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Abstract

We study the stability of some classes of claw-free graphs defined in terms of for-
bidden subgraphs under the closure operation defined in [10]. We characterize all
connected graphs A such that the class of all C'A-free graphs (where C' denotes the
claw) is stable. Using this result, we prove that every 2-connected and C'H Ps-free,
C'H Zs-free or C'H Ny 1 4-free graph is either hamiltonian or belongs to some classes
of exceptional graphs (all of them having connectivity 2).

1 Introduction

In this paper we follow up with the considerations that originated in the papers [2] and
[5]. All graphs considered here will be finite undirected graphs G' = (V(G), E(G)) without
loops and multiple edges. For terminology and notation not defined here we refer to [1].

We recall here briefly some basic concepts and notations from [5].

*Research supported by grant GA CR No. 201/97/0407
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If A C V(G), then the induced subgraph on A in ¢ will be denoted by (A)¢ (or simply
by (A)). By a clique we mean a (not necessarily maximal) complete subgraph of G. We
denote by Py (k > 2) the path on k vertices, i.e. of length k—1. For A, B C V((), a path
in (G having one endvertex in A and the other in B will be referred to as an A, B-path.
The circumference of G (i.e. the length of a longest cycle in () is denoted by ¢((7) and
the clique number of G (i.e. the size of a largest clique in ¢) is denoted by w(G).

If Hy,...,Hy(k > 1) are graphs, then a graph G is said to be Hy,..., Hy-free if ¢
contains no copy of any of the graphs Hi,..., H; as an induced subgraph; the graphs
Hy, ..., H; will be also referred to in this context as forbidden subgraphs. Specifically, the
four-vertex star K73 is also denoted by C and called the claw and in this case G is said
to be claw-free. Whenever vertices of an induced claw are listed, its center, (i.e. its only
vertex of degree 3) is always the first vertex of the list. Further graphs that will be often

considered as forbidden subgraphs are shown in Fig. 1.
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o
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Figure 1

A vertex @ € V() is said to be locally connected (eligible, simplicial, locally discon-
nected) if the subgraph (Ng(x)) is connected (connected noncomplete, complete, discon-
nected). The set of all locally connected (eligible, simplicial, locally disconnected) ver-
tices of (& is denoted by Voo (G) (Ver(G), Vsi(G), Vip(G)), respectively. Thus, the sets
VEL(G), VS[(G), VLD(G) are pairwise diSjOth, VEL(G) U VS[(G) = VLc(G) and VLc(G) U
Vip(G) = V(G).

For any @ € Vg (G) denote B, = {uv| u,v € Ng(x),uv ¢ E(G)} and let G’ be the
graph with vertex set V(G7) = V(@) and with edge set E(G") = E(G)U B, (i.e., G,
is obtained from G by adding to (Ng(x))¢ all missing edges). The graph G is called
the local completion of G at x. It was proved in [10] that for any claw-free graph G and
for any eligible vertex # € Vgi(G), the graph G’ is claw-free and ¢(G!) = ¢(G). The

following concept was introduced in [10].



Let GG be a claw-free graph. We say that a graph H is a closure of G, denoted H = cl((),
if
(i) there is a sequence of graphs G, ..., Gy and vertices vy, ..., x,_1 such that Gy = G,
Gy = H, T; € VEL(Gz) and Gi-l—l = (Gz)é“ 1= 1,...,t—1,
(ii) Vg(H) = 0.

(Equivalently, cl((Z) is obtained from (' by recursively repeating the operation of local
completion, as long as this is possible). The following result summarizes basic properties

of the closure operation.

Theorem A [10]. Let & be a claw-free graph. Then
(i) the closure cl((G) is well-defined,
(ii) there is a triangle-free graph H such that cl((G) is the line graph of H,

(iii) (G) = e(cl(G)).

(Specifically, part (¢) of Theorem A implies that cl(G') does not depend on the order

of eligible vertices used during the construction of cl((7)).

We say that a claw-free graph G is closed if G = cl(G). Thus, G is closed if and only

Let C be a subclass of the class of claw-free graphs. Following [2], we say that the
class C is stable under the closure (or simply stable) if cl(GG) € C for every G € C. It is
easy to see that the class of k-connected claw-free graphs is an example of a stable class
for any & > 1. By Theorem A, both the class of hamiltonian claw-free graphs and the
class of 2-connected nonhamiltonian claw-free graphs are stable.

