On weights of induced paths and cycles in claw-free and $K_{1, r}$-free graphs

J. Harant
M. Voigt
DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY OF ILMENAU D-98684 ILMENAU, GERMANY
S. Jendrol ${ }^{1}$
DEPARTMENT OF GEOMETRY AND ALGEBRA
P.J.ŠAFÁRIK UNIVERSITY
SK-04154 KOŠICE, SLOVAKIA
B. Randerath
DEPARTMENT II OF MATHEMATICS
RWTH AACHEN
D-52056 AACHEN, GERMANY
Z. Ryjáček ${ }^{2}$
DEPARTMENT OF MATHEMATICS UNIVERSITY OF WEST BOHEMIA CZ-30614 PILSEN, CZECH REPUBLIC
I. Schiermeyer ${ }^{3}$
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF COTTBUS
D-03013 COTTBUS, GERMANY

[^0]
Abstract

Let G be a $K_{1, r}$-free graph $(r \geq 3)$ on n vertices. We prove that, for any induced path or induced cycle on k vertices in G ($k \geq 2 r-1$ or $k \geq 2 r$, respectively), the degree sum of its vertices is at most $(2 r-2)(n-\alpha)$ where α is the independence number of G. As a corollary we obtain an upper bound on the length of a longest induced path and a longest induced cycle in a $K_{1, r}$-free graph. Stronger bounds are given in the special case of claw-free graphs (i.e. $r=3$). Sharpness examples are also presented. © ??? John Wiley \& Sons, Inc.

1. INTRODUCTION

Claw-free graphs have been a subject of interest of many authors in the last years (see e.g. a recent survey by Faudree et al. [6]). For this class of graphs we investigate problems which have their origin in the theory of planar graphs.

Throughout the paper we use the most common graph theoretical terminology. For the concepts not defined here we refer to [1].

A graph G is called $K_{1, r}$-free if there is no induced subgraph of G isomorphic to the complete bipartite graph $K_{1, r}$. By a claw we mean the graph $K_{1,3}$. Thus, a graph G is said to be claw-free if it does not contain an induced subgraph that is isomorphic to $K_{1,3}$. For a subgraph H of G the weight $w_{G}(H)$ of H in G is the sum of degrees of vertices of H in G, i.e.

$$
w_{G}(H):=\sum_{v \in V(H)} d_{G}(v) .
$$

If no ambiguity can arise we write simply $w(H)$ instead of $w_{G}(H)$. Grünbaum [7] in connection with a beautiful result of Kotzig, who proved [11] that every planar 3connected graph contains an edge $e=u v$ of weight $w(e)=d(u)+d(v) \leq 13,13$ being best possible. This result served as starting point for many investigations mainly in polyhedral graphs.

Ivančo [8] proved that every graph of minimum degree at least 3 and of orientable genus g contains an edge e of weight $w(e) \leq 2 g+13$ if $0 \leq g \leq 2$ and $w(e) \leq 4 g+7$ if $g \geq 3$.

At the Conference at Prachatice (Czechoslovakia) in 1990 P. Erdős posed the question of finding an upper bound for the minimum edge weight in the class $\mathcal{G}(n, m)$ of all graphs having n vertices and m edges. A first step towards a solution was made by Ivančo and Jendrol [9]. For the precise answer to this question see Jendrol and Schiermeyer [10].

In planar graphs, results analogous to Kotzig's have been achieved only recently for connected subgraphs of order t with $t \geq 3$. Enomoto and Ota [3] proved that every 3connected planar graph G of order at least t contains a connected subgraph H of order t such that $w_{G}(H) \leq 8 t-1$. Furthermore, they found a graph G^{*} in which each connected subgraph K of order t has weight $w_{G^{*}}(K) \geq 8 t-5$. Fabrici and Jendrop [4, 5] proved that
every 3-connected planar graph G with $\Delta(G) \geq 5 k$ contains a path on k vertices P_{k} such that $w\left(P_{k}\right) \leq 5 k^{2}$. They constructed a graph G^{*} in which every path P on k vertices has weight $w_{G^{*}}(P) \geq k \log _{2} k$.

Mohar [12] has proved that each hamiltonian planar graph of order n contains a path P_{k} on k vertices, $k \leq n$, having weight $w\left(P_{k}\right) \leq 6 k-1$. The bound $6 k-1$ is tight. Mohar's approach allows to prove that each hamiltonian graph of order n and of size m has a path P_{k} on k vertices, $k \leq n$, such that $w\left(P_{k}\right) \leq \frac{2 k m}{n}$.

