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Abstract
A generalized (7, j)-bull B; ; is a graph obtained by identifying each of some two

distinct vertices of a triangle with an endvertex of one of two vertex-disjoint paths of
lengths 4, 7. We prove that every 2-connected claw-free B, ;-free graph of diameter
at least max{7,2j} (j > 2) is hamiltonian.
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1 Introduction

In this paper we consider finite simple undirected graphs G = (V(G), E(G)) and for
definitions not defined here we refer to [2].

For a set S C V() we denote by N(S) the neighborhood of S, i.e. the set of all
vertices of (¢ which have a neighbor in S. If S = {«}, we simply write N(x) for N({x}).
For any subset M C V((G), we denote Np(S) = N(S) N M. If H is a subgraph of GG, we
write Ng(S) for Ny (S). The induced subgraph on a set M C V(&) will be denoted
by (M).

By diam () we denote the diameter of GG, i.e. the largest distance of a pair of vertices
z,y € V(G). A path with endvertices , y will be referred sometimes to as an xy-path. If
x, z are vertices at distance diam(('), then any shortest xz-path will be called a diameter
path of G.

If Hy,...,Hy(k > 1) are graphs, then a graph G is said to be Hy,..., Hy-free if ¢
contains no copy of any of the graphs Hi,..., H; as an induced subgraph; the graphs
Hy, ..., Hy will be also referred to in this context as forbidden subgraphs. Specifically, the
four-vertex star K3 will be also denoted by €' and called the claw and in this case we
say that G is claw-free. Whenever vertices of an induced claw are listed, its center, (i.e.
its only vertex of degree 3) is always the first vertex of the list. Further graphs that will

be considered as forbidden subgraphs are shown in Fig. 1.
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There are many results dealing with hamiltonian properties in classes of graphs defined
in terms of forbidden induced subgraphs (see e.g. [9], [7], [10], [3], [4]). Bedrossian [1]
(see also [8]) characterized all pairs X,Y of connected forbidden subgraphs implying

hamiltonicity.

Theorem A [1]. Let X and Y be connected graphs with X, Y # Ps, and let G be a
2-connected graph that is not a cycle. Then, GG being XY -free implies G is hamiltonian
if and only if (up to symmetry) X = C and Y = Py, Ps, Ps,Cs, 71,75, B, N or W.

The results on hamiltonicity in C Pi-free, C' Z;-free and C' N-free graphs were extended

to larger classes (by characterizing the classes of nonhamiltonian exceptions) in [5] and



[6] by using the closure concept introduced in [11]. A similar extension is possible in
the class of C'B-free graphs by introducing the class of C'B; ;-free graphs, where by B; ;
(1,7 > 1) we denote the generalized bull, i.e. the graph obtained by identifying each of
some two distinct vertices of a triangle with an endvertex of one of two vertex-disjoint

paths of lengths i, (see Fig. 2).
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However, as shown in [5], the closure method is not applicable in this class since there
are C' B, j-free graphs such that their closure [11] is not CB; j-free.

It is easy to see that there are C' B, j-free graphs of arbitrarily large diameter (a simple
example can be obtained by taking d 4+ 1 vertex-disjoint cliques Ky, K1,..., K; and by
adding all of the edges between consecutive cliques, namely {zy| € K;,y € Kiq,10 =
0,1,...,d—1}).

In the main result of this paper we show that, for any 5 > 2, all 2-connected non-

hamiltonian €' B; j-free graphs have small diameter.

2 Main result

Before we prove the main result of the paper, Theorem 2, we first make some preliminary

observations on shortest paths and their neighborhoods.

Let (G be a claw-free graph, let x,y € V(G) and let P : & = vguyvg...vp = y (k > 3)
be a shortest xy-path in G. Let z € V(G)\ V(P).

L. If [INp(z)| = 1, then, since G is claw-free, z is adjacent to x or to y.
2. If |[Np(2)| > 2 and {v;,v;} C Np(z), then, since P is a shortest path, |1 — j] < 2.

3. By (1) and (2), |Np(2)| < 3 for every vertex z € V(G)\ V(P). Moreover, if
2 < |Np(z)| < 3, then the vertices of Np(z) are consecutive on P.

