Induced $S\left(K_{1,3}\right)$ and hamiltonian square

Mohamed El Kadi Abderrezzak
Evelyne Flandrin
L.R.I., URA 410 C.N.R.S.
Bât. 490, Université de Paris-sud
91405-Orsay cedex, FRANCE *

Zdeněk Ryjáček ${ }^{\dagger}$
Department of Mathematics
University of West Bohemia
30614 Pilsen
Czech Republic

July 9, 1997

Abstract

We prove that the square of a connected graph such that every induced $S\left(K_{1,3}\right)$ has at least three edges in a block of degree at most 2 is hamiltonian. We also show that the insertion, and, under certain conditions also deletion, of a block of degree 2 into (from) a connected graph does not change the hamiltonicity of its square.

[^0]
1 Introduction and notation

The graphs considered in this paper are undirected and simple. All concepts not defined in this paper can be found in [1].

If G is a graph, we denote by $V(G)$ the vertex set of G, by $E(G)$ the edge set of G. The neighborhood in G of a vertex u is denoted by $N(u)$. We denote the set $N(u) \cup\{u\}$ by $N[u]$. For $A \subseteq V(G),<A>$ represents the subgraph of G induced by A.

The square of G, denoted G^{2}, is the graph with vertex set $V(G)$ in which two vertices are adjacent if their distance in G is one or two. The graph $S\left(K_{1,3}\right)$ is the graph $K_{1,3}$ in which each edge is subdivided once.

A connected graph that has no cut vertices is called a block. A block of a graph is a subgraph that is a block and is maximal with respect to this property. The degree of a block B of a graph G, denoted by $d(B)$, is the number of cut vertices of G belonging to $V(B)$. A block of degree 1 is called an endblock of G.

The length of a path in G is the number of its edges. We will use the notation $P_{3}(u)$ (where $u \in V(G)$) for a path of length 2 in G having u as endvertex. For a connected subgraph H of G, and for any two vertices u and v in H, denote by $u P_{H} v$ a (n arbitrary) path connecting u and v with the internal vertices in H.

The notation $G=F_{1} x F_{2}$ means that x is a cut vertex of G and F_{1}, F_{2} are two connected subgraphs of G such that $V\left(F_{1}\right) \cap V\left(F_{2}\right)=\{x\}$ and $V\left(F_{1}\right) \cup V\left(F_{2}\right)=V(G)$.

This work is motivated by the following result due to G. Hendry and W. Vogler:
Theorem 1 [2]. Every 1-connected $S\left(K_{1,3}\right)$-free graph has a hamiltonian square.
We looked for weaker conditions still implying that the square of a 1-connected graph is hamiltonian. More precisely, instead of forbidding the existence of an induced $S\left(K_{1,3}\right)$, we put on every induced $S\left(K_{1,3}\right)$ certain conditions under which the square of the graph remains hamiltonian.

Theorem 2. If G is a connected graph such that every induced $S\left(K_{1,3}\right)$ has at least three edges in a block of degree at most 2 , then G^{2} is hamiltonian.

The following result by Thomassen [4] is an immediate corollary of Theorem 2.
Theorem 3 [4]. If the block graph of G is a path, then G^{2} is hamiltonian.
The following theorem shows that, under certain conditions, insertion or deletion of a part of G does not change the hamiltonicity (or nonhamiltonicity) of G^{2}.

Theorem 4. Let G_{1} and G_{2} be connected graphs with $\left|V\left(G_{i}\right)\right| \geq 2, c_{i} \in V\left(G_{i}\right), i=1,2$ and let B be a block with $|V(B)| \geq 3, b_{1}$ and $b_{2} \in V(B)$. Let $G=G_{1}\left(c_{1}=c_{2}\right) G_{2}$ and $G^{\prime}=G_{1}\left(c_{1}=b_{1}\right) B\left(b_{2}=c_{2}\right) G_{2}$.
(i) If G^{2} is hamiltonian, then $\left(G^{\prime}\right)^{2}$ is hamiltonian.
(ii) If moreover, c_{i} is not a cutvertex of G_{i} and is contained in an endblock of $G_{i}, i=1,2$, then the converse is also true.

2 Proof of Theorem 2

Let us first mention the following result by H. Fleischner that we will use many times in the proofs.

Theorem 5 [3]. Let y and z be arbitrarily chosen vertices of a $2-$ connected graph G. Then G^{2} contains a hamiltonian cycle C such that the edges of C in y are in G and at least one of the edges of C in z is in G. If y and z are adjacent in G, then these are three different edges.