During the C^{5}-workshop at Burg near Cottbus in November 1997 the authors started investigations of subgraphs having restricted weights in the family of claw-free graphs on n vertices. Since complete graphs are claw-free, there is no interesting upper bound for $w_{G}(H)$ if H is considered to be a subgraph of G. However, the situation changes if H is required to be an induced subgraph of G. The present paper gives first results concerning claw-free graphs which contain induced paths or cycles.

We consider a connected simple claw-free graph G with vertex set $V(G)$, edge set $E(G)$ and of order $n=|V(G)|$.

Assume G has an induced path on k vertices denoted by P_{k}. Analogously, by C_{k} denote an induced cycle on k vertices. We are interested in an upper bound for $w\left(P_{k}\right)$ and $w\left(C_{k}\right)$ of such a path or cycle, respectively.

Theorems 1, 2 and 3 give our main results which will be proved in Section 2.

Theorem 1. Let G be a connected claw-free graph of order n. Let I^{*} be a maximum independent set of G with $\alpha=\left|I^{*}\right|$.
Then for every induced path P_{k} in $G(k \geq 5)$,

$$
w\left(P_{k}\right) \leq 4 n-6 \alpha+2 k-2 t+\min (t, 2)-\left(r_{3}+r_{1}+2 r_{0}\right)
$$

where t denotes the number of vertices of I^{*} belonging to P_{k} and r_{i} is the number of vertices belonging neither to I^{*} nor to P_{k} and having exactly i neighbors on P_{k}.
Furthermore, for every induced cycle C_{k} in $G(k \geq 6)$,

$$
w\left(C_{k}\right) \leq 4 n-6 \alpha+2 k-2 \bar{t}-\left(\overline{r_{3}}+2 \overline{r_{0}}\right)
$$

where \bar{t} denotes the number of vertices of I^{*} belonging to C_{k} and $\overline{r_{i}}$ is the number of vertices belonging neither to I^{*} nor to C_{k} and having exactly i neighbors on C_{k}.

Note that the bound is computable in polynomial time since the determination of a maximum independent set is known to be polynomial in the class of claw-free graphs [?].

The following theorem gives a more transparent result.

Theorem 2. Let G be a connected claw-free graph of order n and independence number α. If H is an induced path of length at least 5 or an induced cycle of length at least 6 , then

$$
w(H) \leq 4 n-4 \alpha
$$

In fact, we can prove a little bit more. Let I^{*} be a maximum independent set of G, P_{k} an induced path of $G(k \geq 5)$ and t the number of vertices of I^{*} belonging to P_{k}. Then, $w\left(P_{k}\right) \leq 4 n-4 \alpha-2+\min (t, 2)$.

It is interesting to ask about the sharpness of these bounds. In Section 3 we shall give examples which attain equality in Theorems 1 and 2. Furthermore we shall show that the coefficients in Theorem 1 are best possible.

Theorem 2 can be generalized to $K_{1, r}$-free graphs.

Theorem 3. Let G be a connected $K_{1, r}$-free graph ($r \geq 3$) of order n and let I^{*} be a maximum independent set of G with $\alpha=\left|I^{*}\right|$. If H is an induced path of length at least $2 r-1$ or an induced cycle of length at least $2 r$ in G, then

$$
w(H) \leq(2 r-2)(n-\alpha)-(r-3)(k-t) \leq(2 r-2)(n-\alpha)
$$

where t denotes the number of vertices of I^{*} belonging to H.
Again, for every induced path P_{k} in $G(k \geq 2 r-1)$ we have a refinement of the inequality: $w\left(P_{k}\right) \leq(2 r-2)(n-\alpha)-2+\min (t, 2)-(r-3)(k-t)$.

Note that the argument used in the proof of Theorem 3 admits proving an analogous result for any independent set I. Replacing α by $|I|$ we obtain a result that is slightly weaker but easily computable.

Theorem 3 and further information on $\alpha(G)$ yield immediately an upper bound on the number of vertices of an induced path or induced cycle in a $K_{1, r}$-free graph. An example is the following

Corollary 4. Let G be a $K_{1, r}$-free graph having n vertices, m edges and minimum degree δ. If G contains an induced path P_{k} or an induced cycle C_{k} on k vertices, then $k \leq(2 r-2) \frac{2 m n}{\delta(2 m+n)}$.

Proof. Y. Caro [2] and V.K. Wei [13] independently proved that $\alpha(G) \geq$ $\sum_{x \in V(G)} \frac{1}{1+d_{G}(x)}$ for an arbitrary graph G. Using Jensen's inequality $\phi\left(\sum \lambda_{i} x_{i}\right) \leq$ $\sum \lambda_{i} \phi\left(x_{i}\right)$ for any convex function ϕ and $\sum \lambda_{i}=1, \lambda_{i} \geq 0$ we have $\alpha(G) \geq \frac{n^{2}}{2 m+n}$. With $w\left(P_{k}\right) \geq k \delta, w\left(C_{k}\right) \geq k \delta$ and Theorem 3 the Corollary follows.

