Closure, 2-Factors and Cycle Coverings in Claw-Free Graphs

Zdeněk Ryjáček
Department of Mathematics
University of West Bohemia
Univerzitní 22, 30614 Plzeň
Czech Republic
e-mail: ryjacek@kma.zcu.cz
Akira Saito
Department of Mathematics
Nihon University
Sakurajosui 3-25-40
Setagaya-ku, Tokyo 156-8550
JAPAN
e-mail: asaito@math.chs.nihon-u.ac.jp
R.H. Schelp ${ }^{1}$
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.
e-mail: schelpr@mathsci.msci.memphis.edu

[^0]
Abstract

In this paper we study cycle coverings and 2 -factors of a claw-free graph and those of its closure, which has been defined by the first author (On a closure concept in claw-free graphs, J. Combinatorial Theory Ser. $B \mathbf{7 0}$ (1997) 217-224). For a claw-free graph G and its closure $\operatorname{cl}(G)$, we prove (1) $V(G)$ is covered by k cycles in G if and only if $V(c l(G))$ is covered by k cycles of $c l(G)$, and (2) G has a 2 -factor with at most k components if and only if $\operatorname{cl}(G)$ has a 2 -factor with at most k components.

For graph theoretic notation not defined in this paper, we refer the reader to [2]. A vertex x of a graph G is said to be locally connected if the neighborhood $N_{G}(x)$ of x in G induces a connected graph. A locally connected vertex x is said to be eligible if $N_{G}(x)$ induces a noncomplete graph. Let x be an eligible vertex of a graph G. Consider the operation of joining every pair of nonadjacent vertices in $N_{G}(x)$ by an edge so that $N_{G}(x)$ induces a complete graph in the resulting graph. This operation is called local completion of G at x. For a graph G, let $G_{0}=G$. For $i \geq 0$, if G_{i} is defined and it has an eligible vertex x_{i}, then apply local completion of G_{i} at x_{i} to obtain a new graph G_{i+1}. If G_{i} has no eligible vertex, let $\operatorname{cl}(G)=G_{i}$ and call it the closure of G. The above operation was introduced and the following theorems were proved in [3].

Theorem A ([3]). If G is a claw-free graph, then
(1) a graph obtained from G by local completion is also claw-free, and
(2) $\operatorname{cl}(G)$ is uniquely determined.

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if and only if $c l(G)$ is hamiltonian.

Recently, several other properties on paths and cycles of a claw-free graph and those of its closure were studied in [1]. In particular, the following theorem was proved.

Theorem C ([1]).
(1) A claw-free graph G is traceable if and only if $\operatorname{cl}(G)$ is traceable.
(2) There exist infinitely many claw-free graphs G such that $\operatorname{cl}(G)$ is hamiltonian-connected while G is not hamiltonian-connected.
(3) For any positive integer k, there exists a k-connected claw-free graph G such that $\operatorname{cl}(G)$ is pancyclic while G is not pancyclic.

Let H_{1}, \ldots, H_{k} be subgraphs of G. Then G is said to be covered by H_{1}, \ldots, H_{k} if $V(G)=V\left(H_{1}\right) \cup \cdots \cup V\left(H_{k}\right)$.

We consider two interpretations of a hamiltonian cycle. First, a hamiltonian cycle of a graph G is a cycle which covers G. Second, it is considered as a 2 -factor with one component. These interpretations may lead us to possible extensions of Theorem B to cycle coverings and 2 -factors. This is the motivation of this paper.

We prove the following theorems as generalizations of Theorem B.

Theorem 1. Let G be a claw-free graph. Then G is covered by k cycles if and only if $c l(G)$ is covered by k cycles.

Theorem 2. Let G be a claw-free graph. If $c l(G)$ has a 2 -factor with k components, then G has a 2 -factor with at most k components.

Note that the conclusion of Theorem 2 says G has a 2 -factor with "at most" k components. Under the assumption of Theorem 2, G does not always have a 2 -factor with exactly k components if $k \geq 2$. Let G be a graph with $k-1$ components H_{1}, \ldots, H_{k-1}, where H_{1} is the graph shown in Figure 1 and H_{2}, \ldots, H_{k-1} are cycles of arbitrary lengths. Then G is claw-free and $\operatorname{cl}(G)=\operatorname{cl}\left(H_{1}\right) \cup H_{2} \cup \cdots \cup H_{k-1}$, where $\operatorname{cl}\left(H_{1}\right)$ is isomorphic to K_{9}. Since K_{9} has a 2-factor with two components, $\operatorname{cl}(G)$ has a 2-factor with k components. However, G has no 2 -factor with k components since H_{1} does not have a 2-factor with two components.