In this paper we continue with the study of stability of classes of graphs defined in
terms of forbidden subgraphs originated in [5]. In Section 2 we characterize all connected
graphs A such that the class of C' A-free graphs is stable. Using this result, in Section 3
we extend several previous results on hamiltonicity in classes of graphs defined in terms

of forbidden subgraphs.

2 Forbidden pairs and stability

In the main result of this section, Theorem 4, we characterize all connected graphs A such
that the class of C' A-free graphs is stable. We first recall several known results and prove

some auxiliary statements. We denote by:

Zi  (>1) — the graph which is obtained by identifying a vertex of a triangle
with an endvertex of a path of length 2,
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Nk (1,5,k > 1) — the generalized (1,7, k)-net, i.e. the graph which is obtained by
identifying each vertex of a triangle with an endvertex

of one of three vertex-disjoint paths of lengths ¢, 7, k.

(See also Fig. 2.) Thus, Ny11 =~ N and Ny~ FE. We will always keep the labelling of
the vertices of the graphs Z; and N, ;; as shown in Figure 2.

& by a} d? ajy
by a1 ay a; e
k 2 1 1,2 j
as a; az bs by a; aj ay
b3 . .. oo o o - - o
Z; Nijx
Figure 2

The following results were proved in [5].

Theorem B [5].
(i) Let G be a CP;-free graph (i > 3) and let © € Vgr(G). Then the graph G’ is
C P;-free.
(ii) Let G' be a CN, ; y-free graph (i,j,k > 1) and let © € Vgi(G). Then the graph G,
is O'N; j p-Tree.

Corollary C [5].
(i) The class of C P;-free graphs is a stable class for any ¢ > 3.
ii e class o iix-free graphs is a stable class for any ¢, 5,k > 1.
ii) The cl f C'N, j,-free graphs i ble class f L7 k> 1

It was also shown in [5] that the analogue of Theorem B fails in the class of C'Z;-free

graphs, but the analogue of Corollary C still remains true in this class.
Theorem D [5]. The class of C'Z;-free graphs is a stable class for any i > 1.

The graph in Figure 3 is an example of a C'H-free graph such that G? is not C'H-free.
Thus, the analogue of Theorem B fails also in the class of C'H-free graphs. The following

theorem shows that we can still prove the analogue of Corollary C in this case.
Theorem 1. The class of C H-free graphs is a stable class.

Proof. If F'is an induced subgraph of ¢, then we say that F'is a permanent (or temporary)
induced subgraph of G'if (V(I))aay ~ F (or (V(F))aa) % F'), respectively.



Figure 3

Let G be a C H-free graph and let Gq,...,G; be the sequence of graphs that yields
CI(G) (le G = Gl, CI(G) == Gt, €5 € VEL(G]) and Gj-l-l = (G])gcﬂ j = 1,...,t — 1).
Suppose that cl() is not H-free and let jo > 1 be the smallest integer such that G, 44
contains a permanent induced H. Without loss of generality we can set G, = G, 1.e., we
suppose that (V(F))q, = (V(IF))a) ~ H for some x € Vgr,(G) and I' C G, and that
every induced H in (¢ is temporary. Since (V(F))¢ % H (otherwise F'is a permanent H
in (), we have B = E(F)N B, # 0.

Denote by z the center (i.e., the only vertex of degree four) of F' and by aqas, byby the
two edges in Ng(z) N E(F). If both za; € E(G) and ab; € E(G) for some 4,5 € {1,2},
then we have a;b; € E(G”), contradicting the assumption that (V(F))q ~ H. Hence we
can suppose without loss of generality that BY C {byby, b1z, byz}.