2. PROOFS OF THE MAIN RESULTS

In the sequel we usually consider the case where H is an induced path P_{k} and discuss the situation for the induced cycle C_{k} only if the result differs from the first one.

The vertices of $P_{k}\left(C_{k}\right)$ will be denoted by v_{1}, \ldots, v_{k}. We consider a maximum independent set I^{*} of G with $\alpha=\left|I^{*}\right|$. Let $T=I^{*} \cap P_{k}\left(\bar{T}=I^{*} \cap C_{k}\right)$ be the set of vertices of I^{*} which belong to $P_{k}\left(C_{k}\right)$ and $I=I^{*} \backslash P_{k}\left(\bar{I}=I^{*} \backslash C_{k}\right)$ the set of vertices of I^{*} which do not belong to $P_{k}\left(C_{k}\right)$. The cardinality of $T(\bar{T})$ is denoted by t (\bar{t}). The set $R=V(G) \backslash\left(P_{k} \cup I\right)\left(\bar{R}=V(G) \backslash\left(C_{k} \cup I\right)\right)$ is the set of remaining ver-
tices belonging neither to I nor to $P_{k}\left(C_{k}\right)$. Let $N(v)$ be the set of neighbors of v and $R_{i}=\left\{v \in R ;\left|N(v) \cap P_{k}\right|=i\right\}\left(\bar{R}_{i}=\left\{v \in \bar{R} ;\left|N(v) \cap C_{k}\right|=i\right\}\right)$ be the set of vertices of $R(\bar{R})$ which are adjacent to exactly i vertices of $P_{k}\left(C_{k}\right)$. The number of elements of $R_{i}\left(\bar{R}_{i}\right)$ is denoted by $r_{i}\left(\overline{r_{i}}\right)$. Note that $R_{i}=\emptyset$ for all $i \geq 5$ since otherwise $v \in R_{i}$ $(i \geq 5)$ and three of its neighbors on the path build a claw in G which is forbidden. The same statement is true for $\overline{r_{i}}$ if $\left|C_{k}\right| \geq 6$. Furthermore for the induced cycle we have immediately $\overline{R_{1}}=\emptyset$ because otherwise a claw occurs. Thus $\overline{r_{1}}$ does not occur in the inequalities.

Now let us consider the cardinality of the following edge sets.
(1) $E_{I}=\left\{u v \mid u \in P_{k}\right.$ and $\left.v \in I\right\}$ is the set of edges between P_{k} and I,
(2) $E_{R}=\left\{u v \mid u \in P_{k}\right.$ and $\left.v \in R\right\}$ is the set of edges between P_{k} and R.

Denote the corresponding edge sets for the cycle by \bar{E}_{I} and \bar{E}_{R}.
Obviously we have

$$
\begin{equation*}
w\left(P_{k}\right)=2 k-2+\left|E_{I}\right|+\left|E_{R}\right|, \quad w\left(C_{k}\right)=2 k+\left|\bar{E}_{I}\right|+\left|\bar{E}_{R}\right| . \tag{1}
\end{equation*}
$$

Lemma 5.

$$
\begin{equation*}
\left|E_{I}\right| \leq 2 k-4 t+\min (t, 2) \leq 2 k-4 t+2 \tag{2}
\end{equation*}
$$

Proof. As G is claw-free, every vertex has at most two neighbors in I^{*} and no vertex of T has a neighbor in I. Hence, $\left|E_{I}\right| \leq 2(k-t)$. This estimation is sharp if every vertex of P_{k} except the vertices of T has exactly two neighbors in I.

First assume that $t \geq 2$ and consider an interval $v_{i}, \ldots, v_{j}(i<j)$ of vertices of the path where v_{i} and v_{j} belong to $T=I^{*} \cap P_{k}$ and no vertex v_{s} with $i<s<j$ is an element of T. We want to show that every such interval contains either a vertex which has no neighbor in I or two vertices which have at most one neighbor in I. Compared with the above estimation we lose in both cases two edges for each of the $t-1$ intervals.

First note that $j \neq i+1$. If $j=i+2$ then v_{i+1} has no neighbor in I. If $j>i+2$ then both v_{i+1} and v_{j-1} have at most one neighbor in I. It follows that $\left|E_{I}\right| \leq 2(k-$ $t)-2(t-1)=2 k-4 t+2$.

If $t=0$, it follows immediately that $\left|E_{I}\right| \leq 2 k=2 k-4 t$. For $t=1$ we have $\left|E_{I}\right| \leq 2 k-3=2 k-4 t+1$.

By the same argument we obtain immediately the following result.

