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Abstract

In the class of k-connected claw-free graphs, we study the stability of some hamilto-

nian properties under a closure operation introduced by the third author. We prove

that

(i) the properties of pancyclicity, vertex pancyclicity and cycle extendability are

not stable for any k (i.e., for any of these properties there is an in�nite family

of graphs G

k

of arbitrarily high connectivity k such that the closure of G

k

has the property while the graph G

k

does not),

(ii) traceability is a stable property even for k = 1,

(iii) homogeneous traceability is not stable for k = 2 (although it is stable for

k = 7).

The paper is concluded with several open questions concerning stability of homege-

neous traceability and hamiltonian connectedness.
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1. Introduction

The graphs G = (V (G); E(G)) we consider in this paper are �nite of order jV (G)j = n,

undirected, without loops and multiple edges. For terminology and notation not de�ned

here we refer to [3]. For any set A � V (G) we denote by hAi the induced subgraph on A,

G� A stands for hV (G) nAi. The words cycle and path mean elementary cycle or path.

The vertex connectivity of G will be denoted by �(G), the circumference of G (i.e., the

length of a longest cycle in G) by c(G), the girth of G (i.e., the length of a shortest cycle

in G) by g(G) and the length of a longest path in G by p(G). By a clique we mean a (not

necessarily maximal) complete subgraph of G.

We say that a graph G is hamiltonian if c(G) = n, pancyclic if it contains cycles of

every length `, 3 � ` � n, vertex pancyclic if it contains cycles of every length through

every vertex, cycle extendable if for every cycle C of G there exists a cycle C

0

such that

V (C) � V (C

0

) and jV (C

0

)j = jV (C)j + 1. Similarly, G is traceable if p(G) = n, i.e. if G

contains a hamiltonian path, homogeneously traceable if every vertex is an endvertex of

some hamiltonian path in G, and hamiltonian connected if there exists a hamiltonian path

between every pair of distinct vertices. For a path, the notation P (a; b) means that P is

an a; b-path, i.e. its two endvertices are a and b. We call a graph eulerian if it contains a

closed spanning trail.

The four-vertex star K

1;3

is called the claw. If G contains no copy of the claw as an

induced subgraph, we say that G is claw-free. The line graph L(G) of a graph G is always

claw-free.

For a vertex x 2 V (G), the set N

G

(x) = fy 2 V (G)j xy 2 E(G)g is called the

neighborhood of x in G. If hN

G

(x)i is a connected graph, we say that x 2 V (G) is a

locally connected vertex. A locally connected vertex with a noncomplete neighborhood

will be called an eligible vertex. For an eligible vertex x 2 V (G), the operation of joining

all pairs of nonadjacent vertices in hN

G

(x)i by an edge (i.e. replacing hN

G

(x)i by the

clique on N

G

(x)) will be called the local completion of G at x. The graph obtained from

G by a local completion at x will be denoted by G

0

x

. Thus, hN

G

0

x

(x)i is always a clique.

In [8], Ryj�a�cek proved that by recurrently performing the local completion operation

to eligible vertices of an arbitrary claw-free graph G until no such vertex remains, we get

a claw-free graph which is uniquely determined by the graph G, i.e. which is independent

of the order of the eligible vertices used during the construction. This new graph is called

the closure of G and is denoted by cl(G). (Note that cl(G) is di�erent from the well-known

closure by Bondy and Chv�atal [2].) By the construction of cl(G), the neighborhood in

cl(G) of every vertex is either a clique (if it is connected) or a disjoint union of two cliques

(if it is disconnected). This immediately implies that, for any claw-free graph G, cl(G) is

the line graph of a triangle-free graph.

It was also proved in [8] that for every eligible vertex x 2 V (G) and for every longest

cycle C

0

in G

0

x

there is a cycle C in G such that V (C) = V (C

0

). Consequently, the circum-

ferences of G and of cl(G) are the same, which in particular implies that G is hamiltonian

if and only if cl(G) is hamiltonian. A natural question is which other properties of claw-

free graphs have the same behavior with respect to the closure operation. This leads to

the following de�nition.
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De�nition.

(i) Let C be a subclass of the class of claw-free graphs. We say that the class C is

stable under the closure (or simply stable) if cl(G) 2 C for every G 2 C.

(ii) Let C be a stable class and let P be a property. We say that the property P is

stable under the closure (or simply stable) in the class C if G 2 C has P if and only

if cl(G) has P.