- insert figure 1

Before proving the above theorems we introduce some notation which is used in the subsequent arguments. For a graph G and $\emptyset \neq S \subset V(G)$, the subgraph induced by S is denoted by $G[S]$. When we consider a path or a cycle, we always assign an orientation. Let $P=x_{0} x_{1} \cdots x_{m}$. We call x_{0} and x_{m} the starting vertex and the terminal vertex of P, respectively. The set of internal vertices of P is denoted by $\operatorname{int}(P): \operatorname{int}(P)=$ $\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$. The length of P is the number of edges in P, and is denoted by $l(P)$. We define $x_{i}^{+(P)}=x_{i+1}$ and $x_{i}^{-(P)}=x_{i-1}$. Furthermore, we define $x_{i}^{++(P)}=x_{i+2}$. When it is obvious which path is considered in the context, we sometimes write x_{i}^{+}and x_{i}^{-}instead of $x_{i}^{+(P)}$ and $x_{i}^{-(P)}$, respectively. For $x_{i}, x_{j} \in V(P)$ with $i \leq j$, we denote the subpath $x_{i} x_{i+1} \cdots x_{j}$ by $x_{i} \vec{P} x_{j}$. The same path traversed in the opposite direction is denoted by $x_{j} \overleftarrow{P} x_{i}$. We use similar notations with respect to cycles with a given orientation.

We present several lemmas before proving the main theorems.

Lemma 3. Let G be a claw-free graph and let x be a locally connected vertex. Let T_{1},
$T_{2} \subset V(G)$ with $T_{1} \cap T_{2}=\{x\}$. Suppose both $G\left[T_{1}\right]$ and $G\left[T_{2}\right]$ are hamiltonian but $G\left[T_{1} \cup T_{2}\right]$ is not hamiltonian. Choose cycles C_{1} and C_{2} with $V\left(C_{1}\right) \cup V\left(C_{2}\right)=T_{1} \cup T_{2}$ and $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\{x\}$ and a path P in $G\left[N_{G}(x)\right]$ with starting vertex in $\left\{x^{+\left(C_{1}\right)}, x^{-\left(C_{1}\right)}\right\}$ and terminal vertex in $\left\{x^{+\left(C_{2}\right)}, x^{-\left(C_{2}\right)}\right\}$ so that P is as short as possible. Then $2 \leq l(P) \leq 3$ and $\operatorname{int}(P) \cap\left(T_{1} \cup T_{2}\right)=\emptyset$.

Proof. First, note that each hamiltonian cycle D_{i} in $G\left[T_{i}\right](i=1,2)$ satisfies $V\left(D_{1}\right) \cup$ $V\left(D_{2}\right)=T_{1} \cup T_{2}$ and $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\{x\}$. Furthermore, since x is a locally connected vertex of G, there exists a path in $G\left[N_{G}(x)\right]$ with starting vertex in $\left\{x^{+\left(D_{1}\right)}, x^{-\left(D_{1}\right)}\right\}$ and terminal vertex in $\left\{x^{+\left(D_{2}\right)}, x^{-\left(D_{2}\right)}\right\}$. Therefore, we can make a choice for $\left(C_{1}, C_{2}, P\right)$. Let $u_{1}=x^{+\left(C_{1}\right)}, v_{1}=x^{-\left(C_{1}\right)}, u_{2}=x^{+\left(C_{2}\right)}$ and $v_{2}=x^{-\left(C_{2}\right)}$. We may assume the starting and terminal vertices of P are u_{1} and u_{2}, respectively.

If $u_{1} u_{2} \in E(G)$, then $C^{\prime}=x v_{1} \overleftarrow{C_{1}} u_{1} u_{2} \vec{C}_{2} v_{2} x$ is a cycle in G with $V\left(C^{\prime}\right)=V\left(C_{1}\right) \cup$ $V\left(C_{2}\right)=T_{1} \cup T_{2}$. This contradicts the assumption. Hence we have $u_{1} u_{2} \notin E(G)$. Similarly we have $u_{1} v_{2}, v_{1} u_{2}, v_{1} v_{2} \notin E(G)$. Since $\left\{u_{1}, v_{1}, u_{2}\right\} \subset N_{G}(x)$ and G is claw-free, we have $u_{1} v_{1} \in E(G)$. Similarly $u_{2} v_{2} \in E(G)$.

Let $w=u_{1}^{+(P)}$. We claim $w \notin V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Assume $w \in V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Since $w \in V(P) \subset N_{G}(x), w \neq x$. Thus, $w \in u_{1} \vec{C}_{1} v_{1} \cup u_{2} \vec{C}_{2} v_{2}$.