In the rest of this section, G is always a graph of connectivity one.
First we give some additionnal definitions.
Let x be a cut vertex of G, and H^{\prime} be a component of $\langle G-x\rangle$. Then the subgraph $H=<H^{\prime} \cup\{x\}>$ is called a branch of G at x.
Let F be a connected subgraph of G and x some vertex of $F . F$ is said to be nontrivial at x if it contains a $P_{3}(x)$ as a proper induced subgraph (i.e., F is trivial at x if $F=P_{3}(x)$ or $V(F) \subseteq N[x])$.

Now suppose that Theorem 2 is not true and choose a graph G having the following properties:
(i) G is connected and every induced $S\left(K_{1,3}\right)$ in G has at least 3 edges in a block of degree at most 2,
(ii) G^{2} is not hamiltonian,
(iii) $|V(G)|$ is minimal with respect to (i) and (ii).

Claim 1: Let F be a connected graph, $x \in V(F)$ and $x y z$ a $P_{3}(x)$ such that y and z are not in $V(F)$. If $(F x(y z))^{2}$ is hamiltonian then F^{2} contains a hamiltonian path connecting x and some vertex $x^{\prime} \in N(x)$.
Proof: Let $G=F x(y z)$ and let C be a hamiltonian cycle of F^{2}. Since the only adjacencies of z in F^{2} are x and y and $N_{F}(y)=\{x\}$, there exists necessarily some vertex $x^{\prime} \in$ $V(F)-\{x\}$ such that $C=x P_{F} x^{\prime} y z x$ where $x P_{F} x^{\prime}$ is a hamiltonian path of F^{2} between x and x^{\prime} and consequently $x^{\prime} \in N(x)$.

Claim 2: If an induced $H \simeq S\left(K_{1,3}\right) \subset G$ has at least three edges in a block B of degree at most two, then some three edges of H in B induce a path P_{4}.

Proof: immediate.
Claim 3: Let x be a cutvertex of G and F_{1}, F_{2} two connected subgraphs of G such that $V\left(F_{1}\right) \cap V\left(F_{2}\right)=\{x\}$. Assume that F_{2} is not trivial at x, i.e., F_{2} contains an induced $P_{3}(x)=x y z$ as a proper induced sugraph. Then the graph $G^{\prime}=F_{1} x y z$ also satisfies all the hypothesis of Theorem 2.

Proof: If not, there exists in G^{\prime} some $S\left(K_{1,3}\right)$ that has no connected part of order at least

4 in a block of degree at most 2 . But if so, it was the same in G, since we neither created any new $S\left(K_{1,3}\right)$ nor increased the degree of any block.

Proof of Theorem 2. By the assumptions, G^{2} is not hamiltonian. Thus, by Theorem 1, G contains some $S\left(K_{1,3}\right)$ as an induced subgraph. By (i), the $S\left(K_{1,3}\right)$ has at least 3 edges in some block H of G of degree at most 2. Notice that $|V(H)| \geq 4$.

Case 1: $d(H)=1$.
Let c be the cutvertex of G, belonging to H and let R be the union of all branches of G at c which intersect H only at c.

If H is trivial at c, then, by Claim 2, $V(H)-\{c\}=\left\{b_{1}, b_{2}, \cdots, b_{h}\right\} \subseteq N(c)$. The graph $G^{\prime}=R c b_{1}$ satisfies the property (i). So by minimality of G, the graph G^{2} is hamiltonian and, using similar arguments as in the proof of Claim 1, R^{2} contains a hamiltonian path $c^{\prime} P_{R} c^{\prime \prime}$ between some $c^{\prime} \in N[c]$ and some $c^{\prime \prime} \in N(c)$. Let

$$
C=c^{\prime} P_{R} c^{\prime \prime} b_{1} \cdots b_{h} c^{\prime}
$$

It is easy to see that C is a hamiltonian cycle in G^{2}, a contradiction.
Hence H is not trivial at c, i.e., it contains a proper induced path $P_{3}(c)=c b_{1} b_{2}$. The graph $G^{\prime \prime}=R c b_{1} b_{2}$ is connected and, by Claim 3, $G^{\prime \prime}$ satisfies the condition (i). Since $\left|V\left(G^{\prime \prime}\right)\right|<|V(G)|,\left(G^{\prime \prime}\right)^{2}$ is hamiltonian and, by Claim 1, the graph R^{2} contains a hamiltonian path $c P_{R} c^{\prime \prime}$ connecting c and some $c^{\prime \prime} \in N(c)$. On the other hand, by Theorem $5, H^{2}$ contains a hamiltonian path $b_{1} P_{H} c$ connecting b_{1} and c.

