {a;, b}, y; € V(K;)\ {a;,b;},
1 # 7,1, € {1,2,3}.

Proof of Claim 1. Let, to the contrary, e.g. 11y2 € E(G) with y1 € V(Ky), y2 € V(K3)
(other cases are symmetric). By Lemma 12(ve), y1,y2 ¢ V(K,) U V(K,). If |V(K,)| >
3, then, for some d € V(K,) \ {a1,az2,as}, dy1 ¢ E(G) (since otherwise the triangle
({d,a1,y1}) contradicts a; € Vip(G)) and similarly dyz ¢ F(G) and des ¢ E(G), but then
({d, a1, y1,y2, b2, b3, 3} ) =~ Pr — a contradiction. Hence |V(K,)| = 3 and, by symmetry,
|[V(K3)| = 3.

We show that V(H*) = V(). Let thus, to the contrary, z € V(G) \ V(H*) have
a neighbor in V(H*). Since |V(K,)| = |V(K3)| = 3 and by Lemma 12(vi), Ng(z) N
(V(K.) UV(Ky)) =0.

If zyy € E(G), then from ({y1,2,a1,y2}) ¢ 2 C we get zy, € E(G) (since we already
know that a; has no neighbors outside K; and K,). Since a; is not adjacent to ys,
y1 € Vip(G) and thus z has no other neighbor in K;. If |[V(Ky)| > 3, then for some
d € V(Ky) \ {ar,bi,31}, ({d,b1,b3,as3,a2,y2,2})e ~ Pr; hence |V(K7)| = 3 and, by
symmetry, also |V(K3)| = 3. This implies y; = ¢; and y2 = ¢z, contradicting the fact that
cicy ¢ E(G). Hence zyy ¢ E(G) and, by symmetry, also zyy ¢ E(G).

Now, if zds € FE(G) for some ds € V(K3), then (since obviously ds ¢ {as,bs},
({z,ds,as,a2,y2,y1,01 } ) % Pr; hence N(z) N V(K3) = . Consequently, if zd; € E(G)
for some d; € V(Ky), then di ¢ {a1,b1,y1} and ({z,dy,y1,y2,a2,a3,¢3})g ~ Pr. This
contradiction proves that there is no vertex z € V(G) \ V(H*) and thus V(H*) = V(G).

Let Py (or Py, or P3) be a hamiltonian path in K; (or K3, or K3) with endvertices
ar,y1 (or ya, by, or bs, as), respectively. Then C' = aq Pry1y2 Pababs Psasay is a hamiltonian
cycle in H* = (4. This contradiction proves Claim 1. O

Claim 2. Every vertex z € V(G)\ V(H*) satisfies Ng(2) N (V(K1)UV(K2)UV(K3)) = 0.

Proof of Claim 2. Let, to the contrary, ze¢ € F(G) with z € V(G) \ V(H*) and ¢ €
U2, V(K;). By symmetry, we can suppose that ¢ € V(K;), and obviously ¢ ¢ {ay,b;}.
Since ({z,¢,a1,az2,bs,b3,¢c3}) 2 Pr and, by Claim 1, ces ¢ F(G), zes € E(G). Similarly
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we have z¢e; € F((G), since otherwise ({z, ¢, a1, as, b3, bz, c2}) ~ Pr. But then, by Claim 1,
({z,¢,¢2,¢3})6 =~ C, a contradiction. O

Suppose now that there is a vertex d € V(K,), having a neighbor in V(G) \ V(H*).
Since (i is closed, d € Vip((G), and since G is claw-free, d ¢ {ay,a2,a3}. We can thus
denote by Ky the clique containing d and all neighbors of d outside H*. Let y € V(Ky) \
V(H*). Since d € Vip(G), Na(y) N (V(K,) \ {d}) = 0. By Claim 2 also Ng(y) N
(U2, V(K;)) = 0. If y has a neighbor z € V(Kj}), then dz ¢ E(G) (otherwise z € V(K,)),
but then ({e1,a1,d,y, 2, b2, ¢2} ) ~ Pr. Finally, if y has a neighbor z € V(G) \ (V(H*)U
V(Kq4)), then ({z,y,d, a1,b1,b2,¢2}) ~ Pr (recall that zcy ¢ E(G) and yey ¢ E(G) by
Claim 2). Hence no vertex in V(Ky) \ V(H*) has a neighbor outside K.

Since (G is 2-connected, d is not a cutvertex. Thus some other vertex of K, except
d (say, y) belongs to H*. Since there is no edge between K, \ {a;} and K; \ {a;}, y ¢
U2 (V(K;) \ {a;}). Since d € Vip(G), y ¢ V(K,). Hence y € V(K,) and, since G is
closed, V(Ky) NV (Ky) = {y}.