First, suppose $w \in u_{1} \vec{C}_{1} v_{1}$. Then by the choice of $P, w \in u_{1}^{+} \vec{C}_{1} v_{1}^{-}$. Since $\left\{x, w^{+}, w^{-}\right\} \subset$ $N_{G}(w)$ and G is claw-free, we have $\left\{x w^{+}, x w^{-}, w^{+} w^{-}\right\} \cap E(G) \neq \emptyset$. If $w^{+} w^{-} \in E(G)$, let $C_{1}^{\prime}=x w u_{1} \vec{C}_{1} w^{-} w^{+} \vec{C}_{1} v_{1} x, C_{2}^{\prime}=C_{2}$ and $P^{\prime}=w \vec{P} u_{2}$. If $w^{-} x \in E(G)$, then let $C_{1}^{\prime}=x w \vec{C}_{1} v_{1} u_{1} \vec{C}_{1} w^{-} x, C_{2}^{\prime}=C_{2}$ and $P^{\prime}=w \vec{P} u_{2}$. If $w^{+} x \in E(G)$, then let $C_{1}^{\prime}=$ $x w \overleftarrow{C_{1}} u_{1} v_{1} \overleftarrow{C_{1}} w^{+} x, C_{2}^{\prime}=C_{2}$ and $P^{\prime}=w \vec{P} u_{2}$. Then in each case, since $V\left(C_{1}^{\prime}\right)=V\left(C_{1}\right)$, we have $V\left(C_{1}^{\prime}\right) \cup V\left(C_{2}^{\prime}\right)=V\left(C_{1}\right) \cup V\left(C_{2}\right)=T_{1} \cup T_{2}$ and $V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)=\{x\}$. Furthermore, $w=x^{+\left(C_{1}^{\prime}\right)}$ and $l\left(P^{\prime}\right)<l(P)$. This contradicts the choice of $\left(C_{1}, C_{2}, P\right)$.

Now, suppose $w \in u_{2} \vec{C}_{2} v_{2}$. Since $\left\{u_{2}, v_{2}\right\} \cap N_{G}\left(u_{1}\right)=\emptyset$, we have $w \in u_{2}^{+} \vec{C}_{2} v_{2}^{-}$. Since $\left\{x, w^{-}, w^{+}\right\} \subset N_{G}(w)$ and G is claw-free, $\left\{x w^{-}, x w^{+}, w^{-} w^{+}\right\} \cap E(G) \neq \emptyset$. If $x w^{-} \in E(G)$, let $C=x v_{1} \overleftarrow{C_{1}} u_{1} w \overrightarrow{C_{2}} v_{2} u_{2} \vec{C}_{2} w^{-} x$. If $x w^{+} \in E(G)$, let $C=x w^{+} \overrightarrow{C_{2}} v_{2} u_{2} \vec{C}_{2} w u_{1} \vec{C}_{1} v_{1} x$. Then in either case C is a cycle in G with $V(C)=V\left(C_{1}\right) \cup V\left(C_{2}\right)=T_{1} \cup T_{2}$. This contradicts the assumption. If $w^{-} w^{+} \in E(G)$, then let $C_{1}^{\prime}=x w u_{1} \vec{C}_{1} v_{1} x, C_{2}^{\prime}=x u_{2} \vec{C}_{2} w^{-} w^{+} \vec{C}_{2} v_{2} x$ and $P^{\prime}=w \vec{P} u_{2}$. Then $V\left(C_{1}^{\prime}\right) \cup V\left(C_{2}^{\prime}\right)=V\left(C_{1}\right) \cup V\left(C_{2}\right)=T_{1} \cup T_{2}, V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)=\{x\}$,
$w=x^{+\left(C_{1}^{\prime}\right)}$ and $l\left(P^{\prime}\right)<l(P)$. This contradicts the choice of $\left(C_{1}, C_{2}, P\right)$. Therefore, $w \notin V\left(C_{1}\right) \cup V\left(C_{2}\right)$.

Let $w^{\prime}=u_{2}^{-(P)}$. (Possibly $\left.w^{\prime}=w.\right)$ Then by the same arguments we have $w^{\prime} \notin$ $V\left(C_{1}\right) \cup V\left(C_{2}\right)$.

By the choice of $\left(C_{1}, C_{2}, P\right), P$ is an induced path. Hence if $l(P) \geq 4$, then $\left\{u_{1}, u_{1}^{++(P)}, u_{2}\right\}$ is an independent set. Since $V(P) \subset N_{G}(x)$ and G is claw-free, this is a contradiction. Thus, $l(P) \leq 3$. Since $u_{1} u_{2} \notin E(G), l(P) \geq 2$. These imply $\operatorname{int}(P) \cap\left(T_{1} \cup T_{2}\right)=\emptyset$.

By similar arguments, we have the following lemma.
Lemma 4. Let G be a claw-free graph and let x be a locally connected vertex of G. Let $T \subset V(G)$ with $x \in T$, and let $u \in N_{G}(x)-T$. Suppose $G[T]$ is hamiltonian but $G[T \cup\{u\}]$ is not hamiltonian. Choose a hamiltonian cycle C in $G[T]$ and a path P in $G\left[N_{G}(x)\right]$ with starting vertex in $\left\{x^{+(C)}, x^{-(C)}\right\}$ and terminal vertex u so that P is as short as possible. Then $2 \leq l(P) \leq 3$ and $\operatorname{int}(P) \cap(T \cup\{u\})=\emptyset$.

