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Abstract
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1 Introduction

In this paper we consider only finite undirected graphs G = (V(G), E(G)) without loops and
multiple edges. For any set A C V((), (A) denotes the subgraph of G induced on A, G — A
stands for (V(G) \ A). If A, B C V(G), then we denote N4(B) = {x € Alzy € E(G) for
some y € B}. If x € V(G), then we simply denote N(z) = Ny(g)({z}). A vertex z € V(G)
is said to be locally connected if (N(x)) is connected. The graph G is said to be claw-free
if it does not contain any induced subgraph isomorphic to the claw K 3. The independence
number of a graph G is denoted by () and its clique covering number (i.e. the minimum
number of cliques necessary for covering V() by 8(G). The notation §(G) stands for the
minimum degree of G and o (G) (k > 1) for the minimum degree sum of any k independent
vertices in G (for k > a(G) we set 03((G) = 00). The (vertex) connectivity of GG is denoted by
k(G), the matching number of GG (i.e. the maximum number of edges in a matching of () is
denoted by v((), and the vertex covering number of G (the minimum cardinality of a vertex
covering, i.e. is of a set T' of vertices such that each edge of (¢ has at least one vertex in T') is
denoted by 7(G'). The line graph of a graph G is denoted by L((). For other notation and
terminology not defined here we refer e.g. to [1].

Claw-free graphs have been intensively studied during the last decade, and particularly
sufficient conditions for a 2-connected claw-free graph to be hamiltonian have been subject
of many papers (see for example the survey [5]). Recently, a closure concept for claw-free
graphs was introduced by Ryjacek [13] as follows: the closure cl(() of a claw-free graph G is
obtained by recursively completing the neighborhood of any locally connected vertex of G,
as long as this is possible. The closure cl(() is well-defined (i.e. unique), remains a claw-free
graph and its connectivity is at least equal to the connectivity of (G. The following basic

properties of the closure cl(G) were proved in [13].
Proposition A [13]. Let GG be a claw-free graph and cl((F) its closure. Then
(1) there is a triangle-free graph H¢ such that cl(G) is the line graph of Hg,

(12) both graphs G and cl((i) have the same circumference.

Consequently, G is hamiltonian if and only if cl((7) is hamiltonian.

If G is a claw-free graph such that G = cl(G), then we say that G is closed. 1t is apparent
that a claw-free graph G is closed if and only if every vertex x € V(() is either simplicial
(i.e. (N(x)) is a clique), or is locally disconnected (i.e. (N(x)) consists of two vertex disjoint

cliques).



In [13], the closure concept was used to answer an old question by showing that every

7-connected claw-free graph is hamiltonian. H. Li [8] extended this result as follows.

Theorem B [8]. Every 6-connected claw-free graph with at most 34 vertices of degree 6 is

hamiltonian.

Several other results linked to the closure concept can be mentioned. For example, Brandt,
Favaron and Ryjacek [2], Ryjacek, Saito and Schelp [14] and Ishizuka [6] studied the behavior
of some other properties dealing with cycles and paths under the closure operation for claw-
free graphs. Brousek [3] gave a characterization of nonhamiltonian 2-connected claw-free
graphs that are minimal, i.e. that contain no nonhamiltonian 2-connected claw-free graph as

a proper induced subgraph.

2 Nonhamiltonian closed claw-free graphs with small

clique covering number

Let GG be a 2-connected closed claw-free graph and P be an arbitrary set of maximal cliques
in GG. We will often use the following properties of P.

1. Two distinct cliques in P never share more than one vertex. Assume otherwise that
the distinct cliques Cy and C of P have common vertices  and y. Then C; UCy — {x} is a
connected part of N(x) and thus, by the claw-freedom and by the definition of the closure,
Cy = Cy, which contradicts our choice of two distinct cliques. Analogously, if Cy and C; are
two disjoint cliques of P, any vertex of C; has at most one neighbor in C'y and symmetrically.

2. By the claw-freedom, three distinct cliques of P cannot share a common vertex and if
there are three cliques such that one of them shares one vertex with the two others, then the

last two cliques are disjoint.

In the following theorem we show that all 2-connected nonhamiltonian closed claw-free
graphs with small clique covering number can be described as spanning subgraphs of several
easily described graphs. The classes Fs, Fy, Fs are shown in Figures 1, 2, 3 (where the

circular and elliptical parts represent cliques containing at least one simplicial vertex).

