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Abstract

In this paper we study cycle coverings and 2-factors of a claw-free graph and those of

its closure, which has been de�ned by the �rst author (On a closure concept in claw-free

graphs, J. Combinatorial Theory Ser. B 70 (1997) 217{224). For a claw-free graph G and

its closure cl(G), we prove (1) V (G) is covered by k cycles in G if and only if V (cl(G)) is

covered by k cycles of cl(G), and (2) G has a 2-factor with at most k components if and

only if cl(G) has a 2-factor with at most k components.
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For graph theoretic notation not de�ned in this paper, we refer the reader to [2]. A

vertex x of a graph G is said to be locally connected if the neighborhood N

G

(x) of x in

G induces a connected graph. A locally connected vertex x is said to be eligible if N

G

(x)

induces a noncomplete graph. Let x be an eligible vertex of a graph G. Consider the

operation of joining every pair of nonadjacent vertices in N

G

(x) by an edge so that N

G

(x)

induces a complete graph in the resulting graph. This operation is called local completion

of G at x. For a graph G, let G

0

= G. For i � 0, if G

i

is de�ned and it has an eligible

vertex x

i

, then apply local completion of G

i

at x

i

to obtain a new graph G

i+1

. If G

i

has

no eligible vertex, let cl(G) = G

i

and call it the closure of G. The above operation was

introduced and the following theorems were proved in [3].

Theorem A ([3]). If G is a claw-free graph, then

(1) a graph obtained from G by local completion is also claw-free, and

(2) cl(G) is uniquely determined. �

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if and only if cl(G)

is hamiltonian. �

Recently, several other properties on paths and cycles of a claw-free graph and those of

its closure were studied in [1]. In particular, the following theorem was proved.

Theorem C ([1]).

(1) A claw-free graph G is traceable if and only if cl(G) is traceable.

(2) There exist in�nitely many claw-free graphs G such that cl(G) is hamiltonian-connected

while G is not hamiltonian-connected.

(3) For any positive integer k, there exists a k-connected claw-free graph G such that cl(G)

is pancyclic while G is not pancyclic. �

Let H

1

; : : : ; H

k

be subgraphs of G. Then G is said to be covered by H

1

; : : : ; H

k

if

V (G) = V (H

1

) [ � � � [ V (H

k

).

We consider two interpretations of a hamiltonian cycle. First, a hamiltonian cycle of

a graph G is a cycle which covers G. Second, it is considered as a 2-factor with one

component. These interpretations may lead us to possible extensions of Theorem B to

cycle coverings and 2-factors. This is the motivation of this paper.
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We prove the following theorems as generalizations of Theorem B.

Theorem 1. Let G be a claw-free graph. Then G is covered by k cycles if and only if

cl(G) is covered by k cycles.

Theorem 2. Let G be a claw-free graph. If cl(G) has a 2-factor with k components, then

G has a 2-factor with at most k components.

Note that the conclusion of Theorem 2 says G has a 2-factor with \at most" k compo-

nents. Under the assumption of Theorem 2, G does not always have a 2-factor with exactly

k components if k � 2. Let G be a graph with k � 1 components H

1

; : : : ; H

k�1

, where

H

1

is the graph shown in Figure 1 and H

2

; : : : ; H

k�1

are cycles of arbitrary lengths. Then

G is claw-free and cl(G) = cl(H

1

) [ H

2

[ � � � [ H

k�1

, where cl(H

1

) is isomorphic to K

9

.

Since K

9

has a 2-factor with two components, cl(G) has a 2-factor with k components.

However, G has no 2-factor with k components since H

1

does not have a 2-factor with two

components.

� insert �gure 1

Before proving the above theorems we introduce some notation which is used in the

subsequent arguments. For a graph G and ; 6= S � V (G), the subgraph induced by S is

denoted by G[S]. When we consider a path or a cycle, we always assign an orientation.

Let P = x

0

x

1

� � �x

m

. We call x

0

and x

m

the starting vertex and the terminal vertex

of P , respectively. The set of internal vertices of P is denoted by int(P ): int(P ) =

fx

1

; x

2

; : : : ; x

m�1

g. The length of P is the number of edges in P , and is denoted by l(P ).