Hence the cycle $C=c P_{R} c^{\prime \prime} b_{1} P_{H} c$ is a hamiltonian cycle in G^{2}, a contradiction with the condition (ii) on G.

Case 2: $d(H)=2$.
Let c_{1} and c_{2} be the two cutvertices of G belonging to H and let $B_{i}, i=1,2$, be the union of all branches at c_{i} not containing H. This means that $G=B_{1} c_{1} H c_{2} B_{2}$. We distinguish, up to symmetry, the following two subcases.

Subcase 2.1: B_{1} is trivial at c_{1} and B_{2} is trivial at c_{2}.
The subgraph H is a block and thus, by Theorem $5, V(H)$ can be partitioned into two subpaths $a_{1} P_{H}^{1} a_{2}$ and $c_{2} P_{H}^{2} c_{1}$, where $a_{1} \in N\left(c_{1}\right)$ and $a_{2} \in N\left(c_{2}\right)$.

If $V\left(B_{1}\right)=\left\{b_{1}, b_{2}, \cdots, b_{k}, c_{1}\right\} \subseteq N\left[c_{1}\right], k \geq 1$, and $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$ then the cycle $C=c_{1} b_{1} b_{2} \cdots b_{k} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ is a hamiltonian cycle in G^{2} and contradicts (ii).

The proof is similar if $B_{1}=P_{3}\left(c_{1}\right)$ and $V\left(B_{2}\right) \subseteq N\left[c_{2}\right]$.
If $V\left(B_{1}\right)=\left\{b_{1}, b_{2}, \cdots, b_{k}, c_{1}\right\} \subseteq N\left[c_{1}\right]$ and $V\left(B_{2}\right)=\left\{d_{1}, d_{2}, \cdots, d_{l}, c_{2}\right\} \subseteq N\left[c_{2}\right]$, then the cycle $C=c_{1} b_{1} b_{2} \cdots b_{k} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} \cdots d_{l} c_{2} P_{H}^{2} c_{1}$ is a hamiltonian cycle in G^{2}, contradicting (ii).

Finally, if $B_{1}=P_{3}\left(c_{1}\right)=c_{1} b_{1} b_{2}$ and $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$, then again the cycle $C=c_{1} b_{2} b_{1} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ gives a similar contradiction.

Subcase 2.2: B_{1} is not trivial at c_{1}.

Then B_{1} contains a path $P_{3}\left(c_{1}\right)=c_{1} b_{1} b_{2}$ as a proper induced subgraph. On the other hand, since $\left|V(H) \cup V\left(B_{2}\right)\right|>3$ and there exists some vertex in $V(H) \cup V\left(B_{2}\right)$ (for example, each vertex in $\left.V\left(B_{2}\right)-\left\{c_{2}\right\}\right)$ nonadjacent to c_{1}, the subgraph $G^{\prime}=H c_{2} B_{2}$ is not trivial. Then G^{\prime} contains a path $P_{3}\left(c_{1}\right)=c_{1} d_{1} d_{2}$ as a proper induced subgraph. Now let $G_{1}=B_{1} c_{1} d_{1} d_{2}$ and $G_{2}=b_{2} b_{1} c_{1} G^{\prime}$. By Claim 3, both G_{1} and G_{2} satisfy the condition (i). By the minimality of G, the graphs G_{1}^{2} and G_{2}^{2} are hamiltonian and thus, by Claim $1, B_{1}^{2}$ and G^{2} contains hamiltonian paths $a_{1} P_{B_{1}} c_{1}$ and $c_{1} P_{G^{\prime}} a_{2}$ respectively, where the vertices a_{1} and a_{2} are in $N\left(c_{1}\right)$. But then the cycle $C=a_{1} P_{B_{1}} c_{1} P_{G^{\prime}} a_{2} a_{1}$ is clearly a hamiltonian cycle in G^{2}, contradicting the hypothesis (ii).