If both zb; € E(G) and zby € E(G), then biby € By, implying ({z,b1,b2,a1})g ~ C
— a contradiction. Hence we can assume that 2b, € B,. Since (V(F))a ~ H, we
have @ ¢ {z,a1,a2,b,}. Choose a shortest z, by-path in (Ng(x))g (it always exists since
x € Vgr(G)) and let ¢ be its first vertex distinct from z (it exists since zby ¢ E(G)).
Consider Fy = ({z,a1,aq,2,¢})g. Since Fy cannot be a permanent hourglass, we have
{arz, azx,a1¢,azc} N E(cl(G)) # 0. But then, since zby € E(G"), z becomes eligible in
some (7 (1 < j <t —1), implying that (V(F))a(q) is a clique. This contradiction proves
Theorem 1. [ |

It is easy to observe that if (G is C'T-free (here T denotes the triangle), then (i consists
only of paths and cycles. Hence Vi (G) = 0, implying that cl(G) = G is C'T-free. The
class of C'T-free graphs is thus also trivially stable. Furthermore, the class of C A-free
graphs is also trivially stable if A contains an induced claw (since then C-free implies A-
free) or if A is not closed (since then every closed graph is A-free). Hence we can without
loss of generality restrict our observations to connected closed claw-free graphs A.

In the main result of this section, Theorem 4, we show that there are no other connected
closed claw-free graphs A such that the C'A-free class is stable except T and the graphs
mentioned in Corollary C, Theorem D and Theorem 1. To prove this, we will need first
some lemmas.

It G is a closed claw-free graph and K C G is a maximal clique, then the vertices in
V(K) N Vip(G) will be called the vertices of attachment of K.



Lemma 2. Let A be a closed connected claw-free graph such that the class of C' A-free
graphs is stable. Then w(A) < 4.

Proof. Let ¢ = w(A) and suppose, to the contrary, that ¢ > 5. We define a graph G by

the following construction.

Let K',...,K?® (s > 1) be the collection of all maximum cliques of A (i.e., K ~
K,, ¢ =1,...,s). Since (¢ is closed, these cliques are pairwise edge-disjoint. For every
i, 1 <1 < s, denote by vy,...,v,, the vertices of attachment of K*, choose an integer

r; such that r; > p; and p; + 3r; > ¢, and replace the K in A by a copy of the graph
L, r; of Figure 4 in such a way that the vertices vy,...,v,, of the copy of the L,, ,, are
identified with the vertices of attachment of the (removed) clique K*. Then clearly & is
claw-free, w(G) < ¢ — 1 and hence (G is A-free; since every inserted copy of L, ., closes

up to a clique on p; + 3r; > ¢ vertices, it is straightforward to check that cl(() contains

an induced subgraph isomorphic to A. [ |
(%] V2 Up;
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Figure 4

Lemma 3. Let A be a closed connected claw-free graph such that the class of C' A-free
graphs is stable. Then w(A) < 3.

Proof. By Lemma 2, w(A) < 4. Suppose, to the contrary, that A contains an induced

K. We distinguish two cases.

Case 1: A contains an induced K4 with p < 3 vertices of attachment,

Construct GG by taking a copy of A and replacing each K4 with one vertex of attachment
by the graph L; of Figure 5 (where the vertex v is identified with the vertex of attachment
of the Ky), each K4 with two vertices of attachment by a copy of the graph L, of Fig. 5
and each K with three vertices of attachment by a copy of the graph Ls of Fig. 5 (where
the replacement is again done in such a way that the vertices vy, vy of the Ly or vy, vy, v3
of the L3 are identified with the vertices of attachment of the deleted K4). Then G is

obviously claw-free and no closed induced subgraph of G contains a Ky with at most three



vertices of attachment. Hence (G is €' A-free. However, it is straightforward to check that

cl() contains an induced A. [ |
v (%] (%] (%] V2
Ll L2 L3 L4
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Figure 5

Case 2: Every induced K4 in A has four vertices of attachment.

In this case we replace each K4 in a copy of A by a copy of the graph L, of Fig. 5
(identifying again vq, va, vs, v4 with the vertices of attachment of the Ky). The constructed
graph G is again claw-free and, although the number of K,’s is not reduced this time,
it is easy to see that no induced subgraph of ' containing a K, with four vertices of
attachment is closed. Hence (& is C A-free. Since cl((G) contains an induced A, we have

again a contradiction. [ |

Now we are ready to prove the main result of this section.

