Claw-free graphs with complete closure

Zdeněk Ryjáček *
Department of Mathematics
University of West Bohemia
Univerzitní 22 ,
30614 Plzen̆
CZECH REPUBLIC
e-mail ryjacek@kma.zcu.cz

Akira Saito
Department of Mathematics
Nihon University
Sakurajosui 3-25-40
Setagaya-ku, Tokyo 156
JAPAN
e-mail asaito@math.chs.nihon-u.ac.jp

R.H. Schelp
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.
e-mail schelpr@mathsci.msci.memphis.edu

January 11, 1999

Abstract

We study some properties of the closure concept in claw-free graphs that was introduced by the first author. It is known that G is hamiltonian if and only if its closure is hamiltonian, but, on the other hand, there are infinite classes of nonpancyclic graphs with pancyclic closure. We show several structural properties of claw-free graphs with complete closure and their clique cutsets and, using these results, we prove that every claw-free graph on n vertices with complete closure contains a cycle of length $n-1$.

[^0]
1 Introduction

We refer to [1] for terminology and notation not defined here and consider only finite undirected graphs $G=(V(G), E(G))$ without loops and multiple edges.

If G is a graph and $M \subset V(G)$, then the induced subgraph of G on M will be denoted by $\langle M\rangle_{G}$. We will simply write $G-M$ for $\langle V(G) \backslash M\rangle_{G}$ and $G-x$ for $G-\{x\}$ (where $x \in V(G)$). We will denote by $n_{G}=|V(G)|$ the order of G and by $c(G)$ the circumference of G (i.e. the length of a longest cycle in G). A graph G is hamiltonian if $c(G)=n_{G}$ and G is pancyclic if G contains a cycle of any length $\ell, 3 \leq \ell \leq n_{G}$. By a clique we mean a (not necessarily maximal) complete subgraph of G. If $S \subset V(G)$ is a cutset of a connected graph G (i.e. $G-S$ is disconnected) such that $\langle S\rangle_{G}$ is a clique, we say that S is a clique cutset of G.

A graph G is claw-free if G does not contain a copy of the claw $K_{1,3}$ as an induced subgraph. Whenever we list vertices of an induced claw, its center (i.e. the only vertex of degree 3) is always the first vertex in the list.

If C is a cycle in G with a fixed orientation and $u, v \in V(C)$, then by $u \vec{C} v(v \overleftarrow{C} u)$ we denote the consecutive vertices on C from u to v in the same (opposite) orientation with respect to the given orientation of C. The predecessor and successor of a vertex v on C will be denoted by v^{-}and v^{+}, respectively.

For any $x \in V(G)$, the set $N_{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$ is called the neighborhood of x in G. For a set $M \subset V(G)$ we let $N_{G}(M)=\cup_{x \in M} N_{G}(x)$. We say that a vertex $x \in V(G)$ is locally connected if $\left\langle N_{G}(x)\right\rangle_{G}$ is a connected graph; otherwise x is said to be locally disconnected. A locally connected vertex x is said to be eligible if $\left\langle N_{G}(x)\right\rangle_{G}$ is not a clique; otherwise we say that x is simplicial. The set of all locally connected (eligible, simplicial, locally disconnected) vertices of G will be denoted by $V_{L C}(G)\left(V_{E L}(G), V_{S I}(G), V_{L D}(G)\right)$, respectively. Thus, the sets $V_{E L}(G), V_{S I}(G), V_{L D}(G)$ are pairwise disjoint, $V_{E L}(G) \cup V_{S I}(G)=V_{L C}(G)$ and $V_{L C}(G) \cup V_{L D}(G)=V(G)$. If $V_{L C}(G)=V(G)$, we say that the graph G is locally connected.

Let $x \in V_{E L}(G)$ be an eligible vertex and let $B_{x}=\left\{u v \mid u, v \in N_{G}(x), u v \notin E(G)\right\}$. Denote by G_{x}^{\prime} the graph $G_{x}^{\prime}=\left(V(G), E(G) \cup B_{x}\right)$ (i.e., G_{x}^{\prime} is obtained from G by adding to $\left\langle N_{G}(x)\right\rangle_{G}$ all missing edges). The graph G_{x}^{\prime} is called the local completion of G at x. The following proposition shows that the local completion operation preserves the claw-freeness and the value of circumference of G

Proposition A [3]. Let G be a claw-free graph and let $x \in V_{E L}(G)$ be an eligible vertex of G. Then
(i) the graph G_{x}^{\prime} is claw-free,
(ii) $c\left(G_{x}^{\prime}\right)=c(G)$.

Apparently, if $x \in V_{E L}(G)$, then x becomes simplicial in G_{x}^{\prime} and, if $V_{E L}\left(G_{x}^{\prime}\right) \neq \emptyset$, the local completion operation can be applied repeatedly to another vertex. We thus obtain the following concept (introduced in [3]).

Let G be a claw-free graph. We say that a graph H is a closure of G, denoted $H=\operatorname{cl}(G)$, if
(i) there is a sequence of graphs G_{1}, \ldots, G_{t} and vertices x_{1}, \ldots, x_{t-1} such that $G_{1}=G$, $G_{t}=H, x_{i} \in V_{E L}\left(G_{i}\right)$ and $G_{i+1}=\left(G_{i}\right)_{x_{i}}^{\prime}, i=1, \ldots, t-1$,
(ii) $V_{E L}(H)=\emptyset$.

The following result summarizes basic properties of the closure operation.
Theorem B [3]. Let G be a claw-free graph. Then
(i) the closure $\operatorname{cl}(G)$ is well-defined,
(ii) there is a triangle-free graph H such that $\mathrm{cl}(G)$ is the line graph of H,
(iii) $c(G)=c(c l(G))$.

Remarks. 1. Part (i) of Theorem B says that $\operatorname{cl}(G)$ is uniquely determined, i.e., does not depend on the order of eligible vertices used during the construction.
2. It is easy to see that $\operatorname{cl}(G)$ can be equivalently characterized as the minimum graph containing G, which does not contain an induced subgraph isomorphic to the diamond $\left(K_{4}-e\right)$.

Specifically, by part (iii) of Theorem B, a claw-free graph G is hamiltonian if and only if $\operatorname{cl}(G)$ is hamiltonian. On the other hand, the following theorem shows that this is not the case with the property of pancyclicity.

Theorem C [2]. For every $k \geq 2$ there is a k-connected claw-free graph G such that G is not pancyclic but $\mathrm{cl}(G)$ is pancyclic.

An example of an infinite family of such graphs for $k=2$ is shown in Figure 1. The graph in Figure 1 is, moreover, an example of a nonpancyclic graph having a complete (and hence pancyclic) closure. This situation gives rise to the following question.

Problem. Determine the maximum number $c_{m}(n)$ of cycle lengths that can be missing in a claw-free graph on n vertices with complete closure.

Let $k \geq 1$ and let G be the graph in Figure 1 of order $n_{G}=6 k+3$. Then G is claw-free, $\operatorname{cl}(G)$ is complete and G contains no cycle of length ℓ for $2 k+3 \leq \ell \leq 3 k+2$, i.e. G misses $k=\left(n_{G}-3\right) / 6$ cycle lengths. This example shows that $c_{m}(n) \geq(n-3) / 6$.

Figure 1

On the other hand, it is easy to see that a claw-free graph with complete closure on at least 4 vertices can miss neither a C_{3} nor a C_{4}. Also, the main result of Section 3 shows that such a graph G cannot be missing a cycle of length $n_{G}-1$.

More is likely to be true. No example is known when G has complete closure and large order but fails to contain one of all possible "short length" and "long length" cycles. We state this precisely as the following conjecture.

Conjecture. Let c_{1}, c_{2} be fixed constants. Then for large n, any claw-free graph G of order n whose closure is complete contains cycles C_{i} for all i, where $3 \leq i \leq c_{1}$ and $n-c_{2} \leq i \leq n$.

In Section 2 we prove several structural results about graphs with a clique cutset and their closures. In Section 3 we use these results to prove that every claw-free graph G with complete closure has a cycle of length $n_{G}-1$.

2 Closure and clique cutsets

We begin with several simple observations.
Proposition 1. Let G be a claw-free graph. Then $V_{S I}(G) \subset V_{S I}(\mathrm{cl}(G))$.
Proof. It is sufficient to show that, for any $x \in V_{E L}(G), V_{S I}(G) \subset V_{S I}\left(G_{x}^{\prime}\right)$. Let $y \in V_{S I}(G)$. If $x y \notin E(G)$, then no edge in B_{x} contains y and hence $N_{G_{x}^{\prime}}(y)=N_{G}(y)$. If
$x y \in E(G)$, then, since $\left\langle N_{G}(y)\right\rangle_{G}$ is a clique, $N_{G}(y) \subset N_{G}(x) \cup\{x\}$ and hence $\left\langle N_{G_{x}^{\prime}}(y) \cup\right.$ $\{y\}\rangle_{G_{x}^{\prime}}=\left\langle N_{G_{x}^{\prime}}(x) \cup\{x\}\right\rangle_{G_{x}^{\prime}}$. In both cases, $y \in V_{S I}\left(G_{x}^{\prime}\right)$.