We de�ne x

+(P )

i

= x

i+1

and x

�(P )

i

= x

i�1

. Furthermore, we de�ne x

++(P )

i

= x

i+2

. When

it is obvious which path is considered in the context, we sometimes write x

+

i

and x

�

i

instead

of x

+(P )

i

and x

�(P )

i

, respectively. For x

i

, x

j

2 V (P ) with i � j, we denote the subpath

x

i

x

i+1

� � �x

j

by x

i

!

Px

j

. The same path traversed in the opposite direction is denoted by

x

j

()

Px

i

. We use similar notations with respect to cycles with a given orientation.

We present several lemmas before proving the main theorems.

Lemma 3. Let G be a claw-free graph and let x be a locally connected vertex. Let T

1

,
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T

2

� V (G) with T

1

\ T

2

= fxg. Suppose both G[T

1

] and G[T

2

] are hamiltonian but

G[T

1

[T

2

] is not hamiltonian. Choose cycles C

1

and C

2

with V (C

1

)[V (C

2

) = T

1

[T

2

and

V (C

1

) \ V (C

2

) = fxg and a path P in G[N

G

(x)] with starting vertex in fx

+(C

1

)

; x

�(C

1

)

g

and terminal vertex in fx

+(C

2

)

; x

�(C

2

)

g so that P is as short as possible. Then 2 � l(P ) � 3

and int(P ) \ (T

1

[ T

2

) = ;.

Proof. First, note that each hamiltonian cycle D

i

in G[T

i

] (i = 1, 2) satis�es V (D

1

) [

V (D

2

) = T

1

[ T

2

and V (D

1

) \ V (D

2

) = fxg. Furthermore, since x is a locally connected

vertex of G, there exists a path in G[N

G

(x)] with starting vertex in fx

+(D

1

)

; x

�(D

1

)

g and

terminal vertex in fx

+(D

2

)

; x

�(D

2

)

g. Therefore, we can make a choice for (C

1

; C

2

; P ). Let

u

1

= x

+(C

1

)

, v

1

= x

�(C

1

)

, u

2

= x

+(C

2

)

and v

2

= x

�(C

2

)

. We may assume the starting and

terminal vertices of P are u

1

and u

2

, respectively.

If u

1

u

2

2 E(G), then C

0

= xv

1

()

C

1

u

1

u

2

!

C

2

v

2

x is a cycle in G with V (C

0

) = V (C

1

) [

V (C

2

) = T

1

[T

2

. This contradicts the assumption. Hence we have u

1

u

2

=2 E(G). Similarly

we have u

1

v

2

, v

1

u

2

, v

1

v

2

=2 E(G). Since fu

1

; v

1

; u

2

g � N

G

(x) and G is claw-free, we have

u

1

v

1

2 E(G). Similarly u

2

v

2

2 E(G).

Let w = u

+(P )

1

. We claim w =2 V (C

1

) [ V (C

2

). Assume w 2 V (C

1

) [ V (C

2

). Since

w 2 V (P ) � N

G

(x), w 6= x. Thus, w 2 u

1

!

C

1

v

1

[ u

2

!

C

2

v

2

.

First, suppose w 2 u

1

!

C

1

v

1

. Then by the choice of P , w 2 u

+

1

!

C

1

v

�

1

. Since fx;w

+

; w

�

g �

N

G

(w) and G is claw-free, we have fxw

+

; xw

�

; w

+

w

�

g \ E(G) 6= ;. If w

+

w

�

2 E(G),

let C

0

1

= xwu

1

!

C

1

w

�

w

+

!

C

1

v

1

x, C

0

2

= C

2

and P

0

= w

!

Pu

2

. If w

�

x 2 E(G), then let

C

0

1

= xw

!

C

1

v

1

u

1

!

C

1

w

�

x, C

0

2

= C

2

and P

0

= w

!