Theorem 1. Let (G be a 2-connected closed claw-free graph.
(1) IfO(G) <2, then (G is hamiltonian.
(1) If3 < O(G) <5, then either G € Ufi?}"i, or (G is hamiltonian.
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F3 is the set of spanning subgraphs of Gy
Figure 1

F4 is the set of spanning subgraphs of GGy and G
Figure 2

Remark. The method of finding the classes JF; is illustrated by proving the cases 0(G) < 4.
The proof for §(G') = 5 is lengthy and somewhat tedious and is thus postponed to Section 4.
The authors nevertheless believe that the general method could be applicable even for larger

values of §((), e.g. with help of a computer.

Proof. Part (i) of the theorem can be seen immediately and we thus concentrate on the case
6(G) > 3.

Let GG be a 2-connected nonhamiltonian closed claw-free graph. Then G is the line graph of
a unique triangle-free graph H. Let Dy be the set of degree 1 vertices of H and H' = H — D;.
The graphs G and H' are respectively 2-connected and 2-edge-connected. Let 6 be the clique
covering number of G. We choose a minimum clique covering P = { By, By, - - -, By} of GG such
that each clique B; is maximal. Since P is minimum, each B; contains at least one proper
verter, 1.e. a vertex belonging to no other clique of P. The cliques B; correspond to stars
of H which are centered at distinct vertices by, by, ..., by of H', called the black vertices of
H. The other vertices of H will be called white. Since the set B = {by,by,---,bs} is a vertex
covering of H (i.e., every edge of H has at least one vertex in B), the set W = V(H)\ B
of the white vertices is independent. We call § any complete bipartite induced subgraph of
H’, one class of which is formed by two black vertices b and &', and the second one by white

vertices.



Fs is the set of spanning subgraphs of Gy, G5, Gg, Gr, Gg, Gg and Gig

Figure 3

Harary and Nash-Williams [12] proved that, for any graph H, the line graph L(H) is
hamiltonian if and only if H contains a dominating closed trail, i.e. a closed trail T" such
that the graph G — V(T') has no edge. Specifically, since the graph (' is nonhamiltonian,
H contains no dominating closed trail (shortly, DCT), and thus H' contains no closed trail

(shortly, CT) containing all its black vertices.

Note that if an endblock of H’ (i.e., a block of H' with exactly one cutvertex) is a subgraph
S with a black cutvertex, say b, and if we call J the graph obtained from H by deleting ' and
the neighbors of & in Dy, then H has a DCT if and only if J has a DCT. Moreover, the line
graph of H spans a graph obtained from the line graph of J by enlarging a clique containing
simplicial vertices. Since the clique covering number of the line graph of J is equal to § — 1,

this case can be reduced to the case 0 := 0 — 1.



Two vertices of H are said to be related if they are adjacent or if they are both black and
there exists between them a path of length 2, the inner vertex of which is white. If T"is a CT
in H, v is a vertex on T and b is a black vertex outside 7', then we say that b, v are T-related
if bv € E(H) or v and b have a white common neighbor outside 7.

The black length of a CT T of H is the number of its black vertices. We choose T' of
maximum black length and denote this length by bla(7'). Since T' does not contain all the ¢
black vertices of H, we have bla(T') < #—1. We also denote by blo( H') the number of blocks of
H', and by blo(T') the number of blocks of T'. Since H' is 2-edge-connected and triangle-free,
each block of H' contains a cycle of length at least 4, and thus, by the independence of W,
at least two black vertices. The same argument holds for T. Therefore, 1 < blo(H') < § —1
and 1 < blo(T) < bla(T)—1 < 6 —2 (in particular, § > 3). Moreover, if 2 < blo(H') =6 —1
or § —2, then at least one of the endblocks of H' exactly contains two black vertices and thus
has the structure & with a black cutvertex. We know that this case can be reduced to the
case § := 0 — 1. Hence we can suppose blo(H') =1 or 2 < blo(H’) < 6 — 3, where the second
case can happen only for § > 5.

Case 0 = 3. Let B = {by, b, b3}.

By the above, the graph H contains a DCT except possibly if blo(H') = 1, bla(T") = 2
and blo(7T') = 1. Then T has the structure § with, say, b; and by as black vertices. Since
blo(H') = 1, the third black vertex b3 of H is related to at least two vertices of T'. It is
not T-related to any of by, b, for otherwise we could find a CT of H through b, by and bs.
Hence b3 is adjacent to two white vertices w; and w, of T'. These two vertices are the only
white vertices of T for otherwise we can again find a CT of H of black length 3. Since H is
triangle-free, H' is a complete bipartite graph of classes {by, by, b3} and {w;,wy}. Moreover,
each vertex b; has at least one neighbor in D for otherwise if, say, b; has no neighbor in Dy,
then wibywybsw; 1s a DCT of H.

Therefore, the line graph G of H is the graph Gy of Figure 1.