Corollary 2. For any claw-free graph G, the closure $\operatorname{cl}(G)$ is constructed in at most $n_{G}=|V(G)|$ local completions.

Proposition 3. Let G be a claw-free graph and let H be an induced subgraph of G. Then $V_{E L}(H) \subset V_{E L}(G)$.

Proof. Let $x \in V_{E L}(H)$ and let $z_{1}, z_{2} \in N_{H}(x)$ be nonadjacent in $\left\langle N_{H}(x)\right\rangle_{H}$. If $x \in$ $V_{S I}(G)$, then $z_{1} z_{2} \in E(G)$, implying $z_{1} z_{2} \in E(H)$, a contradiction. If $x \in V_{L D}(G)$, then, since x is eligible in H, the vertices z_{1}, z_{2} are in the same component of $\left\langle N_{G}(x)\right\rangle_{G}$ and $z_{1} z_{2} \notin E(G)$, but then, for any vertex z lying in the second component of $\left\langle N_{G}(x)\right\rangle_{G}$, $\left\langle\left\{x, z, z_{1}, z_{2}\right\}\right\rangle_{G}$ is a claw in G, which is again a contradiction. Hence $x \in V_{E L}(G)$.

Corollary 4. Let H be an induced subgraph of a claw-free graph G. Then $\operatorname{cl}(H) \subset$ $\langle V(H)\rangle_{\mathrm{cl}(G)}$.

Proof. Let H_{1}, \ldots, H_{s} and x_{1}, \ldots, x_{s-1} be the sequences of graphs and corresponding eligible vertices that yield $\operatorname{cl}(H)$ (i.e., $H_{1}=H, H_{s}=c l(H), x_{j} \in V_{E L}\left(H_{j}\right)$ and $H_{j+1}=$ $\left.\left(H_{j}\right)_{x_{j}}^{\prime}, j=1, \ldots, s-1\right)$. By Proposition $3, x_{1} \in V_{E L}(G)$ and we can let $G_{2}=G_{x_{1}}^{\prime}$. Note that H_{2} is an induced subgraph of G_{2}. By induction (and by Proposition 3), $x_{j} \in$ $V_{E L}\left(G_{j}\right)$ and we can let $G_{j+1}=\left(G_{j}\right)_{x_{j}}^{\prime}, j=2, \ldots, s-1$. Then $\operatorname{cl}(H)=\langle V(H)\rangle_{G_{s}}$. Since $\operatorname{cl}(G)$ is independent of the order of eligible vertices used during the construction, there are vertices $x_{s+1}, \ldots, x_{t} \in V(G)$ such that the sequence of local completions of G at $x_{1}, \ldots, x_{s}, x_{s+1}, \ldots, x_{t}$ yields $\operatorname{cl}(G)$. Hence we have $\mathrm{cl}(H)=\langle V(H)\rangle_{G_{s}} \subset\langle V(H)\rangle_{G_{t}}=$ $\langle V(H)\rangle_{\mathbf{c l}(G)}$.

Figure 2
Example. Let G be the graph in Figure 2 and let $H=\langle\{a, c, d, g\}\rangle_{G} \subset G$. Then $\operatorname{cl}(H) \simeq C_{4}$, while $\langle V(H)\rangle_{\mathrm{cl}(G)} \simeq K_{4}$. Thus, it is possible that $\mathrm{cl}(H)$ is a proper subgraph of $\langle V(H)\rangle_{\mathrm{cl}(G)}$.

The following theorem is the main result of this section, giving structural information of the closure of the whole graph G in terms of the closures of its corresponding parts. Its corollaries will be useful in the next section for decomposition of $\mathrm{cl}(G)$ by means of clique cutsets.

Theorem 5. Let $S \subset V(G)$ be a clique cutset of a claw-free graph G and let $H_{i}, i=$ $1, \ldots, k$, be the components of $G-S$. For $i=1, \ldots, k$ let $S_{i}=N_{G}\left(V\left(H_{i}\right)\right) \cap S$ and $G_{i}=\left\langle V\left(H_{i}\right) \cup S_{i}\right\rangle_{G}$. Let $I_{0}=\left\{i| | S_{i} \mid=1\right\}$ and $S_{0}=\cup_{i \in I_{0}} S_{i}$. Then
(i) $V_{L D}(\operatorname{cl}(G))=\left(\cup_{i=1}^{k} V_{L D}\left(\operatorname{cl}\left(G_{i}\right)\right)\right) \cup S_{0}$,
(ii) $\operatorname{cl}\left(G_{i}\right)=\left\langle V\left(G_{i}\right)\right\rangle_{\mathrm{cl}(G)}$.

Proof. Let K^{i} be the largest clique in $\mathrm{cl}\left(G_{i}\right)$ containing the clique $\left\langle S_{i}\right\rangle_{G}, i=1, \ldots, k$. Then, for every i and every $x \in V\left(K^{i}\right)$, either $\left\langle N_{\mathrm{cl}\left(G_{i}\right)}(x)\right\rangle_{\mathrm{cl}\left(G_{i}\right)}=K^{i}-x$ (and $x \in$ $\left.V_{S I}\left(\mathrm{cl}\left(G_{i}\right)\right)\right)$, or $\left\langle N_{\mathrm{cl}\left(G_{i}\right)}(x)\right\rangle_{\mathrm{cl}\left(G_{i}\right)}$ consists of two disjoint cliques, one of them being $K^{i}-x$ (and then $\left.x \in V_{L D}\left(\mathrm{cl}\left(G_{i}\right)\right)\right)$. Let \tilde{G} be the graph obtained by taking a copy of each $\operatorname{cl}\left(G_{i}\right)$ and a copy of $\langle S\rangle_{G}$ and by identifying the vertices of every S_{i} with the corresponding vertices of $S, i=1, \ldots, k$. By Corollary $4, \tilde{G} \subset \operatorname{cl}(G)$. Note that \tilde{G} can contain induced claws centered at vertices of S (for example, if $S_{1}=\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}\right\} \subset V\left(H_{1}\right)$, $N_{S}\left(b_{1}\right)=\left\{a_{1}\right\}$ and $N_{S}\left(b_{2}\right)=\left\{a_{2}, a_{3}\right\}$, then we get $a_{1} b_{2} \in E(\operatorname{cl}(G))$ and, if $b_{1} b_{2} \notin E(\operatorname{cl}(G))$, then $\left\langle\left\{a_{1}, b_{1}, b_{2}, x\right\}\right\rangle_{\tilde{G}}$ is a claw for any $\left.x \in S \backslash S_{1}\right)$. It is straightforward to check that if $\left|S_{i_{0}}\right|=1$ for some $i_{0} \in I_{0}$, then $S_{i_{0}} \subset V_{L D}(\operatorname{cl}(G))$ and $V_{L D}\left(\operatorname{cl}\left(G_{i_{0}}\right)\right) \cup S_{i_{0}}=V_{L D}(\operatorname{cl}(G)) \cap$ $V\left(G_{i_{0}}\right)$, and hence it is sufficient to verify the theorem in $G-V\left(H_{i_{0}}\right)$. Hence we can suppose that $\left|S_{i}\right| \geq 2$ for every $i=1, \ldots, k$. Then the subgraph $\left\langle S \cup\left(\cup_{i=1}^{k} V\left(K^{i}\right)\right)\right\rangle_{\tilde{G}}$ is locally connected. Let \hat{G} be the graph obtained from \tilde{G} by adding to $\left\langle S \cup\left(\cup_{i=1}^{k} V\left(K^{i}\right)\right)\right\rangle_{\tilde{G}}$ all missing edges (i.e., the subgraph $K=\left\langle S \cup\left(\cup_{\hat{G}=1}^{k} V\left(K^{i}\right)\right)\right\rangle_{\hat{G}}$ is a clique). Since $\tilde{G} \subset \operatorname{cl}(G)$ and $\left\langle S \cup\left(\cup_{i=1}^{k} V\left(K^{i}\right)\right)\right\rangle_{\tilde{G}}$ is locally connected, $\hat{G} \subset \operatorname{cl}(G)$. By the construction, it is now straightforward to verify the following facts:
(a) \hat{G} is claw-free,
(b) if $x \in V\left(G_{i}\right) \backslash V(K)$, then $\left\langle N_{\mathrm{cl}\left(G_{i}\right)}(x)\right\rangle_{\mathbf{c l}\left(G_{i}\right)}=\left\langle N_{\hat{G}}(x)\right\rangle_{\hat{G}}$,
(c) if $x \in V\left(K^{i}\right) \backslash S$ for some $i=1, \ldots, k$, then
(α) if $x \in V_{S I}\left(\operatorname{cl}\left(G_{i}\right)\right)$, then $\left\langle N_{\hat{G}}(x)\right\rangle_{\hat{G}}=K-x$ and hence $x \in V_{S I}(\hat{G})$, and
(β) if $x \in V_{L D}\left(\mathrm{cl}\left(G_{i}\right)\right)$, then one component of $\left\langle N_{\hat{G}}(x)\right\rangle_{\hat{G}}$ is $K-x$ and the other component is the same in $\operatorname{cl}\left(G_{i}\right)$ and in \hat{G}, and hence $x \in V_{L D}(\hat{G})$,
(d) if $x \in S$, then $x \in V_{L D}\left(\operatorname{cl}\left(G_{i}\right)\right)$ for at most one $i, 1 \leq i \leq k$, since if $x \in$ $V_{L D}\left(\operatorname{cl}\left(G_{i_{1}}\right)\right) \cap V_{L D}\left(\operatorname{cl}\left(G_{i_{2}}\right)\right)$ for some i_{1}, i_{2} with $1 \leq i_{1}<i_{2} \leq k$, then x centers a claw in \hat{G}, contradicting (a), and
(α) if $x \in V_{S I}\left(\operatorname{cl}\left(G_{i}\right)\right)$ for all $i=1, \ldots, k$, for which $x \in V\left(G_{i}\right)$, then $x \in V_{S I}(\hat{G})$,
(β) if there is an $i_{0}, 1 \leq i_{0} \leq k$, such that $x \in V_{L D}\left(\operatorname{cl}\left(G_{i_{0}}\right)\right)$, then $x \in V_{L D}(\hat{G})$.
(Note that ($d \alpha$) includes the case when $x \notin \cup_{i=1}^{k} V\left(G_{i}\right)$). This immediately implies that $V(\hat{G})=V_{S I}(\hat{G}) \cup V_{L D}(\hat{G})$, i.e., $V_{E L}(\hat{G})=\emptyset$. Since $\hat{G} \subset \operatorname{cl}(G)$, we have $\hat{G}=\operatorname{cl}(G)$, and by $(b),(c \beta)$ and $(d \beta), V_{L D}(\hat{G})=\cup_{i=1}^{k} V_{L D}\left(\operatorname{cl}\left(G_{i}\right)\right)$.