Pu

2

. If w

+

x 2 E(G), then let C

0

1

=

xw

()

C

1

u

1

v

1

()

C

1

w

+

x, C

0

2

= C

2

and P

0

= w

!

Pu

2

. Then in each case, since V (C

0

1

) = V (C

1

), we

have V (C

0

1

)[ V (C

0

2

) = V (C

1

)[ V (C

2

) = T

1

[ T

2

and V (C

0

1

)\V (C

0

2

) = fxg. Furthermore,

w = x

+(C

0

1

)

and l(P

0

) < l(P ). This contradicts the choice of (C

1

; C

2

; P ).

Now, suppose w 2 u

2

!

C

2

v

2

. Since fu

2

; v

2

g \N

G

(u

1

) = ;, we have w 2 u

+

2

!

C

2

v

�

2

. Since

fx;w

�

; w

+

g � N

G

(w) and G is claw-free, fxw

�

; xw

+

; w

�

w

+

g\E(G) 6= ;. If xw

�

2 E(G),

let C = xv

1

()

C

1

u

1

w

!

C

2

v

2

u

2

!

C

2

w

�

x. If xw

+

2 E(G), let C = xw

+

!

C

2

v

2

u

2

!

C

2

wu

1

!

C

1

v

1

x. Then

in either case C is a cycle in G with V (C) = V (C

1

) [ V (C

2

) = T

1

[ T

2

. This contradicts

the assumption. If w

�

w

+

2 E(G), then let C

0

1

= xwu

1

!

C

1

v

1

x, C

0

2

= xu

2

!

C

2

w

�

w

+

!

C

2

v

2

x

and P

0

= w

!

Pu

2

. Then V (C

0

1

)[V (C

0

2

) = V (C

1

)[V (C

2

) = T

1

[T

2

, V (C

0

1

)\V (C

0

2

) = fxg,
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w = x

+(C

0

1

)

and l(P

0

) < l(P ). This contradicts the choice of (C

1

; C

2

; P ). Therefore,

w =2 V (C

1

) [ V (C

2

).

Let w

0

= u

�(P )

2

. (Possibly w

0

= w.) Then by the same arguments we have w

0

=2

V (C

1

) [ V (C

2

).

By the choice of (C

1

; C

2

; P ), P is an induced path. Hence if l(P ) � 4, then fu

1

; u

++(P )

1

; u

2

g

is an independent set. Since V (P ) � N

G

(x) and G is claw-free, this is a contradiction.

Thus, l(P ) � 3. Since u

1

u

2

=2 E(G), l(P ) � 2. These imply int(P ) \ (T

1

[ T

2

) = ;. �

By similar arguments, we have the following lemma.

Lemma 4. Let G be a claw-free graph and let x be a locally connected vertex of G. Let

T � V (G) with x 2 T , and let u 2 N

G

(x)�T . Suppose G[T ] is hamiltonian but G[T [fug]

is not hamiltonian. Choose a hamiltonian cycle C in G[T ] and a path P in G[N

G

(x)] with

starting vertex in fx

+(C)

; x

�(C)

g and terminal vertex u so that P is as short as possible.

Then 2 � l(P ) � 3 and int(P ) \ (T [ fug) = ;. �

We prove one more lemma.

Lemma 5. Let G be a claw-free graph and let x be an eligible vertex of G. Let G

0

be the

graph obtained from G by local completion at x. Let C

0

be a cycle in G

0

with x 2 V (C

0

).

Then either (1) or (2) follows.

(1) There exists a cycle C in G with V (C) = V (C

0

).

(2) There exist T

1

, T

2

� V (G) such that

(2.1) T

1

[ T

2

= V (C

0

) and T

1

\ T

2

= fxg, and

(2.2) G[T

i

] is hamiltonian or isomorphic to K

2

(i = 1, 2).

Proof. Let B = E(G

0

) � E(G). Note that for each uv 2 B, fu; vg � N

G

(x). Choose a

cycle C inG

0

with V (C) = V (C

0

) so that jE(C)\Bj is as small as possible. If E(C)\B = ;,

then C is a cycle satisfying (1). Therefore, we may assume E(C) \ B 6= ;.