Case § =4. Let B = {61762763764}.
The graph H contains a DCT except possibly if blo(H’) = 1 and either bla(T) = 2 and
blo(T) = 1, or bla(T") = 3 and blo(T) = 2 or 1.

(1) If bla(T) = 2 and blo(T') = 1, then T has the structure S with, say, b; and b, as black
vertices. Since blo(H') = 1 and by the choice of T', each of the two other black vertices
bs and by of H is adjacent to two white vertices of T'. Moreover, if T contains more than
two white vertices, then we can find a C'T of black length larger than 2. Hence, as in the

case § = 3, H' is isomorphic to a complete bipartite graph of classes {by, by, b3, b4} and



(iii)

— 7

e

H G=L(H)
Figure 4

{wy,wy}. But bw;bawybswibywsyby is then a DCT of H, which proves the impossibility

of this case.

If bla(T') = 3 and blo(T") = 2, then the two blocks of T have the structure S, say S;
of black vertices by and by, and Sy of black vertices by and bs. Since blo(H') = 1, the
fourth black vertex by of I is T-related to some vertex in S; \ {b2} and some vertex
in Sy \ {b2}. Whichever these vertices are, we get a CT of H containing the four black

vertices, which proves the impossibility of this case.

Hence the case § = 4 reduces to blo(H') = 1, bla(T) = 3 and blo(T') = 1. Then T
necessarily contains a cycle C' through, say, by, by and bs. Since H is triangle-free, C
also contains at least one white vertex. Let ' = bjw;bswsbswsby, where wy and ws
possibly do not exist. Since blo(H') = 1, the fourth black vertex by of H is T-related
to at least two vertices of C'. By the choice of T', two such vertices cannot be adjacent

on ', neither they can be both black. We can distinguish three situations.

— The vertex by is adjacent to exactly one white vertex of C', say wy, and is T-related
to bs. By the choice of T, there are no other white vertices in H' (relating two of
the four black vertices) than w; and possibly ws, ws and a vertex wy that T-relates
bs and bs.

The line graph G of H is then a spanning subgraph of the graph G/ if b3 has no
neighbor in Dy, of the graph G5 otherwise. For instance, Figure 4 shows G if ws

and wy exist, wy does not exist, and b3 has one neighbor in D.

— The vertex by is adjacent to exactly two white vertices of C'. Say, by is adjacent to
wy and wq, but not to ws (if ws exists). By the choice of T', there are no relations
between two of the b;’s except those which are shown in Figure 5, and both by and

by have some neighbor in Dj.



Figure 5

The line graph G of H is then a spanning subgraph of the graph ;. For instance,
Figure 5 shows (G when by and b3 are related by three paths of length 2, b; has

one neighbor in Dy, and b3 has none.

— The three vertices wy, wq, w3 exist and the vertex by is adjacent to all of them.
By the choice of T', there is no relation between two of the four b;’s, except the
relations created by wy, wsy, ws. Moreover, each of the four b;’s has some neighbor
mm D;.

The line graph G of H is then the graph Gs. |

3 Degree conditions for hamiltonicity

In the main result of this section, Theorem 8, we show that for any integer & > 4, every
sufficiently large graph G with minimum degree sum o4 (G) > n+(k—2)? is either hamiltonian
or its closure has small clique covering number (and in this case the method of Section 2 is
applicable for finding the classes of exceptions).

Before formulating the main result, we first prove several auxiliary statements.

Lemma 2. Let (¢ be a closed claw-free graph of order n and {ay,as,...,a;} C V(G) an
independent set. Then

(i) [N(a:) " N(a;)| <2, 1<i<j<t,

t

(17) Zd(ai) <n+t?—2L.

=1



Proof. (i) Suppose that e.g. by,b2,b5 € N(a1) N N(ag). If {by,b2,b3} is independent, then
({a1,b1,b9,b3}) is an induced claw. Hence we can suppose that e.g. biby € E(G), but then,

since (¢ is closed, ajay € E(G), a contradiction.

! tt—1
(4¢) By part (i), > d(a;) §n—t—|—2% =n+1* -2 [ |
=1

Lemma 3. (i) Any triangle-free graph H whose matching number v(H) and vertex covering
number 7(H) satisfy v(H) < 7(H), contains an edge vy such that d(x)+d(y) < v(H)+7(H).

(ii) Let G be a closed claw-free graph. If a(G) < §(('), then

5(G) < o(G) + 0(G) — 2.

Proof. (i) Let T' be a minimum vertex covering of H and choose a maximum matching M
of H such that M saturates as few vertices of T' as possible. Note that, since T' is a vertex
covering, V(H)\ T is an independent set, and since the matching M is maximum, the set of
insaturated vertices is independent.