3 Proof of Theorem 4

Before proving Theorem 4, let us give the following lemma.
Lemma. Let $G=G_{1} x G_{2}$, where G_{1} and G_{2} are two connected graphs with $\left|V\left(G_{i}\right)\right| \geq 2$, $i=1,2$.
(i) If G^{2} is hamiltonian, then each of the graphs $G_{i}, i=1,2$, has at least one of the following three properties:
(1) $<G_{i}-x>^{2}$ contains a hamiltonian path $x_{i} P_{G_{i}-x} y_{i}$ where $x_{i}, y_{i} \in N(x)$,
(2) G_{i}^{2} contains a hamiltonian path $x_{i} P_{G_{i}} y_{i}$ where $x_{i}, y_{i} \in N(x)$ (and thus x is an interior vertex of $x_{i} P_{G_{i}} y_{i}$),
(3) G_{i}^{2} contains a hamiltonian path $x P_{G_{i}} x_{i}$, where $x_{i} \in N(x)$.
(ii) If both G_{1} and G_{2} have some of the properties in (i), then G^{2} is hamiltonian except possibly if G_{1} and G_{2} satisfy (2) or G_{1} satisfies (2) and G_{2} satisfies (3) (and symmetrically).

Proof of Lemma: (i) Let C be a hamiltonian cycle in G^{2}. Then clearly, for each $i=1,2$, $E(C) \cap E\left(G_{i}^{2}\right)$ is a system of paths $x_{i}^{j} P_{i}^{j} y_{i}^{j}, j=1, \cdots, k_{i}$, satisfying one of the following:
(a) $x_{i}^{j}, y_{i}^{j} \in N(x)$ and $x \notin \bigcup_{j=1}^{k_{i}} V\left(x_{i}^{j} P_{i}^{j} y_{i}^{j}\right)$,
(b) $x_{i}^{j}, y_{i}^{j} \in N(x)$ and x is an interior vertex of some path $P_{i}^{j_{0}}$,
(c) $x_{i}^{j}, y_{i}^{j} \in N[x]$ and x is an endvertex of some path $P_{i}^{j_{0}}$.

If the system of paths satisfies (a), then $x_{i}^{1} P_{i}^{1} y_{i}^{1} x_{i}^{2} P_{i}^{2} y_{i}^{2} \cdots x_{i}^{k_{i}} P_{i}^{k_{i}} y_{i}^{k_{i}}$ is a hamiltonian path in $\left\langle G_{i}-x\right\rangle^{2}$.

If the system of paths satisfies (b), then $x_{i}^{1} P_{i}^{1} y_{i}^{1} x_{i}^{2} P_{i}^{2} y_{i}^{2} \cdots x_{i}^{k_{i}} P_{i}^{k_{i}} y_{i}^{k_{i}}$ is a hamiltonian path in G_{i}^{2} and x is an interior vertex.

If the system of paths satisfies (c) and if we put (without loss of generality) $x=x_{i}^{1}$, then $x P_{i}^{1} y_{i}^{1} x_{i}^{2} P_{i}^{2} y_{i}^{2} \cdots x_{i}^{k_{i}} P_{i}^{k_{i}} y_{i}^{k_{i}}$ is a hamiltonian path in G_{i}^{2}.
(ii) If G_{1} satisfies (1) and G_{2} satisfies (1), then

$$
C=x x_{1} P_{G_{1}} y_{1} x_{2} P_{G_{2}} y_{2} x
$$

is a hamiltonian cycle in G^{2}.
If G_{1} satisfies (1) and G_{2} satisfies (2), then

$$
C=x_{1} P_{G_{1}} y_{1} x_{2} P_{G_{2}} y_{2} x_{1}
$$

is a hamiltonian cycle in G^{2}.
If G_{1} satisfies (1) and G_{2} satisfies (3), then

$$
C=x P_{G_{2}} x_{2} x_{1} P_{G_{1}} y_{1} x
$$

is a hamiltonian cycle in G^{2}.
If G_{1} satisfies (3) and G_{2} satisfies (3), then

$$
C=x P_{G_{1}} x_{1} x_{2} P_{G_{2}} x
$$

is a hamiltonian cycle in G^{2}.
Proof of Theorem 4: (i) First of all, by Theorem 5, B^{2} contains a hamiltonian cycle $b_{1} a_{1} P_{H}^{1} a_{2} b_{2} a_{2}^{\prime} P_{H}^{2} b_{1}$, where $a_{1} \in N\left(b_{1}\right)$ and $a_{2}, a_{2}^{\prime} \in N\left(b_{2}\right)$.