Whenever we speak of the stability of a given parameter (such as e.g. the circumfer-

ence), we mean the property that the parameter has a speci�c value.

It is easy to see that, for any k � 1, the class of k-connected claw-free graphs is an

example of a stable class.

Now the main result of [8] can be stated as follows.

Theorem A. The length of a longest cycle and the property of hamiltonicity are stable

properties in the class of claw-free graphs.

In the present paper we study stability of some other hamiltonian properties of claw-

free graphs such as pancyclicity, vertex-pancyclicity, cycle extendability, traceability and

homogeneous traceability.

If G has any of the properties P indicated above, then cl(G) has P as well, since the

closure cl(G) is obtained by adding edges to G. Thus, P is stable (in a certain class), if

and only if cl(G) has P implies that G has P.

2. Main results and problems

It is easy to see that if a property P is stable in a class C, then P is stable also in any

stable subclass C

0

� C. Thus, for every property P, we will be interested in �nding either

a "large" class in which P is stable, or a "small" class in which P is not stable.

Thus, if a certain property is not stable under the minimum connectivity assumption

that is necessary for the property itself, then, since the class of k-connected claw-free

graphs is stable for any k � 0, we will be interested in the question whether the prop-

erty becomes stable under the assumption of su�ciently large connectivity or whether it

remains unstable for arbitrarily large connectivity.

We start with the investigation of hamiltonian properties related to paths. Our main

theorem shows that the maximum length of a path, and in consequence also traceability,

are stable properties in the class of claw-free graphs.

Theorem 2.1. Let G be a claw-free graph. Then

p(G) = p(cl(G)):

Corollary 2.2. Let G be a claw-free graph. Then G is traceable if and only if cl(G) is

traceable.
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The proof of Theorem 2.1 is given in Section 3. In fact, our original intention was to

prove that in the class of 2-connected claw-free graphs, the maximum length of a path

with a given endvertex (and, consequently, homogeneous traceability) are stable. The

next proposition shows that this is not possible, since homogeneous traceability is not

stable in the class of 2-connected claw-free graphs.

Theorem 2.3. For any n � 14 there is a 2-connected claw-free graph on n vertices such

that cl(G) is homogeneously traceable while G is not homogeneously traceable.

Proof. Let G be the graph shown in Figure 1 (where the circle parts K

1

; K

2

; K

3

represent three cliques such that jV (K

1

)j � 3, jV (K

2

)j � 3, jV (K

3

)j � 5 and V (K

i

) \

V (K

j

) = fx

i;j

g for 1 � i < j � 3). Then every hamiltonian path in G has one endvertex

in V (G) n (V (K

1

[ K

2

[ K

3

)) and thus, since both fx

1;2

; x

1;3

g and fx

1;2

; x

2;3

g are 2-

element cutsets, there is no hamiltonian path in G with x

1;2

as an endvertex. However,

hV (K

1

) [ V (K

2

) [ V (K

3

)i is a clique in cl(G) and thus every vertex in this clique is an

endvertex of a hamiltonian path in cl(G). Therefore cl(G) is homogeneously traceable

while G is not.
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Figure 1

It is easy to check that the graph G of Fig. 1 is a line graph and hence the property of

homogeneous traceability is not stable even in the class of 2-connected line graphs. If G is

homogeneously traceable then clearlyGmust be 2-connected. Thus Theorem 2.3 says that

homogeneous traceability is not stable under the minimum connectivity assumption that

is necessary for the property itself. However, it was proved in [8] that every 7-connected

claw-free graph is hamiltonian, which implies that homogeneous traceability is stable in

the class of 7-connected claw-free graphs. This guarantees the existence of the integer k

in the following question.

Problem 1. Determine the smallest integer k for which homogeneous traceability is

stable in the class of k-connected claw-free graphs.

Note that a hamiltonian connected graph must be 3-connected, since the vertices of a

2-element cutset cannot be endvertices of a hamiltonian path. However, the graph G in

Fig. 2 is an example of a claw-free graph with complete closure but having no hamiltonian

path joining the vertices a; b, although fa; bg is not a cutset of G. We did not succeed in

constructing a similar 3-connected example and we therefore pose the following
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Problem 2. Is the property of hamiltonian connectedness stable in the class of 3-

connected claw-free graphs?

The answer is positive in the subclass of 3-connected, locally connected, claw-free

graphs, since every such graph is hamiltonian connected as shown by Asratian [1].
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Figure 2

Zhan [9] proved that every 7-connected line graph is hamiltonian connected. Since we

have seen that hamiltonian connectedness in general is not stable, the analogous problem

in claw-free graphs remains open. Hence it would be interesting to consider the following

weaker version of Problem 2.

