Induced S(K;3) and hamiltonian square
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Abstract

We prove that the square of a connected graph such that every induced S(K 3)
has at least three edges in a block of degree at most 2 is hamiltonian. We also show
that the insertion, and, under certain conditions also deletion, of a block of degree
2 into (from) a connected graph does not change the hamiltonicity of its square.

*The work was partially supported by PRC MathInfo.
TResearch supported by grant GA CR No. 201/97/0407



1 Introduction and notation

The graphs considered in this paper are undirected and simple. All concepts not defined
in this paper can be found in [1].

If G is a graph, we denote by V(G) the vertex set of G, by E(G) the edge set of G.
The neighborhood in G of a vertex u is denoted by N(u). We denote the set N(u)U {u}
by Nu]. For A C V(G), < A > represents the subgraph of G induced by A.

The square of G, denoted G?, is the graph with vertex set V(@) in which two vertices
are adjacent if their distance in G is one or two. The graph S(K 3) is the graph K 3 in
which each edge is subdivided once.

A connected graph that has no cut vertices is called a block. A block of a graph is a
subgraph that is a block and is maximal with respect to this property. The degree of a
block B of a graph G, denoted by d(B), is the number of cut vertices of G' belonging to
V(B). A block of degree 1 is called an endblock of G.

The length of a path in G is the number of its edges. We will use the notation Pj(u)
(where u € V(G)) for a path of length 2 in G having v as endvertex. For a connected
subgraph H of G, and for any two vertices u and v in H, denote by uPyv a (n arbitrary)
path connecting v and v with the internal vertices in H.

The notation G = FixzF, means that z is a cut vertex of G and Fi, Fy are two
connected subgraphs of G such that V(Fy) NV (Fy) = {z} and V(F}) UV (F3) = V(G).

This work is motivated by the following result due to G. Hendry and W. Vogler:

Theorem 1 [2]. Every 1-connected S(K 3)—free graph has a hamiltonian square.

We looked for weaker conditions still implying that the square of a 1-connected graph
is hamiltonian. More precisely, instead of forbidding the existence of an induced S(K 3),
we put on every induced S(K3) certain conditions under which the square of the graph
remains hamiltonian.

Theorem 2. If GG is a connected graph such that every induced S(K; 3) has at least three
edges in a block of degree at most 2, then G? is hamiltonian.

The following result by Thomassen [4] is an immediate corollary of Theorem 2.

Theorem 3 [4]. If the block graph of G is a path, then G?* is hamiltonian.

The following theorem shows that, under certain conditions, insertion or deletion of a
part of G does not change the hamiltonicity (or nonhamiltonicity) of G2.

Theorem 4. Let G; and G5 be connected graphs with |[V(G;)| > 2, ¢; € V(G;), i = 1,2
and let B be a block with |V(B)| > 3, b; and by € V(B). Let G = G1(¢; = ¢3)Go and
G, == Gl(Cl = bl)B(bQ = CQ)GQ.

(¢) If G* is hamiltonian, then (G')? is hamiltonian.

(i7) If moreover, ¢; is not a cutvertex of G; and is contained in an endblock of G;, i = 1, 2,
then the converse is also true.



2 Proof of Theorem 2

Let us first mention the following result by H. Fleischner that we will use many times in
the proofs.

Theorem 5 [3]. Let y and z be arbitrarily chosen vertices of a 2—connected graph G.
Then G* contains a hamiltonian cycle C' such that the edges of C in y are in G and at
least one of the edges of C'in z is in G. If y and z are adjacent in GG, then these are three
different edges.

In the rest of this section, GG is always a graph of connectivity one.

First we give some additionnal definitions.
Let = be a cut vertex of G, and H' be a component of < G — x >. Then the subgraph
H =< H'U{z} > is called a branch of G at z.
Let F be a connected subgraph of G and x some vertex of F'. F'is said to be nontrivial at
x if it contains a P3(x) as a proper induced subgraph (i.e., F'is trivial at z if F' = P3(x)
or V(F) C Nz]).

Now suppose that Theorem 2 is not true and choose a graph G having the following
properties:

(i) G is connected and every induced S(K3) in G has at least 3 edges in a block of
degree at most 2,

(i) G? is not hamiltonian,

(iii) |V(G@)| is minimal with respect to (i) and (ii).

Claim 1: Let F' be a connected graph, z € V(F') and zyz a P3(x) such that y and z are
not in V(F). If (Fz(yz))? is hamiltonian then F? contains a hamiltonian path connecting
x and some vertex =’ € N(z).

Proof: Let G = Fz(yz) and let C' be a hamiltonian cycle of F2. Since the only adjacencies
of z in F? are x and y and Np(y) = {z}, there exists necessarily some vertex x’ €
V(F) — {z} such that C' = xPpz'yzx where xPpz’ is a hamiltonian path of F? between
z and 2z’ and consequently z' € N(x).

