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1 Introduction and notation

The graphs considered in this paper are undirected and simple. All concepts not de�ned

in this paper can be found in [1].

If G is a graph, we denote by V (G) the vertex set of G, by E(G) the edge set of G.

The neighborhood in G of a vertex u is denoted by N(u). We denote the set N(u) [ fug

by N [u]. For A � V (G), < A > represents the subgraph of G induced by A.

The square of G, denoted G

2

, is the graph with vertex set V (G) in which two vertices

are adjacent if their distance in G is one or two. The graph S(K

1;3

) is the graph K

1;3

in

which each edge is subdivided once.

A connected graph that has no cut vertices is called a block. A block of a graph is a

subgraph that is a block and is maximal with respect to this property. The degree of a

block B of a graph G, denoted by d(B), is the number of cut vertices of G belonging to

V (B). A block of degree 1 is called an endblock of G.

The length of a path in G is the number of its edges. We will use the notation P

3

(u)

(where u 2 V (G)) for a path of length 2 in G having u as endvertex. For a connected

subgraph H of G, and for any two vertices u and v in H, denote by uP

H

v a (n arbitrary)

path connecting u and v with the internal vertices in H.

The notation G = F

1

xF

2

means that x is a cut vertex of G and F

1

, F

2

are two

connected subgraphs of G such that V (F

1

) \ V (F

2

) = fxg and V (F

1

) [ V (F

2

) = V (G).

This work is motivated by the following result due to G. Hendry and W. Vogler:

Theorem 1 [2]. Every 1-connected S(K

1;3

)�free graph has a hamiltonian square.

We looked for weaker conditions still implying that the square of a 1-connected graph

is hamiltonian. More precisely, instead of forbidding the existence of an induced S(K

1;3

),

we put on every induced S(K

1;3

) certain conditions under which the square of the graph

remains hamiltonian.

Theorem 2. If G is a connected graph such that every induced S(K

1;3

) has at least three

edges in a block of degree at most 2, then G

2

is hamiltonian.

The following result by Thomassen [4] is an immediate corollary of Theorem 2.

Theorem 3 [4]. If the block graph of G is a path, then G

2

is hamiltonian.

The following theorem shows that, under certain conditions, insertion or deletion of a

part of G does not change the hamiltonicity (or nonhamiltonicity) of G

2

.

Theorem 4. Let G

1

and G

2

be connected graphs with jV (G

i

)j � 2, c

i

2 V (G

i

), i = 1; 2

and let B be a block with jV (B)j � 3, b

1

and b

2

2 V (B). Let G = G

1

(c

1

= c

2

)G

2

and

G

0

= G

1

(c

1

= b

1

)B(b

2

= c

2

)G

2

.

(i) If G

2

is hamiltonian, then (G

0

)

2

is hamiltonian.

(ii) If moreover, c

i

is not a cutvertex of G

i

and is contained in an endblock of G

i

, i = 1; 2,

then the converse is also true.
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2 Proof of Theorem 2

Let us �rst mention the following result by H. Fleischner that we will use many times in

the proofs.

Theorem 5 [3]. Let y and z be arbitrarily chosen vertices of a 2�connected graph G.

Then G

2

contains a hamiltonian cycle C such that the edges of C in y are in G and at

least one of the edges of C in z is in G. If y and z are adjacent in G, then these are three

di�erent edges.

In the rest of this section, G is always a graph of connectivity one.

First we give some additionnal de�nitions.

Let x be a cut vertex of G, and H

0

be a component of < G � x >. Then the subgraph

H =< H

0

[ fxg > is called a branch of G at x.

Let F be a connected subgraph of G and x some vertex of F . F is said to be nontrivial at

x if it contains a P

3

(x) as a proper induced subgraph (i.e., F is trivial at x if F = P

3

(x)

or V (F ) � N [x]).

Now suppose that Theorem 2 is not true and choose a graph G having the following

properties:

(i) G is connected and every induced S(K

1;3

) in G has at least 3 edges in a block of

degree at most 2,

(ii) G

2

is not hamiltonian,

(iii) jV (G)j is minimal with respect to (i) and (ii).