Proof of part (ii) follows immediately from the construction of $\hat{G}=\operatorname{cl}(G)$.

Example. Let G be the graph in Figure 2 and put $S=\{b, h\}, G_{1}=\langle\{a, b, c, d, g, h\}\rangle_{G}$, $G_{2}=\langle\{b, e, f, h\}\rangle_{G}$. Then $V_{L D}\left(\operatorname{cl}\left(G_{1}\right)\right)=\{a, c, d, g\}$, but $V_{L D}(\mathrm{cl}(G))=\emptyset$. This example shows that Theorem 5 fails if $\langle S\rangle_{G}$ is not a clique.

Corollary 6. Let G be a claw-free graph and let $S \subset V(G)$ be a clique cutset of G. Denote by H_{1}, \ldots, H_{k} the components of $G-S$, let $S_{i}=N_{G}\left(V\left(H_{i}\right)\right) \cap S$ and let $G_{i}=$ $\left\langle V\left(H_{i}\right) \cup S_{i}\right\rangle_{G}$. Suppose that $\left|S_{i}\right| \geq 2, i=1, \ldots, k$. Then $\mathrm{cl}(G)$ is complete if and only if $\operatorname{cl}\left(G_{i}\right)$ is complete for every $i=1, \ldots, k$.

Proof. If $\operatorname{cl}(G)$ is complete, then all $\operatorname{cl}\left(G_{i}\right)$ are complete by part (ii) of Theorem 5. Conversely, suppose that all $\operatorname{cl}\left(G_{i}\right)$ are complete and let K^{i}, K, \tilde{G} and \hat{G} be the same as in the proof of Theorem 5. Then $K^{i}=G_{i}, \tilde{G}$ is locally connected and $\hat{G}=\operatorname{cl}(G)=K$.

Corollary 7. Let G be a claw-free graph and let $x \in V_{S I}(G)$. Then $\mathrm{cl}(G)$ is complete if and only if $\mathrm{cl}(G-x)$ is complete.

Proof. If $x \in V_{S I}(G)$, then $\left\langle N_{G}(x)\right\rangle_{G}$ is a clique cutset. The rest of the proof follows immediately from Corollary 6 by setting $S=N_{G}(x)$.

3 Cycle of length $n_{G}-1$

In the main result of this section, Theorem 12 , we prove that every claw-free graph G with complete closure contains a cycle of length $n_{G}-1$. Before we present this result, we first prove several auxiliary statements. The first of them is of importance in its own right.

We say that a set $S \subset V(G)$ is cyclable in G if there is a cycle $C \subset G$ such that $V(C)=S$.

Theorem 8. Let G be a claw-free graph and let $G_{0}, G_{1}, \ldots, G_{t}, t \geq 1$, be a sequence of graphs such that $G_{0}=G$ and $G_{i}=\left(G_{i-1}\right)_{x_{i-1}}^{\prime}$ for some $x_{i-1} \in V_{E L}\left(G_{i-1}\right), i=1, \ldots, t$. Let $B_{i}=E\left(G_{i}\right) \backslash E\left(G_{i-1}\right)(i=1, \ldots, t)$ and $B_{0}=E\left(G_{0}\right)$. For every cycle $C \subset G_{t}$ set $b_{i}(C)=\left|E(C) \cap B_{i}\right|, i=0,1, \ldots, t$. Then for every cyclable set S in G_{t} there is a cycle C in G_{t} with $V(C)=S$ such that
(i) $b_{i}(C) \leq 2$ for every $i=1, \ldots, t$,
(ii) if $x_{i-1} x_{i} \in E\left(G_{i-1}\right)$ and $b_{i+1}(C) \geq 1$, then $b_{i}(C) \leq 1(1 \leq i \leq t-1)$.

Proof. Since every edge $e \in E\left(G_{t}\right)$ is in exactly one $B_{k}(0 \leq k \leq t)$, we can define a weight function $w(e)$ on $E\left(G_{t}\right)$ by $w(e)=k$ if $e \in B_{k}$. For any cycle $C \subset G_{t}$ we define the weight of C by $w(C)=\sum_{e \in E(C)} w(e)$. Let $S \subset V(G)$ be cyclable in G_{t} and let C be a cycle in G_{t} such that $V(C)=S$ and $w(C)$ is as small as possible.
(i) Let, to the contrary, $b_{i}(C) \geq 3$ for some $i, 1 \leq i \leq t$, and let e_{1}, e_{2}, e_{3} be distinct edges in $E(C) \cap B_{i}$. Let $\epsilon_{j}=u_{j} v_{j}(1 \leq j \leq 3)$, and assume the notation is chosen such that $u_{1}, v_{1}, u_{2}, v_{2}, u_{3}$ and v_{3} appear in this order along C. Then u_{1}, u_{2}, u_{3} are distinct vertices in $N_{G_{i-1}}\left(x_{i-1}\right)$. Since $\left\langle\left\{x_{i-1}, u_{1}, u_{2}, u_{3}\right\}\right\rangle_{G_{i-1}}$ cannot be an induced claw, $\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}\right\} \cap$ $E\left(G_{i-1}\right) \neq \emptyset$. By symmetry, we can suppose that $u_{1} u_{2} \in E\left(G_{i-1}\right)$. Let $C^{\prime}=v_{2} \vec{C} u_{1} u_{2} \stackrel{\overleftarrow{C}}{ }$ $v_{1} v_{2}$. Then C^{\prime} is a cycle in G_{i} with $V\left(C^{\prime}\right)=V(C)=S$ (recall that $v_{1} v_{2} \in V\left(G_{i}\right)$ since $\left.v_{1}, v_{2} \in N_{G_{i-1}}\left(x_{i-1}\right)\right)$, and $E\left(C^{\prime}\right)=E(C) \backslash\left\{u_{1} v_{1}, u_{2} v_{2}\right\} \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$. By the assumption, $w\left(u_{1} v_{1}\right)=w\left(u_{2} v_{2}\right)=i$. On the other hand, since $u_{1} u_{2} \in E\left(G_{i-1}\right)$ and $v_{1} v_{2} \in E\left(G_{i}\right)$, $w\left(u_{1} u_{2}\right) \leq i-1$ and $w\left(v_{1} v_{2}\right) \leq i$. Therefore, we have $w\left(C^{\prime}\right) \leq w(C)-(i+i)+(i-1+i)=$ $w(C)-1$, contradicting the minimality of C.
(ii) Assume that $b_{i}(C) \geq 2$ and $b_{i+1}(C) \geq 1$. Let $e_{1}, e_{2} \in E(C) \cap B_{i}, e_{1} \neq e_{2}$, setting $e_{j}=u_{j} v_{j}(j=1,2)$ and let $e=u v \in E(C) \cap B_{i+1}$. Suppose that the notation is chosen such that $u, v, u_{1}, v_{1}, u_{2}$ and v_{2} appear in this order along C. By the definition, $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\} \subset N_{G_{i-1}}\left(x_{i-1}\right)$ and $\{u, v\} \subset N_{G_{i}}\left(x_{i}\right)$. Apparently, $u_{1} \neq u_{2}$. If $u_{1} u_{2} \in$ $E\left(G_{i-1}\right)$, then let $C^{\prime}=v_{2} \vec{C} u_{1} u_{2} \overleftarrow{C} v_{1} v_{2}$. Then C^{\prime} is a cycle in G_{t} with $V\left(C^{\prime}\right)=$ $V(C)=S$ and $E\left(C^{\prime}\right)=E(C) \backslash\left\{u_{1} v_{1}, u_{2} v_{2}\right\} \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$. Since $w\left(u_{1} v_{1}\right)=w\left(u_{2} v_{2}\right)=i$, $w\left(u_{1} u_{2}\right) \leq i-1$ and $w\left(v_{1} v_{2}\right) \leq i$, we have $w\left(C^{\prime}\right) \leq w(C)-2 i+2 i-1=w(C)-1$, a contradiction. Therefore, $u_{1} u_{2} \notin E\left(G_{i-1}\right)$. Similarly, $v_{1} v_{2} \notin E\left(G_{i-1}\right)$.