Conjecture 3. There is an integer k � 3 such that hamiltonian connectedness is a stable

property in the class of k-connected claw-free graphs.

This conjecture was recently proved by Brandt [4] for k = 9 by showing that every

9-connected claw-free graph is hamiltonian connected. However, this is probably not the

minimal value of k.

Now we consider hamiltonian properties related to cycles. Ryj�a�cek [8] proved that the

length of a longest cycle and the property of hamiltonicity are stable in claw-free graphs.

However, the properties investigated here will turn out to be unstable. Theorem 2.4 shows

that pancyclicity is an unstable property for arbitrarily large connectivity.

Theorem 2.4. For every k � 2 there exists a k-connected claw-free graph G such that

G is not pancyclic but cl(G) is pancyclic.

By a slight (but more technical) modi�cation of the proof, which will be performed in

Section 4, we can show that the same statement holds for vertex pancyclicity as well. So

the property of vertex pancyclicity is thus also unstable for arbitrarily large connectivity.

Our next theorem shows that the property of cycle extendability is also not stable for

arbitrarily large connectivity.

Theorem 2.5. For any k � 2 there is a k-connected claw-free graph G

k

such that cl(G

k

)

is cycle extendable while G

k

is not cycle extendable.

Proof. Let k � 2 and let G

k

be the graph obtained from two vertex disjoint cliques K

k�1

and K

2k�2

by adding 2k� 2 edges in such a way that every vertex of the K

k�1

is incident

to exactly two and every vertex of the K

2k�2

is incident to exactly one of these edges.

5



Then G

k

is k-connected, claw-free, cl(G

k

) is complete (and hence cycle extendable), but

the cycles of length k � 1 in the K

k�1

are nonextendable in G

k

.

3. Traceability is stable

The main result of this section, Proposition 3.2, is considerably stronger than Theorem

2.1. It shows that, in most cases, for any longest a; b-path P

0

in G

0

x

there is an a; b-path

P in G with V (P ) = V (P

0

), and gives a structural description of the only two situations

when only one (but not an arbitrary one) of the endvertices of P can be prescribed.

We �rst introduce some additional notation that will be used throughout this section.

Let x be an eligible vertex of a claw-free graph G. The edges in E(G) are said to

be black edges, and those in E(G

0

x

) n E(G) are called blue edges. Hence a blue edge is

not incident to x but both its endvertices are adjacent to x. Let a and b be two distinct

vertices of G and P

0

(a; b) an a; b-path in G

0

x

. We consider P

0

(a; b) to be oriented from a

to b and use the standard notation w

�

; w

+

for the predecessor and successor of a vertex

w on P

0

and v

1

�!

P

0

v

2

(or v

2

 �

P

0

v

1

) for the segment of P

0

between two vertices v

1

; v

2

2 V (P

0

)

with the same (opposite) orientation with respect to the orientation of P

0

. If a vertex w

1

precedes a vertex w

2

on P

0

in this orientation, we also write w

1

� w

2

. The blue edges

of P

0

(a; b) are denoted e

1

= y

1

z

1

; e

2

= y

2

z

2

; : : : ; e

k

= y

k

z

k

, occurring on P

0

in this order

from a to b (i.e., z

i

= y

+

i

and z

i

� y

i+1

or z

i

= y

i+1

). Finally, whenever vertices of a claw

are listed, its center (i.e., the only vertex of degree 3) is always the �rst vertex of the list.

Lemma 3.1. Let x be an eligible vertex of a claw-free graph G and let G

0

x

be the local

completion of G at x. Then for every pair of distinct vertices a and b of G and for every

longest a; b-path R(a; b) in G

0

x

there is an a; b-path P

0

(a; b) in G

0

x

such that V (P

0

) = V (R)

and P

0

contains at most one edge of E(G

0

x

) n E(G).

Proof. Let P

0

(a; b) be an a; b-path in G

0

x

such that V (P

0

) = V (R) and the number k of

blue edges of P

0

(a; b) is minimum.

Claim 1. Let e

i

; e

j

2 E(P

0

) be two blue edges with i < j. Then

(i) y

i

y

j

=2 E(G) and z

i

z

j

=2 E(G),

(ii) if x � y

i

, then x

+

z

i

=2 E(G),

(iii) if x � y

i

and x 6= a, then x

�

y

i

=2 E(G).