We claim jE(C)\Bj = 1. Assume, to the contrary, jE(C)\Bj � 2, say e

1

, e

2

2 E(C)\B,

e

1

6= e

2

. Let e

i

= x

i

y

i

(i = 1, 2). We may assume x

1

, y

1

, x

2

, y

2

and x appear in this order

along C. (Possibly, y

1

= x

2

.) Then x

1

, x

2

and x

�

are distinct vertices in N

G

(x). Since

G is claw-free, fx

1

x

2

; x

1

x

�

; x

2

x

�

g \ E(G) 6= ;. If x

1

x

2

2 E(G), let C

0

= y

2

!

Cx

1

x

2

()

Cy

1

y

2

.
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Then V (C

0

) = V (C) and E(C

0

) = (E(C) � fx

1

y

1

; x

2

y

2

g) [ fx

1

x

2

; y

1

y

2

g. This implies

jE(C

0

)\Bj < jE(C)\Bj, which contradicts the minimality of jE(C)\Bj. If x

1

x

�

2 E(G),

let C

0

= x

!

Cx

1

x

�

()

Cy

1

x. Then V (C

0

) = V (C) and E(C

0

) = (E(C) � fx

1

y

1

; xx

�

g) [

fxy

1

; x

1

x

�

g. Since xy

1

2 E(G), we have jE(C

0

)\Bj < jE(C)\Bj, again a contradiction.

We have a similar contradiction if x

�

x

2

2 E(G). Therefore, the claim is proved.

Let E(C) \ B = fx

1

y

1

g. We may assume x, x

1

and y

1

appear in this order along C.

Let T

1

= x

!

Cx

1

and T

2

= y

1

!

Cx. Then T

1

[T

2

= V (C) and T

1

\T

2

= fxg. Since x

1

y

1

2 B,

xx

1

, xy

1

2 E(G). If x

1

6= x

+

, then x

!

Cx

1

x is a hamiltonian cycle in G[T

1

]. If x

1

= x

+

,

then G[T

1

] ' K

2

. Similarly, G[T

2

] is either hamiltonian or isomorphic to K

2

. �

Let G

0

be a graph obtained from a claw-free graph by local completion at a vertex.

Using Lemmas 3, 4, 5 we prove that for each cycle in G

0

there exists a cycle in G which

contains it. We can also impose some restriction on its length.

Theorem 6. Let G be a claw-free graph and let x be a locally connected vertex of G. Let

G

0

be the graph obtained from G by local completion at x. Then for each cycle C

0

in G

0

there exists a cycle C in G with V (C

0

) � V (C) and l(C

0

) � l(C) � l(C

0

) + 3.

Proof. If E(C

0

)\ (E(G

0

)�E(G)) = ;, then C

0

is a required cycle. Hence we may assume

E(C

0

) \ (E(G

0

)�E(G)) 6= ;.

If x 2 V (C

0

), let C

0

1

= C

0

. Suppose x =2 V (C

0

). Let e = uu

+(C

0

)

2 E(C

0

) \ (E(G

0

) �

E(G)). Then fu; u

+(C

0

)

g � N

G

(x). Let C

0

1

= u

+(C

0

)

!

C

0

uxu

+(C

0

)

. In either case, we have a

cycle C

0

1

with V (C

0

) [ fxg � V (C

0

1

) and l(C

0

) � l(C

0

1

) � l(C

0

) + 1.

If there exists a cycle C in G with V (C

0

1

) = V (C), then C is a required cycle. Therefore,

we may assume G has no such cycle. Then by Lemma 5, there exist T

1

, T

2

� V (G) with

T

1

\ T

2

= fxg and T

1

[ T

2

= V (C

0

1

) such that G[T

i

] is hamiltonian or G[T

i

] ' K

2

.