We have thus proved that every vertex @ € V(G) \ V(H*) is contained in a clique
K, such that |V(K,)NV(K,)| = |V(K, NV (K)| =1, i.e., there are cliques K7, ..., K}
such that V(K;) N V(K;) = 0 for 7 # j, |V(K;) N V(K,)| = |[V(K; N V(K,)| = 1 and
V(G) = V(K,) UV(Ky) U (UL, V(K;)). Tt is straightforward to check that if G contains
any edge having vertices in two different cliques, then G is hamiltonian. Similarly, since
(7 is nonhamiltonian, &k is odd. Thus, G € F;. [ |

Proof of Theorem 8. By Theorems K and 3, it is sufficient to prove that if G is a
closed C'Z4-free nonhamiltonian graph, then G € {Prrr, Psr1, Pssr, Psss, Paror} U Fs.
Let thus GG be a closed C'Z,-free nonhamiltonian graph. By Theorem F, G contains an
induced subgraph H € P and we can easily check that the only Z,-free graphs in the class
P are the graphs Pror, Psr1, Pssr, Psss and Pyrr. When K; ~ P5 we often denote
¢! by ¢;.

Claim 1. If a;b; € F(G) for some 7 € {1,2,3}, then |V(K;)| = 3.

Proof of Claim 1. Let e.g. asbs € E(G) and |V(K3)| > 4, and let ¢, ds € V(K3)\ {as, bs}.
Then <{63703,d3,bg,ag,al,cl}>g (lf Clgbg - E(G)) or <{63703,d3,bQ,CQ,G27G1}>G (lf Clgbg gé
E(G)) is an induced Zj. O

Case 1: H € {Ps17, Pss1, Psss, Pirr}
Let Ky be a path Py it H ~ Py 11 and Ps otherwise, and when H % Ps33 let K3 be a

triangle.
Claim 2. |V(K,)| = |[V(K,)| = 3.

Proof of Claim 2. By symmetry, let e.g. d € V(K,) \ {a1,az2,a3}. Then the graph
<{G1,G2,d,€%,€%,bl,bg}>g (lf [(1 ~ P4) or <{G1,G2,d,€1761763703}>g (lf [(1 ~ Pg) 1s an
induced Z4, unless d € V(K}) (and then, by Lemma 12(iv), 21 = a3 = a3 = 3, i.e.,
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H = P333), or d € V(K{*™") (and then, by the closure property, z; = 4 and thus
w9 =a3="T,1.e., H= Pyrr). We now consider these two subcases separately.

Let first H = Ps 33 and d € V(K;). By Lemma 12(¢) and by the symmetry, |V(K,)| =
|[V(K3)| = 4 and V(K,) N V(K,;) = {d}. Evidently d € Vyp(G) and hence Ng(d) C
V(K. )UV (Ky). We show that V(G) = V(H*). Let, to the contrary, u € V(G)\V(H*). By
the connectivity, by Lemma 12(vi) and by the symmetry, we can suppose that uv € E(G)
for some v € V(K3)\ {as, cz}, but then ({d,ay,as,bs,cs,v,u})e ~ Z;. We thus have
V(G) = V(H*), but then it is straightforward to check that ' is hamiltonian. This
contradiction shows that d ¢ V(K,), i.e., V(K,)NV(K,) = 0.

Let thus H = Pyrr and d € V(K}). Then |V(K})| = 3, for if there is a z € V(A7) \
{by, e}, d}, then ({cf, by, 2, cl,a1,aq9,¢2})a =~ Z;. We again show that V(G) = V(H*). Let
thus v € V(G) \ V(H*) and let v € V(H*) be adjacent to u. Evidently v ¢ V(K7}) (since
|[V(K?)| = 3 and, by the closure property, v cannot be any of d,¢?,b,), v ¢ V(K,) (since
|V(K,)| = 4 and v cannot be any of a1, as, as, d) and, by the symmetry, v ¢ V(K;). Hence
v e VK UV(K2) U V(K UV(K,).

If v € V(K3), then, by Claim 1, v = ¢3 and ({az, a1, d, bs, bs, c3,u})g >~ Zy; hence v ¢
V(K3). By symmetry, v ¢ V(K,). Also easily v ¢ V(K7}), since otherwise ({by, b2, b3, c7,
cl,v,ul)eg ~ Z;. Finally, let v € V(K?). Then v ¢ {c],ci} (clearly), vay ¢ E(G)
(since otherwise ({v, ¢, as,u})g =~ C') and similarly vby ¢ E(G), but then ({bs, by, b3, as,
ai,ci,v})a ~ Zy. Hence V(G) = V(H*), implying that G is hamiltonian. This contra-
diction proves that |V(K,)| =3 and, by symmetry, |V (K};)| = 3. O

Claim 3. If a;b; ¢ F(G), then |V(Kij)| =2for 1 <j <k —1 (i.e., the interior vertices of
the path K; have no neighbors outside K;).

