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Abstract

We study some properties of the closure concept in claw-free graphs that was in-
troduced by the first author. It is known that G is hamiltonian if and only if its
closure is hamiltonian, but, on the other hand, there are infinite classes of non-
pancyclic graphs with pancyclic closure. We show several structural properties of
claw-free graphs with complete closure and their clique cutsets and, using these
results, we prove that every claw-free graph on n vertices with complete closure
contains a cycle of length n — 1.
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1 Introduction

We refer to [1] for terminology and notation not defined here and consider only finite
undirected graphs G = (V(G), E(G)) without loops and multiple edges.

If GG is a graph and M C V((), then the induced subgraph of (G on M will be denoted
by (M)q. We will simply write G — M for (V(G)\ M) and G — « for G — {x} (where
x € V((G)). We will denote by ng = |V(G)]| the order of G and by ¢(G') the circumference
of G (i.e. the length of a longest cycle in ). A graph G is hamiltonian if ¢(G) = ng
and G is pancyclic if G contains a cycle of any length /, 3 < ¢ < ng. By a cliqgue we
mean a (not necessarily maximal) complete subgraph of G. If S C V() is a cutset of a
connected graph G (i.e. G — S is disconnected) such that (S)q is a clique, we say that S
is a clique cutset of (.

A graph G is claw-free if G does not contain a copy of the claw K3 as an induced
subgraph. Whenever we list vertices of an induced claw, its center (i.e. the only vertex
of degree 3) is always the first vertex in the list.

If C'is a cycle in (¢ with a fixed orientation and w,v € V(C), then by u 8’ v (v E’ u)
we denote the consecutive vertices on C' from u to v in the same (opposite) orientation
with respect to the given orientation of C'. The predecessor and successor of a vertex v
on C will be denoted by v~ and v*, respectively.

For any = € V(G), the set Ng(x) = {y € V(G)| vy € E(G)} is called the neigh-
borhood of x in G. For a set M C V(G) we let Ng(M) = UzepmNg(x). We say that
a vertex @ € V(G) is locally connected if (Ng(x))g is a connected graph; otherwise x
is said to be locally disconnected. A locally connected vertex x is said to be eligible
if (Ng(x))q is not a clique; otherwise we say that z is simplicial. The set of all lo-
cally connected (eligible, simplicial, locally disconnected) vertices of ¢ will be denoted by
Vie(G) (Ver(G), Vsi(G), Vip(G)), respectively. Thus, the sets Ve (G), Vsr(G), Vip(G)
are pairwise disjoint, Vgr(G) U Vsr(G) = Vie(G) and Vie(G) U Vip(G) = V(G). If
Vie(G) = V(G), we say that the graph G is locally connected.

Let € Vgi(G) be an eligible vertex and let B, = {uv| u,v € Ng(a),uv ¢ E(G)}.
Denote by G’ the graph G, = (V(G), E(G) U B,) (i.e., G’ is obtained from G by adding
to (Ng(x))e all missing edges). The graph G, is called the local completion of G at
x. The following proposition shows that the local completion operation preserves the

claw-freeness and the value of circumference of G

Proposition A [3]. Let GG be a claw-free graph and let @ € Vg1,(G) be an eligible vertex
of G.. Then

(1) the graph G, is claw-free,

(i1) o(G) = (@),



Apparently, if @ € Vgi(G), then x becomes simplicial in G, and, if Vg (G") # 0, the
local completion operation can be applied repeatedly to another vertex. We thus obtain

the following concept (introduced in [3]).

Let GG be a claw-free graph. We say that a graph H is a closure of (G, denoted
H = c(G), if
(1) there is a sequence of graphs Gy, ..., Gy and vertices xy, . .., x;—q such that G; = G,
Gy = H, T; € VEL(Gz) and Gi-l—l = (Gz)é“ = 1,000 =1,
(17) Ver(H) = 0.

The following result summarizes basic properties of the closure operation.

Theorem B [3]. Let G be a claw-free graph. Then
(1) the closure cl((7) is well-defined,
(17) there is a triangle-free graph H such that cl(() is the line graph of H,

(ii1) o(G) = e(cl(G)).

Remarks. 1. Part (i) of Theorem B says that cl(() is uniquely determined, i.e., does
not depend on the order of eligible vertices used during the construction.
2. It is easy to see that cl((¢) can be equivalently characterized as the minimum graph

containing (, which does not contain an induced subgraph isomorphic to the diamond
([(4 — 6).
Specifically, by part (ii7) of Theorem B, a claw-free graph (7 is hamiltonian if and only

if cI((7) is hamiltonian. On the other hand, the following theorem shows that this is not
the case with the property of pancyclicity.

Theorem C [2]. For every k > 2 there is a k-connected claw-free graph G such that G
is not pancyclic but cl(() is pancyclic.

An example of an infinite family of such graphs for £ = 2 is shown in Figure 1. The
graph in Figure 1 is, moreover, an example of a nonpancyclic graph having a complete

(and hence pancyclic) closure. This situation gives rise to the following question.

Problem. Determine the maximum number ¢,,(n) of cycle lengths that can be missing

in a claw-free graph on n vertices with complete closure.