If T' contains an insaturated vertex x, then all the neighbors of x are saturated. If all the
vertices of T' are saturated by M then, since v(H) < 7(G), (T') contains some edge xa’ of M.
If # has some insaturated neighbor w € V(H)\T, then the matching M’ = (M \{z2'})U{aw}
contradicts the choice of M. Since all the vertices of (T') are saturated, again all the neighbors
of x are saturated. Therefore in both cases, since x is adjacent to at most one endvertex of
each edge of M by the triangle-freeness hypothesis, d(z) < |M| = v(H).

The vertex x has at least one neighbor y in V(H) \ T for otherwise 7" = T\ {z} is a
vertex covering contradicting the minimality of T'. Since V(H)\ T is independent, N(y) C T
and thus d(y) < |T'| = 7(H), which achieves the proof of Part (7).

(17) Let H be the triangle-free graph such that G = L(H). Then o(G) = v(H), §(G) =
7(H) and the degree of a vertex u of (G corresponding to an edge xy of H is equal to
dp(x) + dy(y) — 2. The result is thus a direct consequence of Part (7). [ |

Lemma 4. Let GG be a closed claw-free graph. Then
0(G) < 2a(G).

Proof. Let D = {d;,ds,...d;} be a maximal independent set in . Then we have V(G) =
L, N(d:)UD. Since N(d;) U{d;}, 1 <i < t, can be covered by one or two cliques, G can
be covered by at most 2t < 2a(G) cliques. [ ]



The following proposition shows that a lower bound on degrees of a claw-free graph ¢

implies an upper bound on the clique covering number of its closure cl().

Proposition 5. Let k > 2 be an integer and let (i be a claw-free graph of order n such that
d(G) > 3k — 5 and
or(G) >n+ k? — 2k.

Then 0(cl(G)) <k — 1.

Proof. If (7 satisfies the assumptions of the theorem, then clearly so does its closure cl(().
Hence we can suppose that G is closed.

Let, to the contrary, () > k. For a(G) > k we have an immediate contradiction with
Lemma 2. Hence o(G) < k — 1, implying o(G) < 6(G). By Lemma 3 and Lemma 4 then
G <alG)+0(G)—2<k—-1+42(k—1)—2=3k—75, a contradiction. [ |

Corollary 6. Let k > 2 be an integer and let GG be a claw-free graph of order n > 2k* — 3k

and minimum degree

5(G)>%+k—2.

Then 0(cl(G)) <k — 1.

Proof. For n > 2k* — 3k and 6(G) > £+ k — 2 clearly 6(G/) > 3k — 5. The rest of the proof

follows immediately from Proposition 5. [ |

Example. Let ¢,k be integers, & > 2, ¢ > 2k — 2, and let ¢ = K} x K; be the Cartesian
product of two cliques K, Ky. Then |[V(G)|=n=Fkt, 6(G)=k+t—-2>3k—-4>3k—-5
and o,(G) = k6(G) = k(k 4+t —2) = n + k* — 2k, but §(G) = k. This example shows that
the lower bounds on o(() and §(G) in Proposition 5 and Corollary 6 are sharp.

However, in the following we show that these lower bounds on o(G) and §(G') can be
improved under the additional assumption that GG is nonhamiltonian.

We again begin with an auxiliary statement.

Lemma 7. Let GG be a closed claw-free graph of order n and connectivity () such that
1 <k(G) < (@) and let A ={ay,...,a.} be a maximum independent set in G. Then

O

Zd(ai) <n+a? —4da+ 2 + k(G).

=1
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Remark. The well-known theorem by Chvatal and Erdds [4] states that every graph G with
a(G) < k(G) is hamiltonian. Thus, the assumption x(G) < a(G) of Lemma 7 is satisfied by

any nonhamiltonian graph G.

Proof. Let S C V(G) be a minimum vertex cutset in G (i.e., |S| = & = &(G)), and let
(41, G2 be the components of G — 5. (Note that, by the minimality of 5, each of the vertices
of S has adjacencies in all components of G — S, and hence G — S has two components since
G is claw-free). Let r = |[V(G1) N A|, s =[S N A| and t = |[V(Gy) N A|. Suppose that A is
chosen such that s is minimum and the notation is chosen such that r <t. Since s < & < a,
t>1.