Theorem 4. Let A be a closed connected claw-free graph. Then the class of C' A-free
graphs is stable if and only if

Proof. (i) The “if” part of the proof follows immediately from Corollary C, Theorem D,
Theorem 1 and from the remarks before Lemma 2.

(7¢) Suppose that the class of C'A-free graphs is stable. By Lemma 3, w(A) < 3. If A
is T'-free, then A is either a path and we are done, or A is a cycle and then it is apparent
that the C' A-free class is not stable (since the graph G obtained from A by replacing one
edge by the graph L, of Fig. 5 is C' A-free while cl(() is not). Hence we can suppose that
A contains a triangle.

It A contains a triangle with two vertices of attachment, then, replacing in a copy of
A every such triangle by a copy of the graph L, of Fig. 5 we obtain a C'A-free graph ¢
such that cl(G) is not C' A-free; thus A has no triangle with two vertices of attachment.

It A contains a triangle with no vertex of attachment, then, since A is connected,
A ~ T and we are done. Hence we can suppose that every triangle in A has one or three

vertices of attachment.



We now show that if A contains a triangle with three vertices of attachment, then
A contains no other triangle. Suppose, to the contrary, that A contains at least two
triangles, at least one of them having three vertices of attachment. For any such graph
G, denote by dr(() the minimum distance between two triangles in (¢ such that at least
one of them has three vertices of attachment. Construct a graph G by taking a copy of
A and by replacing every its triangle T' = ({a,b,c})4 with three vertices of attachment
by a copy of the graph L of Figure 6.

C (8] bg b
Figure 6

Let Ty = ({a, b, c}) 4 and Ty be a pair of triangles in A at minimum distance d = dr(A)
(T} having three vertices of attachment). Then the only triangles in the copy of L that
can occur in a closed induced subgraph of ¢ as triangles with three vertices of attachment
are the triangles ({x, z,a1})q, ({x, 2z, a2, {z,y,01})a, {2, 9,02}, ({y,2,al)qe, and
({y,z,c2})g. Since the distance of each of them from T; is at least d + 1 (and the pair
Ty, Ty is arbitrary), we have dp(G) > dr(A), implying that the graph G is A-free. It is
apparent that i is also C-free, and it is straightforward to check that its closure cl(G)
contains an induced A. This contradiction shows that it remains to consider the following

two cases.

Case 1: A contains one triangle with three vertices of attachment and no other triangle.
Case 2: Every triangle in A has exactly one vertex of attachment.

In Case 1, either A >~ N; ; for some ¢, j, k > 1 (and we are done), or some two vertices
of attachment of the triangle are connected by a path, but then, replacing one edge of
the path by the graph L, of Fig. 5, we get a contradiction with the stability. In Case 2,
by the claw-freeness, A contains at most two triangles. If A has one triangle, A ~ Z; for

some ¢ > 1, and if A has two triangles with a common vertex, then A ~ H. It remains



to consider the case when A contains two triangles at a certain nonzero distance (i.e.,
connected by a path), but then, replacing an arbitrary edge of the path by the graph
Ly of Fig. 5, we get a C'A-free graph G such that cl(G) contains an induced A. This

contradiction completes the proof of Theorem 4. [ |

3 Hamiltonian results

Denote by Fi,...,Fs the classes of graphs shown in Fig. 7 (where the elliptical parts
represent cliques of size at least three).

Fi Fs Fe

Figure 7

Following [4], further denote by P the class of all graphs that are obtained by tak-
ing two vertex-disjoint triangles ({a1, az,as}), ({b1,bs,b5}) and by joining every pair of

te? .. .cfi_zbi for k; > 3 or by a triangle

vertices {a;,b;} by a copy of a path Py, = a;c
({ai, bi,¢;}). We denote a graph from P by P, 4, 2., where @; = k; if a;, b; are joined by
a copy of Py, and x; =T, if a;, b; are joined by a triangle (see Fig. 8).

The following results, extending the results of [3], [6], [7], [8], [9] were proved in [5].
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Theorem E [5]. Let (¢ be a 2-connected graph.
(i) If G is C P:-free, then either GG is hamiltonian or cl(G) € Fi.
(ii) If G is C Zy-free, then either G is hamiltonian, or G € {Ps 11, Pssr, Psss, Prrr},
or cl(G) € F.
(iii) If G is C' Ny 2Ny 1 5-free, then either (G is hamiltonian, or G ~ Ps33, or cl(G) €
FsUF U Fs.
(iv) If G is C' E-free, then either (i is hamiltonian or G € Fg.