Let £ > 1 and let G be the graph in Figure 1 of order ng = 6k + 3. Then G is
claw-free, cl((7) is complete and G contains no cycle of length ¢ for 2k + 3 < ¢ <3k + 2,
i.e. G misses k = (ng — 3)/6 cycle lengths. This example shows that ¢,,(n) > (n — 3)/6.



I

Figure 1

On the other hand, it is easy to see that a claw-free graph with complete closure on at
least 4 vertices can miss neither a C's nor a (. Also, the main result of Section 3 shows
that such a graph GG cannot be missing a cycle of length ng — 1.

More is likely to be true. No example is known when G has complete closure and large
order but fails to contain one of all possible "short length” and ”long length” cycles. We

state this precisely as the following conjecture.

Conjecture. Let ci, ¢; be fixed constants. Then for large n, any claw-free graph G of
order n whose closure is complete contains cycles C; for all 1, where 3 < 1 < ¢; and
n—c <it<n.

In Section 2 we prove several structural results about graphs with a clique cutset and
their closures. In Section 3 we use these results to prove that every claw-free graph G

with complete closure has a cycle of length ng — 1.

2 Closure and clique cutsets

We begin with several simple observations.
Proposition 1. Let G be a claw-free graph. Then Vs;(G) C Vsr(cl(G)).

Proof. It is sufficient to show that, for any = € Vgr(G), Vsi(G) C Vsr(Gh). Let
y € Vsi(G). If xy ¢ E(G), then no edge in B, contains y and hence Ng: (y) = Ng(y). If



xy € E(G), then, since (Na(y))q is a clique, Na(y) C No(x) U {z} and hence (Ng: (y) U
{y})ar = (Nar () U {x})e . In both cases, y € Vs (GY). [ ]

Corollary 2. For any claw-free graph G, the closure cl((i) is constructed in at most
ng = |V(G)| local completions. |

Proposition 3. Let G be a claw-free graph and let H be an induced subgraph of G.
Then VEL(H) C VEL(G)

Proof. Let « € Vgr(H) and let z;,z5 € Np(a) be nonadjacent in (Ng(x))y. If ¢ €
Vsi(G), then z1z5 € E(G), implying z122 € E(H), a contradiction. If @ € Vip(G), then,
since x is eligible in H, the vertices z1, z3 are in the same component of (Ng(z))g and
z1z2 ¢ F(G), but then, for any vertex z lying in the second component of (Ng(2))q,
({,2,21,22})¢ is a claw in ¢, which is again a contradiction. Hence x € Vg1(G). [ |

Corollary 4. Let H be an induced subgraph of a claw-free graph i. Then cl(H) C
(V(H))ec:

Proof. Let Hy,...,H; and zy,...,2,_1 be the sequences of graphs and corresponding
eligible vertices that yield cl(H) (i.e., Hy = H, H; = cl(H), x; € Vgr(H;) and H;4y =
(Hj);], J = 1,...,5 —1). By Proposition 3, #; € Vgz(G) and we can let Gy = G, .
Note that H; is an induced subgraph of GG3. By induction (and by Proposition 3), x; €
Ver(G;) and we can let Gy = (Gj);], J=2,...,8—1. Then cl(H) = (V(H))q..

Since cl(G) is independent of the order of eligible vertices used during the construction,

there are vertices x541,...,2¢ € V(@) such that the sequence of local completions of ¢

at T1,..., %5, Tsq1,..., 7 yields cl(G). Hence we have cl(H) = (V(H))q. C (V(H))g, =

(V(H))ae)- m
a b

| } f
g h
Figure 2

Example. Let G be the graph in Figure 2 and let H = ({a,¢,d,g})e C G. Then
cl(H) ~ Cy, while (V(H))a(qy = K4. Thus, it is possible that cl(H) is a proper subgraph
Of <V(H)>cl(G)



The following theorem is the main result of this section, giving structural information
of the closure of the whole graph G in terms of the closures of its corresponding parts.
Its corollaries will be useful in the next section for decomposition of cl() by means of

clique cutsets.

Theorem 5. Let S C V() be a clique cutset of a claw-free graph GG and let H;, i =
l,...,k, be the components of G — S. Fori = 1,....k let S; = Ng(V(H;)) NS and
Gy = (V(H;)) U S)). Let Iy =i |5:;| =1} and So = Uiy, Si. Then
(i) Vip((G)) = (UL, Vip(cl(Gi))) U So,

(12) l(Gs) = (V(Gi))een:

Proof. Let K' be the largest clique in cl(G;) containing the clique (S;)g, i = 1,..., k.
Then, for every 7 and every = € V(K"), either (Na@a)(2))ay = K'—z (and = €
Vsr(cl(Gh))), or (Nea:)())eia;)y consists of two disjoint cliques, one of them being Ki—x
(and then « € Vip(cl(G;))). Let G be the graph obtained by taking a copy of each c(Gy)
and a copy of (S)g and by identifying the vertices of every S; with the corresponding
vertices of S, i =1,..., k. By Corollary 4, G C cl(G). Note that (i can contain induced
claws centered at vertices of S (for example, if 51 = {a1,az2,as}, {b1,02} C V(Hy),
Ng(by) ={a1} and Ng(bz) = {az, as}, then we get a;by € E(cl(G)) and, if biby ¢ FE(cl((G)),
then ({a1,b1,b,2})s is a claw for any @ € S\ Sy). It is straightforward to check that if
|S;,| = 1 for some iy € Iy, then S;; C Vip(cl(G)) and Vip(cl(Gy,)) U Si, = Vip(cl(G)) N
V(G ), and hence it is sufficient to verify the theorem in ¢ — V(H,,). Hence we can
suppose that |S;] > 2 for every i = 1,...,k. Then the subgraph (S U (UX_, V(K")))s is
locally connected. Let & be the graph obtained from G by adding to (SUUL V(EKY)))a
all missing edges (i.e., the subgraph K = (SU(UL,V(K*)))g is a clique). Since G C cl(G)
and (S U (UL, V(K")))s is locally connected, G C cl(G). By the construction, it is now
straightforward to verify the following facts:

(a) G is claw-free,
(0) if w € V(Gi) \ V(K), then (Naa(@))aay = (Na(r))e,

(c) if z € V(K*)\ S for some i = 1,...,k, then

N

(o) if 2 € Vsr(cl(Gy)), then (Na(x))y = K — « and hence x € Vi (G), and

(8) if @ € Vip(cl(G,)), then one component of (Ny(z))s is K — z and the other
component is the same in cl(G;) and in (3, and hence z € VLD(G),

(d) if @ € 5, then « € Vip(cl(G,;)) for at most one ¢, 1 < ¢ < k, since if # €
Vip(cl(Gyy)) N Vip(cl(Gyy)) for some iq,i5 with 1 < iy < 15 < k, then x centers

a claw in ¢, contradicting (a), and



(o) if @ € Vsr(cl(Gy)) for all ¢ = 1,... k, for which « € V(G;), then = € VSI(G),
(B) if there is an 1o, 1 <o < k, such that @ € Vyp(cl(G,)), then € VLD(G).

(Note that (da) includes the case When r ¢ Uk V(G )). This immediately implies that
V(G) = (G) U VLD(G) e, Var(G ) = (. Smce G C cl(G), we have G = cl(G), and by
(b), (¢8) aﬂd (d3), Vin(G) = UlevLD(d(Gz’))-

Proof of part (i7) follows immediately from the construction of G = c(G). [ ]

Example. Let GG be the graph in Figure 2 and put S = {b,h}, G4 = ({a,b,¢,d, g, h})c,
= ({b,e, f,h})g. Then Vip(cl(G1)) = {a,c,d, g}, but Vip(cl(G)) = 0. This example
shows that Theorem 5 fails if (S)¢ is not a clique.

Corollary 6. Let GG be a claw-free graph and let S C V(G) be a clique cutset of (.
Denote by Hi,..., Hy the components of G — S, let S; = Ng(V(H;)) N S and let G; =
(V(H;)U S;)g. Suppose that |S;| > 2,1=1,...,k. Then cl(G) is complete if and only if
cl(G;) is complete for every i = 1,... k.

Proof. If cl(() is complete, then all cl(G;) are complete by part (i7) of Theorem 5.
Conversely, suppose that all cl(G;) are complete and let K, K, G and G be the same as
in the proof of Theorem 5. Then K = G;, G is locally connected and G = cd(G)y=K. nm

Corollary 7. Let GG be a claw-free graph and let @ € Vs;(G). Then cl(G) is complete if
and only if (G — x) is complete.

Proof. If © € Vs ((), then (Ng(x))g is a clique cutset. The rest of the proof follows
immediately from Corollary 6 by setting S = Ng(x). [ ]

3 Cycle of length n,; —1

In the main result of this section, Theorem 12, we prove that every claw-free graph ¢
with complete closure contains a cycle of length ng — 1. Before we present this result,
we first prove several auxiliary statements. The first of them is of importance in its own
right.

We say that a set S C V(G) is cyclable in G if there is a cycle ¢ C G such that
V(C)=S.



Theorem 8. Let (¢ be a claw-free graph and let Gy, Gy, ..., Gy, t > 1, be a sequence of
graphs such that Gy = G and G; = (Gi_l);«’i—l for some x;—1 € Vgr(Gi—1), 1 = 1,... 1.
Let B; = E(G;) \ E(Gi-1) (1 = 1,...,t) and By = E(Gy). For every cycle C C G set
b;(C) = |E(C)NB;|, i =0,1,...,t. Then for every cyclable set S in G; there is a cycle
C in Gy with V(C) = S such that

(1) b(C) <2 foreveryi=1,...,1,

(12) if x;mq2; € E(Gizq) and by (C) > 1, then b;(C) <1 (1 <i <t —1).

Proof. Since every edge e € E(G}) is in exactly one By (0 < k < t), we can define a
weight function w(e) on E(Gy) by w(e) = k if e € By. For any cycle C C G} we define
the weight of C' by w(C) = X.cpcyw(e). Let S C V(G) be cyclable in G and let C' be
a cycle in G4 such that V(C') = S and w(C) is as small as possible.