Similarly, if z

i

� x and x 6= b, then x

+

z

i

=2 E(G).

Proof of Claim 1.

(i) Suppose that at least one of y

i

y

j

, z

i

z

j

is in E(G). Then the path P

00

(a; b) :=

a

�!

P

0

y

i

y

j

 �

P

0

z

i

z

j

�!

P

0

b has the same vertex set as R(a; b) and at least one blue edge less than

P

0

(a; b).

(ii) If x

+

z

i

2 E(G), then the path P

00

(a; b) := a

�!

P

0

xy

i

 �

P

0

x

+

z

i

�!

P

0

b contradicts the choice

of P

0

.
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(iii) If x

�

y

i

2 E(G), then the path P

00

(a; b) := a

�!

P

0

x

�

y

i

 �

P

0

xz

i

�!

P

0

b contradicts the

choice of P

0

. 2

Suppose now that P

0

(a; b) contains at least two blue edges y

1

z

1

and y

2

z

2

. If x � y

1

�

y

2

, then, by Claim 1(i), z

1

z

2

=2 E(G), by Claim 1(ii), x

+

z

1

=2 E(G) and x

+

z

2

=2 E(G),

and hence hx; x

+

; z

1

; z

2

i ' K

1;3

. Similarly we cannot have z

1

� z

2

� x and hence

z

1

� x � y

2

. If y

1

x

+

2 E(G), then the path P

00

(a; b) := a

�!

P

0

y

1

x

+

�!

P

0

y

2

x

�

 �

P

0

z

1

xz

2

�!

P

0

b

contains the blue edge y

2

x

�

but avoids y

1

z

1

and y

2

z

2

, which contradicts the choice of P

0

.

Hence y

1

x

+

=2 E(G). Since, by Claim 1(iii), also x

+

z

1

=2 E(G), hx; y

1

; z

1

; x

+

i ' K

1;3

, a

contradiction.

Proposition 3.2. Let x be an eligible vertex of a claw-free graph G, G

0

x

the local com-

pletion of G at x, and a, b two distinct vertices of G. Then for every longest a; b-path

P

0

(a; b) in G

0

x

there is a path P in G such that V (P ) = V (P

0

) and P admits at least one of

a, b as an endvertex. Moreover, there is an a; b-path P (a; b) in G such that V (P ) = V (P

0

)

except perhaps in each of the following two situations (up to symmetry between a and

b):

(i) There is an induced subgraph H � G isomorphic to the graph S in Fig. 3 such

that both a and x are vertices of degree 4 in H. In this case G contains a path P

b

such that b is an endvertex of P and V (P

b

) = V (P

0

). If, moreover, b 2 V (H), then

G contains also a path P

a

with endvertex a and with V (P

a

) = V (P

0

).

(ii) x = a and ab 2 E(G). In this case there is always both a path P

a

in G with

endvertex a and with V (P

a

) = V (P

0

) and a path P

b

in G with endvertex b and

with V (P

b

) = V (P

0

).

�
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Figure 3

Proof. Let, to the contrary, P

0

(a; b) be a longest a; b-path in G

0

x

such that there is no

a; b-path P (a; b) in G with V (P ) = V (P

0

). We show that then one of the cases (i), (ii)

occurs and, in each of these cases, there are paths P

a

and P

b

in G with the required

properties.

If k = 0, then P

0

is a black path; hence k � 1. By the maximality of P

0

and since

hN

G

0

(x)i is a clique, we have x 2 V (P

0

) and N

G

(x) = N

G

0

(x) � V (P

0

). By Lemma 3.1, we

can suppose that P

0

contains exactly one blue edge e = yz and, without loss of generality,

x � y. We denote by B

a

:= a

�!

P

0

x

�

, B := x

+

�!

P

0

y and B

b

:= z

�!

P

0

b the three subpaths of

P

0

obtained by removing the vertex x and the blue edge yz (note that we do not exclude

the possible special cases y = x

+

, i.e. V (B) = fx

+

g, and x = a, i.e. V (B

a

) = ;).

7



By Claim 1(ii), we have x

+

z =2 E(G). If y 6= x

+

, then x

+

y 2 E(G) (otherwise

hx; x

+

; y; zi is a claw). If x 6= a, then x

�

x

+

=2 E(G) (otherwise P = a

�!

P

0

x

�

x

+

�!

P

0

yxz

�!