Lemma 6. If $v_{1} \notin T$ or $v_{k} \notin T$, then $\left|E_{I}\right| \leq 2 k-4 t+1$. If both $v_{1} \notin T$ and $v_{k} \notin T$, then $\left|E_{I}\right| \leq 2 k-4 t$.

If we consider induced cycles then there are no end-vertices which play a special role and so we obtain the following upper bound.

6 JOURNAL OF GRAPH THEORY

Lemma 7.

$$
\begin{equation*}
\left|\bar{E}_{I}\right| \leq 2 k-4 \bar{t} . \tag{3}
\end{equation*}
$$

Since every vertex of R has at most four neighbors in $P_{k}(k \geq 5)$ we obtain a first estimation for $\left|E_{R}\right|$:

$$
\begin{equation*}
\left|E_{R}\right| \leq 4(n-\alpha-(k-t)) \tag{4}
\end{equation*}
$$

The analogous inequality is true for $\left|\overline{E_{R}}\right|$ of an induced cycle C_{k} with at least 6 vertices. From the equalities and inequalities (1) - (4) it follows

$$
w\left(P_{k}\right) \leq 2(k-1)+2 k-4 t+\min (t, 2)+4(n-\alpha-(k-t))=4 n-4 \alpha-2+\min (t, 2)
$$

and

$$
w\left(C_{k}\right) \leq 2 k+2 k-4 \bar{t}+4(n-\alpha-(k-\bar{t}))=4 n-4 \alpha,
$$

proving Theorem 2.
If we consider $K_{1, r}$-free graphs with $r \geq 3$ we obtain by analogous arguments

$$
\begin{gathered}
\left|E_{I}\right| \leq(r-1) k-(r+1) t+\min (t, 2) \leq(r-1) k-(r+1) t+2, \\
\left|\bar{E}_{I}\right| \leq(r-1) k-(r+1) \bar{t}, \\
\left|E_{R}\right|,\left|\overline{E_{R}}\right| \leq(2 r-2)(n-\alpha-(k-t))
\end{gathered}
$$

proving Theorem 3.
In the sequel we consider again the special case $r=3$, i.e. G is assumed to be claw-free. Now we can estimate $\left|E_{R}\right|$ more carefully.

Lemma 8.

$$
\begin{equation*}
\left|E_{R}\right| \leq 4 n-6 \alpha-2 k+2 t+2-\left(r_{3}+r_{1}+2 r_{0}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\overline{E_{R}}\right| \leq 4 n-6 \alpha-2 k+2 \bar{t}-\left(\overline{r_{3}}+2 \overline{r_{0}}\right) . \tag{6}
\end{equation*}
$$

Proof. Let $I_{1}=\left\{u \in I \mid N(u) \cap P_{k} \neq \emptyset\right\}$ be the set of vertices of I which have at least one neighbor on P_{k} whereas $I_{0}=\left\{u \in I \mid N(u) \cap P_{k}=\emptyset\right\}$ is the set of vertices of I which have no neighbor on P_{k}. Denote the cardinality of I_{1} by y_{1} and the cardinality of I_{0} by y_{0}.
(a) $y_{0} \leq r_{0}+r_{1}+r_{2}$

Notice first that every vertex of I_{0} has a neighbor in R since G is connected.
Assume $a \in I_{0}$ and let $a_{1} \in R$ be a neighbor of a. Then $a_{1} \notin R_{i}$ for $i \geq 3$ since otherwise two of the neighbors of a_{1} on the path together with a_{1} and a build a claw. Thus, if $\left|I_{0}\right| \in\{0,1\}$ we are done.
Now assume $a, b \in I_{0}(a \neq b)$ and consider shortest paths $\left(a, a_{1}, \ldots, a_{s}\right)$ and $\left(b, b_{1}, \ldots, b_{q}\right)$ such that $a_{s}, b_{q} \in P_{k}$ and $a_{1}, \ldots, a_{s-1}, b_{1}, \ldots, b_{q-1} \notin P_{k}$.
Consequently, $a_{1}, b_{1} \in R_{0} \cup R_{1} \cup R_{2}$ because a and b have no neighbors on $P_{k} \cup I$ and vertices of $R_{i}, i \geq 3$ have no neighbors in I_{0}.
If $a_{1}=b_{1}$, then a, b, a_{1} and a_{2} induce a claw, a contradiction.
It follows that $a_{1} \neq b_{1}$ for every pair of vertices $a, b \in I_{0}$. Thus every vertex of I_{0} has its private neighbor in $R_{0} \cup R_{1} \cup R_{2}$. Hence $y_{0}=\left|I_{0}\right| \leq r_{0}+r_{1}+r_{2}$.
(b) $y_{1} \leq k-2 t+1$ for P_{k} and $\overline{y_{1}} \leq k-2 \bar{t}$ for the cycle C_{k}