By part (¢) of Lemma 2, any two vertices x,y € A can have in G at most two common

neighbors. In addition to this fact, we make the following observations.

e lfx e SNAandye V(G,) (i = 1,2), then 2 and y can have at most one common
neighbor outside S, since if e.g. N(z) N N(y) = {z1,22} C V(G1), then z122 ¢ E(G)
(since GG is closed and x,y are independent), but then, for any v € N(x) N V(Gy),

({x,v,21,29}) is an induced claw.

e For any vertex z € S\ A there is at most one pair @,y € A such that z € N(x) N N(y)
(since if z is a common neighbor for two different pairs, then z has at least three

independent neighbors and hence z is a center of an induced claw).

o lfx e V(G)NAand y € V(Gy) N A, then N(2) N N(y) C S\ A (since S is a cutset
and A is independent).

Thus, out of the total (g) pairs of vertices of A, rs + ts pairs have at most one common
neighbor outside S, rt pairs have no common neighbor outside 5, and x — s vertices in

S\ A can play the role of common neighbors for at most k — s additional pairs. This gives
Zd(ai) <n—oa+trst+its+ Z(ﬂcé—_ll—rs—ts—rt)—l—/i—s =n+a?—20—-2rt—rs—ts—s+k,
=1

1=
from which, using t = o — r — s,

O

Y d(a) <n+a’—2a+rk— f(r,s),

=1
where
flr,s)=a2r+s)— 2r? — 2rs — 5% + s.

a— S

If » > 1, then, by the definition of r, s and ¢, 1 <r < and 0 < s < k. A straight-
forward calculation then shows that, for these values of r, s and under the assumption that

K < a, the function f(r,s) achieves for r = 1 and s = 0 its minimum value f,,;, = 2a — 2.

11



If r = 0, then necessarily s > 2, since otherwise adding a vertex of GG; to A (if s = 0) or
replacing in A the only vertex of S N A by a vertex of Gy (if s = 1) we get a contradiction
with the choice of A. Hence we have in this case f(0,s) = as — s* + s for 2 < s < k and
again a straightforward checking shows that the minimum value of f(0,s) for 2 < s < and
2<k<a-—1lisequal to frm = f(0,2) =20 — 2.

Hence in both cases we have

Zd(ai)§n—|—oz2—20z—|—/<;—fmm:n—l—oz2—4oz—|—2—|—/<;.

=1

Now we can prove the main result of this section.

Theorem 8. Let k > 4 be an integer and let G be a 2-connected claw-free graph with
|[V(G)| = n such that n > 3k* — 4k — 7, §(G) > 3k — 4 and

Uk(G)>n—|—k2—4k—|—7.

Then either §(cl(G)) < k — 1, or G is hamiltonian.

Remark. In the first case, i.e. if 0(cl(G)) < k—1, then G is hamiltonian or belongs to some
of the classes of nonhamiltonian exceptions that can be found by using the method indicated

in Section 2.

Proof. If ¢ is a nonhamiltonian graph satisfying the assumptions of the theorem, then
clearly so does its closure cl((7), and hence we can suppose that (7 is closed. It remains to
show that 8(G) <k — 1. Let, to the contrary, 8(G) > k.

If a(G) > k+1, then by Lemma 2, we have o441 (G) < n+(k+1)*—2(k+1) =n+k*—1,
implying o (G) < ﬁ(n +k*—1) <n+k*—4k +7 for n > 3k? — 4k — 7, a contradiction.
Hence a(G) < k.

If a(G) <k —1, then o(G) < 0(G) and, by Lemma 3 and Lemma 4, §(G) < o(G) +
0(G)—2<(k—1)42(k—1)—2=3k—5, a contradiction.

Hence we have o(G) = k. By Theorem B, x(G) <5 (since §(G) > 3k —4 > 8 for k > 4).
By the Chvatal-Erdés Theorem [4] (see also the remark after Lemma 7), x(G) < ao(G).
Lemma 7 then gives o (G) < n + k* — 4k + 7, a contradiction. [ ]

From Theorem 8 we obtain the following minimum degree result.

12



Theorem 9. Let k > 4 be an integer and let G be a 2-connected claw-free graph with
|V(G)| = n such that n > 3k* — 4k — 7 and

n+k®—4k+7
p )

Then either §(cl(G)) < k — 1, or G is hamiltonian.

5(G) >

kE? — 4k
Proof. For n > 3k* — 4k — 7 and k > 4 obviously §(G) > nt ’ il > 3k — 4. The

rest of the proof follows immediately from Theorem 8. [ |

From Theorems 8 and 9 we obtain the following corollaries, in which F3, Fy, Fs are the

classes introduced in Theorem 1 (see Figures 1, 2, 3).

Corollary 10. Let G be a 2-connected claw-free graph with n > 77 vertices such that
4(G) > 14 and

Then either G € F3U F4 U Fs, or G is hamiltonian.

