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Abstract
In this paper we study cycle coverings and 2-factors of a claw-free graph and those of
its closure, which has been defined by the first author (On a closure concept in claw-free
graphs, J. Combinatorial Theory Ser. B 70 (1997) 217-224). For a claw-free graph G and
its closure cl(G), we prove (1) V(G) is covered by k cycles in G if and only if V(cl(G)) is
covered by k cycles of ¢l(G), and (2) G has a 2-factor with at most & components if and

only if ¢c/(G) has a 2-factor with at most k£ components.



For graph theoretic notation not defined in this paper, we refer the reader to [2]. A
vertex « of a graph G is said to be locally connected if the neighborhood Ng(x) of x in
G induces a connected graph. A locally connected vertex z is said to be eligible if Ng(z)
induces a noncomplete graph. Let x be an eligible vertex of a graph G. Consider the
operation of joining every pair of nonadjacent vertices in Ng(z) by an edge so that Ng(z)
induces a complete graph in the resulting graph. This operation is called local completion
of G at x. For a graph G, let Gy = G. For ¢ > 0, if GG; is defined and it has an eligible
vertex x;, then apply local completion of G; at x; to obtain a new graph G;41. If G; has
no eligible vertex, let c/(G) = G; and call it the closure of G. The above operation was

introduced and the following theorems were proved in [3].

Theorem A ([3]). If G is a claw-free graph, then
(1) a graph obtained from G by local completion is also claw-free, and

(2) cl(G) is uniquely determined. [

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if and only if cl(G)

is hamiltonian. U

Recently, several other properties on paths and cycles of a claw-free graph and those of

its closure were studied in [1]. In particular, the following theorem was proved.

Theorem C ([1]).
(1) A claw-free graph G is traceable if and only if cl(G) is traceable.
(2) There exist infinitely many claw-free graphs G such that cl(G) is hamiltonian-connected
while G is not hamiltonian-connected.
(3) For any positive integer k, there exists a k-connected claw-free graph G such that cl(G)

is pancyclic while G is not pancyclic. [

Let Hy,...,Hj be subgraphs of G. Then G is said to be covered by Hi,..., Hy if
V(G)=V(H)U---UV(Hy).

We consider two interpretations of a hamiltonian cycle. First, a hamiltonian cycle of
a graph G is a cycle which covers . Second, it is considered as a 2-factor with one
component. These interpretations may lead us to possible extensions of Theorem B to

cycle coverings and 2-factors. This is the motivation of this paper.
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We prove the following theorems as generalizations of Theorem B.

Theorem 1. Let G be a claw-free graph. Then G is covered by k cycles if and only if
cl(Q) is covered by k cycles.

Theorem 2. Let G be a claw-free graph. If cl(G) has a 2-factor with k components, then

G has a 2-factor with at most k components.

Note that the conclusion of Theorem 2 says G has a 2-factor with “at most” k compo-
nents. Under the assumption of Theorem 2, GG does not always have a 2-factor with exactly
k components if £ > 2. Let G be a graph with £ — 1 components Hy,..., H;_1, where
H, is the graph shown in Figure 1 and Hs, ..., Hy_1 are cycles of arbitrary lengths. Then
G is claw-free and cl(G) = c¢l(Hy) U Ho U --- U Hy_1, where cl(H;) is isomorphic to K.
Since Ko has a 2-factor with two components, c/(G) has a 2-factor with & components.
However, G has no 2-factor with k£ components since H; does not have a 2-factor with two

components.
e insert figure 1

Before proving the above theorems we introduce some notation which is used in the
subsequent arguments. For a graph G and () # S C V(G), the subgraph induced by S is
denoted by G[S]. When we consider a path or a cycle, we always assign an orientation.
Let P = xoz1---2m. We call zg and z,, the starting vertex and the terminal vertex
of P, respectively. The set of internal vertices of P is denoted by int(P): int(P) =
{z1,z2,...,2m—1}. The length of P is the number of edges in P, and is denoted by [(P).
We define :cj(P) = x;y1 and :ci_(P) = x;_1. Furthermore, we define :c;H'(P) = Zjy2. When

it is obvious which path is considered in the context, we sometimes write m;" and z; instead
of x;r(P) —(P)

and z; © ’, respectively. For z;, ; € V(P) with ¢ < j, we denote the subpath
_>

TiTip1 - wj by v;Prj. The same path traversed in the opposite direction is denoted by

mjﬁa:, We use similar notations with respect to cycles with a given orientation.

We present several lemmas before proving the main theorems.