Proof of Claim 3. By symmetry, it is sufficient to suppose that there is a vertex y € V(G)\
V(Ky) such that yc; € E(G). By Lemma 12(vi), y € V(H*) and thus if yay ¢ E(G) then
yci € E(G) when Ky ~ P, and yb, € E(G) when K, ~ P3. Suppose first that y is adjacent
to ¢ and ay (and thus, by the closure property, neither to ¢}, when K ~ Py, nor to b;). By
Claim 1 and by the closure property, y is adjacent to no vertex of V(H)\ {ay,c}, except

perhaps ¢ or ¢3 in the case when K5 or K3 is a triangle. Since the subgraph H is induced,
the set {c}, ¢z, c3} is independent and thus, since G is claw-free, y cannot be adjacent to
both ¢z and ¢5. We can thus suppose that yea ¢ E(G) (if both Ky and K3 is a triangle).
Then ({a1, ¢}, y,as,bs, by, 2} (when H ~ Pypr or Pyrr), or ({ay,cl,y,as, b3, ba,c3} )
(when H ~ Py37), or ({ay,cl,y, as, c3, b3, b2} ) (when H ~ Py 33) is isomorphic to Z; — a
contradiction. The cases when K; ~ P3 and y is adjacent to ¢} and to by, and H ~ Pyror
and when y is adjacent to ¢ and to b, are symmetrical.

Therefore it remains to consider the case when H ~ P, rr and yci € E(G), yci € E(G)
but ya; ¢ E(G) and yby ¢ E(G). Since H is induced, y is different from ¢; and ¢35 and by
Lemma 12(v7), y has no neighbor in {az, as, bz, b3}. Hence ({c},y, i, ay, az, b2, b3}) e =~ Zi,
a contradiction. a

Claim 4. G = H*.

Proof of Claim 4. By Claims 1, 2 and 3, the only vertices of G possibly having a neighbor
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y not in H* are ¢, and c¢3, in the case where K, and K3 are triangles. Since G is 2-
connected, y is in a bicomponent B with biarticulation {¢z,¢3} (by claw-freeness, such a
bicomponent can be only one). Suppose that B contains a triangle and let T' be a triangle
in B whose distance from ¢y is minimum. Consider a shortest path P in B (possibly
trivial) joining T" with ¢z. Then the graph (V(T)U V(P)U{az2} UV(K7)})g contains an
induced Z;. Hence B is triangle-free and, by claw-freeness, B is a path. But then, since
G =(V(H*)UV(B)})a, G is hamiltonian. Therefore no such vertex y exists. O

Now, since (by Claims 1, 2,3) H* = H, we have G = H € {Psr1, Pss1, P3ss, Pirr}-

Case 2: H = Pror

If ¢ contains an induced subgraph H' € P, H' % Prrr, then, by Case 1, G €
{Psr1, Pss7, Ps33, Pyr1}, a contradiction. Hence every induced subgraph H’ of (¢ that
belongs to P is isomorphic to Prr .

Claim 5. There is a sequence of cliques Ky, ..., Ky, k > 3, such that
(i) V(IK))NV(K,) ={a:}, V(IK;) )N V(Ky) ={b}, e =1,...,k,
(ii) [V(K;)|=3fore=1,2,3 and |V(K;)| <3 for i =4,...,k,
(iii) Ng(a;) C V(K)UV(K,), Ng(b) C V(K,)UV(K),1=1,...,k,
(iv) there is no (K,, Ky)-path in (V(G) \ (UEL,V(K)))).

Proof of Claim 5. If there is no (K,, K;)-path in ({V(G) \ (UL, V(K;))}), put & = 3.
Otherwise, let P = yoy1...ys (yo € V(K4),ye € V(K3),{ > 1) be a shortest such path.
Suppose first that some of the vertices yo, ..., y,—1 is adjacent to some of the vertices
¢1,¢2,¢3 (say, ¢3) and let y; be the first such vertex. Then, since P is shortest and by
claw-freeness, we have also y,41¢5 € E(G). By the properties of the closure, yocs ¢
E(G) and yes ¢ E(G) (otherwise es € V(K,) or ¢5 € V(K}), respectively), but then

{vi, yit1, 3y Yiz1s - -, Yo, a1, b1, ba}) contains an induced Z;. Hence no inner vertex of P

is adjacent to any ¢;, but then, if £ > 2, ({yo, @1, a2,y1,...,ys, b3, cs}) contains an induced
Z4. Hence { =1 and P is an edge.