Next consider u and u_{1}. Apparently $u \neq u_{1}$, and we show that $u u_{1} \notin E\left(G_{i-1}\right)$. Let $u u_{1} \in E\left(G_{i-1}\right)$ and set $C^{\prime}=v_{1} \vec{C} u u_{1} \stackrel{\leftarrow}{C} v v_{1}$. First suppose $v_{1} \neq x_{i}$. Then, since $v_{1}, x_{i} \in N_{G_{i-1}}\left(x_{i-1}\right)$, we have $v_{1} x_{i} \in E\left(G_{i}\right)$. Since $v \neq v_{1}$, this implies $v v_{1} \in$ $E\left(G_{i+1}\right)$. Hence C^{\prime} is a cycle in $G_{i+1} \subset G_{t}$ with $V\left(C^{\prime}\right)=V(C)=S$ and with $E\left(C^{\prime}\right)=$ $E(C) \backslash\left\{u v, u_{1} v_{1}\right\} \cup\left\{u u_{1}, v v_{1}\right\}$. Since $w(u v)=i+1, w\left(u_{1} v_{1}\right)=i, w\left(u u_{1}\right) \leq i-1$ and $w\left(v v_{1}\right) \leq i+1$, we have $w\left(C^{\prime}\right) \leq w(C)-i-(i+1)+(i-1)+(i+1)=w(C)-1$, a contradiction. Let thus $v_{1}=x_{i}$. Then $v v_{1}=v x_{i} \in E\left(G_{i}\right)$, and since again $E\left(C^{\prime}\right)=$ $E(C) \backslash\left\{u v, u_{1} v_{1}\right\} \cup\left\{u u_{1}, v v_{1}\right\}$ and $w(u v)=i+1, w\left(u_{1} v_{1}\right)=i, w\left(u u_{1}\right) \leq i-1$ and
$w\left(v v_{1}\right) \leq i$, we obtain $w\left(C^{\prime}\right) \leq w(C)-i-(i+1)+(i-1)+i=w(C)-2$, which is again a contradiction. Hence $u u_{1} \notin E\left(G_{i-1}\right)$. Similarly, $u u_{2} \notin E\left(G_{i-1}\right), v v_{1} \notin E\left(G_{i-1}\right)$ and $v v_{2} \notin E\left(G_{i-1}\right)$. Hence $\left\{u, u_{1}, u_{2}\right\}$ and $\left\{v, v_{1}, v_{2}\right\}$ are independent sets in G_{i-1}. This implies that $x_{i-1} u \notin E\left(G_{i-1}\right)$ (since otherwise $\left\langle\left\{x_{i-1}, u, u_{1}, u_{2}\right\}\right\rangle_{G_{i-1}}$ is a claw) and hence $x_{i} u \notin B_{i}$, which implies $x_{i} u \in E\left(G_{i-1}\right)$. Similarly we have $x_{i-1} v \notin E\left(G_{i-1}\right)$ and $x_{i} v \in E\left(G_{i-1}\right)$. Since $u_{1} x_{i-1} \in E\left(G_{i-1}\right)$ but $u_{1} u \notin E\left(G_{i-1}\right)$, we have $x_{i-1} \neq u$, and similarly $x_{i-1} \neq v$, but then $\left\langle\left\{x_{i}, x_{i-1}, u, v\right\}\right\rangle_{G_{i-1}}$ is a claw. This contradiction proves the theorem.

Let C be a cycle in a graph G. An edge $u v \in E(G) \backslash E(C)$ with $u, v \in E(C)$ will be called a chord of C. A 2-chord of a cycle C is a chord $x y$ of C such that $x \vec{C} y$ or $x \overleftarrow{C} y$ has exactly one interior vertex. If $u_{1} v_{1}, u_{2} v_{2} \in E(G) \backslash E(C)$ are such that $u_{1}, v_{1} \in V(C)$ and either $\left\{u_{2}, v_{2}\right\}=\left\{u_{1}^{-}, v_{1}^{+}\right\}$or $\left\{u_{2}, v_{2}\right\}=\left\{u_{1}^{+}, v_{1}^{-}\right\}$, then we say that the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ are a pair of parallel chords of C.

Lemma 9. Let G be a claw-free graph on n_{G} vertices such that $\mathrm{cl}(G)$ is complete and G has no cycle of length $n_{G}-1$. Let C be a hamiltonian cycle in G and let $x y \in E(G) \backslash E(C)$ be a chord of C. Then there is a pair of parallel chords $u v, u^{-} v^{+}$of C such that $x \in\left\{u^{-}, u\right\}$ and $y \in\left\{v, v^{+}\right\}$.

Proof. Since G has no cycle of length $n_{G}-1, C$ has no 2 -chord, and hence all the vertices $x^{-}, x^{+}, y^{-}, y^{+}$exist and are distinct. Since $\left\langle\left\{x, x^{-}, x^{+}, y\right\}\right\rangle_{G}$ cannot be a claw, we have $x^{-} y \in E(G)$ or $x^{+} y \in E(G) ;$ from $\left\langle\left\{y, y^{-}, y^{+}, x\right\}\right\rangle_{G} \not 千 K_{1,3}$ similarly $x y^{-} \in E(G)$ or $x y^{+} \in E(G)$. If $x^{-} y \in E(G)$ and $x y^{-} \in E(G)$ or $x^{+} y \in E(G)$ and $x y^{+} \in E(G)$, then we are done; thus suppose that $x^{-} y \in E(G)$ and $x y^{+} \in E(G)$ or $x^{+} y \in E(G)$ and $x y^{-} \in E(G)$. In the first case, since $x^{-} y^{-} \notin E(G)$ (otherwise $x y^{+} \vec{C} x^{-} y^{-} \stackrel{\leftarrow}{C} x$ is a cycle of length $n_{G}-1$), from $\left\langle\left\{y, y^{-}, y^{+}, x^{-}\right\}\right\rangle_{G} \not 千 K_{1,3}$ we get $x^{-} y^{+} \in E(G)$. The second case is symmetric.

Lemma 10. Let G be a claw-free graph having no cycle of length $n_{G}-1$. Let C be a hamiltonian cycle in G and $\{x, y\}$ a cutset of G such that $\left\langle\left\{x^{-}, x, y, y^{+}\right\}\right\rangle_{G} \simeq K_{4}$. Then
(i) $N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)=N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right)$,
(ii) $\left\langle\left(N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)\right) \cup\{x, y\}\right\rangle_{G}$ is a clique.