Suppose both G[T

1

] and G[T

2

] are hamiltonian. Then by Lemma 3 there exist cycles

C

1

and C

2

in G and a path P in G[N

G

(x)] such that

(1) V (C

1

) [ V (C

2

) = T

1

[ T

2

= V (C

0

1

), V (C

1

) \ V (C

2

) = fxg, and

(2) P joins fx

+(C

1

)

; x

�(C

1

)

g and fx

+(C

2

)

; x

�(C

2

)

g, 2 � l(P ) � 3 and int(P )\ (T

1

[T

2

) = ;.

Let u = x

+(C

1

)

and v = x

+(C

2

)

. We may assume P joins u and v. Let C = x

()

C

1

u

!

Pv

!

C

2

x.

Then C is a cycle in G, V (C

0

1

) � V (C) and l(C

0

1

) � l(C) � l(C

0

1

) + 2. Therefore,

7



V (C

0

) � V (C

0

1

) � V (C) and l(C

0

) � l(C

0

1

) � l(C) � l(C

0

1

) + 2 � l(C

0

) + 3.

Using Lemma 4 instead of Lemma 3, we can, by similar arguments, deal with the case

in which G[T

1

] or G[T

2

] is isomorphic to K

2

. �

Now Theorem 1 is a consequence of the following corollary of Theorem 6.

Corollary 7. Let G be a claw-free graph and let x be an eligible verex of G. Let G

0

be

the graph obtained from G by local completion at x. Then G is covered by k cycles if and

only if G

0

is covered by k cycles.

Proof. Since the \only if" part is trivial, we have only to prove the \if" part of the

corollary. Suppose G

0

is covered by k cycles, say V (G

0

) = V (C

0

1

) [ � � � [ V (C

0

k

) for cycles

C

0

1

; : : : ; C

0

k

inG

0

. By Theorem 6 for each C

0

i

there exists a cycle C

i

inG with V (C

0

i

) � V (C

i

)

(1 � i � k). Then V (G) = V (C

1

) [ � � � [ V (C

k

). �

Now we prove Theorem 2. Actually, we prove a stronger statement.

Theorem 8. Let G be a claw-free graph and let x be an eligible vertex of G. Let G

0

be

the graph obtained from G by local completion at x. Then for each set of k disjoint cycles

fD

1

; : : : ; D

k

g in G

0

there exists a set of at most k disjoint cycles fC

1

; : : : ; C

l

g (l � k) in G

with [

k

i=1

V (D

i

) � [

l

i=1

V (C

i

).

Proof. Let S

0

= [

k

i=1

V (D

i

). Assume, to the contrary, that G[S] has no 2-factor with

at most k components for any S � V (G) with S

0

� S. Let B = E(G

0

) � E(G). Note

fa; bg � N

G

(x) for each ab 2 B. Let

F = f(S; F ) : S

0

� S � V (G) and F is a 2-factor of G

0

[S]g:

Since (S

0

;[

k

i=1

E(D

i

)) 2 F, F 6= ;. Let F

0

be the set of pairs (S; F ) 2 F chosen so that

(a) the number of components of F is as small as possible, and

(b) jF \ Bj is as small as possible, subject to (a).

Let (S; F ) 2 F

0

. Suppose F consists of l components (cycles) C

1

; : : : ; C

l

: F = E(C

1

) [

� � � [ E(C

l

) (disjoint). Since (S

0

;[

k

i=1

E(D

i

)) 2 F, l � k. By the assumption F \ B 6= ;.

If x =2 S, choose i with E(C

i

) \ B 6= ;, say e = uv 2 E(C

i

) \ B and v = u

+(C

i

)

. Let

C

0

i

= xv

!

C

i

ux and F

0

=

�

F � E(C

i

)

�

[ E(C

0

i

). Then F

0

is a 2-factor of G

0

[S [ fxg] with l

8



components and jF

0

\Bj = jF \Bj � 1. This contradicts the choice of (S; F ) given in (b).

Therefore, we have x 2 S. We may assume x 2 V (C

1

).

We claim B\([

l

i=2

E(C

i

)) = ;. Assume B\([

l

i=2

E(C

i

)) 6= ;, say f = u

0

v

0

2 B\E(C

j

)

(j � 2). Then fu

0

; v

0

; x

+(C

1

)

g � N

G

(x) and hence u

0

x

+(C

1

)

2 E(G

0

). We may assume j = 2

and v

0

= u

0+(C

2

)

. Let C

0

= xv

0

!