On the other hand, by the hypothesis, the graph G^{2} is hamiltonian. Then G_{1} satisfies one of the three conditions in the part (i) of the Lemma, with $x=c_{1}=c_{2}$.

We thus consider the following three different cases.
Case 1: G_{1} satisfies (1).
Then necessarily G_{2} satisfies (2). Let

$$
C^{\prime}=x_{1} P_{G_{1}} y_{1} a_{1} P_{B}^{1} a_{2} x_{2} P_{G_{2}} y_{2} a_{2}^{\prime} P_{B}^{2}\left(b_{1}=c_{1}\right) x_{1}
$$

It is easy to see that C^{\prime} is a hamiltonian cycle in $\left(G^{\prime}\right)^{2}$.
Case 2: G_{1} satisfies (2).
Then G_{2} satisfies (1) and this case is similar to case 1 .
Case 3: G_{1} satisfies (3).
Then G_{2} satisfies (3). Let

$$
C^{\prime}=c_{1} P_{G_{1}} x_{1} a_{1} P_{B}^{1} a_{2}\left(c_{2}=b_{2}\right) P_{G_{2}} x_{2} a_{2}^{\prime} P_{B}^{2}\left(b_{1}=c_{1}\right)
$$

Then C^{\prime} is a hamiltonian cycle in $\left(G^{\prime}\right)^{2}$.
(ii) For $i=1,2$, suppose that c_{i} is contained in an endblock H_{i} of G_{i}. Let d_{i} be the cutvertex of G_{i} belonging $V\left(H_{i}\right)$ and R_{i} the connected graph such that $G_{i}=R_{i} d_{i} H_{i}$. Without loss of generality one of the following cases occurs.

Case 1: $\left|V\left(H_{i}\right)\right| \geq 3, i=1,2$.
Then, by Theorem 5, H_{1}^{2} contains a hamiltonian cycle $d_{1} u_{1} P_{H_{1}}^{1} v_{1} c_{1} P_{H_{1}}^{2} u_{1}^{\prime} d_{1}$ where $u_{1}, u_{1}^{\prime} \in N\left(d_{1}\right)$ and $v_{1} \in N\left(c_{1}\right)$. This implies that H_{1} has property (1) with $x=d_{1}$.

On the other hand, $\left(G^{\prime}\right)^{2}$ is hamiltonian. Then, using the part (i) of the Lemma, the graph R_{1} satisfies one of the three properties (1), (2) or (3) with $x=d_{1}$.

Thus, by the part (ii) of the Lemma, the graph G_{1}^{2} admits a hamiltonian cycle that contains the edge $c_{1} v_{1} \in E\left(G_{1}\right)$. Then G_{1} satisfies (3), with $x=c_{1}$.

Using similar arguments, we show that the graph G_{2} also satisfies (3) and, applying the part (ii) of the Lemma, we obtain that the graph $G^{2}=\left(G_{1}\left(c_{1}=c_{2}\right) G_{2}\right)^{2}$ is hamiltonian.

Case 2: $\left|V\left(H_{1}\right)\right| \geq 3$ and $\left|V\left(H_{2}\right)\right|=2$.
Using the same arguments as in Case 1, the graph G_{1} satisfies (3), with $x=c_{1}$. Since $\left(G^{\prime}\right)^{2}$ is hamiltonian and $V\left(H_{2}\right)=\left\{c_{2} d_{2}\right\}$, the graph G_{2} satisfies (3) with $x=c_{2}$.

Thus, applying the part (ii) of the Lemma, we obtain that the graph G^{2} is hamiltonian.
Case 3: $\left|V\left(H_{1}\right)\right|=2$ and $\left|V\left(H_{2}\right)\right|=2$.
It is easy to see that in this case again both G_{1} and G_{2} satisfy (3) with $x=c_{1}$ and $x=c_{2}$, respectively, and thus the graph G^{2} is hamiltonian.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press (1976).
[2] G. Hendry, W. Vogler, The square of a $S\left(K_{1,3}\right)$-free graph is vertex pancyclic, Journal of Graph Theory, Vol. 9 (1985) 535-537.
[3] H. Fleischner, In the square of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte Für Mathematik 82 (1976) 125-149.
[4] C. Thomassen, The square of a graph is hamiltonian provided its block graph is a path (preprint, unpublished).

[^0]: *The work was partially supported by PRC MathInfo.
 ${ }^{\dagger}$ Research supported by grant GA ČR No. 201/97/0407