P

0

b is

a black a; b-path), x

�

y =2 E(G) (by Claim 1(iii)) and x

�

z 2 E(G) (otherwise hx; x

�

x

+

; zi

is a claw).

Since hN

G

(x)i is connected, there is a path Q in hN

G

(x)i joining one of the vertices

x

+

; y to one of the vertices x

�

; z (or, if V (B

a

) = ;, to z). Suppose that P

0

(a; b) is chosen

such that, among all a; b-paths in G

0

x

with vertex set V (P

0

), containing exactly one blue

edge, the path Q is shortest possible. We may assume that Q starts at x

+

since otherwise

we can replace P

0

by the path P

00

= a

�!

P

0

xy

 �

P

0

x

+

z

�!

P

0

b with the desired properties. Denote

the vertices of Q by x

0

; x

1

; : : : ; x

`

, where x

0

= x

+

and x

`

2 fx

�

; zg. Since N

G

(x) � V (P

0

),

fx

0

; x

1

; : : : ; x

`

g � V (P

0

). Since x

+

is adjacent neither to x

�

nor to z, ` � 2. On the other

hand, since Q is induced in hN

G

(x)i and hx; x

0

; x

2

; x

4

i cannot be a claw, ` � 3. Note that

if ` = 3 (i.e. if jV (Q)j = 4), then yx

1

2 E(G), for otherwise hx; x

1

; x

`

; yi is a claw. We

can suppose that x

1

(i.e. the second vertex of Q) belongs to B or to B

b

(otherwise, i.e. if

x

1

2 V (B

a

), we can replace P

0

by the path P

00

= b

 �

P

0

zxx

+

�!

P

0

yx

�

 �

P

0

a in G

0

x

, interchange

the notation of a and b, and using the fact that the statement of Proposition 3.2 is

symmetric with respect to a and b, transform this case to the case x

1

2 V (B

b

)). Recall

that x

1

2 N(x) n fx

+

; y; z; x

�

g.

Case 1: x

1

2 V (B) n fx

+

; yg. We consider hx

1

; x

�

1

; x; x

+

1

i.

If xx

�

1

2 E(G), then P

00

(a; b) := a

�!

P

0

x

�

xx

�

1

 �

P

0

x

+

y

 �

P

0

x

1

z

�!

P

0

b is an a; b-path in G

0

x

(even

if x = a), with V (P

00

) = V (P

0

), and P

00

is either a black path or it contains one blue edge

x

1

z. In the last case, the deletion of the vertex x and the blue edge x

1

z from P

00

yields

the subpaths B

00

a

= B

a

:= a

�!

P

0

x

�

, B

00

= x

�

1

 �

P

0

x

+

y

 �

P

0

x

1

and B

00

b

= B

b

= z

�!

P

0

b, but the

portion of Q between x

1

(as an endvertex of B

00

) and fx

�

; zg (as the two endvertices of

B

00

a

and B

00

b

) is shorter than Q in contradiction to the choice of P

0

. Hence xx

�

1

=2 E(G),

which implies in particular x

1

6= x

++

.

If xx

+

1

2 E(G), then P

00

(a; b) := a

�!

P

0

x

�

xx

+

1

�!

P

0

yx

+

�!

P

0

x

1

z

�!

P

0

b is an a; b-path in G

0

x

that

is either black (if x

1

z 2 E(G)) or contradicts the minimality of Q. Hence xx

+

1

=2 E(G).

If x

�

1

x

+

1

2 E(G), then similarly the a; b-path P

00

(a; b) := a

�!

P

0

x

�

xx

1

x

+

�!

P

0

x

�

1

x

+

1

�!

P

0

yz

�!

P

0

b

inG

0

x

contains one blue edge yz and contradicts the minimality ofQ. Hence x

�

1

x

+

1

=2 E(G).

Therefore hx

1

; x

�

1

; x; x

+

1

i is a claw, a contradiction.

Case 2: x

1

2 V (B

b

) n fb; zg. We consider hx

1

; x

�

1

; x

+

; x

+

1

i.

If x

�

1

x

+

1

2 E(G), then P

00

(a; b) := a

�!

P

0

xx

1

x

+

�!

P

0

yz

�!

P

0

x

�

1

x

+

1

�!

P

0

b is an a; b-path in G

0

x

(even if x = a), containing exactly one blue edge yz and contradicting the minimality of

Q. Therefore x

�

1

x

+

1

=2 E(G).

Suppose that x

+

x

�

1

2 E(G). If jV (Q)j = 4, then we already know that yx

1

2 E(G)

and thus P (a; b) := a

�!