(1) Let, to the contrary, b;(C) > 3 for some ¢, | < i <1, and let ey, €3, €5 be distinct
edges in F(C)NB;. Let ¢; = ujv; (1 < j < 3), and assume the notation is chosen such that
Uy, vq, U, Vg, Uz and vy appear in this order along C'. Then uy, uy, usg are distinct vertices in
Neg,_, (x;-1). Since ({x;-1,u1, uz, us})q,_, cannot be an induced claw, {uyus, uyus, uaus} N
E(G;_1) # 0. By symmetry, we can suppose that ujuy € F(G;_1). Let C' = vy 8’ U Uy 6
v1vg. Then C'is a cycle in G; with V(C') = V(C) = S (recall that vivy € V() since
v1,02 € Ne,_ (2i-1)), and E(C') = E(C)\{uyvyr, ugva }U{uguz, v1v5}. By the assumption,
w(ugvy) = w(ugvy) = i. On the other hand, since ujuy € F(Gi—1) and vvy € E(G)),
w(uguz) <i—1and w(vivy) < 0. Therefore, we have w(C’) < w(C)—(i+i)+ (1 —141) =
w(C') — 1, contradicting the minimality of C'.

(1¢) Assume that b;(C') > 2 and b;41(C) > 1. Let e,ex € E(C)N By, €1 # eq,
setting e; = w;v; (j = 1,2) and let e = wvo € E(C) N B;y1. Suppose that the notation
is chosen such that u, v, uy, vy, uy and vy appear in this order along C'. By the definition,
{u1,v1,u2,v2} C Neg,_ (xi-1) and {u,v} C Ng,(x;). Apparently, uy # us. If wjuy €
E(Gi-1), then let €' = vy 8’ U Uy 6 v1vg. Then C' is a cycle in Gy with V(C') =
V(C)= S and E(C") = E(C)\ {u1v1, u2v2} U {ugug, v1va}b. Since w(ugvy) = w(ugvg) =1,
w(uguz) < 17— 1 and w(vivy) < 7, we have w(C") < w(C)—=2i4+2i — 1 =w(C)—1, a
contradiction. Therefore, uyuy ¢ F(Gi—1). Similarly, vivs ¢ E(Gi_1).

Next consider u and w;. Apparently u # wuy, and we show that wu; ¢ E(G;_1).
Let wu; € F(Gi—1) and set ' = v 8 uUy E’ vvr. First suppose vy # x;. Then,
since vy, x; € Ng,_,(x;-1), we have viz; € F(G;). Since v # vy, this implies v, €
FE(Gi41). Hence C' is a cycle in Gy C Gy with V(C') = V(C) = S and with E(C') =
E(C)\ {uv,ugvr } U {uug, v} Since w(uv) = 1 4+ 1, w(ugvy) = ¢, w(uuy) <7 —1 and
w(vvy) < i+ 1, we have w(C') < w(C)—i— G+ 1)+ —-1)+0+1) = w(C) -1,
a contradiction. Let thus v; = x;. Then vv; = va; € FE(G;), and since again F(C') =
E(C)\ {uv,ugv1} U {uug,vor} and w(uv) = @ + 1, w(ugvy) = 1, w(uuy) < ¢ — 1 and



w(vvy) <1, we obtain w(C’) <w(C)—i—(1+1)+ (1 —1)4+1i=w(C)—2, which is again
a contradiction. Hence uuy; ¢ F(G;_1). Similarly, vus ¢ E(G;—1), vv; ¢ E(G;—1) and
vvy ¢ E(Gi-1). Hence {u,uy,us} and {v, vy, v9} are independent sets in (;_;. This implies
that z;_1u ¢ E(G,_1) (since otherwise ({;_1, u, u1, us})q,_, is a claw) and hence x,u ¢ B;,
which implies z;u € E(G;_1). Similarly we have z;,_1v ¢ E(G,_y) and z;v € E(Gi-1).
Since w1 € F(Gi—1) but wyu ¢ E(G,_1), we have x,_1 # u, and similarly x;_y # v,
but then ({x;, z;_1,u,v})a

., 1s a claw. This contradiction proves the theorem. ]

Let C be a cycle in a graph . An edge uv € F(G)\ E(C) with u,v € E(C) will be
called a chord of C. A 2-chord of a cycle (' is a chord zy of ' such that x 8’ y or x E’ Yy
has exactly one interior vertex. If ujvy, ugvy € F(G) \ E(C) are such that uy,v; € V(C)
and either {uy,vo} = {uy, vy} or {us,ve} = {uf, vy}, then we say that the edges ujv,

and uyvy are a pair of parallel chords of C.

Lemma 9. Let (G be a claw-free graph on n¢ vertices such that cl(() is complete and G
has no cycle of length ng —1. Let C' be a hamiltonian cycle in G and let xy € E(G)\ E(C)
be a chord of C. Then there is a pair of parallel chords uv,u~v™ of C' such that x € {u™,u}
and y € {v,vt}.

Proof. Since GG has no cycle of length ng — 1, C' has no 2-chord, and hence all the
vertices x 7, 2T, y~, y* exist and are distinct. Since ({z,27, 2%, y})e cannot be a claw, we
have 27y € FE(G) or 2ty € E(G); from ({y,y~,y*, 2} )¢ % K13 similarly 2y~ € E(G)
or zyt € F(G). If 27y € E(G) and a2y~ € F(G) or 2ty € E(G) and zy™ € E(G),
then we are done; thus suppose that 2~y € F(G) and 2yt € E(G) or 2ty € E(G) and
vy~ € E(G). In the first case, since z7y~ ¢ F(G) (otherwise zy™ 8’ T E’ x is a cycle
of length ng — 1), from ({y,y~,y*, 27} 2 K13 we get a7 yT € E(G). The second case

1s symmetric. [ |

Lemma 10. Let GG be a claw-free graph having no cycle of length ng — 1. Let C be
a hamiltonian cycle in G and {z,y} a cutset of G such that ({z7,z,y,y*})e ~ K.
Then

(i) Ne(z)n (y* C
(id) ((Na(2) O (y*

27) = No(y) N (y* C o).
C x7))U{x,y})e is a clique.