Corollary F [5].
(i) Every 3-connected C P:-free graph is hamiltonian.
(ii) Every 3-connected C Zy-free graph is hamiltonian.
(iii) Every 3-connected C' Ny 35Ny 1 3-free graph is hamiltonian.
(iv) Every 3-connected C E-free graph is hamiltonian.

Theorem 4 gives a motivation to consider similar questions in the class of C'H-free
graphs, too. However, it is easy to observe that e.g. the graph obtained by replacing
every vertex of an arbitrary cubic 2-connected nonhamiltonian graph ' by a triangle
(also called the inflation of () is a closed 2-connected nonhamiltonian C' H-free graph
and hence similar results to Theorem E cannot be expected in this class. Nevertheless,
we show that meaningful results can be obtained in classes of graphs defined in terms of
triples of forbidden subgraphs, one of them being the hourglass.

We prove the following theorems, in which we denote by F7, Fs and Fy the classes of
graphs shown in Figure 9.

Theorem 5. Let G be a 2-connected C' H Ps-free graph. Then either GG is hamiltonian or
Cl(G) € 77.
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Theorem 6. Let G be a 2-connected C'H Zs-free graph. Then either G is hamiltonian
or GG ~ P55 or cl(G) € Fr.

Theorem 7. Let GG be a 2-connected C'H Ny ; 4-free graph. Then either GG is hamiltonian
or cl(G) € Fg U Fy.

odd

Fz Fs Fo

Figure 9

Since every graph in the classes F7, Fg, Fg 1s of connectivity 2, we obtain the following
corollary.

Corollary 8.
(i) Every 3-connected C H Ps-free graph is hamiltonian.
(ii) Every 3-connected C' H Zs-free graph is hamiltonian.
(iii) Every 3-connected C'H Ny ;1 4-free graph is hamiltonian.

Before proving Theorems 5, 6 and 7, we first introduce some additional notation. The

following theorem was proved in [4].

Theorem G [4]. Every nonhamiltonian 2-connected claw-free graph contains an induced

subgraph F € P.

Let G be a closed 2-connected nonhamiltonian claw-free graph and let (by Theorem G)
' = P, 42 € P be an induced subgraph of G. Recall that we keep the notation of

vertices a;, b;, cf as in Fig. 8. We denote by:
o K, the largest clique in (¢ containing the triangle ({ay, az, as})eq,

e K the largest clique in ¢ containing the triangle ({by, b2, b3})¢,
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o for every: € {1,2,3} for which x; = T', by K; the largest clique in GG containing the
triangle ({a;, ¢, b},

e for every 1 € {1,2,3} for which x; # T, by K; the path a;c}c?... cfi_Zbi and by K{
(j=1,...,k — 1) the largest clique in G containing the j-th edge of the path K;,

o foreveryi € {1,2.3}, Ky = K;ifz; =T, and K} = <U§":_11V(Kg)>g, itw; =T,
o F* = (V(K,)UV(K;,)U (U, V(K)))g-

Note that since (&' is closed, all these sets are well-defined.

The following lemma summarizes basic properties of F™*.

Lemma H [5]. Let G be a closed 2-connected nonhamiltonian claw-free graph and let
I € P be an induced subgraph of (G. Then the graph F* has the following proper-
ties.
(i) [V(A)NV(Ay)| < 1 for every Ay, Ay € {K,, Ky} U{K,| z; = TYU{K/| 2; £ T,1 <
j <@ — 1}7‘41 7£ A27
(ii) if x; = T for some i € {1,2,3}, then V(K;) N V(A) =0 for every A € {K;| z; =
TYULK ;£ TYULKD 2, 2T, A # K,
(iii) if x; # T for some i € {1,2,3}, then V(K}) N V(K}) = 0 and V(K77') N
V(Kfj_l) = () for every j € {1,2,3} such that j #¢ and x; # T,
(iv) if x; = T for at least one i € {1,2,3}, then V(K,) NV (K;) = 0,
(v) a;,b;,ct € Vip(G) for 1 <l <k;—2andi=1,2,3,
(vi) Nala;) C V(K,)UV(K?), Ng(b) C V(Ky) UV(K?), No(c) = V(KU V(KT
for1 <l <k;—2and1=1,2,3.