Lemma 3. Let G be a claw-free graph and let © be a locally connected vertex. Let T,



T, C V(G) with Ty N Ty, = {x}. Suppose both G[T1] and G[T:] are hamiltonian but
G[Ty UT3] is not hamiltonian. Choose cycles Cy and Cy with V(C1)UV (Cs) = Ty UT, and
V(C1) NV (Cy) = {2} and a path P in G[Ng(z)] with starting vertex in {z+(C1) z=(C1)}
and terminal vertex in {z7(C2) £7(C2)} 50 that P is as short as possible. Then2 < I(P) < 3

and 1Ilt(P) N (Tl U Tz) = @

Proof. First, note that each hamiltonian cycle D; in G[T;] (i = 1, 2) satisfies V(D7) U
V(Dy) =T1 U Ty and V(D1) NV(Dy) = {z}. Furthermore, since x is a locally connected
vertex of G, there exists a path in G[Ng ()] with starting vertex in {zT(P1) =P} and
terminal vertex in {xT(P2) £=(P2)} Therefore, we can make a choice for (Cy, Cy, P). Let
g = 2O vy = 27O uy = 2T(C2) and vy = 27(2). We may assume the starting and
terminal vertices of P are u; and us, respectively.

If uyus € E(G), then C' = xvlauluQagvzx is a cycle in G with V(C'") = V(Cy) U
V(Cy) = T1UT5. This contradicts the assumption. Hence we have ujus ¢ E(G). Similarly
we have ujvs, v1ug, v102 ¢ E(G). Since {uy,v1,us} C Ng(z) and G is claw-free, we have
uivy € F(G). Similarly usve € E(G).

Let w = ui’(P). We claim w ¢ V(Cy) U V(Cs). Assume w € V(Cy) U V(Cy). Since
w € V(P) C Ng(z), w# x. Thus, w € ulavl U uQaQUQ.

First, suppose w € ulavl. Then by the choice of P, w € u{’avf. Since {z,wt,w™} C
Ng(w) and G is claw-free, we have {zw™, zw~, wTw™} N E(G) # 0. If wtw™ € E(G),
let C] = xwulaw_w+avlm, C, = Cy and P’ = wﬁuz. If w—z € E(G), then let
Cf = zw 1vlu1aw_ac, Cy = Cy and P = w]_3>u2. If wrz € E(G), then let C] =
mw&ulvlauﬁm, Cl=Cyand P' = w]_3>u2. Then in each case, since V(C7) = V(Cy), we
have V(C1)UV(CY) =V (C1)UV(Cy) =Ty UTs and V(C1) NV (C,) = {x}. Furthermore,
w = (1) and I(P') < I(P). This contradicts the choice of (Cy,Cy, P).

Now, suppose w € uz@vz. Since {us,ve} N Ng(uy) = 0, we have w € u;ﬁw;. Since
{z,w™,wT} C Ng(w) and G is claw-free, {zw™, zwT, w"wT}NE(G) £ 0. If zw™ € E(Q),
let C = xvlaulwazvguzazw_a:. If zwt € E(G), let C = a:w*’azvquagwulale. Then
in either case C is a cycle in G with V(C) = V(C1) UV (Cs) = Ty U T. This contradicts
the assumption. If w™w™ € E(G), then let C] = xwulale, Ch = mu282w_w+ﬁzv2x
and P’ = UJ?UQ. Then V(C))UV(CH) =V (C)UV(Cy) =T1UTy, V(C)NV(CE) = {x},
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w = (1) and I

(P
w ¢ V(C1) U V(CQ)
—(P)

'Y < I(P). This contradicts the choice of (Cy,Cs, P). Therefore,

Let w' = u, (Possibly w’ = w.) Then by the same arguments we have w’ ¢

V(Cy) UV (Cy).
By the choice of (Cy, Co, P), P is an induced path. Hence if {(P) > 4, then {uy, ufﬂp), U2}
is an independent set. Since V(P) C Ng(z) and G is claw-free, this is a contradiction.

Thus, I[(P) < 3. Since ujus ¢ E(G), [(P) > 2. These imply int(P)N (T3 UT2) =0. O
By similar arguments, we have the following lemma.

Lemma 4. Let G be a claw-free graph and let x be a locally connected vertex of G. Let
T C V(G) withxz € T, and let u € Ng(x)—T. Suppose G[T] is hamiltonian but G[T U{u}]
is not hamiltonian. Choose a hamiltonian cycle C in G[T| and a path P in G[Ng(x)] with
starting vertex in {x7(©) x=(©)} and terminal vertex u so that P is as short as possible.