We prove one more lemma.
Lemma 5. Let G be a claw-free graph and let x be an eligible vertex of G. Let G^{\prime} be the graph obtained from G by local completion at x. Let C^{\prime} be a cycle in G^{\prime} with $x \in V\left(C^{\prime}\right)$. Then either (1) or (2) follows.
(1) There exists a cycle C in G with $V(C)=V\left(C^{\prime}\right)$.
(2) There exist $T_{1}, T_{2} \subset V(G)$ such that
(2.1) $T_{1} \cup T_{2}=V\left(C^{\prime}\right)$ and $T_{1} \cap T_{2}=\{x\}$, and
(2.2) $G\left[T_{i}\right]$ is hamiltonian or isomorphic to $K_{2}(i=1,2)$.

Proof. Let $B=E\left(G^{\prime}\right)-E(G)$. Note that for each $u v \in B,\{u, v\} \subset N_{G}(x)$. Choose a cycle C in G^{\prime} with $V(C)=V\left(C^{\prime}\right)$ so that $|E(C) \cap B|$ is as small as possible. If $E(C) \cap B=\emptyset$, then C is a cycle satisfying (1). Therefore, we may assume $E(C) \cap B \neq \emptyset$.

We claim $|E(C) \cap B|=1$. Assume, to the contrary, $|E(C) \cap B| \geq 2$, say $e_{1}, e_{2} \in E(C) \cap B$, $e_{1} \neq e_{2}$. Let $e_{i}=x_{i} y_{i}(i=1,2)$. We may assume $x_{1}, y_{1}, x_{2}, y_{2}$ and x appear in this order along C. (Possibly, $y_{1}=x_{2}$.) Then x_{1}, x_{2} and x^{-}are distinct vertices in $N_{G}(x)$. Since G is claw-free, $\left\{x_{1} x_{2}, x_{1} x^{-}, x_{2} x^{-}\right\} \cap E(G) \neq \emptyset$. If $x_{1} x_{2} \in E(G)$, let $C_{0}=y_{2} \vec{C} x_{1} x_{2} \overleftarrow{C} y_{1} y_{2}$

Then $V\left(C_{0}\right)=V(C)$ and $E\left(C_{0}\right)=\left(E(C)-\left\{x_{1} y_{1}, x_{2} y_{2}\right\}\right) \cup\left\{x_{1} x_{2}, y_{1} y_{2}\right\}$. This implies $\left|E\left(C_{0}\right) \cap B\right|<|E(C) \cap B|$, which contradicts the minimality of $|E(C) \cap B|$. If $x_{1} x^{-} \in E(G)$, let $C_{0}=x \vec{C} x_{1} x^{-} \overleftarrow{C} y_{1} x$. Then $V\left(C_{0}\right)=V(C)$ and $E\left(C_{0}\right)=\left(E(C)-\left\{x_{1} y_{1}, x x^{-}\right\}\right) \cup$ $\left\{x y_{1}, x_{1} x^{-}\right\}$. Since $x y_{1} \in E(G)$, we have $\left|E\left(C_{0}\right) \cap B\right|<|E(C) \cap B|$, again a contradiction. We have a similar contradiction if $x^{-} x_{2} \in E(G)$. Therefore, the claim is proved.

Let $E(C) \cap B=\left\{x_{1} y_{1}\right\}$. We may assume x, x_{1} and y_{1} appear in this order along C. Let $T_{1}=x \vec{C} x_{1}$ and $T_{2}=y_{1} \vec{C} x$. Then $T_{1} \cup T_{2}=V(C)$ and $T_{1} \cap T_{2}=\{x\}$. Since $x_{1} y_{1} \in B$, $x x_{1}, x y_{1} \in E(G)$. If $x_{1} \neq x^{+}$, then $x \vec{C} x_{1} x$ is a hamiltonian cycle in $G\left[T_{1}\right]$. If $x_{1}=x^{+}$, then $G\left[T_{1}\right] \simeq K_{2}$. Similarly, $G\left[T_{2}\right]$ is either hamiltonian or isomorphic to K_{2}.

Let G^{\prime} be a graph obtained from a claw-free graph by local completion at a vertex. Using Lemmas $3,4,5$ we prove that for each cycle in G^{\prime} there exists a cycle in G which contains it. We can also impose some restriction on its length.

Theorem 6. Let G be a claw-free graph and let x be a locally connected vertex of G. Let G^{\prime} be the graph obtained from G by local completion at x. Then for each cycle C^{\prime} in G^{\prime} there exists a cycle C in G with $V\left(C^{\prime}\right) \subset V(C)$ and $l\left(C^{\prime}\right) \leq l(C) \leq l\left(C^{\prime}\right)+3$.

Proof. If $E\left(C^{\prime}\right) \cap\left(E\left(G^{\prime}\right)-E(G)\right)=\emptyset$, then C^{\prime} is a required cycle. Hence we may assume $E\left(C^{\prime}\right) \cap\left(E\left(G^{\prime}\right)-E(G)\right) \neq \emptyset$.