If a vertex $w \in I$ has exactly one neighbor v_{i} on P_{k}, then $i=1$ or $i=k$, otherwise v_{i-1}, v_{i}, v_{i+1} and w build a claw.
If $v_{1} \in T$ and $v_{k} \in T$, then none of them has a neighbor in I because they belong to the independent set. Thus all vertices of I_{1} have at least 2 neighbors on P_{k}. Using inequality (2) it follows $2 y_{1} \leq\left|E_{I}\right| \leq 2 k-4 t+2$ and $y_{1} \leq k-2 t+1$.
If $v_{1} \notin T$ and $v_{k} \in T$, then there is at most one vertex $w \in I_{1}$ which has only one neighbor (namely v_{1}) on P_{k}, otherwise there would be a claw. Using Lemma 6 it follows that $2 y_{1}-1 \leq\left|E_{I}\right| \leq 2 k-4 t+1$ and $y_{1} \leq k-2 t+1$.
The same arguments can be applied for the case $v_{1} \in T$ and $v_{k} \notin T$.
If $v_{1} \notin T$ and $v_{k} \notin T$, then two of the vertices of I_{1} can possibly have exactly one neighbor on P_{k}. Using Lemma 6 it follows $2 y_{1}-2 \leq\left|E_{I}\right| \leq 2 k-4 t$ and $y_{1} \leq k-2 t+1$.
For the cycle C_{k} we have always $2 \overline{y_{1}} \leq\left|\bar{E}_{I}\right|$ and together with inequality (3) we obtain $\overline{y_{1}} \leq k-2 \bar{t}$
(c) $\alpha-k+t-1 \leq r_{0}+r_{1}+r_{2}$ for P_{k} and $\alpha-k+t \leq r_{0}+r_{1}+r_{2}$ for C_{k}

Notice that $\alpha=t+y_{1}+y_{0}$. Thus $\alpha-y_{0}-t=y_{1} \leq k-2 t+1$ and $\alpha-k+t-1 \leq$ $y_{0} \leq r_{0}+r_{1}+r_{2}$. The result for the cycle can be obtained in an analogous way.

Obviously we have $\left|E_{R}\right|=4 r_{4}+3 r_{3}+2 r_{2}+r_{1}=4\left(r_{4}+r_{3}+r_{2}+r_{1}+r_{0}\right)-\left(r_{3}+\right.$ $\left.2 r_{2}+3 r_{1}+4 r_{0}\right)=4(n-\alpha-(k-t))-2\left(r_{2}+r_{1}+r_{0}\right)-\left(r_{3}+r_{1}+2 r_{0}\right)$. The application of inequality (c) gives $\left|E_{R}\right| \leq 4(n-\alpha-(k-t))-2(\alpha-k+t-1)-\left(r_{3}+r_{1}+2 r_{0}\right)=$ $4 n-6 \alpha-2 k+2 t+2-\left(r_{3}+r_{1}+2 r_{0}\right)$.

Analogous arguments give the result for C_{k}.
Using the equalities and inequalities $(1,2)$ and (5) we obtain

$$
w\left(P_{k}\right) \leq 4 n-6 \alpha+2 k-2 t+\min (t, 2)-\left(r_{3}+r_{1}+2 r_{0}\right)
$$

8 JOURNAL OF GRAPH THEORY

and using $(1,3)$ and (6) we have

$$
w\left(C_{k}\right) \leq 4 n-6 \alpha+2 k-2 \bar{t}-\left(\overline{r_{3}}+2 \overline{r_{0}}\right)
$$

which proves Theorem 1.

3. SHARPNESS OF THE UPPER BOUNDS

In this section we prove the following results concerning the sharpness of the proved bounds.

Theorem 9. For every n, α, k, there exists a graph G such that $r_{0}+r_{1}+r_{2}+r_{3}=0$ $\left(\overline{r_{0}}+\overline{r_{2}}+\overline{r_{3}}=0\right)$ and equality holds in both Theorem 1 and Theorem 2.

Theorem 10. For every n, α, k, there exists a graph G such that $r_{0}+r_{1}+r_{2}+r_{3}>0$ $\left(\overline{r_{0}}+\overline{r_{2}}+\overline{r_{3}}>0\right)$ and equality holds in Theorem 1. The coefficients of r_{0}, r_{1}, r_{2} and r_{3} $\left(\overline{r_{0}}, \overline{r_{2}}, \overline{r_{3}}\right)$ of the bounds in Theorem 1 are best possible.