Proof follows immediately from Theorems 8 and 1 by setting k = 6. [ |

It is easy to see that Corollary 10 yields in a straightforward way a corresponding minimum

degree result. We show that the additive constant in this condition can be slightly inproved.

Corollary 11. Let G be a claw-free graph of connectivity k(G) = 2 with n > 78 vertices

satisfying
16
5(G) > ”+6 .

Then either G € F3U F4 U F5, or G is hamiltonian.

Proof. We can again suppose that (i is closed. Let §(G) > 6. Similarly as in the proof
of Theorem 8, for a(G) > 9 we have o4(() < g(n +63) < n+4 16 for n > 78, and for
a(G) <5 we have §(G) < a(G)+0(G) —2 < 13, both contradicting the assumptions. Hence
6 < o(G) < 8.

If a(G) = 6, then, by Lemma 7, 06(G) < n + 16, implying 6(G) < 218 a contradiction.

If o(G) = 7, then similarly Lemma 7 gives o7(G) < n+ 25, implying §((G) < 2425 < o418

for n > 78, and for a((G) = 8 analogously os(G) < n 4+ 36, implying §(G) < 228 < 2418

13



for n > 78. This contradiction proves that §(G') < 5. The rest of the proof follows from
Theorem 1. [ |

Remarks. 1. M.C. Li [10], [11] and later on G. Li, M. Lu and Z. Liu [7] proved that every 3-
connected claw-free graph satisfying (&) > 22 ([10], [11]) or §(G) > ”%7 ([7]), respectively,
is hamiltonian. Hence Corollary 11 remains true if we replace the assumption "k(G) = 27
by ”2-connected”.

2. Corollary 10 improves the strongest known result in this direction by Li, Lu, Tian and
Wei [9].

3. Using Corollary 6 instead of Lemma 7, we can get the result of Corollary 11 with
G > %—|—4f0r n > 54.

4. Trommel, Veldman and Verschut [15] proved that every claw-free graph G of order
n and minimum degree §(G) > /3n + 1 — 2 contains cycles of all lengths from 3 to the
circumference of (G. This result immediately implies that all graphs that are hamiltonian by

Corollary 11 (and Remark 1) are pancyclic.

4 Appendix

Proof of Theorem 1, case § = 5.

We follow the notation and terminology introduced in the first part of the proof. Let
B = {by,b2,b3,b4,b5}, and let T" be a CT in H with maximum black length. Under this
assumption, we assume that blo(7') is minimum, and under both assumptions that 7' has
also minimum length (length meaning now the number of edges as usual). Then clearly 2 <
bla(T) <4 and 1 < blo(T") < 3. We consider each of these cases separately. The subcase for
bla(T) = k and blo(T') = ¢ will be referred to as Subcase k/{. We assume that the notation
is chosen such that T' contains by, by, ..., by. For a vertex v outside T, we denote by R(v)
the set of vertices of T' that are T-related to v. We also denote by w;; the white vertex on
T between b; and b; when there is no ambiguity.

A black vertex b ¢ V(T) will be said to be insertible if b is T-related to two vertices
of T, r} and r, in such a way that if we replace the part of T' between r},r? by the two
paths relating b to r} and r7, we get a CT containing b and all black vertices of T'. We also
i)
i> b -path P and b;; is T-related to a vertex TZ on T (7 = 1,k) in such a
way that P together with the paths relating b;; to TZ (j = 1,k) and with the rest of T yield

analogously speak of insertibility for several black vertices b outside T' if they are

TRERE

connected by a b
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a CT containing b ., b;, and all black vertices of T'. Clearly no insertible vertex can exist

iy - -
outside 7" if T is supposed to have maximum black length.

Let F' be a subgraph of H' containing s+ 1 (1 < s < 6 —2) black vertices by, ..., b,y and
let Hy. be the graph obtained from H' by contracting F' to one black vertex (i.e., by replacing
F by a new black vetex b, adjacent in HJ to all vertices of H' — F' that were adjacent in H’
to come vertex of F'). Then clearly L(H};) can be covered by 6 — s cliques. In some subcases,
we will often meet a situation when it is straightforward to check that, for a certain subgraph
F of H', H has a DCT if and only if H} has a CT containing all its black vertices. We will
then say that the subcase reduces to § — s by contracting by, ...,bs41 to a clique. This occurs
e.g. if I is the structure & with a black cutvertex. Another example can be seen in Figure 5,
where the edge cutset formed by the matching {bywy, bzwy} of H separates the subgraph F
containing the black vertices by and b3 from the rest of H. Clearly, H has a DCT if and only
if Hj has a CT containing all black vertices. In G = L(H), the two cliques B; and Bs form

a spanning subgraph of one clique with vertex set V(B;) U V(Bs).