Then 2 <I(P) <3 and int(P)N(TU{u})=0. O
We prove one more lemma.

Lemma 5. Let G be a claw-free graph and let x be an eligible vertex of G. Let G' be the

graph obtained from G by local completion at x. Let C' be a cycle in G' with x € V(C").

Then either (1) or (2) follows.
(1) There exists a cycle C' in G with V(C) = V(C").
(2) There exist T1, To C V(G) such that

(2.1) TZUT, =V(C") and Ty N Ty = {z}, and

(2.2) G[T;] is hamiltonian or isomorphic to Ko (i =1, 2).
Proof. Let B = E(G’) — E(G). Note that for each uv € B, {u,v} C Ng(x). Choose a
cycle C'in G’ with V(C') = V(C’) so that |E(C)NB] is as small as possible. If E(C)NB = 0,
then C' is a cycle satisfying (1). Therefore, we may assume E(C) N B # ().

We claim |E(C)NB| = 1. Assume, to the contrary, |E(C)NB| > 2, say e, ex € E(C)NB,

e1 # es. Let e; = xy; (i = 1, 2). We may assume x1, Y1, T2, y2 and = appear in this order
along C. (Possibly, y1 = z3.) Then z1, x5 and z~ are distinct vertices in Ng(z). Since

e
G is claw-free, {122, 127,222~ } N E(G) # 0. If 2122 € E(G), let Cy = ygafclxz(}'ylyz.
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Then V(Cy) = V(C) and E(Cy) = (FE(C) — {z1y1,z2y2}) U{z122,y192}. This implies
|E(Co)NB| < |E(C)NBJ, which contradicts the minimality of |E(C)NB|. If z12~ € E(G),
let Cy = acafclx_gylx. Then V(Cy) = V(C) and E(Cy) = (E(C) — {z1y1,z~}) U
{zy1, z127}. Since zy; € E(G), we have |E(Cy) N B| < |E(C) N B|, again a contradiction.
We have a similar contradiction if = x9 € E(G). Therefore, the claim is proved.

Let E(C)N B = {z1y1}. We may assume x, z1 and y; appear in this order along C.
Let Ty = xaacl and Ty = ylax. Then Ty UT, = V(C) and T1 NTy = {x}. Since z1y; € B,
zw1, vy1 € E(G). If 1 # x™, then maxla: is a hamiltonian cycle in G[T1]. If 1 = z™,
then G[T1] ~ K. Similarly, G[T3] is either hamiltonian or isomorphic to Ko. O

Let G' be a graph obtained from a claw-free graph by local completion at a vertex.
Using Lemmas 3, 4, 5 we prove that for each cycle in G’ there exists a cycle in G which

contains it. We can also impose some restriction on its length.

Theorem 6. Let G be a claw-free graph and let x be a locally connected vertex of G. Let
G’ be the graph obtained from G by local completion at x. Then for each cycle C' in G’
there exists a cycle C in G with V(C'") C V(C) and I(C") <1(C) <I(C") + 3.

Proof. If E(C")N(E(G')— E(G)) = 0, then C’ is a required cycle. Hence we may assume
E(C")N(E(G) — E(GQ)) # 0.

If £ € V(C'), let C} = C'. Suppose z ¢ V(C'). Let e = uu™(C) € E(C") N (E(G') —
E(G)). Then {u,ut(©)} € Ng(z). Let C} = uHO) gyt (©). In either case, we have a
cycle C1 with V(C")U{z} C V(C}) and I(C") < I(C) < I(C") + 1.

If there exists a cycle C in G with V(C7) = V(C), then C' is a required cycle. Therefore,
we may assume G has no such cycle. Then by Lemma 5, there exist T}, To C V(G) with
Ty NTy ={z} and T1 U Ty, = V(C7) such that G[T;] is hamiltonian or G[T;] ~ K.

Suppose both G[T}] and G[T,| are hamiltonian. Then by Lemma 3 there exist cycles
Cy and Cy in G and a path P in G[Ng(z)] such that

(1) V(C1)UV(Cq) =T1 UT, =V(CY), V(C1) NV (C2) = {z}, and
(2) P joins {xT(C) =€)} and {£1(@2) £=(C2)} 2 <(P) < 3 and int(P)N (T UT,) = 0.
Let u = 21t(€1) and v = 21(“2), We may assume P joins u and v. Let C = mauﬁvﬁzx

Then C is a cycle in G, V(C7) C V(C) and I(C]) < I(C) < I(C}) + 2. Therefore,
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V(C") Cc V(C}) Cc V(C) and I(C") <I(C}) <I1(C) <UC)) +2<I(C") +3.
Using Lemma 4 instead of Lemma 3, we can, by similar arguments, deal with the case

in which G[T1] or G[T3] is isomorphic to K. O
Now Theorem 1 is a consequence of the following corollary of Theorem 6.