If $x \in V\left(C^{\prime}\right)$, let $C_{1}^{\prime}=C^{\prime}$. Suppose $x \notin V\left(C^{\prime}\right)$. Let $e=u u^{+\left(C^{\prime}\right)} \in E\left(C^{\prime}\right) \cap\left(E\left(G^{\prime}\right)-\right.$ $E(G))$. Then $\left\{u, u^{+\left(C^{\prime}\right)}\right\} \subset N_{G}(x)$. Let $C_{1}^{\prime}=u^{+\left(C^{\prime}\right)} \overrightarrow{C^{\prime}} u x u^{+\left(C^{\prime}\right)}$. In either case, we have a cycle C_{1}^{\prime} with $V\left(C^{\prime}\right) \cup\{x\} \subset V\left(C_{1}^{\prime}\right)$ and $l\left(C^{\prime}\right) \leq l\left(C_{1}^{\prime}\right) \leq l\left(C^{\prime}\right)+1$.

If there exists a cycle C in G with $V\left(C_{1}^{\prime}\right)=V(C)$, then C is a required cycle. Therefore, we may assume G has no such cycle. Then by Lemma 5 , there exist $T_{1}, T_{2} \subset V(G)$ with $T_{1} \cap T_{2}=\{x\}$ and $T_{1} \cup T_{2}=V\left(C_{1}^{\prime}\right)$ such that $G\left[T_{i}\right]$ is hamiltonian or $G\left[T_{i}\right] \simeq K_{2}$.

Suppose both $G\left[T_{1}\right]$ and $G\left[T_{2}\right]$ are hamiltonian. Then by Lemma 3 there exist cycles C_{1} and C_{2} in G and a path P in $G\left[N_{G}(x)\right]$ such that
(1) $V\left(C_{1}\right) \cup V\left(C_{2}\right)=T_{1} \cup T_{2}=V\left(C_{1}^{\prime}\right), V\left(C_{1}\right) \cap V\left(C_{2}\right)=\{x\}$, and
(2) P joins $\left\{x^{+\left(C_{1}\right)}, x^{-\left(C_{1}\right)}\right\}$ and $\left\{x^{+\left(C_{2}\right)}, x^{-\left(C_{2}\right)}\right\}, 2 \leq l(P) \leq 3$ and $\operatorname{int}(P) \cap\left(T_{1} \cup T_{2}\right)=\emptyset$. Let $u=x^{+\left(C_{1}\right)}$ and $v=x^{+\left(C_{2}\right)}$. We may assume P joins u and v. Let $C=x \overleftarrow{C}_{1} u \overrightarrow{P v} v \vec{C}_{2} x$. Then C is a cycle in $G, V\left(C_{1}^{\prime}\right) \subset V(C)$ and $l\left(C_{1}^{\prime}\right) \leq l(C) \leq l\left(C_{1}^{\prime}\right)+2$. Therefore,
$V\left(C^{\prime}\right) \subset V\left(C_{1}^{\prime}\right) \subset V(C)$ and $l\left(C^{\prime}\right) \leq l\left(C_{1}^{\prime}\right) \leq l(C) \leq l\left(C_{1}^{\prime}\right)+2 \leq l\left(C^{\prime}\right)+3$.
Using Lemma 4 instead of Lemma 3, we can, by similar arguments, deal with the case in which $G\left[T_{1}\right]$ or $G\left[T_{2}\right]$ is isomorphic to K_{2}.

Now Theorem 1 is a consequence of the following corollary of Theorem 6.
Corollary 7. Let G be a claw-free graph and let x be an eligible verex of G. Let G^{\prime} be the graph obtained from G by local completion at x. Then G is covered by k cycles if and only if G^{\prime} is covered by k cycles.

Proof. Since the "only if" part is trivial, we have only to prove the "if" part of the corollary. Suppose G^{\prime} is covered by k cycles, say $V\left(G^{\prime}\right)=V\left(C_{1}^{\prime}\right) \cup \cdots \cup V\left(C_{k}^{\prime}\right)$ for cycles $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ in G^{\prime}. By Theorem 6 for each C_{i}^{\prime} there exists a cycle C_{i} in G with $V\left(C_{i}^{\prime}\right) \subset V\left(C_{i}\right)$ $(1 \leq i \leq k)$. Then $V(G)=V\left(C_{1}\right) \cup \cdots \cup V\left(C_{k}\right)$.

Now we prove Theorem 2. Actually, we prove a stronger statement.
Theorem 8. Let G be a claw-free graph and let x be an eligible vertex of G. Let G^{\prime} be the graph obtained from G by local completion at x. Then for each set of k disjoint cycles $\left\{D_{1}, \ldots, D_{k}\right\}$ in G^{\prime} there exists a set of at most k disjoint cycles $\left\{C_{1}, \ldots, C_{l}\right\}(l \leq k)$ in G with $\cup_{i=1}^{k} V\left(D_{i}\right) \subset \cup_{i=1}^{l} V\left(C_{i}\right)$.