Claim 1: Let F be a connected graph, x 2 V (F ) and xyz a P

3

(x) such that y and z are

not in V (F ). If (Fx(yz))

2

is hamiltonian then F

2

contains a hamiltonian path connecting

x and some vertex x

0

2 N(x).

Proof: Let G = Fx(yz) and let C be a hamiltonian cycle of F

2

. Since the only adjacencies

of z in F

2

are x and y and N

F

(y) = fxg, there exists necessarily some vertex x

0

2

V (F )� fxg such that C = xP

F

x

0

yzx where xP

F

x

0

is a hamiltonian path of F

2

between

x and x

0

and consequently x

0

2 N(x).

Claim 2: If an induced H ' S(K

1;3

) � G has at least three edges in a block B of degree

at most two, then some three edges of H in B induce a path P

4

.

Proof: immediate.

Claim 3: Let x be a cutvertex of G and F

1

, F

2

two connected subgraphs of G such that

V (F

1

) \ V (F

2

) = fxg. Assume that F

2

is not trivial at x, i.e., F

2

contains an induced

P

3

(x) = xyz as a proper induced sugraph. Then the graph G

0

= F

1

xyz also satis�es all

the hypothesis of Theorem 2.

Proof: If not, there exists in G

0

some S(K

1;3

) that has no connected part of order at least
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4 in a block of degree at most 2. But if so, it was the same in G, since we neither created

any new S(K

1;3

) nor increased the degree of any block.

Proof of Theorem 2. By the assumptions, G

2

is not hamiltonian. Thus, by Theorem

1, G contains some S(K

1;3

) as an induced subgraph. By (i), the S(K

1;3

) has at least 3

edges in some block H of G of degree at most 2. Notice that jV (H)j � 4.

Case 1: d(H) = 1:

Let c be the cutvertex of G, belonging to H and let R be the union of all branches of

G at c which intersect H only at c.

If H is trivial at c, then, by Claim 2, V (H)�fcg = fb

1

; b

2

; � � � ; b

h

g � N(c). The graph

G

0

= Rcb

1

satis�es the property (i). So by minimality of G, the graph G

02

is hamiltonian

and, using similar arguments as in the proof of Claim 1, R

2

contains a hamiltonian path

c

0

P

R

c

00

between some c

0

2 N [c] and some c

00

2 N(c). Let

C = c

0

P

R

c

00

b

1

� � � b

h

c

0

It is easy to see that C is a hamiltonian cycle in G

2

, a contradiction.

Hence H is not trivial at c, i.e., it contains a proper induced path P

3

(c) = cb

1

b

2

.

The graph G

00

= Rcb

1

b

2

is connected and, by Claim 3, G

00

satis�es the condition (i).

Since jV (G

00

)j < jV (G)j, (G

00

)

2

is hamiltonian and, by Claim 1, the graph R

2

contains

a hamiltonian path cP

R

c

00

connecting c and some c

00

2 N(c). On the other hand, by

Theorem 5, H

2

contains a hamiltonian path b

1

P

H

c connecting b

1

and c.

Hence the cycle C = cP

R

c

00

b

1

P

H

c is a hamiltonian cycle in G

2

, a contradiction with

the condition (ii) on G.

Case 2: d(H) = 2:

Let c

1

and c

2

be the two cutvertices of G belonging to H and let B

i

, i = 1; 2, be

the union of all branches at c

i

not containing H. This means that G = B

1

c

1

Hc

2

B

2

. We

distinguish, up to symmetry, the following two subcases.

Subcase 2.1: B

1

is trivial at c

1

and B

2

is trivial at c

2

.

The subgraph H is a block and thus, by Theorem 5, V (H) can be partitioned into

two subpaths a

1

P

1

H

a

2

and c

2

P

2

H

c

1

, where a

1

2 N(c

1

) and a

2

2 N(c

2

).

If V (B

1

) = fb

1

; b

2

; � � � ; b

k

; c

1

g � N [c

1

], k � 1, and B

2

= P

3

(c

2

) = c

2

d

1

d

2

then the cycle

C = c

1

b

1

b

2

� � � b

k

a

1

P

1

H

a

2

d

1

d

2

c

2

P

2

H

c

1

is a hamiltonian cycle in G

2

and contradicts (ii).

The proof is similar if B

1

= P

3

(c

1

) and V (B

2

) � N [c

2

].