Corollary 7. Let G be a claw-free graph and let x be an eligible verex of G. Let G’ be
the graph obtained from G by local completion at x. Then G is covered by k cycles if and
only if G' is covered by k cycles.

Proof. Since the “only if” part is trivial, we have only to prove the “if” part of the
corollary. Suppose G’ is covered by k cycles, say V(G') = V(C}) U--- UV (C}) for cycles
C1,...,CLin G'. By Theorem 6 for each C] there exists a cycle C; in G with V(C}) C V(C;)
(1<i<k). Then V(G)=V(C)U---UV(Cg). O

Now we prove Theorem 2. Actually, we prove a stronger statement.

Theorem 8. Let G be a claw-free graph and let x be an eligible vertex of G. Let G' be
the graph obtained from G by local completion at . Then for each set of k disjoint cycles
{D1,...,Dy} in G’ there exists a set of at most k disjoint cycles {Cy,...,C;} (1 <k)in G
with UF_,V(D;) C UL_, V(C}).

Proof. Let Sy = UF_;V(D;). Assume, to the contrary, that G[S] has no 2-factor with
at most k£ components for any S C V(G) with Sy C S. Let B = E(G') — E(G). Note
{a,b} C Ng(x) for each ab € B. Let

§={(S,F):SyC SCV(G) and F is a 2-factor of G'[S]}.

Since (S, UF_E(D;)) € F, § # 0. Let Fo be the set of pairs (S, F) € § chosen so that
(a) the number of components of F' is as small as possible, and
(b) |F'N B|is as small as possible, subject to (a).
Let (S, F) € §o. Suppose F consists of [ components (cycles) Cy,...,C;: F = E(Cy) U
U E(C)) (disjoint). Since (So, U¥_, E(D;)) € §, | < k. By the assumption F' N B # .
If 2 ¢ S, choose i with E(C;) N B # 0, say e = uv € E(C;) N B and v = u+(©), Let
Cl = a:va'uac and F' = (F — E(C;)) U E(C}). Then F’ is a 2-factor of G'[S U {z}] with [
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components and |F' N B| = |F'N B|—1. This contradicts the choice of (S, F') given in (b).
Therefore, we have z € S. We may assume z € V(C1).

We claim BN (U _,E(C;)) = 0. Assume BN (UL_,E(C;)) # 0, say f = u'v' € BNE(C))
(j >2). Then {u',v', 27 (€1} C Ng(r) and hence u'2+() € E(G'). We may assume j = 2
and v’ = w2, Let C' = xv’agu’xJ’(Cl)ax and F' = (F — (E(C1) UE(Cy))) UE(C").
Then F’ is a 2-factor of G'[S] with [ — 1 components. This contradicts the choice of (S, F').

Since FN B # 0, BN E(Cy) # 0. If there exists a cycle C7 in G with V(C1) = V(C}),
then (F — E(C1)) U E(C}) is a 2-factor of G[S] with [ components. This contradicts
the assumption. Since z € V(C1), by Lemma 5, there exist Ty, T3 C V(G) such that
TouTy =V(Cy), ToNTy = {z}, and G[T;] is hamiltonian or isomorphic to Ky (i =0, 1).

First, consider the case in which both G[Tp] and G[T;] are hamiltonian. Let C{j, and C}
be cycles in G[Ty UTh] with V(C{UV(C]) =ToUTy = V(Cy) and V(CH) NV (CY) = {«}.
Let u; = 21(%) and v; = 27(©) (i = 0, 1). Since « is a locally connected vertex of G,
G[Ng(x)] has a path P with starting vertex in {ug,vo} and terminal vertex in {u,v1}.
Since G[S] has no 2-factors with I components, ugu, ugvy, vou, vov1 € B. By the choice
of (S, F) given in (b), |[E(C1) N B| = 1.

Now choose (S, F') € §o, Cj, C} and P so that

(c) P is as short as possible.
Then by Lemma 3, 2 < [(P) < 3 and int(P) N V(Cy) = . We may assume that the
starting vertex and the terminal vertex of P are vy and uq, respectively.