First, we consider induced paths on k vertices where k is odd.
Notice that the independence number α of G defined as the number of vertices in a maximum independent set is at least $\frac{k+1}{2}$ because $\frac{k+1}{2}$ vertices of the induced path P_{k} build an independent set.

Proof of Theorem 9

Since $r_{0}+r_{1}+r_{2}+r_{3}=0$ and by the inequalities (a) and (b) of the proof of Lemma 8 , we have $y_{0}=0$ and $|I|=y_{1}+y_{0}=y_{1}=\alpha-t \leq k-2 t+1$. Thus, it follows $\alpha \leq k-t+1 \leq k+1$. For $\alpha=k-t+1$ we have

$$
4(n-\alpha)-2+\min (t, 2)=4 n-6 \alpha+2 k-2 t+\min (t, 2)-\left(r_{1}+r_{3}+2 r_{0}\right)
$$

Thus Theorem 1 and Theorem 2 give the same bound for $\alpha=k-t+1$ and it is sufficient to find graphs such that one of the bounds is sharp.

In the case $\alpha<k-t+1$ and $R_{0} \cup R_{1} \cup R_{2} \cup R_{3}=\emptyset$, Theorem 2 gives a better bound than Theorem 1 whereas Theorem 1 gives a better bound for $\alpha>k-t+1$. Consequently, we investigate the case $\alpha=k-t+1$ where $0 \leq t \leq \frac{k+1}{2}$ by definition. We shall construct graphs G_{i} with independence number $\alpha_{i}=\left\lfloor\frac{k+1+i}{2}\right\rfloor$ for $0 \leq i \leq \frac{k+1}{2}$.

Lemma 11. Let k, t, n and α be positive integers such that k is odd, $0 \leq t \leq \frac{k+1}{2}, n \geq$ $\alpha+k-t$ and $\alpha=k-t+1$. Then there is a graph G of order n with independence number α which has an induced path on k vertices such that $w\left(P_{k}\right)=4 n-4 \alpha-2+\min (t, 2)$.

Note that for the case $t \geq 2$ even the bound $4 n-4 \alpha$ is sharp.

Proof. First assume $t \geq 2$. Thus $\alpha \leq k-1$. Define graphs G_{i} where $0 \leq i \leq k-3$ in the following way:

- G_{0} corresponds to an induced path $P_{k}=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.
- For $i=1$ to $k-3$ add a vertex y_{i} to the graph G_{i-1} and add the edges $y_{i} v_{i+1}$ and $y_{i} v_{i+2}$.
Let $w_{i}\left(P_{k}\right)=\sum_{v \in P_{k} \subseteq V\left(G_{i}\right)} d(v)$ be the weight of the path P_{k} in G_{i}, α_{i} be the independence number of G_{i}, n_{i} be the order of G_{i} and t_{i} be the number of vertices of a maximum independent set which belong to P_{k} in G_{i}.

Consider the case that i is even. Obviously, we have $\alpha_{i}=\frac{k+1+i}{2}, t_{i}=\frac{k+1-i}{2}, n_{i}=k+i$ and $w_{i}\left(P_{k}\right)=2(k-1)+2 i$. Thus it follows $w_{i}\left(P_{k}\right)=4\left(n_{i}-\alpha_{i}\right)$. Notice that α runs from $\frac{k+1}{2}$ to $k-1$.

Now let $\alpha=k$. Thus $t=1$.
Construct a graph G_{k-1} by adding vertices z_{1} and z_{2} to the graph G_{k-3} and joining z_{1} with v_{1} and v_{2} and z_{2} with v_{1} (see Fig. 1).

Figure 1. Graph G_{6} for $k=7$
We have $\alpha_{i}=\frac{k+1+i}{2}=k, t_{i}=\frac{k+1-i}{2}=1, n_{i}=k+i=2 k-1$ and $w_{i}\left(P_{k}\right)=$ $2(k-1)+2 i=4 k-5$. It follows that $w_{i}\left(P_{k}\right)=4\left(n_{i}-\alpha_{i}\right)+2-\min (t, 2)$.

For $\alpha=k+1$ we have $t=0$.
Construct a graph G_{k+1} by adding vertices x_{1} and x_{2} to the graph G_{k-1} and joining x_{1} with v_{k-1} and v_{k} and x_{2} with v_{k}. It is easy to see that $\alpha_{i}=\frac{k+1+i}{2}=k+1$, $t_{i}=\frac{k+1-i}{2}=0, n_{i}=k+i=2 k+1$ and $w_{i}\left(P_{k}\right)=2(k-1)+2 k=4 k-2$. It follows that $w_{i}\left(P_{k}\right)=4\left(n_{i}-\alpha_{i}\right)+2-\min (t, 2)$.