Proof. By symmetry, it is sufficient to show that Ne(y)N(y™ 8 27) C Ne(z)N(y*t 8’ 7).
Let thus z € Ng(y) N (y™* 8’ 7). If z =y or z = 27, then obviously z € Ng(z). Hence
we may assume z € yTT 8’ =7, Considering ({z,z7,2%,y})g we have z7y € F(G)

or zty € E(G). Suppose without loss of generality that z~y € E(G) (otherwise we
change the notation). Since {x,y} is a cutset, y=2z~ ¢ FE(G) and y~z ¢ F(G). From

9



Hy,y~,yt, 2} )e % Kis and {y,y",y", 27} e % Kis we then get y*z € E(G) and
ytz— € E(G), ie, {y,yt,27,2} )¢ = Ky From ({y*,y™t, z,2})¢ 2 K13 we now get
zx € E(G) (since if y*™tz € F(G), then zy™+t 8’ xTy 8’ z, and if y*tz € K(G), then
yttz C Yz~ E’ y*tt is a cycle of length ng — 1). Now, since zTa ¢ F(G) (otherwise
C Tyt C 27y 6 z is a cycle of length ng — 1), from ({z,27, 27, 2})¢ 2 K15 we get
also z7x € F(G). Hence Ng(y) N (y™* 8’ 27) C Ne(z) N (y* 8 7).

If some u,v € Neg(z) N (y*+ 8’ 27 ) are nonadjacent, then ({z,2%, u,v})q is a claw.

Hence ((Ng(z) N (y* 8’ 7)) UA{x,y})q is a clique. [ ]

Lemma 11. Let G be a minimal (with respect to ng = |V(G)|) claw-free graph with

complete closure and without a cycle of length ng — 1. Let C' be a hamiltonian cycle in
%

G and let {x,y} be a cutset of G such that ({x,27,y,y*})q is a clique. Then |z C' y| =

%.
y* € 27| = n/2.

Proof. Let G; = (x 8’ Y)g and Gy = (y 8’ z)g. Let Hy be the graph obtained by
taking two vertex disjoint copies of ; and by adding the edges z'z?, yly?, xty?, 2%y*
(where by z°,y* we denote the vertices corresponding to the vertices z and y in the i-
th copy of G, i = 1,2), and let Hy be the graph obtained by identifying the vertices
corresponding to the vertices  and y in two vertex disjoint copies of GG3. Then, by
Corollary 6, both H; and H; have complete closure. If some H;, i € {1,2}, has a cycle of
length ny, — 1, then, by the construction and since {z,y} is a cutset, we apparently have
a cycle of length ng — 1 in (. Hence, by the minimality of G, |V(H;)| > ng, 1t = 1,2.
If we show that, moreover, |V(Hy)| > ng + 2, then we have |V(Hy)| = 2|z C yl > ng
and |V (H)| —2 = 2|yt C 7| > ng. Since |x 5 yl + |yt 5 7| = ng, this implies
[ C yl=ly* Ca~| = na/2.

Hence it remains to show that |V (Hy)| > ng +2. Suppose, to the contrary, |V (Hy)| <
ng + 1, and let H = (H,),. Since {x,y} is a cutset of Hz, by Lemma 10, y is simplicial
in H. The graph H=H- {z,y} is obviously claw-free and, by Corollary 7, Cl(]:]) is
complete. Since |V([:[)| =|V(H2)|—2<ng+1—-2=ng—1, by the minimality of G,
H has a cycle Cy of length ny — 1. Let B = E(H) \ E(H;). Since {z,y} is a cutset of
H,, |E(Cy) N B| > 2. By Theorem 8(z), C'y can be chosen such that |E(Cy) N B| = 2.
Let e; = ujvy, €3 = uqvy be these edges. Since {z,y} is a cutset of Hy, each of ey, e; has
its endvertices in different components of H; — {z,y}. By Lemma 10(z7), replacing in C'y
the edges wyv; and uqvy by the paths uyzv, and UgYVy, We get a cycle Cg, in Hy of length

— 1. Let P be the shorter of the paths y CH2 x and y CH2 x. Then the cycle C yPx

is a Cycle in G of length ng — 1. This contradiction proves the lemma. [ |

Now we can proceed to the main result of this section.
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Theorem 12. Let ¢ be a claw-free graph such that cl(() is complete. Then GG contains
a cycle of length ng — 1.

Proof. Suppose the theorem fails and let G be a counterexample with minimum ng =
|[V(G)]. Let C be a hamiltonian cycle in . We first make two general observations.

(1) The cycle C has no 2-chords, i.e., for any chord wv of C', both u 8’ v and u 5 v
have at least two interior vertices.