Proof. Let $S_{0}=\cup_{i=1}^{k} V\left(D_{i}\right)$. Assume, to the contrary, that $G[S]$ has no 2-factor with at most k components for any $S \subset V(G)$ with $S_{0} \subset S$. Let $B=E\left(G^{\prime}\right)-E(G)$. Note $\{a, b\} \subset N_{G}(x)$ for each $a b \in B$. Let

$$
\mathfrak{F}=\left\{(S, F): S_{0} \subset S \subset V(G) \text { and } F \text { is a 2-factor of } G^{\prime}[S]\right\} .
$$

Since $\left(S_{0}, \cup_{i=1}^{k} E\left(D_{i}\right)\right) \in \mathfrak{F}, \mathfrak{F} \neq \emptyset$. Let \mathfrak{F}_{0} be the set of pairs $(S, F) \in \mathfrak{F}$ chosen so that
(a) the number of components of F is as small as possible, and
(b) $|F \cap B|$ is as small as possible, subject to (a).

Let $(S, F) \in \mathfrak{F}_{0}$. Suppose F consists of l components (cycles) $C_{1}, \ldots, C_{l}: F=E\left(C_{1}\right) \cup$ $\cdots \cup E\left(C_{l}\right)$ (disjoint). Since $\left(S_{0}, \cup_{i=1}^{k} E\left(D_{i}\right)\right) \in \mathfrak{F}, l \leq k$. By the assumption $F \cap B \neq \emptyset$.

If $x \notin S$, choose i with $E\left(C_{i}\right) \cap B \neq \emptyset$, say $e=u v \in E\left(C_{i}\right) \cap B$ and $v=u^{+\left(C_{i}\right)}$. Let $C_{i}^{\prime}=x v \vec{C}_{i} u x$ and $F^{\prime}=\left(F-E\left(C_{i}\right)\right) \cup E\left(C_{i}^{\prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S \cup\{x\}]$ with l
components and $\left|F^{\prime} \cap B\right|=|F \cap B|-1$. This contradicts the choice of (S, F) given in (b). Therefore, we have $x \in S$. We may assume $x \in V\left(C_{1}\right)$.

We claim $B \cap\left(\cup_{i=2}^{l} E\left(C_{i}\right)\right)=\emptyset$. Assume $B \cap\left(\cup_{i=2}^{l} E\left(C_{i}\right)\right) \neq \emptyset$, say $f=u^{\prime} v^{\prime} \in B \cap E\left(C_{j}\right)$ $(j \geq 2)$. Then $\left\{u^{\prime}, v^{\prime}, x^{+\left(C_{1}\right)}\right\} \subset N_{G}(x)$ and hence $u^{\prime} x^{+\left(C_{1}\right)} \in E\left(G^{\prime}\right)$. We may assume $j=2$ and $v^{\prime}=u^{\prime+\left(C_{2}\right)}$. Let $C^{\prime}=x v^{\prime} \vec{C}_{2} u^{\prime} x^{+\left(C_{1}\right)} \vec{C}_{1} x$ and $F^{\prime}=\left(F-\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)\right) \cup E\left(C^{\prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S]$ with $l-1$ components. This contradicts the choice of (S, F).

Since $F \cap B \neq \emptyset, B \cap E\left(C_{1}\right) \neq \emptyset$. If there exists a cycle C_{1}^{\prime} in G with $V\left(C_{1}^{\prime}\right)=V\left(C_{1}\right)$, then $\left(F-E\left(C_{1}\right)\right) \cup E\left(C_{1}^{\prime}\right)$ is a 2 -factor of $G[S]$ with l components. This contradicts the assumption. Since $x \in V\left(C_{1}\right)$, by Lemma 5 , there exist $T_{0}, T_{1} \subset V(G)$ such that $T_{0} \cup T_{1}=V\left(C_{1}\right), T_{0} \cap T_{1}=\{x\}$, and $G\left[T_{i}\right]$ is hamiltonian or isomorphic to $K_{2}(i=0,1)$.

First, consider the case in which both $G\left[T_{0}\right]$ and $G\left[T_{1}\right]$ are hamiltonian. Let C_{0}^{\prime} and C_{1}^{\prime} be cycles in $G\left[T_{0} \cup T_{1}\right]$ with $V\left(C_{0}^{\prime}\right) \cup V\left(C_{1}^{\prime}\right)=T_{0} \cup T_{1}=V\left(C_{1}\right)$ and $V\left(C_{0}^{\prime}\right) \cap V\left(C_{1}^{\prime}\right)=\{x\}$. Let $u_{i}=x^{+\left(C_{i}^{\prime}\right)}$ and $v_{i}=x^{-\left(C_{i}^{\prime}\right)}(i=0,1)$. Since x is a locally connected vertex of G, $G\left[N_{G}(x)\right]$ has a path P with starting vertex in $\left\{u_{0}, v_{0}\right\}$ and terminal vertex in $\left\{u_{1}, v_{1}\right\}$. Since $G[S]$ has no 2 -factors with l components, $u_{0} u_{1}, u_{0} v_{1}, v_{0} u_{1}, v_{0} v_{1} \in B$. By the choice of (S, F) given in (b), $\left|E\left(C_{1}\right) \cap B\right|=1$.