P

0

xz

�!

P

0

x

�

1

x

+

�!

P

0

yx

1

�!

P

0

b is a black a; b-path, a contradiction. Hence

jV (Q)j = 3, i.e., x

1

is adjacent to at least one of fx

�

; zg. If x 6= a, then P (a; b) :=

a

�!

P

0

x

�

z

�!

P

0

x

�

1

x

+

�!

P

0

yxx

1

�!

P

0

b is a black a; b-path. If x = a, then x

�

does not exist, x

1

is

8



adjacent to z, and P (a = x; b) := xy

 �

P

0

x

+

x

�

1

 �

P

0

zx

1

�!

P

0

b is a black a; b-path. Therefore

x

+

x

�

1

=2 E(G).

Now, since hx

1

; x

�

1

; x

+

; x

+

1

i cannot be a claw, we have x

+

x

+

1

2 E(G). If jV (Q)j =

4, then again yx

1

2 E(G) and P (a; b) := a

�!

P

0

xz

�!

P

0

x

1

y

 �

P

0

x

+

x

+

1

�!

P

0

b is a black a; b-path.

Hence jV (Q)j = 3 and thus x

1

is adjacent to one of fx

�

; zg. If x 6= a, then P (a; b) :=

a

�!

P

0

x

�

z

�!

P

0

x

1

xy

 �

P

0

x

+

x

+

1

�!

P

0

b is a black a; b-path. Hence x = a, x

�

does not exist and x

1

is

adjacent to z. The vertices y and x

+

are distinct for otherwise the path P (a = x; b) :=

xz

�!

P

0

x

1

x

+

x

+

1

�!

P

0

b is black. Now, zx

+

1

=2 E(G), for otherwise the path P (a = x; b) :=

xy

 �

P

0

x

+

x

1

 �

P

0

zx

+

1

�!

P

0

b is black. Similarly, yx

+

1

=2 E(G), for otherwise the path P (a =

x; b) := xz

�!

P

0

x

1

x

+

�!

P

0

yx

+

1

�!

P

0

b is black. Hence, since hx; x

+

1

; y; zi is not a claw, xx

+

1

=2 E(G)

and thus, since hx

1

; x

�

1

; x

+

1

; xi is not a claw, xx

�

1

2 E(G). Finally, yx

�

1

=2 E(G) because of

the black path P (a = x; b) := xz

�!

P

0

x

�

1

y

 �

P

0

x

+

x

1

�!

P

0

b, and yx

1

=2 E(G) because of the black

path P (a = x; b) := xz

�!

P

0

x

1

y

 �

P

0

x

+

x

+

1

�!

P

0

b. Hence H = hx; x

�

1

; x

1

; x

+

1

; x

+

; yi ' S and the

vertex a = x has degree 4 in H. We are thus in Situation (i). In this case we can however

construct a path P

b

in G (e.g. P

b

:= b

 �

P

0

zxy

 �

P

0

x

+

) such that V (P

b

) = V (P

0

) and b is an

endvertex of P

b

; if moreover b = x

+

1

2 V (H), then P

a

:= xy

 �

P

0

x

+

x

+

1

 �

P

0

z is a path in G

with endvertex a and with V (P

a

) = V (P

0

).

Case 3: x

1

= b. Suppose �rst that a = x. Then, since b = x

1

2 N

G

(x), ab 2 E(G). We

are thus in Situation (ii) and the paths P

a

:= ay

 �

P

0

x

+

b

 �

P

0

z and P

b

:= b

 �

P

0

zxy

 �

P

0

x

+

have

the required properties.

Hence we can suppose that a 6= x, i.e., the vertex x

�

exists. If b

�

= z, then P (a; b) :=

a

�!

P

0

x

�

zxy

 �

P

0

x

+

b is a black path, hence b

�

6= z. Further, b

�

x

�

=2 E(G), since otherwise

P (a; b) := a

�!

P

0

x

�

b

�

 �

P

0

zxy

 �

P

0

x

+

b is a black path, b

�

x =2 E(G) because of the black path

P (a; b) := a

�!

P

0

x

�

z

�!

P

0

b

�

xy

 �

P

0

x

+

b and b

�

x

+

=2 E(G) because of the black path P (a; b) :=

a

�!

P

0

x

�

z

�!

P

0

b

�

x

+

�!