C

2

u

0

x

+(C

1

)

!

C

1

x and F

0

=

�

F � (E(C

1

) [ E(C

2

))

�

[ E(C

0

).

Then F

0

is a 2-factor of G

0

[S] with l�1 components. This contradicts the choice of (S; F ).

Since F \ B 6= ;, B \ E(C

1

) 6= ;. If there exists a cycle C

0

1

in G with V (C

0

1

) = V (C

1

),

then

�

F � E(C

1

)

�

[ E(C

0

1

) is a 2-factor of G[S] with l components. This contradicts

the assumption. Since x 2 V (C

1

), by Lemma 5, there exist T

0

, T

1

� V (G) such that

T

0

[ T

1

= V (C

1

), T

0

\ T

1

= fxg, and G[T

i

] is hamiltonian or isomorphic to K

2

(i = 0, 1).

First, consider the case in which both G[T

0

] and G[T

1

] are hamiltonian. Let C

0

0

and C

0

1

be cycles in G[T

0

[T

1

] with V (C

0

0

)[V (C

0

1

) = T

0

[T

1

= V (C

1

) and V (C

0

0

)\V (C

0

1

) = fxg.

Let u

i

= x

+(C

0

i

)

and v

i

= x

�(C

0

i

)

(i = 0, 1). Since x is a locally connected vertex of G,

G[N

G

(x)] has a path P with starting vertex in fu

0

; v

0

g and terminal vertex in fu

1

; v

1

g.

Since G[S] has no 2-factors with l components, u

0

u

1

, u

0

v

1

, v

0

u

1

, v

0

v

1

2 B. By the choice

of (S; F ) given in (b), jE(C

1

) \ Bj = 1.

Now choose (S; F ) 2 F

0

, C

0

0

, C

0

1

and P so that

(c) P is as short as possible.

Then by Lemma 3, 2 � l(P ) � 3 and int(P ) \ V (C

1

) = ;. We may assume that the

starting vertex and the terminal vertex of P are v

0

and u

1

, respectively.

Let a = v

+(P )

0

. Then a =2 V (C

1

). Assume a =2 S. Since V (P ) � N

G

(x), ax 2 E(G) and

hence au

1

2 E(G

0

). Let C

0

= xu

0

!

C

0

0

v

0

au

1

!

C

0

1

v

1

x and F

0

=

�

F �E(C

1

)

�

[E(C

0

). Then F

0

is a 2-factor of G

0

[S [fag] with l components and F

0

\B � fau

1

g. Since jB \E(C

1

)j = 1,

jF

0

\ Bj = jF \ Bj = 1. Furthermore, C

00

0

= xu

0

!

C

0

0

v

0

ax and C

00

1

= C

0

1

are two cycles in

G with V (C

00

0

) [ V (C

00

1

) = V (C

0

) and V (C

00

0

) \ V (C

00

1

) = fxg. Since a

!

Pu

1

is shorter than

P , this contradicts the choice of (S; F ) given in (c). Therefore, we have a 2 S. We may

assume a 2 V (C

2

). Let a

0

= a

+(C

2

)

and a

00

= a

�(C

2

)

.

If a

0

x 2 E(G), then fa

0

; u

1

g � N

G

(x) and hence a

0

u

1

2 E(G

0

). Let

C

0

= xu

0

!

C

0

0

v

0

a

()

C

2

a

0

u

1

!

C

0

1

v

1

x

9



and F

0

=

�

F � (E(C

1

) [ E(C

2

))

�

[ E(C

0

). Then F

0

is a 2-factor of G

0

[S] with l � 1

components. This contradicts the choice of (S; F ). Hence we have a

0

x =2 E(G). By the

same argument we have a

00

x =2 E(G). Since a and fx; a

0

; a

00

g do not form a claw in G,

a

0

a

00

2 E(G). If l(C

2

) � 4, let C

0

= xu

0

!