Denote yo = a4, y1 = by and let Ky = ({a € V(G) \ V(H*)| N(z) N {as,bs} #
0} U {a4,bs}). By the properties of the closure, K, is a clique, containing all neighbors
of a4 and by outside K, and K,. If |V(Ky)| > 4, then, for some ¢}, c; € V(Ky) \ {aq, bs},
some of the vertices ¢y, ¢y, c3 (say, ¢3) is nonadjacent to both ¢} and ¢3 (otherwise we have
an induced claw centered at cj or at c}), but then ({b4,c},c}, b1, a1,as,¢3}) ~ Z4. Hence

|[V(K4)| < 3.
Repeating this argument, we obtain a sequence of cliques Ky, ..., K with the required
properties. a

We put H** = (V(H*)UV(K4)U...UV(K})) and, if [V(K;)| =3, (¢ > 4), we denote
the (only) vertex in V(K;) \ {a;, b} by ¢;.

Claim 6. Every nontrivial component of the graph H = (V(G) \ (V(K,) U V(Ky)))a
is a path.
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Proof of Claim 6. Let B be a nontrivial component of the graph H and let V(B) N
V(H*) = {c;.¢jpse -y, 3 C UL V(K \ (V(K,) UV(Ky)). If Bis not a path, then,
since (G is 2-connected, p > 2, and since (G is claw-free, B contains a triangle. If some
triangle 7" of B contains at least one vertex ¢;,, 1 < ¢ < p, then since the subgraph H is
induced, at most one vertex of {¢y,¢q, c3} belongs to T, say ¢; and ¢; are not in T'. In this
case (V(T)U{aj,, a1, by, by}) contains an induced Z;. Otherwise, let T' be a triangle of B
whose distance to ¢;, is minimum and let P = yoyy -+ -y, with yo = ¢;,, yo € V(T') and
[ > 1 be a shortest path between ¢;, and T'. Then (V(T)UV(P)U{aj,,a;,,b;,}) contains
an induced Z;. Hence B contains no triangle and thus B is a path joining two vertices

¢;, and ¢j,. O

Claim 7. G = H*.
Proof of Claim 7. Suppose that V(G) \ V(H**) # 0. Then, by Claim 5(iv), by 2-

connectedness and by symmetry, we can distinguish the following subcases.

Subcase a. There is a (K}, K;)-path P! with interior vertices outside H**.
Subcase b. There is a (K3, c3)-path P? with interior vertices outside H**.

Subcase c. Vertices in K, and K} have no neighbors outside H** and there is a bicom-
ponent B of GG which is a (¢1, ¢z)-path P? with interior vertices outside H**.

Subcase a. Choose P! shortest possible and denote P = dyxy...x,dy. Clearly d; # b;,
i =1,2,5 =1,..., k. By the properties of the closure, { > 2, but then ({ay, az,as, by,
d1,$1,$2}>G ~ Z4-

Subcase b. Let again P? = dyjx;...xc3 be shortest possible. By the properties of the
closure, ¢ > 1. If ¢ > 2, then ({as,a1,az,¢3,2,...,21,d1})g contains an induced
Zy. Thus ¢ = 1. If |V(K,)| > 4, then, for some y € V(K,) \ {a1,aq,a3}, we have
({a1,as,y,b1,b3,¢3,21})6 =~ Z4 (note that yxq ¢ E(G) since otherwise yaqdy is a (K,, Ky)-
path and, by the construction of H**, ydy; € E(G) and 21 € H*). Thus |V(K,)| = 3.

If |V(Ky)| = 5, then, for some y € V(Ky)\{b1, b2, b3, d1 }, ({b1, b2, y, a1, a3, ¢c3,21}) >~ Z4
(recall that x1y ¢ E(G) by the properties of the closure). Thus V(K,) = {b1, by, bs, dy }.
If 21 has another neighbor z € V(G) \ V(H*), then, since ({1, c¢s,dy,2}) % C, we have
zes € E(G) or zdy € E(G), which implies ({x1,¢3,2,d1, by, a9,a1}) ~ Zy or ({x1,2,d,,
s, as,ar,¢1)) =~ Zy. Therefore @1 has no neighbors outside H**, and thus, by the
closure property, also both ¢; and d; have no neighbors outside H**. Now, the only
vertices which can have a neighbor outside (V(H**) U {x1}), are ¢; and ¢;, Since e.g.
arcrbydixicsasbsbycaazay is a hamiltonian cycle in (V(H*™*) U {x1}), there is a bicom-
ponent B with biarticulation {cy,c¢2} and with V(B) \ (V(H*™) U {z1}) # 0 (recall
that, by claw-freeness, such a bicomponent can be only one and that this also implies
that 211 ¢ F(G) and x1¢y ¢ FE(G)). By Claim 6, B is a path, which implies that
G = (V(H*)UV(B)U{x1}) and it is straightforward to check that ¢ is hamiltonian,