Subcase 4/3. There are - up to a symmetry - 2 possibilities:

Subcase 4/3-1. There is a unique black cutvertex, say b; common to the three blocks.

The black vertices by, bs and b4 are respectively inner vertices of each block and related
to by using two white vertices. Vertex bs is outside T" and the only case when it is not
insertible corresponds to bs being adjacent to the two white vertices of the same block
(say for example to the white neighbors of by). Then, contracting bs, by, by to a clique,

we reduce to 6§ = 3.

Subcase 4/3-2. There are two black cutvertices, say by and bs, by is in the same endblock

as by, by in the same endblock as b3, every block consists exactly of a C'y with alternate
black and white vertices and b5 is out of T'. If b5 is not insertible, then necessarily it is

adjacent to two white vertices in the same block, but then this case can be reduced to

0=3o0r 0 =4.

Subcase 4/2. Here also, there are two possible structures for 7.

Subcase 4/2-1. The cutvertex is white and the two blocks consist exactly of two C4’s

with alternate black and white vertices and a common white cutvertex. We also assume
that b; and by are in, say, block 1, b3 and b4 in block 2. Vertex b5 is out of T" and the
only case when b5 is not insertible and blo(7') is minimum corresponds to bs being only

related to white vertices on 7.
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Subcase 4/2-1-1: |R(bs) N T'| is included in block 1. Then contracting b3 and by

into a clique, we reduce to 6 = 4.

Subcase 4/2-1-2: |R(bs) N T| = 2 and both white vertices related to bs are in
different blocks. Then also contracting b3 and b4 into a clique reduces this case to

0 =4.

Subcase 4/2-1-3: |R(bs) N T| = 3. We then get the exception graph Gjy.

Subcase 4/2-2. The cutvertex is black, one block, say block 1, consists exactly of a C}

with alternate black and white vertices, we also assume that by is in block 1, b3 in both
blocks, bs and by in block 2 (with at least one additional white vertex) and bs is outside
T. The vertex bs is not insertible and blo(7') is minimum only in some cases when bs

is T-related to at most one black vertex of 7.

Subcase 4/2-2-1: |R(bs) N B| = 1. The only two possible cases are R(bs) N'T =
{b2, w34} where ws4 is the (possible) white vertex on T' between bs and by, or
R(bs) N'T = {by, wa 3} where wy 3 is the (possible) white vertex on T between b,
and bs. Both cases are reducible to 6 = 4.

Subcase 4/2-2-2: |R(bs) N B] = 0. By the non-insertibility and since blo(T") is

minimum, the white vertices in R(bs) are necessarily in the same block and then

the situation is reducible to § = 3 or 4.

Subcase 4/1. In this subcase we first show that we can suppose that 7' is a cycle containing
by, by, bs, by (with possible diagonal edges not on T'). Let, to the contrary, A = {vy,..., 05} C
V(T') be the set of vertices of T' having degree in T at least 4. Since blo(T) =1, k > 2. The
trail T then consists of at least 2k paths Py,..., P, (¢ > 2k) with endvertices in A.

Suppose that & > 3. Since B is a covering and |B N V(T)| = 4, at least one vertex of A
is black (otherwise some edge of some of the paths P; remains uncovered by B). But then
at least 2k — 3 of the paths P; have all interior vertices white, implying that some of these
paths yield a cycle €' such that all vertices of (' outside A are white. Removing the edges of
C from T we get a contradiction with the choice of T'. Hence k£ = 2.

Let first A = {b3,b4} C B. Then similarly at least 2 of the paths P; have all interior
vertices white, contradicting the choice of T

Next suppose that A = {by,w} for some white vertex w. If at least two of the remaining
black vertices are on the same P;, we have a cycle containing all black vertices of T'. Hence
we can suppose P; contains b;, 1 = 1,2, 3, as an interior vertex. Since w is white, / = 4 and P,

is the edge wby (otherwise we have and edge with no black vertex). Since H is triangle-free,
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there are white vertices wy, wq, w3 such that P, = wb;w;by, 1 = 1,2,3. But then, whichever
the vertices in R(bs) are, we always get a DCT in H.

Finally, let A = {wy,wy} C V(T)\ B. Then ¢ =4, and P, = wibw, for ¢ = 1,2,3. For
R(bs) = {w1,wy} we get the exception class (g, all other possibilities yield a DCT in H.