Now choose $(S, F) \in \mathfrak{F}_{0}, C_{0}^{\prime}, C_{1}^{\prime}$ and P so that
(c) P is as short as possible.

Then by Lemma $3,2 \leq l(P) \leq 3$ and $\operatorname{int}(P) \cap V\left(C_{1}\right)=\emptyset$. We may assume that the starting vertex and the terminal vertex of P are v_{0} and u_{1}, respectively.

Let $a=v_{0}^{+(P)}$. Then $a \notin V\left(C_{1}\right)$. Assume $a \notin S$. Since $V(P) \subset N_{G}(x), a x \in E(G)$ and hence $a u_{1} \in E\left(G^{\prime}\right)$. Let $C^{\prime}=x u_{0} \overrightarrow{C_{0}^{\prime}} v_{0} a u_{1} \overrightarrow{C_{1}^{\prime}} v_{1} x$ and $F^{\prime}=\left(F-E\left(C_{1}\right)\right) \cup E\left(C^{\prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S \cup\{a\}]$ with l components and $F^{\prime} \cap B \subset\left\{a u_{1}\right\}$. Since $\left|B \cap E\left(C_{1}\right)\right|=1$, $\left|F^{\prime} \cap B\right|=|F \cap B|=1$. Furthermore, $C_{0}^{\prime \prime}=x u_{0} \vec{C}_{0}^{\prime} v_{0} a x$ and $C_{1}^{\prime \prime}=C_{1}^{\prime}$ are two cycles in G with $V\left(C_{0}^{\prime \prime}\right) \cup V\left(C_{1}^{\prime \prime}\right)=V\left(C^{\prime}\right)$ and $V\left(C_{0}^{\prime \prime}\right) \cap V\left(C_{1}^{\prime \prime}\right)=\{x\}$. Since $a \vec{P} u_{1}$ is shorter than P, this contradicts the choice of (S, F) given in (c). Therefore, we have $a \in S$. We may assume $a \in V\left(C_{2}\right)$. Let $a^{\prime}=a^{+\left(C_{2}\right)}$ and $a^{\prime \prime}=a^{-\left(C_{2}\right)}$.

If $a^{\prime} x \in E(G)$, then $\left\{a^{\prime}, u_{1}\right\} \subset N_{G}(x)$ and hence $a^{\prime} u_{1} \in E\left(G^{\prime}\right)$. Let

$$
C^{\prime}=x u_{0} \overrightarrow{C_{0}^{\prime \prime}} v_{0} a \overleftarrow{C_{2}} a^{\prime} u_{1}{\overrightarrow{C_{1}^{\prime \prime}} v_{1} x}_{x}
$$

and $F^{\prime}=\left(F-\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)\right) \cup E\left(C^{\prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S]$ with $l-1$ components. This contradicts the choice of (S, F). Hence we have $a^{\prime} x \notin E(G)$. By the same argument we have $a^{\prime \prime} x \notin E(G)$. Since a and $\left\{x, a^{\prime}, a^{\prime \prime}\right\}$ do not form a claw in G, $a^{\prime} a^{\prime \prime} \in E(G)$. If $l\left(C_{2}\right) \geq 4$, let $C^{\prime}=x u_{0} \vec{C}_{0}^{\prime} v_{0} a u_{1} \overrightarrow{C_{1}^{\prime \prime}} v_{1} x\left(\right.$ note $\left.a u_{1} \in E\left(G^{\prime}\right)\right), C^{\prime \prime}=a^{\prime} \overrightarrow{C_{2}} a^{\prime \prime} a^{\prime}$ and $F^{\prime}=\left(F-\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)\right) \cup E\left(C^{\prime}\right) \cup E\left(C^{\prime \prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S]$ with l components and $F^{\prime} \cap B \subset\left\{a u_{1}\right\}$. Since $\left|B \cap E\left(C_{1}\right)\right|=1,\left|F^{\prime} \cap B\right|=|F \cap B|$. Furthermore, $C_{0}^{\prime \prime}=x u_{0} \vec{C}_{0}^{\prime} v_{0} a x$ and $C_{1}^{\prime \prime}=C_{1}^{\prime}$ are two cycles in G with $V\left(C_{0}^{\prime \prime}\right) \cup V\left(C_{1}^{\prime \prime}\right)=V\left(C^{\prime}\right)$ and $V\left(C_{0}^{\prime \prime}\right) \cap V\left(C_{1}^{\prime \prime}\right)=\{x\}$. Since $a \overrightarrow{P u_{1}}$ is shorter than P, this contradicts the choice of (S, F) given in (c). Therefore, we have $l\left(C_{2}\right)=3$, which implies $C_{2}=a a^{\prime} a^{\prime \prime} a$.