which is a contradiction.
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Subcase c. Let cyxq -+ - xycq be the path P? with ¢ > 1. If |V(K,)| > 4, let d € V(K,) \
{a1,as,as}. Then ({as,d,az,bs,by,c1,21}) ~ Zy. Therefore V(K,) = {a1,aq,a3} and
similarly V(K,) = {b1, b2, b3}. By the claw-freeness of (7, there are no paths outside H*
between ¢; and ¢5 or between ¢; and ¢3. Hence V(G) = V(H*) and G is hamiltonian.

Thus there is no vertex @ € V(G) \ V(H™) and hence G = H**. This completes the

proof of Claim 7. a
Since (i is nonhamiltonian, necessarily k is odd, |V(K;)| = 3 for every ¢ = 1,...,k
and {cy,...,cx} is an independent set. Hence G € Fs. [ |

Proof of Theorem 9. First observe that, by Theorem K and by Corollary 5, it is
sufficient to prove that every closed 2-connected nonhamiltonian C'Nq 5 2NV; 1 3-free graph
is either isomorphic to Ps 33 or is in F3 U Fy U Fs.

Let thus GG be a closed 2-connected nonhamiltonian C' Ny 5 5 N7 1 s-free graph and H € P
an induced subgraph of GG. Immediately H € {Prrr, Ps 11, Ps31, P333} (since otherwise
H contains an induced Ny13). We choose the notation such that Ky ~ Py if H # Prrr
and K3 is a triangle if H # Ps 33, and we often denote ¢! = ¢;.

Claim 1. If H # Prrr, then [V(K,)| = |V(K,)| = 3.

Proof of Claim 1. Let, to the contrary, e.g. a1b6; ¢ E(G) andy € V(K,)\{a1,as,as} (other
cases are symmetric). Then, since ({b1, bz, b3, c2,¢3,¢1,a1,y})a % Nias, yo € E(G) for
at least one ¢, 1 <17 <3, contradicting Lemma 12(v). O

Claim 2. For any z € V(G) \ V(H*), Na(z) N (V(K,) UV(K,)) = 0.

Proof of Claim 2. Let, to the contrary, zy € F(G) with z € V(G)\ V(H*) and y €
V(K,)UV(K;). By symmetry, we can suppose that y € V(K,) and, by Lemma 12(vi), y €
V(K.)\{a1,az2,as}. By Claim 1, this implies H = Prpp. If |[No(2) N {e1, e2, ¢35} < 1 (say,
e2z,032 ¢ E(G)), then ({by, by, bs, ca,¢3,0a1,y,2} ) =~ Ni1a; hence |[No(2) N{er, 2,3 >
2. By symmetry, let ¢1z € E(G) and ¢z € E(G). Then, since ¢ie2 ¢ FE(G) and
{z,y,c1,e2})a 2 C, we have ye; € E(G) or yex € E(G), contradicting Lemma 12(v). O

Claim 3. V(K,) N\ V(K,) =0 and V(K7) N V(K?) =0 for ¢,j € {1,2,3}, ¢ # j.

Proof of Claim 3. V(K,)NV(K;) = 0 immediately by Claim 1 and by Lemma 12(iv). Let
thus d € V(K;) N V(K7) for some 7,5 € {1,2,3}, ¢+ # j. By Lemma 12(i4), (227) and by
the symmetry we can without loss of generality suppose that H = P55 7 or H = P535 and
that d € V(K{)NV(K3). We show that V(G) = V(H*). Let thus u € V(G)\ V(H*) and
let v € V(H*) be adjacent to u. By Claim 1 and by Lemma 12(vi), v ¢ V(K,) U V(K}3);
since (¢ is claw-free, v # d. Up to symmetry, it remains to consider the cases when
veV(K]),ve V(KD and v e V(K3). If v e V(K]), then ({by,d, ca, b1,v,u,a2,a3}) e =~
Niggo. If v € V(KY), then we can suppose that vas € E(G) (the case when K3 ~ P;
and vbs € F((G) is symmetrical), and then ({d,¢1,aq,¢2, b1, a3,v,u})g >~ Nyi13. Finally,
if v e V(K}?), then ({d,ci1,a1,b2,v,u,a3,¢3})g =~ Nizo (evidently ves ¢ E(G) since
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otherwise ({v,u,e1,¢3})e =~ C). Hence V(G) = V(H*), contradicting the fact that G is
nonhamiltonian. O
Claim 4. There is no edge y;y; € E(G) with y; € V(K) \ {a, b}, y; € V(KD)\ {a;,b;},
1<e<y <3.