Claim 2: If an induced H ~ S(K;3) C G has at least three edges in a block B of degree
at most two, then some three edges of H in B induce a path P;.

Proof: immediate.

Claim 3: Let x be a cutvertex of G and F}, F, two connected subgraphs of GG such that
V(F1) NV (Fy) = {z}. Assume that F} is not trivial at x, i.e., F, contains an induced
Ps(x) = zyz as a proper induced sugraph. Then the graph G’ = Fiayz also satisfies all
the hypothesis of Theorem 2.

Proof: If not, there exists in G’ some S(K 3) that has no connected part of order at least



4 in a block of degree at most 2. But if so, it was the same in GG, since we neither created
any new S(K3) nor increased the degree of any block.

Proof of Theorem 2. By the assumptions, G? is not hamiltonian. Thus, by Theorem
1, G contains some S(K 3) as an induced subgraph. By (i), the S(K3) has at least 3
edges in some block H of G of degree at most 2. Notice that |V (H)| > 4.

Case 1: d(H) = 1.

Let ¢ be the cutvertex of G, belonging to H and let R be the union of all branches of
G at ¢ which intersect H only at c.

If H is trivial at ¢, then, by Claim 2, V(H) —{c} = {b1, b2, -+, b} C N(c). The graph
G' = Rcb, satisfies the property (i). So by minimality of G, the graph G’ is hamiltonian
and, using similar arguments as in the proof of Claim 1, R? contains a hamiltonian path
¢ Prc” between some ¢ € N|c| and some ¢’ € N(c). Let

C = Prc’by---byc

It is easy to see that C' is a hamiltonian cycle in G?, a contradiction.

Hence H is not trivial at ¢, i.e., it contains a proper induced path Ps(c) = cbibs.
The graph G" = Rcbyby is connected and, by Claim 3, G" satisfies the condition (i).
Since |[V(G")| < |[V(G)], (G")? is hamiltonian and, by Claim 1, the graph R? contains
a hamiltonian path cPrc¢” connecting ¢ and some ¢’ € N(c¢). On the other hand, by
Theorem 5, H? contains a hamiltonian path b, Pyc connecting b; and c.

Hence the cycle C' = ¢Prc"by Pyc is a hamiltonian cycle in G?, a contradiction with
the condition (ii) on G.

Case 2: d(H) = 2.

Let ¢; and ¢y be the two cutvertices of G belonging to H and let B;, i« = 1,2, be
the union of all branches at ¢; not containing H. This means that G = Bycy HcoBy. We
distinguish, up to symmetry, the following two subcases.

Subcase 2.1: B; is trivial at ¢; and By is trivial at cs.

The subgraph H is a block and thus, by Theorem 5, V(H) can be partitioned into
two subpaths a; Pjay and ¢y P%cy, where a; € N(c;) and ay € N(cy).

If V(Bl) = {bl, bQ, MR bk, Cl} Q N[Cl], k Z ]_, and BQ = Pg(CQ) = ngldg then the CYCIG
C = c1biby - - - bpay Playdydaco Pécy is a hamiltonian cycle in G? and contradicts (ii).

The proof is similar if By = P3(cy) and V(Bz) C N|ca].

If V(By) = {b1,ba,---,bk,c1} € Nley] and V(Bg) = {dy,da,---,d;,ca} C N|co], then
the cycle C' = ¢1bby - - - byay Plrasdids - - - dicy Picy is a hamiltonian cycle in G?, contra-
dicting (ii).

Finally, if B1 = P3(Cl) = Clble and BQ = Pg(CQ) = CledQ, then again the CYCIG
C = c1bobiay Plasdidycy Picy gives a similar contradiction.

Subcase 2.2: B, is not trivial at ¢;.




Then B, contains a path Ps(c;) = ¢1b1bs as a proper induced subgraph. On the other
hand, since |V(H) U V(By)| > 3 and there exists some vertex in V(H) U V(By) (for
example, each vertex in V' (Bs) — {¢2}) nonadjacent to ¢y, the subgraph G’ = H¢yBs is not
trivial. Then G’ contains a path P3(c;) = ¢1didsy as a proper induced subgraph. Now let
G = Bicididy and Gy = bobiciG'. By Claim 3, both G and G, satisfy the condition (i).
By the minimality of G, the graphs G2 and G3 are hamiltonian and thus, by Claim 1, B?
and G contains hamiltonian paths a; P c; and ¢, Peras respectively, where the vertices
a; and as are in N(c;). But then the cycle C' = ay Pp,¢1 Pgrasay is clearly a hamiltonian
cycle in G#, contradicting the hypothesis (ii).

3 Proof of Theorem 4

Before proving Theorem 4, let us give the following lemma.