This motivates the following notation:

Ni:={z e V(G)\ V(P)| Np(z) ={vic1,v;,viq41 }f for 1 <i <k —1,



M; :={z e V(G)\ V(P)| Np(z) = {vi—1,v;}} for 1 <0 <k,
Mo := {z € V(G)\ V(P)| Np(z) = {vo}},
My o= {= € VIG)\ V(P Np(2) = {ue}}

Thus, by (1), (2) and (3), N(P)UV(P) = (U, Ni) U (UL M) u V(P).
We further denote S = V(P)U N(P)and R=V(G)\ S.

Lemma 1. Let j > 2, let GG be a C By ;-free graph of diameter at least max{7,27} and
let P : vgvivy...vq be a diameter path in G. Then
(i) (N;) is complete tor 1 <1 < d—1 and (M;) is complete for 0 < j < d+1,
(i) M; =0 for3<i<d-2,
(iii) (N; U Nij1) is complete for 1 <1 <d — 2,
(iv) for every vertex z € R we have Np(z) = () and Ns(z) C Mo U M; U My U My U
My U Md-l—l-

Proof. (i) If some N; or M; is not complete, then some v;, 7 € {i —1,4,i+ 1}, is a center
of an induced claw, a contradiction.

(17) Suppose M; # ) for some 7, 3 < i < d— 2. Then, since d > 2j, for any vertex z €
M, we have ({v;_3,0i—9,Vi—1, @, V4, Vi1, o, Vigs }) = Baj or ({vimjo1,0imj, ..., 0m1, 2,0,
Vi1, Viga ) = Bs j, a contradiction.

(1i7) Suppose xy ¢ E(G) for some ¢ with 1 < i < d — 2 and two vertices @ € N;, y €
Nig1. Then ({vi_1, 2,041, Y, Viga, Vigss -« -y Vigai }) = Bajor ({vige, y, vi, 2,021, 09, . ..,
Vi—1-;}) >~ B, a contradiction.

(1v) By the definition of P and R, we have Np(z) = ) for every vertex z € R. Since
G is claw-free, we have also Ny,(z) =0 for 1 <:<d—1. [ |

We can now state the main result of the paper.

Theorem 2. Let j > 2 be an integer and let G be a 2-connected C B3 j-free graph of
diameter d > max{7,27}. Then G is hamiltonian.

Remark. From [1] we know that every 2-connected C Bj-free or C By j-free graph is
hamiltonian. The graph in Fig. 3 indicates that there are 2-connected nonhamiltonian
graphs of diameter d = 6 that are C' B, j-free for any j > 2. The example in Fig. 4 shows
that there are 2-connected nonhamiltonian graphs which are C'B; j-free and have diameter
d =25 —1 for any j > 3. Hence the requirement d > max{7,2j} in Theorem 2 is sharp.

Moreover, the example in Figure 5 indicates that there are 2-connected nonhamiltonian
graphs of arbitrary diameter d > 3 which are C'B; ;-free for any pair ¢, 5 such that + > 3,

j > 1. Hence the requirement ¢ = 2 in Theorem 2 is also best possible.



It is easy to see that, in fact, each of the examples in Figures 3 — 5 yields an infinite
family, since each of the vertical edges (marked in the figure by K;) can be blown up to

a clique of arbitrary order.
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Proof of Theorem 2. Let (G be a 2-connected CB, j-free graph of diameter d >
max{7,25}, 7 > 2, and let P : vgvjvy...v, be a diameter path in G. Let M;, N;, S, R be
as in Lemma 1. For ¢ € {0,1,2,d — 1,d,d + 1} further denote M = Nr(M;).

We first make the following observation concerning the structure of GG "close” to the
ends of P. Denote

So = ULy (N; U M; UM U{v}), Ro=V(G)\ (5USp)



and

Sa = ULy (Vi U Mg UM, U{u}), Ry =V(G)\ (SUSy)
(where we set Ng = Nq = ()). Then we have the following claims.

Claim la. The subgraph (Spy) satisfies one of the following:
(i) Ng,(So) =0, Ny # 0, and for any x2 € Ny there is a hamiltonian xyve-path Fp in
<SO>7
(ii) Niy(So) £ 0, My = My = M; = 0, and N, (Ro) C M.