So far, all constructed graphs G_{i} have the minimum possible number of vertices $n_{i}=$ $k+\alpha_{i}-t_{i}$. Now, we shall construct graphs G_{i}^{s} which have $n_{i}^{s}=k+\alpha_{i}-t_{i}+s$ vertices.

The graph G_{i}^{s} can be obtained from the graph G_{i} by adding a clique on s vertices u_{1}, \ldots, u_{s}, joining every vertex u_{j} with four consecutive vertices $v_{\ell}, \ldots, v_{\ell+3}(\ell \geq 2)$ of the path P_{k}, say $v_{2}, v_{3}, v_{4}, v_{5}$, and with two additional vertices $y_{\ell-1}\left(y_{1}\right)$ and $y_{\ell+1}\left(y_{3}\right)$ if they occur in G_{i} (see Fig 2).

Observe that G_{i}^{s} is connected, claw-free and except for the equality for the number of vertices it fulfils the same equalities as G_{i} considered above.

Figure 2. Graph G_{2}^{1} for $k=7$
If we consider induced paths P_{k} on even number of vertices, then the analogous graphs for odd i give sharp examples. The corresponding constructions lead to sharp examples for cycles.

Thus the proof of Theorem 9 is complete.
By adding a suitable number of isolated vertices the above constructed graphs can be extended to obtain sharp examples for the case $\alpha>k$ or $\alpha>k+1$, respectively.

Proof of Theorem 10

First, we again consider induced paths on k vertices where k is odd.
Sharp example for Theorem 1 if $r_{3} \neq 0$.
Construct a graph H_{3}^{s} in the following way (see Fig. 3). Take an induced path on k vertices v_{1}, \ldots, v_{k}, add a clique with s vertices u_{1}, \ldots, u_{s} and join every vertex u_{i} with three consecutive vertices of the path, say v_{2}, v_{3} and v_{4}. Denote the corresponding parameters by $n_{3}^{s}, \alpha_{3}^{s}, t_{3}^{s}$ and $w_{3}^{s}\left(P_{k}\right)$.

We have $n_{3}^{s}=k+s, \alpha_{3}^{s}=t_{3}^{s}=\frac{k+1}{2}$ (for a suitable choice of the maximum independent set), $r_{3}=s$ and $w_{3}^{s}\left(P_{k}\right)=2(k-1)+3 s$.

Furthermore we have $4 n_{3}^{s}-6 \alpha_{3}^{s}+2 k-2 t_{3}^{s}+\min \left(t_{3}^{s}, 2\right)=2(k-1)+4 s$. Thus, in Theorem 1 equality holds for these graphs and the coefficient "-1" corresponding to r_{3} in the bound is best possible.

Figure 3. Graph H_{3}^{2} for $k=7$

We can combine this example with one of the following to get sharp examples for $r_{3} \neq 0$ and α arbitrarily large.

Sharp example for Theorem 1 if $r_{2} \neq 0$.

Construct a graph H_{2}^{s} in the following way (see Fig. 4). Take an induced path on k vertices v_{1}, \ldots, v_{k}, add a clique with s vertices u_{1}, \ldots, u_{s} and join every vertex u_{i} with two consecutive vertices of the path, say v_{2} and v_{3}. Furthermore add s vertices z_{1}, \ldots, z_{s} and join z_{i} with u_{i} for every i. Denote the corresponding parameters by $n_{2}^{s}, \alpha_{2}^{s}, t_{2}^{s}$ and $w_{2}^{s}\left(P_{k}\right)$.

Figure 4. Graph H_{2}^{3} for $k=7$
We have $n_{2}^{s}=k+2 s, \alpha_{2}^{s}=\frac{k+1}{2}+s, t_{2}^{s}=\frac{k+1}{2}, r_{2}=s$ and $w_{2}^{s}\left(P_{k}\right)=2(k-1)+2 s$.
Furthermore we have $4 n_{2}^{s}-6 \alpha_{2}^{s}+2 k-2 t_{2}^{s}+\min \left(t_{2}^{s}, 2\right)=2(k-1)+2 s$. Thus, equality holds in Theorem 1 for these graphs and the coefficient " 0 " corresponding to r_{2} in the bound is best possible.
Sharp example for Theorem 1 if $r_{1} \neq 0$.
Notice first that every vertex of R_{1} has to be adjacent to v_{1} or v_{k} of the path (otherwise there is a claw).

Figure 5. Graph H_{1}^{3} for $k=7$
Construct a graph H_{1}^{s} in the following way (see Fig. 5). Take an induced path on k vertices v_{1}, \ldots, v_{k}, add a clique with s vertices u_{1}, \ldots, u_{s} and join every vertex u_{i} with

12 JOURNAL OF GRAPH THEORY

v_{1} or v_{k}, say v_{k}. Furthermore add s vertices z_{1}, \ldots, z_{s} and join z_{i} with u_{i} for every i. Denote the corresponding parameters by $n_{1}^{s}, \alpha_{1}^{s}, t_{1}^{s}$ and $w_{1}^{s}\left(P_{k}\right)$.