If V (B

1

) = fb

1

; b

2

; � � � ; b

k

; c

1

g � N [c

1

] and V (B

2

) = fd

1

; d

2

; � � � ; d

l

; c

2

g � N [c

2

], then

the cycle C = c

1

b

1

b

2

� � � b

k

a

1

P

1

H

a

2

d

1

d

2

� � �d

l

c

2

P

2

H

c

1

is a hamiltonian cycle in G

2

, contra-

dicting (ii).

Finally, if B

1

= P

3

(c

1

) = c

1

b

1

b

2

and B

2

= P

3

(c

2

) = c

2

d

1

d

2

, then again the cycle

C = c

1

b

2

b

1

a

1

P

1

H

a

2

d

1

d

2

c

2

P

2

H

c

1

gives a similar contradiction.

Subcase 2.2: B

1

is not trivial at c

1

.
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Then B

1

contains a path P

3

(c

1

) = c

1

b

1

b

2

as a proper induced subgraph. On the other

hand, since jV (H) [ V (B

2

)j > 3 and there exists some vertex in V (H) [ V (B

2

) (for

example, each vertex in V (B

2

)�fc

2

g) nonadjacent to c

1

, the subgraph G

0

= Hc

2

B

2

is not

trivial. Then G

0

contains a path P

3

(c

1

) = c

1

d

1

d

2

as a proper induced subgraph. Now let

G

1

= B

1

c

1

d

1

d

2

and G

2

= b

2

b

1

c

1

G

0

. By Claim 3, both G

1

and G

2

satisfy the condition (i).

By the minimality of G, the graphs G

2

1

and G

2

2

are hamiltonian and thus, by Claim 1, B

2

1

and G

02

contains hamiltonian paths a

1

P

B

1

c

1

and c

1

P

G

0

a

2

respectively, where the vertices

a

1

and a

2

are in N(c

1

). But then the cycle C = a

1

P

B

1

c

1

P

G

0

a

2

a

1

is clearly a hamiltonian

cycle in G

2

, contradicting the hypothesis (ii).

3 Proof of Theorem 4

Before proving Theorem 4, let us give the following lemma.

Lemma. Let G = G

1

xG

2

, where G

1

and G

2

are two connected graphs with jV (G

i

)j � 2,

i = 1; 2.

(i) If G

2

is hamiltonian, then each of the graphs G

i

, i = 1; 2, has at least one of the

following three properties:

(1) < G

i

� x >

2

contains a hamiltonian path x

i

P

G

i

�x

y

i

where x

i

; y

i

2 N(x),

(2) G

2

i

contains a hamiltonian path x

i

P

G

i

y

i

where x

i

; y

i

2 N(x) (and thus x is an

interior vertex of x

i

P

G

i

y

i

),

(3) G

2

i

contains a hamiltonian path xP

G

i

x

i

, where x

i

2 N(x).

(ii) If both G

1

and G

2

have some of the properties in (i), then G

2

is hamiltonian except

possibly ifG

1

andG

2

satisfy (2) orG

1

satis�es (2) andG

2

satis�es (3) (and symmetrically).

Proof of Lemma: (i) Let C be a hamiltonian cycle in G

2

. Then clearly, for each i = 1; 2,

E(C) \ E(G

2

i

) is a system of paths x

j

i

P

j

i

y

j

i

, j = 1; � � � ; k

i

, satisfying one of the following:

(a) x

j

i

; y

j

i

2 N(x) and x =2

S

k

i

j=1

V (x

j

i

P

j

i

y

j

i

),

(b) x

j

i

; y

j

i

2 N(x) and x is an interior vertex of some path P

j

0

i

,

(c) x

j

i

; y

j

i

2 N [x] and x is an endvertex of some path P

j

0

i

.

If the system of paths satis�es (a), then x

1

i

P

1

i

y

1

i

x

2

i

P

2

i

y

2

i

� � �x

k

i

i

P

k

i

i

y

k

i

i

is a hamiltonian

path in < G

i

� x >

2

.

If the system of paths satis�es (b), then x

1

i

P

1

i

y

1

i

x

2

i

P

2

i

y

2

i

� � �x

k

i

i

P

k

i

i

y

k

i

i

is a hamiltonian

path in G

2

i

and x is an interior vertex.