Hence we can suppose for the rest of Subcase 4/1 that T is the cycle bybybsbyby with
possibly a white vertex w;;1; added between the two consecutive black vertices b; and b;1;
(indices are considered modulo 4) for some values of ¢ from 1 to 4. Some diagonals can also
exist except between two white vertices and only if they do not create triangles. Vertex b5 is
out of T" and supposed not to be insertible, whence if it is related to b; it will not be related
to w; ;41 nor to b1 (and symmetrically with ¢ — 1 instead of ¢ +1). We then distinguish two

cases.

Subcase 4/1-1: |R(bs) N B| > 1. By symmetry, we only have to consider three subcases.

Subcase 4/1-1-1: R(bs) = {b1,bs}. Straightforward checking shows that there are

no additional edges (otherwise we have a DCT), and then we have the exception

graph G5 or Gy or (.

Subcase 4/1-1-2: R(bs) = {b1, w23, w34}. Analogously, there are no additional
edges and this graph yields the exception graph Gé.

Subcase 4/1-1-3: R(bs) = {b1,ws3}. Since we are not in the previous case, no
edge from b5 to T' can be added. However, there is no DCT if bjws 4 € E(H) or
bswi 4 € E(H). If byjws 4 ¢ FE(H), then, contracting bs, by and w4y (if any) into
a clique reduces the case to § =4, if bjws 4 € F(H) and bsw; 4 ¢ F(H), then we
reduce the situation to § = 4 by contracting by, by and w34 into a clique. If both

biws 4 € F(H) and bswy 4 € F(H), we have the exception graph G1o.

Subcase 4/1-2: |R(bs) N B| = 0. Here we need to distinguish four possibilities.

Subcase 4/1-2-1: R(bs) = {wy 2, w23, ws4,wq1}. There are no additional edges

and this graph yields the exception graph G'r.

Subcase 4/1-2-2: R(bs) = {w1 2, w23, ws4}. Straightforward checking shows that
the only possible additional relation not to get a DCT is (up to symmetry) between
by and wyq. If bywyy € E(H), then L(H) = Gy, if bywsy ¢ E(H), contracting
by, w4y, by into one clique reduces the situation to the case § = 4.

Subcase 4/1-2-3: R(bs) = {wy2,w23}. If by has some additional neighbor in T,

we can exchange by and b5 and we then are in Case 4/1-2-1 or in Case 4/1-2-2.
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Otherwise (i.e. if by has no other neighbor), contracting by, bs, by into a clique

reduces the case to 6 = 3.

Subcase 4/1-2-4: R(bs) = {w1 9, ws4}. If there is no black-white edge between any

of by, by, wy; and any of by, bz, wq 3, we can reduce the case to § = 3 by contracting

by, by, ws, into a clique and by, b3, wq 3 into another one. So we can suppose
biwys € F(H). Then bywys ¢ E(H) (otherwise bywsg sbatwy 2bsws 4bsws 5b4(wa,1)by
is a DCT). If bywy1 € F(H), then checking that any additional relation yields a
DCT, we have L(H) = (5. Hence also bswyy ¢ E(H). This implies that there
is no relation between by, by, wig, w3, wey and the rest of V(H), but then

contracting these vertices into one clique reduces the situation to § = 4.

Subcase 3/2. Assume that by is the cutvertex of 7', by is in block 1, b3 in block 2, with both
blocks consisting of a Cy with alternate black and white vertices. Vertices by and b5 are out
of T'. If by and b5 are related, then they both also have a relation on 7', otherwise the case
can be reduced to § = 3 or 4. If at least one relation is a black vertex on T, or both are
white but not in the same block, then in any case b4 and b5 constitute an insertible path. If
both relations on 7" are white in the same block, we can reduce to § = 4. So we assume that
bs and bs are not related. If by or by is related to a black vertex on 7" or to two white vertices
in different blocks of T', then it is insertible. Hence each of b, and b5 is related to the two
white vertices of a block. If both are related to the white vertices of the same block, we get

a DCT, otherwise, contracting for example by, b3 and b5 into a clique, we reduce to § = 3.

Subcase 3/1. T is the cycle bybybsb; with at least one and at most three white vertices added
between two black vertices, and with no additional edges. As in Subcase 3/2, by and b5
cannot be related (otherwise they either constitute an insertible path or yield a CT of black
length 4). If by or bs has two consecutive relations on T' (one of them black), then we also have
the insertibility property. It remains to consider the case when by and b5 are related either
to two white vertices or to a black vertex and a non-consecutive white vertex. Checking all

the different possible combinations, we always get a closed trail of black length 4 or 5.

Subcase 2/1. We immediately see that this case never occurs since we can always obtain a
closed trail of black length at least 3. |

Remark. The authors were recently informed that a result analogous to Corollary 11

was independently obtained by E.J. Kuipers and H.J. Veldman.
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