It G is, moreover, H-free, then we can obtain more information about the structure of

the graph F™.

Lemma 9. Let G be a closed 2-connected nonhamiltonian C' H-free graph and let I € P
be an induced subgraph of GG. Then the graph F* has the following properties.
(i) a;b; ¢ E(G) fori=1,2,3,
(ii) |V(K?)| =2 for every i € {1,2,3} and j € {1,k — 1},
(iii) V(K,) NV (K,) = 0.

Proof. Properties (i), (¢7) follow immediately from the fact that G is H-free. If V(K,)N

V(Ky) # 0, then, for any x € V(K,) NV (Ky), ({z,a1,az2,b1,02})¢ ~ H (by (i) and since
F'is an induced subgraph). Hence V(K,) NV (K;) = 0. [ |
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Proof of Theorem 5. By Theorem A and Corollary C(2), it is sufficient to prove that if
(G 1s a closed 2-connected C H Ps-free graph, then GG € F7. Let GG be closed, 2-connected
and nonhamiltonian. By Theorem G, G contains an induced subgraph F € P. It is
straightforward to check that the only C' H Ps-free graph in the class P is the graph Ps 3 3;
hence F' =~ Ps35. By Lemma 9(ii), K ~ P, ¢ = 1,2,3. By the claw-freeness and since
ab; ¢ E(G), Ng(c;) = {a;, b}, 1 =1,2,3. By Lemma H(v7), the only vertices of F* that
can have a neighbor in V(G')\ V(F*) are those in (V(K,) UV (K}y))\ {a1, a2, as, by, bg, bs}.

Suppose that V(G) # V(F*) and choose a vertex u € V(G)\ V(F*) having a neighbor
v € V(F*). By symmetry, we can suppose that v € V(K,)\ {a1,a2,as}. Since GG is closed,
v € Vip(G). If uis adjacent to another vertex d € V(G)\ V(F*), then dv ¢ FE(G) (other-
wise, since (i is closed, ({v,d, u,a1,as})q ~ H). But then ({d,u,v,a1,¢1,b1,b2,¢2} )¢ =~ Ps
— a contradiction. Hence u has no neighbors outside F*. Since (7 is closed and u ¢ V(K,),
u has no neighbors in V(K,). Since G is closed and 2-connected, there is a vertex
w € V(Ky) \ {b1,b2,b3} such that Ng(u) = {v,w}. Note that, since G is H-free,
vw ¢ E(G).

Now, since u was arbitrary, repeating this argument we obtain vertices uq,..., ug,
V1, .., and wy,...,wg such that v; € V(K,)\ {a1,a2,a3}, w; € V(Ky) \ {b1, bs, bs},
u; € V(GY\ V(F*), Ng(u;) = {v;,w;} and vjw; ¢ E(G), 7 = 1,...,k, and such that
V(G) = V(F*)U{u1,...,ur}. By the claw-freeness and by the above considerations,
all these vertices are distinct. Now it is straightforward to check that & is odd and that
E(G) = E(F*)U{ujv;, ujwj| j =1,...,k} (otherwise (¢ is hamiltonian). This implies
that G € Fr. |

Proof of Theorem 6. By Theorems A and D, we can again suppose that G is a closed
2-connected nonhamiltonian C'H Zs-free graph. We show that then either G ~ P, 55 or
G € F7. By Theorem G, the graph G contains an induced subgraph F' € P, and since ¢
is C'H Zs-free, it follows that F' ~ P555 or F' ~ P,33. We now consider these two cases

separately.