Proof. By symmetry, it is sufficient to show that $N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right) \subset N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)$. Let thus $z \in N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right)$. If $z=y^{+}$or $z=x^{-}$, then obviously $z \in N_{G}(x)$. Hence we may assume $z \in y^{++} \vec{C} x^{--}$. Considering $\left\langle\left\{z, z^{-}, z^{+}, y\right\}\right\rangle_{G}$ we have $z^{-} y \in E(G)$ or $z^{+} y \in E(G)$. Suppose without loss of generality that $z^{-} y \in E(G)$ (otherwise we change the notation). Since $\{x, y\}$ is a cutset, $y^{-} z^{-} \notin E(G)$ and $y^{-} z \notin E(G)$. From
$\left\langle\left\{y, y^{-}, y^{+}, z\right\}\right\rangle_{G} \not 千 K_{1,3}$ and $\left\langle\left\{y, y^{-}, y^{+}, z^{-}\right\}\right\rangle_{G} \not 千 K_{1,3}$ we then get $y^{+} z \in E(G)$ and $y^{+} z^{-} \in E(G)$ ，i．e．，$\left\langle\left\{y, y^{+}, z^{-}, z\right\}\right\rangle_{G} \simeq K_{4}$ ．From $\left\langle\left\{y^{+}, y^{++}, z, x\right\}\right\rangle_{G} \not 千 K_{1,3}$ we now get $z x \in E(G)$（since if $y^{++} x \in E(G)$ ，then $x y^{++} \vec{C} x^{-} y \vec{C} x$ ，and if $y^{++} z \in E(G)$ ，then $y^{++} z \vec{C} y z^{-} \overleftarrow{C} y^{++}$is a cycle of length $n_{G}-1$ ）．Now，since $z^{+} x \notin E(G)$（otherwise $x z^{+} \vec{C} x^{-} y^{+} \vec{C} z^{-} y \overleftarrow{C} x$ is a cycle of length $n_{G}-1$ ），from $\left\langle\left\{z, z^{-}, z^{+}, x\right\}\right\rangle_{G} \not 千 K_{1,3}$ we get also $z^{-} x \in E(G)$ ．Hence $N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right) \subset N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)$．

If some $u, v \in N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)$are nonadjacent，then $\left\langle\left\{x, x^{+}, u, v\right\}\right\rangle_{G}$ is a claw． Hence $\left\langle\left(N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)\right) \cup\{x, y\}\right\rangle_{G}$ is a clique．

Lemma 11．Let G be a minimal（with respect to $n_{G}=|V(G)|$ ）claw－free graph with complete closure and without a cycle of length $n_{G}-1$ ．Let C be a hamiltonian cycle in G and let $\{x, y\}$ be a cutset of G such that $\left\langle\left\{x, x^{-}, y, y^{+}\right\}\right\rangle_{G}$ is a clique．Then $|x \vec{C} y|=$ $\left|y^{+} \vec{C} \cdot x^{-}\right|=n_{G} / 2$.

Proof．Let $G_{1}=\langle x \vec{C} y\rangle_{G}$ and $G_{2}=\langle y \vec{C} x\rangle_{G}$ ．Let H_{1} be the graph obtained by taking two vertex disjoint copies of G_{1} and by adding the edges $x^{1} x^{2}, y^{1} y^{2}, x^{1} y^{2}, x^{2} y^{1}$ （where by x^{i}, y^{i} we denote the vertices corresponding to the vertices x and y in the i－ th copy of $G_{1}, i=1,2$ ），and let H_{2} be the graph obtained by identifying the vertices corresponding to the vertices x and y in two vertex disjoint copies of G_{2} ．Then，by Corollary 6 ，both H_{1} and H_{2} have complete closure．If some $H_{i}, i \in\{1,2\}$ ，has a cycle of length $n_{H_{i}}-1$ ，then，by the construction and since $\{x, y\}$ is a cutset，we apparently have a cycle of length $n_{G}-1$ in G ．Hence，by the minimality of $G,\left|V\left(H_{i}\right)\right| \geq n_{G}$ ，$i=1,2$ ． If we show that，moreover，$\left|V\left(H_{2}\right)\right| \geq n_{G}+2$ ，then we have $\left|V\left(H_{1}\right)\right|=2|x \vec{C} y| \geq n_{G}$ and $\left|V\left(H_{2}\right)\right|-2=2\left|y^{+} \vec{C} x^{-}\right| \geq n_{G}$ ．Since $|x \vec{C} y|+\left|y^{+} \vec{C} x^{-}\right|=n_{G}$ ，this implies $|x \vec{C} y|=\left|y^{+} \vec{C} x^{-}\right|=n_{G} / 2$.

Hence it remains to show that $\left|V\left(H_{2}\right)\right| \geq n_{G}+2$ ．Suppose，to the contrary，$\left|V\left(H_{2}\right)\right| \leq$ $n_{G}+1$ ，and let $H=\left(H_{2}\right)_{x}^{\prime}$ ．Since $\{x, y\}$ is a cutset of H_{2} ，by Lemma $10, y$ is simplicial in H ．The graph $\hat{H}=H-\{x, y\}$ is obviously claw－free and，by Corollary 7，cl (\hat{H}) is complete．Since $|V(\hat{H})|=\left|V\left(H_{2}\right)\right|-2 \leq n_{G}+1-2=n_{G}-1$ ，by the minimality of G ， \hat{H} has a cycle $C_{\hat{H}}$ of length $n_{\hat{H}}-1$ ．Let $B=E(H) \backslash E\left(H_{2}\right)$ ．Since $\{x, y\}$ is a cutset of $H_{2},\left|E\left(C_{\hat{H}}\right) \cap B\right| \geq 2$ ．By Theorem $8(i), C_{\hat{H}}$ can be chosen such that $\left|E\left(C_{\hat{H}}\right) \cap B\right|=2$ ． Let $e_{1}=u_{1} v_{1}, e_{2}=u_{2} v_{2}$ be these edges．Since $\{x, y\}$ is a cutset of H_{2} ，each of e_{1}, e_{2} has its endvertices in different components of $H_{2}-\{x, y\}$ ．By Lemma $10(i i)$ ，replacing in $C_{\hat{H}}$ the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ by the paths $u_{1} x v_{1}$ and $u_{2} y v_{2}$ ，we get a cycle $C_{H_{2}}$ in H_{2} of length $n_{H_{2}}-1$ ．Let P be the shorter of the paths $y \overrightarrow{C_{H_{2}}} x$ and $y \underset{C_{H_{2}}}{亡}$ ．Then the cycle $x \vec{C} y P x$ is a cycle in G of length $n_{G}-1$ ．This contradiction proves the lemma．

Now we can proceed to the main result of this section．

Theorem 12. Let G be a claw-free graph such that $\operatorname{cl}(G)$ is complete. Then G contains a cycle of length $n_{G}-1$.

Proof. Suppose the theorem fails and let G be a counterexample with minimum $n_{G}=$ $|V(G)|$. Let C be a hamiltonian cycle in G. We first make two general observations.
(i) The cycle C has no 2-chords, i.e., for any chord $u v$ of C, both $u \vec{C} v$ and $u \overleftarrow{C} v$ have at least two interior vertices.
(ii) If a vertex x has two nonadjacent neighbors u, v lying in the same component of $\left\langle N_{G}(x)\right\rangle_{G}$, then $x \in V_{E L}(G)$ (since if x is locally disconnected, then for any z in the other component of $\left\langle N_{G}(x)\right\rangle_{G},\langle x, u, v, z\rangle_{G}$ is a claw).
These observations will be often used implicitly throughout the proof.
For any hamiltonian cycle C and an eligible vertex x we say that the vertex x is of the first type with respect to C, if there is an x^{-}, x^{+}-path of length 2 in $\left\langle N_{G}(x)\right\rangle_{G}$. In the other case (i.e., if all x^{-}, x^{+}-paths in $\left\langle N_{G}(x)\right\rangle_{G}$ have length at least 3), we say that x is of the second type with respect to C.

First suppose that the hamiltonian cycle C can be chosen such that there is a vertex $x \in V_{E L}(G)$ of the first type with respect to C. Let y be a common neighbor of x^{-}and x^{+}in $\left\langle N_{G}(x)\right\rangle_{G}$. If $x^{-} y^{-} \in E(G)$, then $x^{-} y^{-} \stackrel{\leftarrow}{C} x^{+} y \vec{C} x^{-}$is a cycle of length $n_{G}-1$; thus $x^{-} y^{-} \notin E(G)$. From $\left\langle\left\{y, y^{-}, y^{+}, x^{-}\right\}\right\rangle_{G}$ we get $x^{-} y^{+} \in E(G)$ and, by symmetry, $x^{+} y^{-} \in$ $E(G)$. Since $\left\langle\left\{y, y^{-}, y^{+}, x\right\}\right\rangle_{G}$ cannot be a claw, we have $x y^{-} \in E(G)$ or $x y^{+} \in E(G)$. By symmetry, we can suppose that $x y^{+} \in E(G)$. Then $\left\langle\left\{x^{-}, x, y, y^{+}\right\}\right\rangle_{G} \simeq K_{4}$. We consider the conditions under which $\{x, y\}$ can be a cutset of G.