P

0

yxb. If bx

�

2 E(G), then, since also x

�

x

+

=2 E(G), hb; b

�

; x

�

; x

+

i '

K

1;3

. Hence bx

�

=2 E(G).

Suppose now that ` = 2. Then, since b = x

1

and bx

�

=2 E(G), bz 2 E(G). Since

hb; b

�

; z; x

+

i cannot be a claw and obviously zx

+

=2 E(G), we have b

�

z 2 E(G). This

implies that H = hb; z; x; b

�

; x

�

; x

+

i ' S and x and b have degree 4 in H, i.e., we are (up

to symmetry between a and b) in Situation (i). The black paths P

a

:= a

�!

P

0

x

�

xy

 �

P

0

x

+

b

 �

P

0

z

and, if a 2 V (H) (i.e., a = x

�

), also P

b

:= bx

+

�!

P

0

yxx

�

z

�!

P

0

b

�

, have the required properties.

We can thus suppose that ` = 3, i.e., V (Q) = fx

0

; x

1

; x

2

; x

3

g with x

0

= x

+

and x

1

= b.

Recall that we already know that in this case b = x

1

is adjacent to both x

+

and y and,

by the same argument (i.e., by a claw centered at x), x

2

is adjacent to both x

�

and z.

This implies that x

2

6= b

�

(since b

�

x =2 E(G)). Since hb; b

�

; x

+

; x

2

i cannot be a claw,

b

�

x

+

=2 E(G) (as we already know) and x

2

x

+

=2 E(G) (since Q is an induced path), we

have x

2

b

�

2 E(G). This implies that H = hb; x

2

; x; b

�

; x

�

; x

+

i ' S and b = x

1

and x are

9



vertices of degree 4 in H, i.e., we are again (up to symmetry between a and b) in Situation

(i). The black paths P

a

and P

b

are the same as in the case ` = 2.

Remarks. 1. The graph in Figure 2 and the graph formed by two cliques sharing an

edge xb show that the presence of the situations (i) and (ii) can e�ectively prevent the

existence of a path P (a; b) in G with V (P ) = V (P

0

).

2. By Proposition 3.2, the length of a longest path in G and in G

0

x

are the same. This

immediately implies Theorem 2.1.

We say that a vertex a 2 V (G) is a simplicial vertex if hN

G

(a)i is complete.

Corollary 3.3. Let a be a simplicial vertex of a claw-free graph G. Then the maximum

length of a path in G with endvertex a is the same as in cl(G).

Proof. If a is simplicial, then a is not eligible and hence x 6= a. If there is a longest path

P

0

in G

0

x

with endvertex a such that there is no path P in G with V (P ) = V (P

0

) having

a as an endvertex, then, by Proposition 3.2, a has degree 4 in some induced subgraph

H � G isomorphic to S, which contradicts the simpliciality of a.

4. Pancyclicity is not stable

Lemma 4.1. If a graph G has diameter r and contains a cycle of length s > 2r+1, then

G contains a cycle of length ` for some s=2 � ` < s.

Proof. Consider a shortest path P in G joining two antipodal vertices u; v of the s-cycle

C. Then some subpath of P is a shortcut in C. This can be seen as follows:

Mark the vertices of P which intersect C. Now start from one endpoint, say u, of P

and for any two consecutive marked vertices x; y of P mark the edges of a shortest path

of C joining x to y. It is easily seen the the marked edges span a connected subgraph of

C, containing u and v. Since there are more marked edges in C than edges in P , there

must be two consecutive marked vertices x

0

; y

0

of P , such that a shortest (x

0

; y

0

)-path in

C joining them has more edges than the (x

0

; y

0

)-path joining them in P . Replacing the

path of C by the one of P gives the required shorter cycle.

Proof of Theorem 2.4. Consider the Ramanujan graphs created by Lubotzky, Phillips

and Sarnak [6]. It was shown that for in�nitely many d there exist in�nitely many n such

that there is a connected, vertex-transitive, d-regular graph on n vertices of arbitrarily

large girth g and diameter r � 3g + 1. By a result of Mader [7], d-regular, connected,

vertex-transitive graphs are d-edge-connected.

Choose an integer d > maxf3; kg for which an in�nite sequence of such Ramanujan

graphs exists, and letG be such a graph with g(G) > d+2

�

d

2

�

. SinceG is d-edge-connected,

its line graph L(G) is d-connected. Now modify L(G) in the following way:
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For every vertex v 2 V (G), subdivide twice in L(G) every edge of theK

d

corresponding

to the edges of G incident with v, add 3g(G)� 2� d� 2

�

d

2

�

additional vertices and add

all possible edges between any two of the 3g(G)� 2� d newly generated vertices.