We have $n_{1}^{s}=k+2 s, \alpha_{1}^{s}=\frac{k+1}{2}+s, t_{1}^{s}=\frac{k+1}{2}, r_{1}=s$ and $w_{1}^{s}\left(P_{k}\right)=2(k-1)+s$. Furthermore we have $4 n_{1}^{s}-6 \alpha_{1}^{s}+2 k-2 t_{1}^{s}+\min \left(t_{1}^{s}, 2\right)=2(k-1)+2 s$. Thus, equality holds in Theorem 1 for these graphs and the coefficient " -1 " corresponding to r_{1} in the bound is best possible.

Sharp example for Theorem 1 if $r_{0} \neq 0$.

Construct a graph H_{0}^{s} in the following way (see Fig. 6). Take a graph H_{2}^{s} and add s vertices a_{1}, \ldots, a_{s} and s vertices b_{1}, \ldots, b_{s}. Join every vertex a_{i} with z_{i} and b_{i}.

Denote the corresponding parameters by $n_{0}^{s}, \alpha_{0}^{s}, t_{0}^{s}$ and $w_{0}^{s}\left(P_{k}\right)$.

Figure 6. Graph H_{0}^{3} for $k=7$
We have $n_{0}^{s}=k+4 s, \alpha_{0}^{s}=\frac{k+1}{2}+2 s, t_{0}^{s}=\frac{k+1}{2}, r_{0}=s$ and $w_{0}^{s}\left(P_{k}\right)=2(k-1)+2 s$.
Furthermore we have $4 n_{0}^{s}-6 \alpha_{0}^{s}+2 k-2 t_{0}^{s}+\min \left(t_{0}^{s}, 2\right)=2(k-1)+4 s$. Thus, equality holds in Theorem 1 for these graphs and the coefficient "-2" corresponding to r_{0} in the bound is best possible.

For all constructed graphs we may add a clique on x vertices each of them joined in an appropriate way with the same four consecutive vertices of the path obtaining sharp examples for every possible n. Sometimes additional edges like in Fig. 2 will be necessary to avoid a claw.

If we consider induced paths P_{k} where k is even then we may start the constructions e.g. with a path on k vertices and an additional vertex y joined with v_{2} and v_{3}. Sometimes additional edges like in Fig. 2 will be necessary to avoid a claw. In this way we obtain sharp examples for that case.

Corresponding constructions provide sharp examples for induced cycles on k vertices. This completes the proof of Theorem 10.

References

[1] J.A.Bondy, U.S.R.Murty, Graph Theory with Applications, North Holland, New York, 1976
[2] Y.Caro, New results on the independence number. Technical report, Tel-Aviv University, 1979.
[3] H.Enomoto, K.Ota, Connected subgraphs with small degree sums in 3-connected planar graphs, Journal of Graph Theory 30(1999) 191-203
[4] I.Fabrici, S.Jendrof, Subgraphs with restricted degree of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13(1997) 245-250
[5] I.Fabrici, S.Jendrof, Subgraphs with restricted degree of their vertices in planar graphs, Discrete Math. 191(1998) 83-90
[6] R.Faudree, E. Flandrin, Z.Ryjáček, Claw-free graphs - a survey, Discrete Math. 169(1997) 87-147
[7] B.Grünbaum, Polytopal graphs, in: MAA Studies in Mathematics 12(1975) 201-224
[8] J.Ivančo, The weight of a graph, Annals Discr. Math. 51(1992) 113-116
[9] J.Ivančo, S.Jendrof, On extremal problems concerning weights of edges of graphs, Coll. Math. Soc. J. Bolyai 60., Sets, Graphs and Numbers, Budapest 1991, North Holland 1992, 339-410
[10] S. Jendrof, I.Schiermeyer, On a Max-Min problem concerning weights of edges, manuscript, 1998
[11] A.Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.Fyz. Čas. SAV (Math. Slovaca) 5(1955) 101-113 (Slovak)
[12] B.Mohar, Light paths in 4-connected graphs in the plane and other surfaces, manuscript, 1998
[13] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981.

[^0]: ${ }^{1}$ Research supported by Slovak VEGA grant 1/4377/97
 ${ }^{2}$ Research partially supported by grant GAČR No. 201/97/0407
 ${ }^{3}$ Partial financial support from Technical University of Cottbus is greatly appreciated
 Journal of Graph Theory Vol. ???, 1-13 (???)
 © ??? John Wiley \& Sons, Inc.