Proof of Claim 4. Suppose, to the contrary, that for some ¢ # j there is an edge y;y; €
E(G) with y; € V(K?) \ {a;, b} and y; € V(K7) \ {a;,b;}, 1 <@ < j < 3. By symmetry,
we can suppose that i =1, j =2, and if a1b; ¢ F(G), then y; € V(K7}).

First observe that if some vertex y € V(G) \ V(H*) is adjacent to y;, then, since
{y1,y,a1,y2})¢ 2 C and, by Lemma 12(ve), neither y nor y, is adjacent to aq, we have
yy2 € E(G). Moreover, if y',y” are two neighbors of 3, in V(G) \ V(H*), then from
{y1, v, y",a1})e 2 C we get y'y"” € E(G). Hence, by symmetry, there is a clique K,
containing 1, y2 such that every vertex in V(G)\ V(H*) adjacent to y; or to yy is in K.

Put A = (V(H*) UV (K,))e. We want to show that V(H**) = V(). Let thus
V(G)\ V(H*) # 0.

Case 1: There is a vertex z € V(G) \ V(H**) such that Ng(2) N (V(K7)UV(K3)) # 0.

By symmetry, we can suppose that z has a neighbor u € V(K;) (note that u # 3,
since (& is claw-free). Suppose first that a1by ¢ F(G). If w € V(K}), then yzay € E(G)
implies ({u,a1,¢1,2,a2,y2,01,03} )¢ >~ Ni22 and ysby € E(G) implies ({u, a1, ¢, 2, as,
bi,b2,y2})e =~ Nyiia; the case u € V(K}) is symmetric. Hence a;b; € FE(G) (and
Ky = Kp). Now, again by symmetry, we can suppose that ysas € E(G) (i.e., azby €
E(G) or y, € Kj;). Let v be an arbitrary neighbor of b3 in V(K7}) \ {as}. Since
({u,a1,b1,2z,a2,y2,b3,0} )¢ % Niza, we get zv € E(G). Since G is closed and v is
arbitrary, this implies that v = ¢3, i.e., ¢3 is the only neighbor of b3 in K \ {as} and
zes € FE(G). Considering ({cs,as,bs,2})g 2 C we now have asbs € E((G) and hence
|[V(K3)| = 3. Thus, every vertex z € V(G)\V(H*), having a neighbor in V(K7)UV(K}),
must be adjacent to ¢s. Let K, = {z € V(G)\ V(H**)| Na(z)N (V(K7)UV(K3)) # 0}.
If K. contains two nonadjacent vertices zy, zo, then ({es, 21, 22, as})e >~ C; hence K. is a
clique.

Let H** = (V(H*™)U V(K.))q, suppose that there is a vertex z' € V(G) \ V(H*),
having a neighbor z in V(K.) and let (by the definition of K.) u be a neighbor of z in
Ky. Then ({u,ay,by,b3, 2, 2", as,y2} )¢ =~ Ni22. Hence no vertex outside H*** can have a
neighbor in K. Thus, if V(G)\ V(H**) # 0, then there is a vertex w € V(G) \ V(H**)
such that ) # Ng(w) N V(H**) C V(K,), but then, for any y € Ng(w) N V(K,),
z € V(K,) and u € Ng(z) N V(K1), {y,y1,y2,w,u, z,a2,a3})c =~ Ny22. Thus V(G) =
V(H***), but then it is straightforward to check that (¢ is hamiltonian. This contradiction
completes the proof in Case 1.

Case 2: No vertex in V(G) \ V(H™) has a neighbor in V(K7) U V(K3).

Let again z € V(G)\ V(H*) and u € Ng(z) NV (H**). Then, by Claim 2 and by the
construction of K, u € V(K3)\{as, b3} or u € V(K,)\ {y1,y2}. Suppose first that z has
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a neighbor u € V(K7)\ {as, bs}. Recall that if asbs ¢ E(G), then u # ¢5 (since otherwise
({es, 2z,a3,b3} ) ~ C) and if asbs € E(G), then (since y1y, € F(G) and H is an induced
subgraph and since also a;b; € F(G) for ¢ = 1,2), we can (by symmetry) suppose that
there is a vertex v € V(K7) such that vb; € E(G) but vy, ¢ E(G) .

We can distinguish, up to symmetry, the following 3 cases.