Claim 1b. The subgraph (S;) satisfies one of the following:
(i) Nr,(Sq) =0, Ny—z # 0, and for any x4_2 € Ny_5 there is a hamiltonian x4_2v4-2-
path Py in (Sy),
(11) NRd(Sd) 7£ @, M; == Md—l == M;—l == @, and Nsd(Rd) C MZE—I—I‘

By symmetry, it is sufficient to prove Claim la. We distinguish two cases.
Case 1: My # 0.
We first show that Mg C My. If My = (), then obviously My = () C M;. Hence we may

assume that My # (). Then (Mg U M,) is complete, since otherwise, for some two vertices
x € My, y € My such that xy ¢ E(G) we have ({,v0,v1,Y,02,03,...,024;}) >~ By, a
contradiction (note that both (My) and (M;) are complete by Lemma 1 (i)). Suppose
now that yz ¢ E(G) for two vertices y € My, z € M. Then ({z,z,y,v0}) ~ C for a
vertex @ € My, a contradiction. This implies that yz € E(G) for every y € My, z € M.
But then every vertex in M has a neighbor in M,, i.e. Mj C M, as required.

Next we show that M; C Mj;. We may assume that M; # 0. Let z € My, ie.
rz € E(G) for some & € My, and suppose that zy ¢ F(G) for somey € M. If ay ¢ E(G),
then ({z,z,v1,y,v9,0s3,...,024;}) =~ Baj, and if a2y € E(G), then ({x,z,y,v0}) ~ C.
Hence zy € E(G), implying M7 C M.

Thus, we conclude that (Mg U M;) C My. Now, if Npy(So) # 0, then yz €
E(G) for some two vertices y € My and z € Ry, but then, for a vertex © € M,
({z,y,2,01,09,03,...,024;}) = Bsj, a contradiction. Hence Ng,(5q) = 0.

There is also no edge from MJ to any of M;, ¢ > 3, since M; =0 for 3 < i <d—2 by
Lemma 1(i7), and an edge from M to any of My_1, My, M4y yields a vovg-path of length
at most 6, contradicting the fact that P is a diameter path and d > 7. Consequently,
Ny U {vq} is a cutset of G. Since G is 2-connected, Ny # (.

Summarizing, we already know that (Mg U My) is complete, (Mg U M) C MJ and,
by Lemma 1(:i¢), (N; U N3) is complete. Moreover, it is easy to see that N(x) N M is
complete or empty for all @ € My, and if My # 0, then Mg = Mj (otherwise we have
a claw with center in M3). But then it is straightforward to check that in each of the



possible cases (according to whether My, My, N; and My are empty or nonempty) there
is a hamiltonian xgve-path in (Sp) for any vy € Ny. Thus, we are in situation (i) of

Claim la.

Case 2: My, = 0.

We first consider the subcase when Mg = M; = (. This immediately implies that
Npg,(So) = 0 and, since G is 2-connected, Ny # 0. Moreover, if My # ), then, since vg
cannot be a cutvertex, there is an edge zy with © € My and y € M; U N;. In all these
cases, it is easy to find a hamiltonian xyvy-path in (Sp) for any g € Ny, i.e. we are again
in situation (¢) of Claim la.

Hence we suppose that MyUM; # (). Now, if M # (), then for any vertex v € M, any
shortest vvg-path through M; has length d + 1 (note that there is no path vujugvs. .. vy
of length d with u; € My and uy € Ny, since otherwise we have ({uy,v,vo,us}) ~ C,
a contradiction). Since (¢ has diameter d, there must be another vvg-path P’ of length
at most d. Let w be the successor of v on P'. If w € My_; U My U Myyq, then we
get a vovg-path of length at most 5; hence w € Ry. But then, for a vertex « € My,
({w,v,z,00,01,...,014;}) = By, a contradiction. Hence M; = 0, implying M; # 0.