Case 1: F' ~ Py33. First observe that |V(K,)| = |[V(K,)| = 3, since if e.g. d € V(K,) \
{ay,az,a3}, then ({ay,d,az,ci,ci, b1, b3, c3})e =~ Zs. Secondly, since GG is H-free and, by
Lemma 9(i7), we have |V(K{)| = |[V(K})| = |[V(K3)| = [V(KD)| = |V(K3)| = |V(K3)| =
2, implying Ng(¢;) = {ai,b;} for ¢ = 2,3. If |V(K3F)| > 3, then, for a vertex d €
V(K3)\ {c}],ci}, we have ({c,d,c}, by, by, co,a9,a3})c ~ Zs. Hence also |V(K3)| = 2,
implying that Ng(ci) = {a1,c}} and Ng(ci) = {c], b1 }. But then no vertex of F' can have

a neighbor outside F' and, since GG is connected, G ~ F' o~ P, 5 5.

Case 2: I' ~ Ps333. Similarly as above, |V(K!)| =2 for i = 1,2,3, j = 1,2, and hence
Ng(ci) = {ai,bi}, = 1,2,3.
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Let u € V(G)\ V(F7) be a vertex having a neighbor v in V(F*). By symmetry and by
Lemma H(v?), we can suppose that v € V(K,)\{a1,az,as}. If u has another neighbor d €
V(G) \ V(F¥), then, since (by the H-freeness) vd ¢ E(G), ({b1,ba,bs,¢1,a1,0,u,d})g =~
Z5. Hence u has no neighbors outside F*. It is apparent that u has no other neighbors
in K, except v, and thus, since G is closed and 2-connected, there is a vertex w €
V(Kp) \ {b1, b2, b3} such that Ng(u) = {v,w}. Since GG is H-free, vw ¢ FE(G'). But then
we are in the same situation as in final part of the proof of Theorem 5 and, using the

same arguments, we obtain GG € F7.

Proof of Theorem 7. Let (G be a closed (c¢f. Theorem A and Corollary C(iz)) 2-
connected nonhamiltonian C'H Ny 1 4-free graph. We show that G € Fg U Fy.
By Theorem G, the graph ' contains an induced subgraph F' € P, and since (G is

C'H Ny a-free, we have '~ P53 5 0or F' o~ P, 53 5. We again consider these cases separately.

Case 1: F' ~ P533. Similarly to the previous proofs, |V(K/!)| =2 for i =1,2,3, j = 1,2,
and thus Ng(¢;) = {a;, b}, ¢ = 1,2,3. By Lemma H(v¢), the only vertices having neigh-
bors outside F™* can be those in (V(K,)UV(Ky))\{a1,az,as, b1, by, bs}. Ife.g. v € V(K,)\
{a1, as, as} has a neighbor v € V(G)\ V(F*), then ({b1, bz, b3, c2,¢3,¢1,a1,v,u})g >~ Ni14
— a contradiction. Thus, by symmetry, V(G) = V(F*). Since (G is closed and nonhamil-
tonian, we have also F(G) = E(F*) and hence GG € Fs.

Case 2: ' ~ P,33. First observe that, like in Case 1, |V(K{)| = |[V(K})| = 2 and
|V(Kij)| = 2 for ¢ = 2,3, j = 1,2, implying that Ng(¢;) = {ai, b}, ¢ = 2,3. We show
that |V(K,)| = |V(Ky)| = 3. Let, to the contrary, d € V(K,) \ {a1,as2,as}. Then,
by Lemma 9(ii7), d ¢ V(K;) and thus ({by, b2, b3, 2, c3,¢3, ¢l a1,d})g =~ Nyj4. Hence
[V(K,)| = |V(K,)| = 3, implying that the only vertices of F* that can have neighbors
outside F™* are those in K3.

Let u € V(G) \ V(F*) be adjacent to v € V(K}). By Lemma H(vi), v € V(K7})\
{c,c}}. Since G is closed, u has no other neighbors (except v) in K{. Since G is
2-connected, there is a path P in ( starting at v and ending at a vertex w € V(K?) \
{v, ¢}, 2} with all interior vertices outside F*. Let z be the first vertex of P different from
u. Since G is H-free, we have zv ¢ E(G), but then ({by, by, b3, ca, 3, ¢}, v, u, 2} ) g =~ Ny
This contradiction shows that no vertex in F* can have a neighbor outside F*, i.e.,
V(G) = V(F7). It is straightforward to check that also E(F*) = E(G) (otherwise G is
hamiltonian), which implies that G € F. [ |
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