The resulting graph M(G) is claw-free and not pancyclic, since it cannot have a

(3g(G)�1)-cycle (such a cycle cannot stay within any modi�ed K

d

, since it has 3g(G)�2

vertices, so it must go around a cycle C of G, which is impossible, since for every v 2 V (C)

it picks up at least three edges in every modi�ed K

d

). On the other hand, for any

collection of edge disjoint u; v-paths in G there is a corresponding collection of vertex

disjoint u

0

; v

0

-paths in M(G) where u

0

is any vertex in the modi�ed K

d

(u) and v

0

any

vertex di�erent from u

0

in the modi�ed K

d

(v). Moreover, each modi�ed K

d

(u) contains

at least d� 1 � k vertex disjoint paths between any pair u

0

1

, u

0

2

of its vertices. Therefore

M(G) is k-connected.

Set H = cl(M(G)). Then the modi�ed K

d

's turn in H into cliques of cardinality

3g(G)� 2. It remains to prove that H is pancyclic.

Let S be an eulerian subgraph of G and put e(S) = jE(S)j. Then H contains cycles

of all lengths in the interval [e(S); e(S)+(3g(G)�d�2)jV (S)j]. The lower bound follows

from the fact that we have a cycle which picks up exactly the vertices from the line graph

corresponding to the edges of S. Now we can start with such a cycle and include any

number of added vertices in every modi�ed K

d

belonging to a vertex of S in the cycle.

It is thus su�cient to show that G contains a sequence of eulerian subgraphs of slowly

decreasing orders.

First note that by a result of Jaeger [5], G has a spanning eulerian subgraph S

1

, since

G is 4-edge-connected. This, in particular, gives rise to a hamiltonian cycle in H. Starting

with S

1

, we will construct a sequence of eulerian subgraphs S

1

; S

2

; : : : ; S

t

of G satisfying

jV (S

i

)j � jV (S

i+1

)j � jV (S

i

)j=2 and e(S

i

) > e(S

i+1

), until we end with a cycle S

t

of length

at most 6g(G)+3. Indeed, if S

i

is not a cycle then �x an eulerian trail T of S

i

, i.e. a closed

walk visiting every edge exactly once. Take a shortest closed subwalk T

0

of T . Deleting

the edges of T

0

, the graph S

i+1

spanned by the remaining edges is eulerian and has more

than jV (S

i

)j=2 vertices. So suppose that S

i

is a cycle. If jV (S

i

)j > 6g(G)+ 3 then we can

apply Lemma 4.1 to obtain a cycle S

i+1

of length jV (S

i

)j > jV (S

i+1

)j � jV (S

i

)j=2.

It is now straightforward to check that these eulerian subgraphs generate cycles of all

lengths in the interval [6g(G) + 3; jV (H)j], since if jV (S

i+1

)j � jV (S

i

)j=2, then e(S

i+1

) +

(3g(G) � d � 2)jV (S

i+1

)j � (3g(G) � d � 1)jV (S

i+1

)j � (3g(G) � d � 1)jV (S

i

)j=2 �

(3g(G) � d � 1)e(S

i

)=d � e(S

i

). The remaining short cycles of lengths between 3 and

g(G) are obtained locally in a modi�ed K

d

and those between g(G) and 6g(G) + 3 from

a cycle of length g(G) in G.

11



References

[1] Asratian, A.S.: Every 3-connected, locally connected, claw-free graph is hamilton-

connected. J. Graph Theory 23 (1996), 191-202.

[2] Bondy, J.A.; Chv�atal, V.: A method in graph theory. Discrete Math. 15 (1976),

111-135.

[3] Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Macmillan, London

and Elsevier, New York, 1976.

[4] Brandt, S.: 9-connected claw-free graphs are Hamilton-connected. J. Combin. Theory

Ser. B 75 (1999), 167-173.

[5] Jaeger, F.: A note on sub-Eulerian graphs. J. Graph Theory 3 (1979), 91{93.

[6] Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8 (1988),

261{277.

[7] Mader, W.: Minimale n-fach kantenzusammenh�angende Graphen. Math. Ann. 191

(1971), 21{28.

[8] Ryj�a�cek, Z.: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B

70 (1997), 217-224.

[9] Zhan, S.: On hamiltonian line graphs and connectivity. Discrete Math. 89 (1991),

89-95.

12