Case Contradiction

azbs € B(G),y2a, € E(G) ({u, as, bs, 2, a2, 92, b1, v} ) 2 Nioo
asbs ¢ E(G),asu € E(G),ysa2 € E(G)  ({u,as,¢s,2,a2,y2,b3,01} )6 =~ N2>
asbs ¢ E(G),asu € E(G),y3b € E(G)  ({u,as,cs,2,a1,b3,b02,y2} ) =~ Nias

Hence Ng(z) C V(Ky) \ {y1,y2}. Let u € Ng(z) U V(K,). We have, up to sym-
metry, the following 5 cases (recall that a;b;, ¢ F(G) implies y; # ¢;, since otherwise
<{ci7aivbi7y3—i}>G = C? @ = 172)

Case Contradiction

arby & B(G),a2b; & E(G);yra1,y2a2 € E(G) ({u, 91,52, 2,1, ¢2,b2, b3} )6 ~ Nias
arby @é E(G),a262 ¢ E(G) yray, ya2ba € E(G) <{u y17927270170276l27a3}> ~ Niis
a1y ¢ E(G),a3by € E(G),y101 € E(G) ({u, y1, Y2, 2, a9, €1, b1, b3} )6 ~ Ny 3
arhy € E(G),a3b; € E(G),a3bs ¢ E(G) ({u, y1, 92, 2, a1, by, b3, cs} ) ~ Ny
arby € E(G), azby € E(G),as3bs € E(G) ({u, y1, 92, 2, €1, b9, 03, a3} )6 ~ Ny 3

(in the last subcase we use the fact that, since H is induced, y1 # ¢ or y2 # ¢; and thus,
by the symmetry, we can suppose that y; # ¢;1). Hence V(G) = V(H**), implying that ¢
is hamiltonian. This contradiction completes the proof of Claim 4. O

Claim 5. If z € V(G) \ V(H*) and Ng(z) N V(K}) # 0 for some 7 € {1,2,3}, then
ab; € E(G)

Proof of Claim 5. Let, by symmetry, a1y ¢ E(G) and uz € E(G) with v € V(K}).
Obviously u # ¢; (otherwise ({¢1, z,a1,b01})¢ =~ C). If both z¢y € E(G) and zes € E(G)
then, by Claim 4, ({z,u, ¢z, ¢3})e ~ C. By symmetry, we can suppose zcs ¢ E(G), bu
then <{U7G1701727G2, by, 63703}>G ~ Ny

Claim 6. If z € V(G)\V(H*) and Ng(2)NV(H*) # 0, then |{i| Na(z)NV(K?) £ 0} = 2.

Proof of Claim 6. If [{i|] Ng(z) N V(K}) # 0} = 3, then, for u; € Ng(z) N V(K]),
i = 1,2,3, by Claim 4 we have ({z,uy,uz,uz})e =~ C. If |{i| Na(z) N V(KZ) £ 0}| = 1,
then, by symmetry, we can suppose that zu € E(G) for some u € V(K7); by Claim 5, we
then get a;by € E(G), implying that ({u, a1, b1, 2, a2, ¢2, b3, 3} ) >~ Ni2o. O

Claim 7. There is at most one vertex z € V(G) \ V(H*) with Ng(z) N V(H*) # 0.

Proof of Claim 7. Suppose that zy,z2 € V(G) \ V(H*), z1 # z, have a neighbor in
H*. By Claim 6, by symmetry and by the pigeonhole principle, we can suppose without
loss of generality that there are vertices u} € Ng(z1) N V(K}), ui € Ng(z1) N V(K3),
uy € Ng(22) NV(KF) and u3 € Ng(z2) N (V(K3)UV(KZ)). By Claim 5, a;b; € E(G) for
i = 1,2 and if u3 € V(K}), then also azbs € F(G). By Claim 2 and since G is closed,

0 =
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z1, 22 have no other neighbors in H*.

Suppose first that z129 ¢ F(G). This immediately implies that u] # u} (since other-
wise ({uf, 21, 29,a1})a =~ C), but then ({uj,uy,ay, 21,22, a2,b2,b3})c ~ Ni13 (note that
zuy ¢ E(G) and 2qu; ¢ E(G) since G is closed). Hence z;29 € F(G).

If ui # uj, then, since zyuj ¢ F(G), ujui ¢ E(G) and ({21, 22, ui, ui})a % C, we get
zui € E(G). By Claim 6 thus v € V(K), but then ({ay,by,uj, az, b3, c3,21, 22} ) =~
Ny 2. Hence u% = u%

Now, if u3 = ui, then ujzjui is a path in (Ng(22))e and the fact that G is closed
implies ujui € FE(G), contradicting Claim 4; if u3 € V(KJ), u3 # uj, then we get
({az,ui, by, ay, 21,22, b3, c3})e =~ Ny 29. Hence we have u3 € V(K}).