Let a = ’U(_)'—(P). Then a ¢ V(C7). Assume a ¢ S. Since V(P) C Ng(x), az € E(G) and
hence au; € E(G'). Let C' = muoa’)voaulavlm and F' = (F — E(Cy)) UE(C"). Then F"
is a 2-factor of G'[SU{a}] with [ components and F' N B C {au;}. Since |[BNE(Cy)| =1,
|F' N B| = |F N B| = 1. Furthermore, C{/ = xuoa’)voaac and C7 = C7 are two cycles in
G with V(C) U V(CY) = V(C') and V(CY) N V(CY) = {&}. Since aPuy is shorter than
P, this contradicts the choice of (S, F) given in (¢). Therefore, we have a € S. We may
assume a € V(Cy). Let o' = a1(%2) and o/ = o= (C2),

If o'z € E(G), then {a’,u1} C Ng(x) and hence a’uy € F(G'). Let

Cra'uy O
/ !
C' = xuoa')voaC’ga u1ClviT
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and F' = (F — (E(C1) U E(Cy))) U E(C"). Then F’ is a 2-factor of G'[S] with  — 1
components. This contradicts the choice of (S, F'). Hence we have o’z ¢ E(G). By the
same argument we have a”z ¢ FE(G). Since a and {z,ad’,a”} do not form a claw in G,
aad’ € E(G). TI(Cy) > 4, let C' = acuoa’)voaulajle (note auy € E(G")), C" = a’'Caa”d’
and F' = (F — (E(C1) U E(C3))) UE(C") UE(C"). Then F’ is a 2-factor of G'[S] with
components and F'N B C {auy}. Since |BNE(Cy)| =1, |[F'NB| = |F N B|. Furthermore,
Cl = xuoa’)voaac and C7 = C] are two cycles in G with V(C{) U V(CY) = V(C") and
V(ClnV(CY) = {z}. Since aﬁul is shorter than P, this contradicts the choice of (S, F)
given in (c). Therefore, we have [(Cy) = 3, which implies Co = aa’a”a.

Ifa" € Ng(vp), let C" = a:uoa(’)voa’a"aula{vlm and F' = (F—(E(C1)UE(C)))UE(C").
Then F’ is a 2-factor of G'[S] with [ —1 components. This contradicts the choice of (S, F).
If a’ € Ng(u1), let C' = muoa’)voaa”a'ulavlm and F' = F — ((E(C1) UE(Cs))) UE(C).
Then F' is a 2-factor of G'[S] with [ — 1 components, which contradicts the assumption.
Therefore, a’ ¢ Ng(vo) U Ng(uqp). Similarly, a” ¢ Ng(vg) U Ng(uq).

Let b=u; ). Let b€ V(C;), 2 < i<, b =b+C) and b = b=(C). By symmetry, we
have {0', 0"} N (Ng(z) U Ng(u1) U Ng(vg)) = 0 and I1(C;) = 3.

Suppose [(P) = 2. Then b = a and hence C; = Cy. Since a’ ¢ Ng(vo) U Ng(u1) and
vour ¢ E(G), a and {a’,vg,u1} form a claw in G, a contradiction. Therefore, we have
[(P) = 3. Since uia’, uia” ¢ E(G), C; # Co. We may assume b € V(Cj).

By the choice of P given in (c), bvp, au; ¢ E(G). Since voa’ ¢ E(G) and a and
{a’,b,v9} do not form a claw, a’b € E(G). Similarly, we have a”’b, al/, ab” € E(G). Now
let C" = aa"a’bb'b"a and F' = (F — (E(C3) U E(C3)) U E(C’). Then F’ is a 2-factor of
G'[S] with | — 1 components. This contradicts the choice of (S, F') given in (a), and the
theorem follows in this case.

By replacing Lemma 3 with Lemma 4, we can follow the same arguments to obtain a

contradiction if G[T}] or G[T%] is isomorphic to K. Therefore, the theorem is proved. O
Concluding Remarks.

Let S be a set of vertices in a claw-free graph G. Then by Theorem 6 the minimum

number of cycles covering S in G is the same as the minimum number of cycles covering
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S in ¢l(G). Furthermore, by Theorem 8, the minimum number of disjoint cycles covering
S in G is the same as the minimum number of disjoint cycles covering S in c/(G), (if there
exist such cycles). Therefore, these invariants (and hence the minimum number of cycles
covering V (G)) are stable in the sense of [1]. Furthermore, the existence of a 2-factor is a

stable property.
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