Summarizing, we now have My = (), My = () and Mg # (). By the definition of Ry
and M* (1 =0,1,2), there is no edge between Ry and My U M; U M3, which implies that
Ns,(Ro) € Mg (if nonempty). Thus, if Ng,(So) # @, we are in situation (i7) of Claim la.
Hence finally suppose that Ng,(So) = 0. Then N(Mg) C M; U Mo U My_q1 U Mg U Myyq.
If Ns,(Mg) # 0, we obtain a voug-path of length ¢ < 7, a contradiction. Hence N(Mg) C
M U My, but then any vertex @ € My is at distance at least d 4 2 from v, contradicting
the fact that P is a diameter path. Hence the claim follows. a

Suppose now that Sy satisfies (1) of Claim la and 5y satisfies (¢) of Claim 1b. Then ev-
ery {v;}UN; is a cutset of G, and since (¢ is 2-connected, N; # () for 3 <i < d—3. Let P, be
a hamiltonian path in (N;), 3 <1 < d—3. Then a3 Pova Ps Py ... Py_stq_oPyjvg_2v4-3 ... vs2y
is a hamiltonian cycle in G.

By symmetry, it remains to consider the case when (Sy) satisfies (i7) of Claim la. Let
r € My. If zy € E(G) for some y € Ny, then ({z,2,y,v1,v2,03,...,021;}) = By for a
vertex z € Mg, a contradiction. Hence Ny, (M) = 0. If N(z) N (My—y U MqU Myyy) # 0,
we get a vovg-path of length at most d — 1. Since M; = () for 2 < i < d — 2, there is no
zvg-path in (9) of length at most d. Hence there is a shortest vga-path P’ of length ¢
such that d — 1 < ¢ < d and V(P')N R # (. This immediately implies that Ng,(S;) # 0,
i.e. (Sy) satisfies (i7) of Claim 1b (specifically, the successor of vy on P’ is in Myy1).

Let vg,v441,-..,040¢ = @ be the vertices of P'. If / = d, denote by P” the path

Vgi1Vdia - - - V2qvp; otherwise set P’ = P’. It is apparent that P” is also a diameter path.



Denote by 8 the cycle (with an orientation) vovy ... V40441 ... v24(vo) (of length 2d + 1 or
2d, respectively). We show that 8’ has no chord.

Since P, P’" and P” are shortest paths, there is no chord xy with x,y € V(P) or
z,y € V(P"). By Lemma 1(i7) (applied on P, P’ and P"), and since all the paths P,
P’ P" satisfy (u7) of Claim la, 1b, the only possible chords in 8 are the edges vy_1v441
and xv;. But, if eg. vg_1v441 € E(G), then vgy € My, implying vgie € M, which
contradicts Claim 1b (¢i). Hence vg_1v441 ¢ F(G) and, by symmetry, zv; ¢ E(G).

Now we observe that, for any = € V(G)\V(B’), |N8(:1;)| < 3. Immediately |N8(:1;)| <A,

since G is claw-free and (' is chordless. If |N8(:1;)| = 4, then x has neighbors on both P
and P”. Since M; = () for 2 <7 < d — 1 and no vertex in any N; can have a neighbor
outside S, the only possibility (up to a symmetry) is Ng(l‘) = {v4_2,V4-1, Vg, Va1 },
but then ({vgya, vay1, @, Va1, Va—2,...,v4-9-;}) =~ Ba;, a contradiction. Hence for every
r e V(G)\ V((f*) with Ng(l‘) # () we have |N8(:1;)| < 3 and, since (' is chordless and G

is claw-free, |N8(:1;)| > 2. We can thus define analogously as before:
NE = {z € V(G)\ V(C)| 2vi1, 201, 20i11 € B(G)},
ME = {z € VIG)\ V(C)| zvie1, zv; € B(G)}

for 1 <1< |V(8’)| (indices are considered modulo |V(8’)|)

By Lemma 1(i7) (applied on P, P’ and P”), and by Claim la, 1b(i7), we have M; = ()
for2<i<d-1land d+2 <i<2d—1 (and also i = 2d if @ = vyq). But this and
the fact that 8’ has no chords implies, together with Lemma 1(iv), that, for ¢ = [%L
the path P : wvv41... 044 is a shortest v,v.q4-path in G. Since P has length d, P"
is a diameter path, implying that, by Lemma 1 (iv) (applied to P"), My = My, = 0.
By symmetry, we also have Myy_y = Myy = M; = (. But then, by Lemma 1 (iv),
V(G) = Ul»zgc”({vi} UN;). Let P; be a hamiltonian path in (N;), ¢ =0,..., |V(8’)| Then

Vo Pov1 Py . . . v24-1 Pag_102q( Pagvo) is a hamiltonian cycle in G. [ |
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