Lemma. Let G = G12G9, where G| and G4 are two connected graphs with |V (G;)| > 2,
i=1,2.
(i) If G? is hamiltonian, then each of the graphs G;, ¢ = 1,2, has at least one of the
following three properties:

(1) < G; — = >? contains a hamiltonian path z;Pg,_,y; where z;,y; € N(z),

(2) G? contains a hamiltonian path z;Pg,y; where z;,y; € N(z) (and thus x is an
interior vertex of z; P, yi),

(3) G? contains a hamiltonian path xPg,z;, where z; € N(x).
(4¢) If both G and Go have some of the properties in (i), then G? is hamiltonian except
possibly if G| and G, satisfy (2) or Gy satisfies (2) and G satisfies (3) (and symmetrically).

Proof of Lemma: (i) Let C be a hamiltonian cycle in G*. Then clearly, for each i = 1,2,
E(C) N E(G?) is a system of paths x’P’yZ, Jj=1,--+ k;, satisfying one of the following:
(2) of,y] € N(z) and @ ¢ U, V(] Ply]),
(b) Z,yZ € N(z) and z is an interior vertex of some path P/°,
(c) «l,y! € N[z] and z is an endvertex of some path Pjo

If the system of paths satisfies (a), then z} Plyla?P?y? - 2% PFiy¥ is a hamiltonian
path in < G; — x >2.
If the system of paths satisfies (b), then z!Plyla?P?y? - - 2% PFiy¥ is a hamiltonian

path in G? and z is an interior vertex.
If the system of paths satisﬁes (¢) and if we put (without loss of generality) z = =z},
ki phki . . .
then xPlylx2P2y? - - - 2% PFiyF is a hamiltonian path in G2.
(1) If Gy satisfies (1) and G satisfies (1), then

C =z Pg, 102 Pg,y0n

is a hamiltonian cycle in G2
If G satisfies (1) and G satisfies (2), then

C = 371PG11U1$2PG21U2$1
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is a hamiltonian cycle in G2
If G satisfies (1) and G satisfies (3), then

C =aPg,v001 Po,h o

is a hamiltonian cycle in G2
If G satisfies (3) and G satisfies (3), then

C =a2Pgx12:FPg,x
is a hamiltonian cycle in G2

Proof of Theorem 4: (i) First of all, by Theorem 5, B? contains a hamiltonian cycle
biay Plasbyal,PEby, where a; € N(by) and ay,al, € N(by).

On the other hand, by the hypothesis, the graph G? is hamiltonian. Then G satisfies
one of the three conditions in the part (i) of the Lemma, with z = ¢; = ¢s.

We thus consider the following three different cases.

Case 1: (G, satisfies (1).
Then necessarily G, satisfies (2). Let

Ol == leglychlPéangPGZyQa;P;(b1 = Cl)ZEl

It is easy to see that C' is a hamiltonian cycle in (G')?.

2).
1) and this case is similar to case 1.

3).
3). Let

Case 2: (7, satisfies
Then G5 satisfies

—~

Case 3: (7, satisfies
Then G5 satisfies

—~N o~

C, = Clpglﬂflalpéaz(Cz = bz)PGz.TQCLIQPé(bl = Cl).
Then C’ is a hamiltonian cycle in (G')%.

(ii) For ¢ = 1,2, suppose that ¢; is contained in an endblock H; of G;. Let d; be the
cutvertex of G; belonging V(H;) and R; the connected graph such that G; = R;d;H;.
Without loss of generality one of the following cases occurs.

Case 1: |V(H;)| > 3,i=1,2.

Then, by Theorem 5, H{ contains a hamiltonian cycle dyui Py vici P§ wid; where
uy,u) € N(dy) and v; € N(cy). This implies that H; has property (1) with x = d;.

On the other hand, (G’)? is hamiltonian. Then, using the part (i) of the Lemma, the
graph R, satisfies one of the three properties (1), (2) or (3) with = d;.

Thus, by the part (ii) of the Lemma, the graph G? admits a hamiltonian cycle that
contains the edge c;v; € E(G1). Then G, satisfies (3), with x = ¢;.

Using similar arguments, we show that the graph G5 also satisfies (3) and, applying the
part (ii) of the Lemma, we obtain that the graph G? = (G (¢; = ¢3)G5)? is hamiltonian.
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Case 2: |V(H;)| > 3 and |V (H2)| = 2.

Using the same arguments as in Case 1, the graph G satisfies (3), with = ¢;. Since
(G")? is hamiltonian and V (Hy) = {cads}, the graph G satisfies (3) with z = c¢,.

Thus, applying the part (i7) of the Lemma, we obtain that the graph G? is hamiltonian.

Case 3: |V(H,)| =2 and |V (H,y)| = 2.
It is easy to see that in this case again both G; and G, satisfy (3) with = ¢; and
T = ¢y, respectively, and thus the graph G? is hamiltonian.
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