C

0

0

v

0

au

1

!

C

0

1

v

1

x (note au

1

2 E(G

0

)), C

00

= a

0

!

C

2

a

00

a

0

and F

0

=

�

F � (E(C

1

) [ E(C

2

))

�

[ E(C

0

) [ E(C

00

). Then F

0

is a 2-factor of G

0

[S] with l

components and F

0

\B � fau

1

g. Since jB\E(C

1

)j = 1, jF

0

\Bj = jF \Bj. Furthermore,

C

00

0

= xu

0

!

C

0

0

v

0

ax and C

00

1

= C

0

1

are two cycles in G with V (C

00

0

) [ V (C

00

1

) = V (C

0

) and

V (C

00

0

)\ V (C

00

1

) = fxg. Since a

!

Pu

1

is shorter than P , this contradicts the choice of (S; F )

given in (c). Therefore, we have l(C

2

) = 3, which implies C

2

= aa

0

a

00

a.

If a

0

2 N

G

(v

0

), let C

0

= xu

0

!

C

0

0

v

0

a

0

a

00

au

1

!

C

0

1

v

1

x and F

0

=

�

F�(E(C

1

)[E(C

2

))

�

[E(C

0

).

Then F

0

is a 2-factor of G

0

[S] with l�1 components. This contradicts the choice of (S; F ).

If a

0

2 N

G

(u

1

), let C

0

= xu

0

!

C

0

0

v

0

aa

00

a

0

u

1

!

C

0

1

v

1

x and F

0

= F �

�

(E(C

1

)[E(C

2

))

�

[E(C

0

).

Then F

0

is a 2-factor of G

0

[S] with l � 1 components, which contradicts the assumption.

Therefore, a

0

=2 N

G

(v

0

) [N

G

(u

1

). Similarly, a

00

=2 N

G

(v

0

) [N

G

(u

1

).

Let b = u

�(P )

1

. Let b 2 V (C

i

), 2 � i � l, b

0

= b

+(C

i

)

and b

00

= b

�(C

i

)

. By symmetry, we

have fb

0

; b

00

g \ (N

G

(x) [N

G

(u

1

) [N

G

(v

0

)) = ; and l(C

i

) = 3.

Suppose l(P ) = 2. Then b = a and hence C

i

= C

2

. Since a

0

=2 N

G

(v

0

) [ N

G

(u

1

) and

v

0

u

1

=2 E(G), a and fa

0

; v

0

; u

1

g form a claw in G, a contradiction. Therefore, we have

l(P ) = 3. Since u

1

a

0

, u

1

a

00

=2 E(G), C

i

6= C

2

. We may assume b 2 V (C

3

).

By the choice of P given in (c), bv

0

, au

1

=2 E(G). Since v

0

a

0

=2 E(G) and a and

fa

0

; b; v

0

g do not form a claw, a

0

b 2 E(G). Similarly, we have a

00

b, ab

0

, ab

00

2 E(G). Now

let C

0

= aa

00

a

0

bb

0

b

00

a and F

0

=

�

F � (E(C

2

) [ E(C

3

)

�

[ E(C

0

). Then F

0

is a 2-factor of

G

0

[S] with l � 1 components. This contradicts the choice of (S; F ) given in (a), and the

theorem follows in this case.

By replacing Lemma 3 with Lemma 4, we can follow the same arguments to obtain a

contradiction if G[T

1

] or G[T

2

] is isomorphic to K

2

. Therefore, the theorem is proved. �

Concluding Remarks.

Let S be a set of vertices in a claw-free graph G. Then by Theorem 6 the minimum

number of cycles covering S in G is the same as the minimum number of cycles covering

10



S in cl(G). Furthermore, by Theorem 8, the minimum number of disjoint cycles covering

S in G is the same as the minimum number of disjoint cycles covering S in cl(G), (if there

exist such cycles). Therefore, these invariants (and hence the minimum number of cycles

covering V (G)) are stable in the sense of [1]. Furthermore, the existence of a 2-factor is a

stable property.
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