(17) If a vertex x has two nonadjacent neighbors u,v lying in the same component of
(Ng(2))a, then @ € Vgi(G) (since if  is locally disconnected, then for any z in
the other component of (Ng(2))a, (x,u,v,2)q is a claw).

These observations will be often used implicitly throughout the proof.

For any hamiltonian cycle C' and an eligible vertex x we say that the vertex = is of
the first type with respect to C, if there is an x~, zT-path of length 2 in (Ng(2))g. In the
other case (i.e., if all 7, a"-paths in (Ng(2))c have length at least 3), we say that  is
of the second type with respect to C.

First suppose that the hamiltonian cycle C' can be chosen such that there is a vertex
x € Vir(G) of the first type with respect to C'. Let y be a common neighbor of = and
2t in (Ng(x))g. a7y~ € E(G), then x7y~ 6 aty 8 x~ is a cycle of length ng —1; thus
rTy” ¢ E(G). From ({y,y™,y", 27 })g we get 27yt € E(G) and, by symmetry, 2Ty~ €
E(G). Since ({y,y™,y",2}) cannot be a claw, we have zy~ € F(G) or 2yt € E(G). By
symmetry, we can suppose that xy* € F(G). Then ({7, z,y,y*})e¢ ~ Ky. We consider
the conditions under which {x,y} can be a cutset of G.

By Lemma 9, it is sufficient to verify the nonexistence of all possible pairs of parallel
chords uv, utv™ such that u,u™ €y 8 xand v7,v € x 8 Y.

Case Cycle of length ng — 1
- - - = - -
wuteyCa;v,veat Cy” wlCyztCovutCayCu
- - - -
ut =x;v ,ve€at Oy ayT Cax v Cy at Cvx
- - — -
uw,ut eyt Cav=y uyxt Cy~ut C 27yt Cu

We thus have the following observation.

(¥) The only possible pair of parallel chords uv, utv™ such that at least one of them
%
crosses the edge xy, is for v™ =z, v =at; u,u™ € y* C 2~.
(This observation will be used several times in what follows.)

We show that xy~ ¢ FE(G). Indeed, if xy~ € FE(G), then, by symmetry and by
the previous observations, {z,y} is a cutset of G. But then, since ({z,y,z%,y" })g ~
{z,y,27,y"})g ~ K4, by Lemma 11 we have |z 8 v =y 8 z| = ng/2 and |z 8 yl =

11



— — -
lyT C 27| = ng/2, from which ng = |2t C y7|+ |yt C 27|+ {z,y}| = ng/24+ng/2+2 >
ng, a contradiction. Hence zy~ ¢ E(G). Considering ({z*, z, 21", y™ })¢ we then have
ety e E(G).

We now prove that ¥ty € E(G). Thus suppose, to the contrary, 27ty ¢ F(G). Then
from ({y~,y,y~ 7,2t })g we have a™ty~~ € E(G). We show that {z,y} is again a cutset.
Suppose, to the contrary, u,u®™ € y* 8 ~ and zTu,zut € E(G) (see the observation
(%)). If u = y*, then aty?t 8’ Ty 5 xt is a cycle of length ng — 1; thus v # y*. If
ety € E(G), then o+ 8’ yru™ 8’ a7y T 8’ uxtt is a cycle of length ng — 1. Thus, since
({zt, 2%y, u})s cannot be a claw, we have yu € E(G). From ({u,u”,u*, 27 })s then
u"zt € E(G) or utat € E(G), but then in the first case o 8’ yu 8’ Tyt 8 u~zT and
in the second case xtu™ 8’ Tyt 8 uy 5 xt is a cycle of length ng — 1. Hence {x,y} is
a cutset.

We show that x and y have no other neighbors except % and y~ on % 8 y~. Thus,
first let, by Lemma 9, v € E(G) and ztv~ € E(G) for v=,v € o+ 8’ y~~. Then
v 8 y "+t 8 vty 8 x is a cycle of length ng — 1. Secondly, let yv~ € E(G) and
y~v € E(G) for some v, v € T 8’ y~ . From ({y,y*,2%,v7})g we have vat € E(G).
Considering ({v™,v,v77,y})e we now get vy € E(G) or v~y € E(G), but then z*+ 8
voat E’ yv 8 y~ 2T in the first case and z*T 8 vy 8’ o~ 8 y~~2TT in the second
case, respectively, is a cycle of length ng — 1. Hence Ng(z) N (aF 8 y~) = {a*} and
No(p)n (@t Cy) = (et ) 3

Since, by Lemma 10, Ng(z) N (y™ ¢ 27) = Ng(y) N (yt € 27) and obviously y €
Ver(G), © € Vsr(G)). Then, similarly as in the proof of Lemma 11, the graph H = G, —
{z,y} is claw-free, cI( H) is complete and hence H has a cycle Cy of length ny—1 = ng—3
such that E(Cy)N (E(G;) \ E(G)) = {e1, ez} for some e; = uyv; and ez = uyvy having
endvertices in different components of G—{x,y}. Since Ng(y)N(a*t 8 y~) ={at,y } and
Ng(z) N (at 8’ y~) = {zT}, we can suppose that u; = 7 and uz = y~. Then, replacing
uvy by uyzvy and ugve by ugyve, we get a cycle in GG of length ng — 1. This contradiction
proves that a*ty € F(G). Hence ({z,y,yT, 2" }e ~ {aT, 27y, y})e ~ Ky

We show that {z,y} or {zT,y} is a cutset of G. Indeed, if not, then, by the observation
— -
(%), there are u,u™ € y* ¢ 2~ and v™,v € T ¢ y~ such that {zv,zut, ztv™, 2tu} C
— — — — .