By Lemma 9, it is sufficient to verify the nonexistence of all possible pairs of parallel chords $u v, u^{+} v^{-}$such that $u, u^{+} \in y \vec{C} x$ and $v^{-}, v \in x \vec{C} y$.

$$
\begin{array}{ll}
\text { Case } & \text { Cycle of length } n_{G}-1 \\
u, u^{+} \in y \vec{C} x^{-} ; v^{-}, v \in x^{+} \vec{C} y^{-} & u v \vec{C} y^{-} x^{+} \vec{C} v^{-} u^{+} \vec{C} x^{-} y \vec{C} u \\
u^{+}=x ; v^{-}, v \in x^{+} \vec{C} y^{-} & x y^{+} \vec{C} x^{-} v \vec{C} y^{-} x^{+} \vec{C} v^{-} x \\
u, u^{+} \in y^{+} \vec{C} x^{-} ; v=y & u y x^{+} \vec{C} y^{-} u^{+} \vec{C} x^{-} y^{+} \vec{C} u
\end{array}
$$

We thus have the following observation.
(*) The only possible pair of parallel chords $u v, u^{+} v^{-}$such that at least one of them crosses the edge $x y$, is for $v^{-}=x, v=x^{+} ; u, u^{+} \in y^{+} \vec{C} x^{-}$.
(This observation will be used several times in what follows.)
We show that $x y^{-} \notin E(G)$. Indeed, if $x y^{-} \in E(G)$, then, by symmetry and by the previous observations, $\{x, y\}$ is a cutset of G. But then, since $\left\langle\left\{x, y, x^{+}, y^{-}\right\}\right\rangle_{G} \simeq$ $\left\langle\left\{x, y, x^{-}, y^{+}\right\}\right\rangle_{G} \simeq K_{4}$, by Lemma 11 we have $\left|x^{+} \vec{C} y^{-}\right|=|y \vec{C} x|=n_{G} / 2$ and $|x \vec{C} y|=$
$\left|y^{+} \vec{C} x^{-}\right|=n_{G} / 2$, from which $n_{G}=\left|x^{+} \vec{C} y^{-}\right|+\left|y^{+} \vec{C} x^{-}\right|+|\{x, y\}|=n_{G} / 2+n_{G} / 2+2>$ n_{G}, a contradiction. Hence $x y^{-} \notin E(G)$. Considering $\left\langle\left\{x^{+}, x, x^{++}, y^{-}\right\}\right\rangle_{G}$ we then have $x^{++} y^{-} \in E(G)$.

We now prove that $x^{++} y \in E(G)$. Thus suppose, to the contrary, $x^{++} y \notin E(G)$. Then from $\left\langle\left\{y^{-}, y, y^{--}, x^{++}\right\}\right\rangle_{G}$ we have $x^{++} y^{--} \in E(G)$. We show that $\{x, y\}$ is again a cutset. Suppose, to the contrary, $u, u^{+} \in y^{+} \vec{C} x^{-}$and $x^{+} u, x u^{+} \in E(G)$ (see the observation $(*))$. If $u=y^{+}$, then $x^{+} y^{+} \vec{C} x^{-} y \overleftarrow{C} x^{+}$is a cycle of length $n_{G}-1$; thus $u \neq y^{+}$. If $x^{++} u \in E(G)$, then $x^{++} \vec{C} y x u^{+} \vec{C} x^{-} y^{+} \vec{C} u x^{++}$is a cycle of length $n_{G}-1$. Thus, since $\left\langle\left\{x^{+}, x^{++}, y, u\right\}\right\rangle_{G}$ cannot be a claw, we have $y u \in E(G)$. From $\left\langle\left\{u, u^{-}, u^{+}, x^{+}\right\}\right\rangle_{G}$ then $u^{-} x^{+} \in E(G)$ or $u^{+} x^{+} \in E(G)$, but then in the first case $x^{+} \vec{C}$ yu $\vec{C} x^{-} y^{+} \vec{C} u^{-} x^{+}$and in the second case $x^{+} u^{+} \vec{C} x^{-} y^{+} \vec{C}$ uy $\overleftarrow{C} x^{+}$is a cycle of length $n_{G}-1$. Hence $\{x, y\}$ is a cutset.

We show that x and y have no other neighbors except x^{+}and y^{-}on $x^{+} \vec{C} y^{-}$. Thus, first let, by Lemma $9, x v \in E(G)$ and $x^{+} v^{-} \in E(G)$ for $v^{-}, v \in x^{++} \vec{C} y^{--}$. Then $x v \vec{C} y^{--} x^{++} \vec{C} v^{-} x^{+} y \vec{C} x$ is a cycle of length $n_{G}-1$. Secondly, let $y v^{-} \in E(G)$ and $y^{-} v \in E(G)$ for some $v^{-}, v \in x^{++} \vec{C} y^{--}$. From $\left\langle\left\{y, y^{+}, x^{+}, v^{-}\right\}\right\rangle_{G}$ we have $v^{-} x^{+} \in E(G)$. Considering $\left\langle\left\{v^{-}, v, v^{--}, y\right\}\right\rangle_{G}$ we now get $v y \in E(G)$ or $v^{--} y \in E(G)$, but then $x^{++} \vec{C}$ $v^{-} x^{+} \overleftarrow{C} y v \vec{C} y^{--} x^{++}$in the first case and $x^{++} \vec{C} v^{--} y \vec{C} x^{+} v^{-} \vec{C} y^{--} x^{++}$in the second case, respectively, is a cycle of length $n_{G}-1$. Hence $N_{G}(x) \cap\left(x^{+} \vec{C} y^{-}\right)=\left\{x^{+}\right\}$and $N_{G}(y) \cap\left(x^{+} \vec{C} y^{-}\right)=\left\{x^{+}, y^{-}\right\}$.

Since, by Lemma 10, $N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)=N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right)$and obviously $y \in$ $V_{E L}(G), x \in V_{S I}\left(G_{y}^{\prime}\right)$. Then, similarly as in the proof of Lemma 11, the graph $H=G_{y}^{\prime}-$ $\{x, y\}$ is claw-free, $\mathrm{cl}(H)$ is complete and hence H has a cycle C_{H} of length $n_{H}-1=n_{G}-3$ such that $E\left(C_{H}\right) \cap\left(E\left(G_{y}^{\prime}\right) \backslash E(G)\right)=\left\{e_{1}, e_{2}\right\}$ for some $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ having endvertices in different components of $G-\{x, y\}$. Since $N_{G}(y) \cap\left(x^{+} \vec{C} y^{-}\right)=\left\{x^{+}, y^{-}\right\}$and $N_{G}(x) \cap\left(x^{+} \vec{C} y^{-}\right)=\left\{x^{+}\right\}$, we can suppose that $u_{1}=x^{+}$and $u_{2}=y^{-}$. Then, replacing $u_{1} v_{1}$ by $u_{1} x v_{1}$ and $u_{2} v_{2}$ by $u_{2} y v_{2}$, we get a cycle in G of length $n_{G}-1$. This contradiction proves that $x^{++} y \in E(G)$. Hence $\left\langle\left\{x, y, y^{+}, x^{-}\right\}\right\rangle_{G} \simeq\left\langle\left\{x^{+}, x^{++}, y^{-}, y\right\}\right\rangle_{G} \simeq K_{4}$.

We show that $\{x, y\}$ or $\left\{x^{+}, y\right\}$ is a cutset of G. Indeed, if not, then, by the observation $(*)$, there are $u, u^{+} \in y^{+} \vec{C} x^{-}$and $v^{-}, v \in x^{++} \vec{C} y^{-}$such that $\left\{x v, x u^{+}, x^{+} v^{-}, x^{+} u\right\} \subset$ $E(G)$, but then $x u^{+} \vec{C} x^{-} y^{+} \vec{C} u x^{+} v^{-} \overleftarrow{C} x^{++} y^{-} \overleftarrow{C} v x$ is a cycle of length $n_{G}-1$. Thus, by symmetry, we can suppose that $\{x, y\}$ is a cutset of G.

Now, $\left\{x^{+}, y\right\}$ cannot be also a cutset of G, since otherwise Lemma 11 implies $\mid x^{++} \vec{C}$ $y^{-}\left|=\left|y^{+} \vec{C} x^{-}\right|=n_{G} / 2\right.$, from which $n_{G}=\left|x^{++} \vec{C} y^{-}\right|+\left|y^{+} \vec{C} x^{-}\right|+\left|\left\{x, x^{+}, y\right\}\right|=$ $2 n_{G} / 2+3>n_{G}$, a contradiction. Thus, by the observation (*), there are $v^{-}, v \in x^{++} \vec{C} y^{-}$ such that $x v \in E(G)$ and $x^{+} v^{-} \in E(G)$. Apparently $\left|x^{++} \vec{C} v^{-}\right| \geq 4$ and $\left|v \vec{C} y^{-}\right| \geq 4$
(otherwise we easily obtain a cycle of length $n_{G}-1$). If $x v^{+} \in E(G)$, then $x v^{+} \vec{C}$ $y^{-} x^{++} \vec{C} v^{-} x^{+} y \vec{C} x$, and if $x^{+} v^{--} \in E(G)$, then $x v \vec{C} y^{-} x^{++} \vec{C} v^{--} x^{+} y \vec{C} x$ is a cycle of length $n_{G}-1$. Hence both $x v^{+} \notin E(G)$ and $x^{+} v^{--} \notin E(G)$, from which, considering $\left\langle\left\{v, v^{-}, v^{+}, x\right\}\right\rangle_{G}$ and $\left\langle\left\{v^{-}, v^{--}, v, x^{+}\right\}\right\rangle_{G}$, we have $x v^{-} \in E(G)$ and $x^{+} v \in E(G)$, i.e. $\left\langle\left\{x, x^{+}, v^{-}, v\right\}\right\rangle_{G} \simeq K_{4}$.