If $a^{\prime} \in N_{G}\left(v_{0}\right)$, let $C^{\prime}=x u_{0} \vec{C}_{0}^{\prime} v_{0} a^{\prime} a^{\prime \prime} a u_{1} \overrightarrow{C_{1}^{\prime}} v_{1} x$ and $F^{\prime}=\left(F-\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)\right) \cup E\left(C^{\prime}\right)$. Then F^{\prime} is a 2-factor of $G^{\prime}[S]$ with $l-1$ components. This contradicts the choice of (S, F). If $a^{\prime} \in N_{G}\left(u_{1}\right)$, let $C^{\prime}=x u_{0} \overrightarrow{C_{0}^{\prime}} v_{0} a a^{\prime \prime} a^{\prime} u_{1}{\overrightarrow{C_{1}^{\prime}}}^{2} x$ and $F^{\prime}=F-\left(\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)\right) \cup E\left(C^{\prime}\right)$. Then F^{\prime} is a 2 -factor of $G^{\prime}[S]$ with $l-1$ components, which contradicts the assumption. Therefore, $a^{\prime} \notin N_{G}\left(v_{0}\right) \cup N_{G}\left(u_{1}\right)$. Similarly, $a^{\prime \prime} \notin N_{G}\left(v_{0}\right) \cup N_{G}\left(u_{1}\right)$.

Let $b=u_{1}^{-(P)}$. Let $b \in V\left(C_{i}\right), 2 \leq i \leq l, b^{\prime}=b^{+\left(C_{i}\right)}$ and $b^{\prime \prime}=b^{-\left(C_{i}\right)}$. By symmetry, we have $\left\{b^{\prime}, b^{\prime \prime}\right\} \cap\left(N_{G}(x) \cup N_{G}\left(u_{1}\right) \cup N_{G}\left(v_{0}\right)\right)=\emptyset$ and $l\left(C_{i}\right)=3$.

Suppose $l(P)=2$. Then $b=a$ and hence $C_{i}=C_{2}$. Since $a^{\prime} \notin N_{G}\left(v_{0}\right) \cup N_{G}\left(u_{1}\right)$ and $v_{0} u_{1} \notin E(G), a$ and $\left\{a^{\prime}, v_{0}, u_{1}\right\}$ form a claw in G, a contradiction. Therefore, we have $l(P)=3$. Since $u_{1} a^{\prime}, u_{1} a^{\prime \prime} \notin E(G), C_{i} \neq C_{2}$. We may assume $b \in V\left(C_{3}\right)$.

By the choice of P given in (c), $b v_{0}, a u_{1} \notin E(G)$. Since $v_{0} a^{\prime} \notin E(G)$ and a and $\left\{a^{\prime}, b, v_{0}\right\}$ do not form a claw, $a^{\prime} b \in E(G)$. Similarly, we have $a^{\prime \prime} b, a b^{\prime}, a b^{\prime \prime} \in E(G)$. Now let $C^{\prime}=a a^{\prime \prime} a^{\prime} b b^{\prime} b^{\prime \prime} a$ and $F^{\prime}=\left(F-\left(E\left(C_{2}\right) \cup E\left(C_{3}\right)\right) \cup E\left(C^{\prime}\right)\right.$. Then F^{\prime} is a 2 -factor of $G^{\prime}[S]$ with $l-1$ components. This contradicts the choice of (S, F) given in (a), and the theorem follows in this case.

By replacing Lemma 3 with Lemma 4, we can follow the same arguments to obtain a contradiction if $G\left[T_{1}\right]$ or $G\left[T_{2}\right]$ is isomorphic to K_{2}. Therefore, the theorem is proved.

Concluding Remarks.

Let S be a set of vertices in a claw-free graph G. Then by Theorem 6 the minimum number of cycles covering S in G is the same as the minimum number of cycles covering
S in $\operatorname{cl}(G)$. Furthermore, by Theorem 8, the minimum number of disjoint cycles covering S in G is the same as the minimum number of disjoint cycles covering S in $\operatorname{cl}(G)$, (if there exist such cycles). Therefore, these invariants (and hence the minimum number of cycles covering $V(G))$ are stable in the sense of [1]. Furthermore, the existence of a 2-factor is a stable property.

Acknowledgments

This research was carried out while Z.R. and A.S. visited the Department of Mathematical Sciences, The University of Memphis. These authors are grateful for the hospitality extended during their stay.

References

[1] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable hamiltonian properties in claw-free graphs, preprint.
[2] G. Chartrand and L. Lesniak, Graphs \& Digraphs (2nd ed.), Wadsworth \& Brooks/Cole, Monterey, CA, (1986).
[3] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combinatorial Theory Ser. B 70 (1997) 217-224.

[^0]: ${ }^{1}$ Research partially supported by NSF Grant DMS-9400530