If the system of paths satis�es (c) and if we put (without loss of generality) x = x

1

i

,

then xP

1

i

y

1

i

x

2

i

P

2

i

y

2

i

� � �x

k

i

i

P

k

i

i

y

k

i

i

is a hamiltonian path in G

2

i

.

(ii) If G

1

satis�es (1) and G

2

satis�es (1), then

C = xx

1

P

G

1

y

1

x

2

P

G

2

y

2

x

is a hamiltonian cycle in G

2

.

If G

1

satis�es (1) and G

2

satis�es (2), then

C = x

1

P

G

1

y

1

x

2

P

G

2

y

2

x

1
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is a hamiltonian cycle in G

2

.

If G

1

satis�es (1) and G

2

satis�es (3), then

C = xP

G

2

x

2

x

1

P

G

1

y

1

x

is a hamiltonian cycle in G

2

.

If G

1

satis�es (3) and G

2

satis�es (3), then

C = xP

G

1

x

1

x

2

P

G

2

x

is a hamiltonian cycle in G

2

.

Proof of Theorem 4: (i) First of all, by Theorem 5, B

2

contains a hamiltonian cycle

b

1

a

1

P

1

H

a

2

b

2

a

0

2

P

2

H

b

1

, where a

1

2 N(b

1

) and a

2

; a

0

2

2 N(b

2

).

On the other hand, by the hypothesis, the graph G

2

is hamiltonian. Then G

1

satis�es

one of the three conditions in the part (i) of the Lemma, with x = c

1

= c

2

.

We thus consider the following three di�erent cases.

Case 1: G

1

satis�es (1).

Then necessarily G

2

satis�es (2). Let

C

0

= x

1

P

G

1

y

1

a

1

P

1

B

a

2

x

2

P

G

2

y

2

a

0

2

P

2

B

(b

1

= c

1

)x

1

It is easy to see that C

0

is a hamiltonian cycle in (G

0

)

2

.

Case 2: G

1

satis�es (2).

Then G

2

satis�es (1) and this case is similar to case 1.

Case 3: G

1

satis�es (3).

Then G

2

satis�es (3). Let

C

0

= c

1

P

G

1

x

1

a

1

P

1

B

a

2

(c

2

= b

2

)P

G

2

x

2

a

0

2

P

2

B

(b

1

= c

1

):

Then C

0

is a hamiltonian cycle in (G

0

)

2

.

(ii) For i = 1; 2, suppose that c

i

is contained in an endblock H

i

of G

i

. Let d

i

be the

cutvertex of G

i

belonging V (H

i

) and R

i

the connected graph such that G

i

= R

i

d

i

H

i

.

Without loss of generality one of the following cases occurs.

Case 1: jV (H

i

)j � 3, i = 1; 2.

Then, by Theorem 5, H

2

1

contains a hamiltonian cycle d

1

u

1

P

1

H

1

v

1

c

1

P

2

H

1

u

0

1

d

1

where

u

1

; u

0

1

2 N(d

1

) and v

1

2 N(c

1

). This implies that H

1

has property (1) with x = d

1

.

On the other hand, (G

0

)

2

is hamiltonian. Then, using the part (i) of the Lemma, the

graph R

1

satis�es one of the three properties (1), (2) or (3) with x = d

1

.

Thus, by the part (ii) of the Lemma, the graph G

2

1

admits a hamiltonian cycle that

contains the edge c

1

v

1

2 E(G

1

). Then G

1

satis�es (3), with x = c

1

.

Using similar arguments, we show that the graph G

2

also satis�es (3) and, applying the

part (ii) of the Lemma, we obtain that the graph G

2

= (G

1

(c

1

= c

2

)G

2

)

2

is hamiltonian.
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Case 2: jV (H

1

)j � 3 and jV (H

2

)j = 2.

Using the same arguments as in Case 1, the graph G

1

satis�es (3), with x = c

1

. Since

(G

0

)

2

is hamiltonian and V (H

2

) = fc

2

d

2

g, the graph G

2

satis�es (3) with x = c

2

.

Thus, applying the part (ii) of the Lemma, we obtain that the graphG

2

is hamiltonian.

Case 3: jV (H

1

)j = 2 and jV (H

2

)j = 2.

It is easy to see that in this case again both G

1

and G

2

satisfy (3) with x = c

1

and

x = c

2

, respectively, and thus the graph G

2

is hamiltonian.
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