Put H* = (V(H*) U{z1,22})¢. We want to show that V(G) = V(H**). Suppose,
to the contrary, that there is another vertex z3 € V(G) \ V(H**) having a neighbor in
H**. If z3 has no neighbor in H*, then z3z1 € FE(G) or z322 € E(G), but then z3z; €
E(G) and ({21, 23,22,ui})e 2 C implies 2329 € E(G) and, symmetrically, z329 € F(G)
and ({z2, 23, 21, u3})e % C implies 232y € F((G). Hence both z3z; € E(G) and 2329 €
E(G), i.e., uiz1z3 is a path in (Ng(22))g. Since G is closed, this implies z3ui € E(G),
contradicting the assumption that z3 has no neighbor in H*.

Let thus u3, u2 be the neighbors of z3 in H*. Repeating the proof that 2,2, € F(G) for
the pairs z3, 21 and z3, 29, we get 2321 € E(G) and 2322 € F(G). But then again ujz,23 is a
path in (Ng(Z,))e, implying (since G is closed) that u3 = uj(= u3). By symmetry, we can
suppose that u3 € V(K3); since (G is closed, we have u3 # ui. But then, since obviously
nui ¢ E(G), we get ({ag,u3, by, ay, 23, 21, b3, u3})q =~ Nygo. Hence V(G) = V(H™).

It is straightforward to check that H** (and hence also ) is hamiltonian. This
contradiction proves Claim 7. O

Claim 8. G = H*.

Proof of Claim 8. We first show that V(H*) = V(G). Let, to the contrary, V(G) \
V(H*) # 0. By Claim 7 and by the connectedness of G, there is exactly one vertex
z € V(G)\ V(H*) with Ng(2) N V(H*) # 0. By Claims 2 and 6 and by the symmetry,
we can suppose that y; € Ng(z) N(V(KF)\{a;,b:}) for e = 1,2 and Ng(z)N(V(K3) = 0.
By Claim 5, a1b; € FE(G) and axby € E(G). Since G is closed, z has no other neighbors
in H*.

If V(G)\ (V(H*)U {z}) # 0, then, by the connectedness of GG, z has a neighbor w
outside H*, but then from ({z,w,y1,y2})¢ % C we get wy; € E(G) or wyz € E(G),
contradicting Claim 7. Hence V(G)\ (V(H*)U{z}) = 0, implying that G is hamiltonian.
This contradiction proves that V(G) = V(H~).

Now it is straightforward to check that adding any edge to H* contradicts Lemma
12(v), Lemma 12(v?), Claim 4 or (since (¢ is closed) the fact that H is an induced subgraph
of G. Hence G = H*. O

[t remains to prove that H* € Fs U Fy U Fs U {Pss3}.

o If H = Prryr, then evidently H* € Fi.
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o If H = P37, then, by Claim 1, |V(K,)| = |V(K3)| = 3. By symmetry, suppose
that a1b; ¢ E(G). If both |[V(KN)| > 3 and |V(K?)| > 3, then, for some d* €
V(K) \{ar, by}, 1= 1,2, we get ({ay,az,as,d*, ca,b3,b1,d*}) ~ Ny13. Hence
either |V(K})| =2 or [V(K{)| =2 and thus H* € F.

o If H= P37 or H= Ps33, then again |V(K,)| = |V(K})| = 3 and, by symmetry,
we can suppose that a;b; ¢ E(G) and azby ¢ E(G). If e.g. |V(K}])| > 3, then, for
ade V(K \{a,a}, ({ar,as,a2,d,c3,¢2,b9,b1})¢ ~ Nyis. By symmetry, this
proves that it H = P53 7, then H* € F5, and it H = P33, then H* = H.

Proof of Corollary 10. Let G be a 2-connected nonhamiltonian C' E-free graph. Since
every C E-free graph is C'Ny 29N 1 s-free, by Theorem 9 we have G ~ P53 33, or cl(G) €
FsUF,UFs. By Corollary 5, cl((G) is also C' E-free and it is straightforward to check that
neither Ps 33 nor any graph in F, U F5 is E-free. Hence cl(G) € F5. Moreover, if cl(G) €
F5\ Fs, then e.g. for a vertex z € V(K,)\ {a1, az, as} we have ({b1, by, b3, ¢1, 2,03, 2} ) =~
E. Hence |V(K,)| = 3 and, by symmetry, |V(K})| = 3, i.e. cl(G) € Fs. It remains
to show that also G € Fs. By symmetry, it is sufficient to show that (V(K7))e is a
clique. Suppose thus that there is a vertex z € V(K7) at distance 2 (in () from b; and
let w € Ng(z) N Ng(br). Then ({by, bs, by, c2,¢3,u,2})g =~ F — a contradiction. Hence all
vertices in V(K1) are adjacent to b; (and, by symmetry, also to ay). Since G is claw-free,
(V(K1))q is a clique. u
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