E(G), but then zut ¢ 27 y" C vatv™ ¢ 2Ty~ C vx is a cycle of length ng — 1. Thus,

by symmetry, we can suppose that {z,y} is a cutset of G.
ﬁ.
Now, {zT,y} cannot be also a cutset of (&, since otherwise Lemma 11 implies |zt ¢

- . - -

y=I = ly* C 27| = ng/2, from which ng = [ ¢y~ [+ [y" C 27[+ [z, 2%, y}| =

2ng /243 > ng, a contradiction. Thus, by the observation (), there are v=,v € at™ 8 y
such that zv € F(G) and ztv™ € FE(G). Apparently |z C v7| >4 and |v C y | >4
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(otherwise we easily obtain a cycle of length ng — 1). If zvt € E(G), then zot 8
- — = - -

y~att ¢ vty ¢z, and if 2toTT € E(G), then v ¢ y~ 2™t ¢ v™"aty € z is a cycle

of length ng — 1. Hence both zvt ¢ FE(G) and xtv™~ ¢ FE(G), from which, considering

{v,o7, vt 2})e and ({v7,v" 7, v,27})e, we have zv™ € FE(G) and ztv € E(G), ie.

{z, 2, v7,v})g ~ K.

Let K1 = (Ng(z) N (2t 8’ v ))e and Ky = (Ng(y) N (a7 8’ Yy~ ))a. Since {z,y}
is a cutset of (G, both K7 and K3 is a clique (otherwise some two nonadjacent vertices
together with = or y* form a claw centered at = or at y). Since 27 € V(K1) N V(K,),
Neg(zt)U{at}\{z,y} D (V(K1)UV(Ky)).

We show that Ng(zt) U {aT}\ {z,y} = (V(K1) UV(K3)). Suppose, to the contrary,
z € Ng(zt)\ ({z,y} U V(K1) UV(Ky)). Since {z,y} is a cutset, z € o™ 8 y~. By the
definition of K; and K3 and by symmetry, we can suppose that z € v 8 y~ . Iz =0T,
then xv~ 6 xtz 8’ x,and if z =y~ ~, then 272z ¢ 2ty 8 xt is a cycle of length ng — 1,
hence vt #£ z £ y=~. From ({z,27, 27,27 })¢ we have z72T € E(G) or zTat € E(G).
By symmetry, suppose that ztat € E(G). Then, similarly as above, z* # y~~. Since
z,y~ & Ng(z), from ({z%, 2,47, 2})g we have zy~ € E(G). Since z,y~~ ¢ Ng(y), from
{y v,y 7,2} we have zy~~ € E(G), but then atz* 8’ Yy "z 6 atty 8’ 2t is a cycle
of length ng—1. This contradiction proves that Ng(at)U{at}\{z,y} = (V(K1)UV(K,)).

Let H, = G', and Hy = (H,),. Since Ng(aT) U {at}\ {z,y} = (V(K) U V(K3))
and, by Lemma 10, Ng(z) N (y* 8 x7) = Ng(y) N (y* 8 x7), implying Ng(x) C
Na(y) U Ng(zt), we have {z,y, 2%} C Vsi(Hz). The graph H = Hy — {z,y, 2"} thus
has a complete closure. Let By = E(H;) \ E(G) and By = E(Hy) \ E(Hy). Then, by
the minimality of G and by Theorem 8(ii), H has a cycle Cy of length ngy — 1 = ng — 4
such that either |[E(Cy) N Bi| < 2 and |E(Cy) N By] = 0, or |[E(Cy) N By < 1 and
|E(Ch) N By < 2. Since {x,y} is a cutset of (7, at least two edges of E(Cy) N (B U Bs)
have an endvertex in y™ 8’ x~. Since Ng(zt) C @ 8’ y, this implies |E(Cy) N By| > 2.
Hence |[E(Cy) N By| < 1 and |E(Cg) N By| = 2. Let €1 = ujvy, ea = ugvy be the two
edges in E(Cy) N By and (if nonempty), es = usvs be the only edge in E(Cy)N By. By
the above, we can suppose that {uy,uy, ug,v3} C att 8’ y~ and {v, v} Cyt 8’ .

If uy € V(Ky) and ug € V(K3), then, replacing in Cy the edge uyvq by the path wiavy,
the edge uqvqy by the path ugzTyvy (if E(Cy)N By = 0) or by the path uayvy (if E(Ch)N
By # 0) and the edge ugvs (if any) by the path uzz vz, we obtain a cycle of length ng —1
in G. M uy,uy € V(Ky) and By = (0, then we analogously replace in C'y the edges ujv; and
uavy by the paths uyzv; and uzatyv,. Since Ng(at)U {at}\ {z,y} = (V(K1) U V(K3)),
it remains to consider (up to symmetry) the case when uy,uy € V(K7) and By # (). Since
us, v3 € Ng(aT) and uzvs ¢ FE(G), we have uz € V(K1) and vz € V(K3), or v3 € V(Ky)
and us € V(K3). Let Py, P2, P3 be the three paths that C'y splits into by deleting ey, €3, 3
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and suppose the notation is chosen such that, in the path system obtained by deleting
€1, €g, €3 from Cpr, us and u; are endvertices of the same path (this is always possible since
there can be no path joining us,vs and since {x, y} is a cutset of ). Then, replacing in
Cy the edges ey, €2, €3 by uizvy, ugus and veyatos if ug € V(K;) and vz € V(K3), or by
Uax vz, urvs and ugzTyvy if vz € V(LK) and uz € V(K3), respectively, we obtain a cycle
of length ng — 1 in G.