Let $K_{1}=\left\langle N_{G}(x) \cap\left(x^{+} \vec{C} y^{-}\right)\right\rangle_{G}$ and $K_{2}=\left\langle N_{G}(y) \cap\left(x^{+} \vec{C} y^{-}\right)\right\rangle_{G}$. Since $\{x, y\}$ is a cutset of G, both K_{1} and K_{2} is a clique (otherwise some two nonadjacent vertices together with x^{-}or y^{+}form a claw centered at x or at $\left.y\right)$. Since $x^{+} \in V\left(K_{1}\right) \cap V\left(K_{2}\right)$, $N_{G}\left(x^{+}\right) \cup\left\{x^{+}\right\} \backslash\{x, y\} \supset\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$.

We show that $N_{G}\left(x^{+}\right) \cup\left\{x^{+}\right\} \backslash\{x, y\}=\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$. Suppose, to the contrary, $z \in N_{G}\left(x^{+}\right) \backslash\left(\{x, y\} \cup V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$. Since $\{x, y\}$ is a cutset, $z \in x^{+} \vec{C} y^{-}$. By the definition of K_{1} and K_{2} and by symmetry, we can suppose that $z \in v^{+} \vec{C} y^{--}$. If $z=v^{+}$, then $x v^{-} \stackrel{\leftarrow}{C} x^{+} z \vec{C} x$, and if $z=y^{--}$, then $x^{+} z \overleftarrow{C} x^{++} y \vec{C} x^{+}$is a cycle of length $n_{G}-1$, hence $v^{+} \neq z \neq y^{--}$. From $\left\langle\left\{z, z^{-}, z^{+}, x^{+}\right\}\right\rangle_{G}$ we have $z^{-} x^{+} \in E(G)$ or $z^{+} x^{+} \in E(G)$. By symmetry, suppose that $z^{+} x^{+} \in E(G)$. Then, similarly as above, $z^{+} \neq y^{--}$. Since $z, y^{-} \notin N_{G}(x)$, from $\left\langle\left\{x^{+}, z, y^{-}, x\right\}\right\rangle_{G}$ we have $z y^{-} \in E(G)$. Since $z, y^{--} \notin N_{G}(y)$, from $\left\langle\left\{y^{-}, y, y^{--}, z\right\}\right\rangle_{G}$ we have $z y^{--} \in E(G)$, but then $x^{+} z^{+} \vec{C} y^{--} z \overleftarrow{C} x^{++} y \vec{C} x^{+}$is a cycle of length $n_{G}-1$. This contradiction proves that $N_{G}\left(x^{+}\right) \cup\left\{x^{+}\right\} \backslash\{x, y\}=\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$.

Let $H_{1}=G_{x^{+}}^{\prime}$ and $H_{2}=\left(H_{1}\right)_{y}^{\prime}$. Since $N_{G}\left(x^{+}\right) \cup\left\{x^{+}\right\} \backslash\{x, y\}=\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$ and, by Lemma $10, N_{G}(x) \cap\left(y^{+} \vec{C} x^{-}\right)=N_{G}(y) \cap\left(y^{+} \vec{C} x^{-}\right)$, implying $N_{G}(x) \subset$ $N_{G}(y) \cup N_{G}\left(x^{+}\right)$, we have $\left\{x, y, x^{+}\right\} \subset V_{S I}\left(H_{2}\right)$. The graph $H=H_{2}-\left\{x, y, x^{+}\right\}$thus has a complete closure. Let $B_{1}=E\left(H_{1}\right) \backslash E(G)$ and $B_{2}=E\left(H_{2}\right) \backslash E\left(H_{1}\right)$. Then, by the minimality of G and by Theorem $8($ ii $), H$ has a cycle C_{H} of length $n_{H}-1=n_{G}-4$ such that either $\left|E\left(C_{H}\right) \cap B_{1}\right| \leq 2$ and $\left|E\left(C_{H}\right) \cap B_{2}\right|=0$, or $\left|E\left(C_{H}\right) \cap B_{1}\right| \leq 1$ and $\left|E\left(C_{H}\right) \cap B_{2}\right| \leq 2$. Since $\{x, y\}$ is a cutset of G, at least two edges of $E\left(C_{H}\right) \cap\left(B_{1} \cup B_{2}\right)$ have an endvertex in $y^{+} \vec{C} x^{-}$. Since $N_{G}\left(x^{+}\right) \subset x \vec{C} y$, this implies $\left|E\left(C_{H}\right) \cap B_{2}\right| \geq 2$. Hence $\left|E\left(C_{H}\right) \cap B_{1}\right| \leq 1$ and $\left|E\left(C_{H}\right) \cap B_{2}\right|=2$. Let $e_{1}=u_{1} v_{1}, e_{2}=u_{2} v_{2}$ be the two edges in $E\left(C_{H}\right) \cap B_{2}$ and (if nonempty), $e_{3}=u_{3} v_{3}$ be the only edge in $E\left(C_{H}\right) \cap B_{1}$. By the above, we can suppose that $\left\{u_{1}, u_{2}, u_{3}, v_{3}\right\} \subset x^{++} \vec{C} y^{-}$and $\left\{v_{1}, v_{2}\right\} \subset y^{+} \vec{C} x^{-}$.

If $u_{1} \in V\left(K_{1}\right)$ and $u_{2} \in V\left(K_{2}\right)$, then, replacing in C_{H} the edge $u_{1} v_{1}$ by the path $u_{1} x v_{1}$, the edge $u_{2} v_{2}$ by the path $u_{2} x^{+} y v_{2}$ (if $E\left(C_{H}\right) \cap B_{1}=\emptyset$) or by the path $u_{2} y v_{2}$ (if $E\left(C_{H}\right) \cap$ $B_{1} \neq \emptyset$) and the edge $u_{3} v_{3}$ (if any) by the path $u_{3} x^{+} v_{3}$, we obtain a cycle of length $n_{G}-1$ in G. If $u_{1}, u_{2} \in V\left(K_{1}\right)$ and $B_{1}=\emptyset$, then we analogously replace in C_{H} the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ by the paths $u_{1} x v_{1}$ and $u_{2} x^{+} y v_{2}$. Since $N_{G}\left(x^{+}\right) \cup\left\{x^{+}\right\} \backslash\{x, y\}=\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right)$, it remains to consider (up to symmetry) the case when $u_{1}, u_{2} \in V\left(K_{1}\right)$ and $B_{1} \neq \emptyset$. Since $u_{3}, v_{3} \in N_{G}\left(x^{+}\right)$and $u_{3} v_{3} \notin E(G)$, we have $u_{3} \in V\left(K_{1}\right)$ and $v_{3} \in V\left(K_{2}\right)$, or $v_{3} \in V\left(K_{1}\right)$ and $u_{3} \in V\left(K_{2}\right)$. Let P_{1}, P_{2}, P_{3} be the three paths that C_{H} splits into by deleting e_{1}, e_{2}, e_{3}
and suppose the notation is chosen such that, in the path system obtained by deleting e_{1}, e_{2}, e_{3} from C_{H}, u_{3} and u_{1} are endvertices of the same path (this is always possible since there can be no path joining u_{3}, v_{3} and since $\{x, y\}$ is a cutset of G). Then, replacing in C_{H} the edges e_{1}, e_{2}, e_{3} by $u_{1} x v_{1}, u_{2} u_{3}$ and $v_{2} y x^{+} v_{3}$ if $u_{3} \in V\left(K_{1}\right)$ and $v_{3} \in V\left(K_{2}\right)$, or by $u_{2} x v_{2}, u_{1} v_{3}$ and $u_{3} x^{+} y v_{1}$ if $v_{3} \in V\left(K_{1}\right)$ and $u_{3} \in V\left(K_{2}\right)$, respectively, we obtain a cycle of length $n_{G}-1$ in G.

This contradiction proves that for any choice of a hamiltonian cycle C in G, no eligible vertex of G is of the first type with respect to C.

Let now C be a hamiltonian cycle in G and x an eligible vertex (of second type with respect to C). Let P be a shortest x^{-}, x^{+}-path in $\left\langle N_{G}(x)\right\rangle_{G}$. Since G is claw-free, P is of length 3 . Let $V(P)=x^{-} y_{1} y_{2} x^{+}$. Then either $y_{1} \in x \vec{C} y_{2}$, or $y_{2} \in x \vec{C} y_{1}$.
Case 1: $y_{1} \in x \vec{C} y_{2}$. We consider $\left\langle\left\{y_{1}, y_{1}^{-}, y_{1}^{+}, x^{-}\right\}\right\rangle_{G}$ and $\left\langle\left\{y_{2}, y_{2}^{-}, y_{2}^{+}, x^{+}\right\}\right\rangle_{G}$. If both $x^{-} y_{1}^{+} \in E(G)$ and $x^{+} y_{2}^{-} \in E(G)$, then the cycle $x^{-} y_{1}^{+} \vec{C} y_{2}^{-} x^{+} \vec{C} y_{1} y_{2} \vec{C} x^{-}$is a cycle of length $n_{G}-1$ in G. Hence we can suppose (by symmetry) that $x^{-} y_{1}^{-} \in E(G)$. Then, on the cycle $C^{\prime}=x y_{1} \vec{C} x^{-} y_{1}^{-} \overleftarrow{C} x$, the predecessor of x is x^{+}and the successor is y_{1}. Since y_{1} and x^{+}have a common neighbor $y_{2} \in N_{G}(x), x$ is of type 1 with respect to C^{\prime} a contradiction.

Case 2: $y_{2} \in x \vec{C} y_{1}$. We first show that x can be chosen such that y_{2}, y_{1} are not consecutive on C. Suppose, to the contrary, that this is not the case and choose x such that $x \vec{C} y_{2}$ is shortest possible. Since x is of type $2, x^{+} y_{1} \notin E(G)$, and from $\left\langle\left\{y_{2}, y_{1}, y_{2}^{-}, x^{+}\right\}\right\rangle_{G}$ we have $x^{+} y_{2}^{-} \in E(G)$. Similarly $x y_{2}^{-} \notin E(G)$ (otherwise y_{2} is of type 1 with respect to C) and from $\left\langle\left\{x^{+}, x, x^{++}, y_{2}^{-}\right\}\right\rangle_{G}$ we have $x^{++} y_{2}^{-} \in E(G)$. But then the path $x y_{2} y_{2}^{-} x^{++}$in $\left\langle N_{G}\left(x^{+}\right)\right\rangle_{G}$ contradicts the choice of x. Hence we may assume that $y_{2}^{+} \neq y_{1}$.

Suppose now that $x^{-} y_{1}^{-} \in E(G)$ and let $C^{\prime}=x \vec{C} y_{1}^{-} x^{-} \overleftarrow{C} y_{1} x$. Then the predecessor y_{1} and successor x^{+}of x on C^{\prime} have a common neighbor $y_{2} \in N_{G}(x)$ and hence x is of type 1 with respect to C^{\prime}, a contradiction. Hence $x^{-} y_{1}^{-} \notin E(G)$ and, by symmetry, $x^{+} y_{2}^{+} \notin E(G)$. Considering $\left\langle\left\{y_{1}, y_{1}^{-}, y_{1}^{+}, x^{-}\right\}\right\rangle_{G}$ and $\left\langle\left\{y_{2}, y_{2}^{-}, y_{2}^{+}, x^{+}\right\}\right\rangle_{G}$ we then get $y_{1}^{+} x^{-} \in E(G)$ and $y_{2}^{-} x^{+} \in E(G)$.

We show that $x y_{2}^{-} \in E(G)$. If $x y_{2}^{-} \notin E(G)$, then from $\left\langle\left\{y_{2}, y_{2}^{-}, y_{2}^{+}, x\right\}\right\rangle_{G}$ we have $x y_{2}^{+} \in E(G)$, and since we already know that $x^{+} y_{2}^{+} \notin E(G)$, from $\left\langle\left\{x, x^{-}, x^{+}, y_{2}^{+}\right\}\right\rangle_{G}$ we get $x^{-} y_{2}^{+} \in E(G)$. Considering $\left\langle\left\{y_{1}, y_{1}^{-}, y_{1}^{+}, y_{2}\right\}\right\rangle_{G}$ we then have $y_{2} y_{1}^{-} \in E(G)$ or $y_{2} y_{1}^{+} \in E(G)$, but in the first case the cycle $C^{\prime}=x \vec{C} y_{2} y_{1}^{-} \stackrel{\leftarrow}{C} y_{2}^{+} x^{-} \overleftarrow{C} y_{1} x$ and in the second case the cycle $C^{\prime}=x \vec{C} y_{2} y_{1}^{+} \vec{C} x^{-} y_{2}^{+} \vec{C} y_{1} x$ yields a contradiction, since in both these cases x is of type 1 with respect to C^{\prime}. Hence $x y_{2}^{-} \in E(G)$ and, by symmetry, $x y_{1}^{+} \in E(G)$, which implies that $\left\langle\left\{x, x^{+}, y_{2}^{-}, y_{2}\right\}\right\rangle_{G} \simeq\left\langle\left\{x, x^{-}, y_{1}^{+}, y_{1}\right\}\right\rangle_{G} \simeq K_{4}$.

Now consider $\left\langle\left\{y_{2}, y_{2}^{+}, y_{1}, x^{+}\right\}\right\rangle_{G}$. If $x^{+} y_{1} \in E(G)$, then x is of first type with respect to C; thus $x^{+} y_{1} \notin E(G)$. Since we already know that $x^{+} y_{2}^{+} \notin E(G)$, we have $y_{1} y_{2}^{+} \in E(G)$.

Since $y_{2}^{-} x y_{1} y_{2}^{+}$is a path in $\left\langle N_{G}\left(y_{2}\right)\right\rangle_{G}$ and $y_{2}^{-} y_{2}^{+} \notin E(G)$, by the observation (ii) we have $y_{2} \in V_{E L}(G)$. Thus, by the previous argument, $\left\langle\left\{y_{2}, y_{2}^{+}, y_{1}^{-}, y_{1}\right\}\right\rangle_{G} \simeq K_{4}$.

We show that $\left\{y_{1}, y_{2}\right\}$ is a cutset of G. Suppose, to the contrary, that (recall Lemma 9) $u v, u^{+} v^{-}$is a pair of parallel chords such that at least one of them crosses $y_{1} y_{2}$, i.e. such that $u, u^{+} \in y_{2} \vec{C} y_{1}$ and $v^{-}, v \in y_{1} \vec{C} y_{2}$.

Case	Cycle	Vertex of type 1
$u, u^{+} \in y_{2}^{+} \vec{C} y_{1}^{-} ; v^{-}, v \in y_{1} \vec{C} y_{2}$	$y_{1} \vec{C} v^{-} u^{+} \vec{C} y_{1}^{-} y_{2}^{+} \vec{C} u v \vec{C} y_{2} y_{1}$	y_{1}
$u=y_{2} ; v=y_{1}^{+}$	C	y_{1}
$u=y_{2} ; v^{-}, v \in y_{1}^{+} \vec{C} x^{-}$	$y_{1} x \vec{C} y_{2} v \vec{C} x^{-} y_{1}^{+} \vec{C} v^{-} y_{2}^{+} \vec{C} y_{1}$	y_{1}
$u=y_{2} ; v=x$	$x \vec{C} y_{2} y_{1}^{-} \overleftarrow{C} y_{2}^{+} x_{1}^{-} \overleftarrow{C} y_{1} x$	x
$u=y_{2} ; v=x^{+}$	C	y_{2}
$u=y_{2} ; v^{-}, v \in x^{+} \vec{C} y_{2}^{-}$	$x y_{2} v \vec{C} y_{2}^{-} x^{+} \vec{C} v^{-} y_{2}^{+} \vec{C} x$	x

Since these are, up to symmetry, all possibilities, $\left\{y_{1}, y_{2}\right\}$ is a cutset of G. By symmetry, $\left\{x, y_{1}\right\}$ and $\left\{x, y_{2}\right\}$ are also cutsets of G. But then, by Lemma $11,\left|x^{+} \vec{C} y_{2}^{-}\right|=\left|y_{2}^{+} \vec{C} y_{1}^{-}\right|=$ $\left|y_{1}^{+} \vec{C} x^{-}\right|=n_{G} / 2$, from which $n_{G}=\left|x^{+} \vec{C} y_{2}^{-}\right|+\left|y_{2}^{+} \vec{C} y_{1}^{-}\right|+\left|y_{1}^{+} \vec{C} x^{-}\right|+\left|\left\{x, y_{1}, y_{2}\right\}\right|=$ $3 n_{G} / 2+3>n_{G}$, a contradiction.

References

[1] Bondy, J.A.; Murty, U.S.R.: Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.
[2] Brandt, S.; Favaron, O.; Ryjáček, Z.: Closure and stable hamiltonian properties in claw-free graphs. UM Combinatorics Preprint Series, No. 23, The University of Memphis, Memphis, Tennessee, U.S.A., 1996 (submitted).
[3] Ryjáček, Z.: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997), 217-224.

[^0]: *Research supported by grant GA CR No. 201/97/0407