This contradiction proves that for any choice of a hamiltonian cycle C' in G, no eligible

vertex of (¢ is of the first type with respect to C'.

Let now C' be a hamiltonian cycle in ¢ and = an eligible vertex (of second type with
respect to C'). Let P be a shortest 7, zF-path in <Ng( ))G. Since G is claw-free, P is of
length 3. Let V(P) = 27 y1y2zt. Then either y; € x C Yz, OT Y3 € T C 1.

-
Case 1: y; € x (' yo. We consider ({y1,y7,v;, 2 }}G and <{y2,y2 T "’}}G If both
eyl € E(G) and 2%y, € E(G), then the cycle a7y C Yy x C Y12 C x” is a cycle
of length ng — 1 in G. Hence we can suppose (by symmetry) that 2y, € E(G). Then,
on the cycle C' = xy; 8 T 6 x, the predecessor of x is #+ and the successor is y;.
Since y; and 2 have a common neighbor y; € Ng(x), x is of type 1 with respect to C” -

a contradiction.

Case 2:y9 € @ 8’ y1. We first show that « can be chosen such that ys, y; are not consecutive
on C'. Suppose, to the contrary, that this is not the case and choose = such that x 8’ Yo
is shortest possible. Since x is of type 2, %y, ¢ E(G), and from ({y2,v1,y5, 27 })e we
have zty; € E(G). Similarly zy; ¢ FE(G) (otherwise yz is of type 1 with respect to ')
and from ({z%,z,27% y; })¢ we have tTy; € E(G). But then the path zysy; 2™t in
(Ng(2%))g contradicts the choice of . Hence we may assume that y5 # y;.

Suppose now that *~y; € F(G) and let ' =« 8 Yy~ E’ y1x. Then the predecessor
y1 and successor 7 of  on €’ have a common neighbor y; € Ng(x) and hence z is of type 1
with respect to C”, a contradiction. Hence x~y; ¢ F(G) and, by symmetry, 2t ys ¢ E(G).
Considering ({y1,y7, v, 2" e and ({y2,y5, 95,21 e we then get yiz~ € E(G) and

y; xt € E(G).
We show that zy, € E(G). If zy; ¢ E(G), then from ({y2,y5,y5, 7} )e we have
zvyy € E(G), and since we already know that zTyf ¢ F(G), from ({z,27, 27, y3 }>

we get x7ys € E(G). Considering ({yi,yr, y{ ,y2}>G we then have y2y1 € E(G) o
yoy7 € E(G), but in the ﬁrst case the cycle C’ = C Y2y1 C ys C y12 and in the
second case the cycle 7 = « C Yo C Ty C y1x yields a contradiction, since in both
these cases x is of type 1 with respect to C’. Hence xy, € E(G) and, by symmetry,
zyy € E(G), which implies that ({z, 2%, y5,v2})e ~ {x, 27,y v e ~ K.

Now consider ({yo, y3, y1, 27} IfaTy, € E(G), then a is of first type with respect to
C'; thus 2Ty, ¢ E(G). Since we already know that 2Tyl ¢ E((), we have y,yf € E(G).
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Since y; xy1yy is a path in (Ng(y2))e and yyy5 ¢ E(G), by the observation (ii) we have
Y2 € Vir(G). Thus, by the previous argument, ({y2, y3,y7,v1} e =~ Ky.

We show that {y,ya} is a cutset of (. Suppose, to the contrary, that (recall Lemma 9)
_l_

uv,uTv” 1s a pair of parallel chords such that at least one of them crosses y,y,, i.e. such

— —
that u,ut € yo C y1 and v™,v € y1 C va.

Case Cycle Vertex of type 1

+ _l_—> _ _ — — _+—> __l_—) —

€y, Cypsv,veyn Cyz ypn Coru’ Cypy, Cuv Cyatn Y1
u=ysv=uyy C Y1

%.
u=yyv v €yl Ca” 1:1:Cy2v0x yi Cv vi Cw Y1
U=1yYv=2x :L’Cyzyl Cy2x1 Cylx x
U:yz;U:$+ C Y2
_ A AR A

u=1yv,vez’ CyY; xysv Cygx™ Cvyy Cx x

Since these are, up to symmetry, all possibilities, {y1,y2} is a cutset of G. By symmetry,

{z,y1 } and {x, y,} are also cutsets of . But then, by Lemma 11, |z 8’ vy | = |yd 8’ Y| =
= . - - =

lyi" € 27| = na/2, from which ng = [¢* Cyz |+ vf Courl+ vyl Ca7[+ H{a,un e} =

3nG/2 4+ 3 > ng, a contradiction. [ |
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