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Abstract

We give a strengthening of the closure concept for claw-free graphs introduced by the

second author in 1997. The new closure of a claw-free graph G de�ned here is uniquely

determined and preserves the value of the circumference of G. We present an in�nite

family of graphs with n vertices and

3

2

n � 1 edges for which the new closure is the

complete graph K

n

.
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1 Introduction

We consider �nite simple undirected graphs G = (V (G); E(G)). For concepts and notation

not de�ned here we refer the reader to [1]. We denote by c(G) the circumference of G,

i.e. the length of a longest cycle in G, by N

G

(x) the neighborhood of a vertex x in G

(i.e., N

G

(x) = fy 2 V (G)j xy 2 E(G)g), and we denote N

G

[x] = N

G

(x) [ fxg. For a

nonempty set A � V (G), the induced subgraph on A is denoted by hAi

G

, the notation G�A

stands for hV (G) n Ai

G

(if A 6= V (G)) and we put N

G

(A) = fx 2 V (G)j N(x) \ A 6= ;g

and N

G

[A] = N

G

(A) [ A. For a subgraph X of G we denote N

G

(X) = N

G

(V (X)) and

N

G

[X] = N

G

[V (X)].

If F is a graph, then we say that a graph G is F -free if G does not contain a copy of

F as an induced subgraph. The graph K

1;3

will be called the claw and in the special case

F = K

1;3

we say that G is claw-free (instead of F -free). The line graph of a graph H is

denoted by L(H). If G = L(H), then we also say that H is the line graph preimage of G

and denote H = L

�1

(G). It is well-known that for any connected line graph G 6' K

3

its line

graph preimage is uniquely determined.

Let T be a closed trail in G. We say that T is a dominating closed trail (abbreviated

DCT), if V (G) n V (T ) is an independent set in G (or, equivalently, if every edge of G has at

least one vertex on T ). Harary and Nash-Williams [6] proved the following result, relating

the existence of a DCT in a graph to the hamiltonicity of its line graph.

Theorem A [6]. Let H be a graph with jE(H)j � 3 without isolated vertices. Then

L(H) is hamiltonian if and only if H contains a DCT.

A special case is that H = K

1;r

for some r � 3; then L(H) = K

r

and the DCT in H

consists of a single vertex.

For a vertex x 2 V (G), set B

x

= fuvj u; v 2 N(x); uv =2 E(G)g and G

0

x

= (V (G); E(G) [

B

x

). The graph G

0

x

is called the local completion of G at x. It was proved in [8] that if G

is claw-free, then so is G

0

x

, and if x 2 V (G) is a locally connected vertex (i.e., hN(x)i

G

is a

connected graph), then c(G) = c(G

0

x

). A locally connected vertex x with B

x

6= ; is called

eligible (in G) and the set of all eligible vertices of G is denoted by V

EL

(G).

We say that a graph F is a closure of G, denoted F = cl(G) (see [8]), if V

EL

(F ) = ; and

there is a sequence of graphs G

1

; : : : ; G

t

and vertices x

1

; : : : ; x

t�1

such that G

1

= G, G

t

= F ,

x

i

2 V

EL

(G

i

) and G

i+1

= (G

i

)

0

x

i

, i = 1; : : : ; t� 1 (equivalently, cl(G) is obtained from G by a

series of local completions at eligible vertices, as long as this is possible). The following basic

result was proved in [8].

Theorem B [8]. Let G be a claw-free graph. Then

(i) cl(G) is well-de�ned (i.e., uniquely determined),

(ii) there is a triangle-free graph H such that cl(G) = L(H),

(iii) c(G) = c(cl(G)).
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Consequently, a claw-free graph G is hamiltonian if and only if so is its closure cl(G). A

claw-free graph G for which G = cl(G) will be called closed. Clearly, G is closed if and only

if V

EL

(G) = ;, i.e. if every vertex x 2 V (G) is either simplicial (hN(x)i

G

is a clique), or is

locally disconnected (hN(x)i

G

is disconnected, implying that, since G is claw-free, hN(x)i

G

consists of two vertex disjoint cliques). It is easy to observe that G is a closed claw-free graph

if and only if G is claw-free and (K

4

� e)-free. This implies that if G is closed claw-free, then

so is every induced subgraph of G. It is also straightforward to check that for any edge e of

a closed claw-free graph the largest clique containing e is uniquely determined. The order of

the largest clique in a closed claw-free graph G containing a given edge e will be denoted by

!

G

(e).

The closure concept for claw-free graphs has been studied intensively since it has been

introduced in [8]. It is known to preserve a number of graph properties and values of graph

parameters, and has found many applications. Interested readers can �nd more information

e.g. in the survey paper [3].

In the following section we introduce a strengthening of this closure concept, and we

show that this new closure is again uniquely determined and that it preserves the value of

the circumference of G.

2 The cycle closure

Let G be a closed claw-free graph and let C be an induced cycle in G of length k. We say

that the cycle C is eligible in G if 4 � k � 6 and !

G

(e) = 2 for at least k � 3 nonconsecutive

edges e 2 E(C) (or, equivalently, if the k-cycle L

�1

(C) in H = L

�1

(G) contains at least k�3

nonconsecutive vertices of degree 2).

For an eligible cycle C in G set B

C

= fuvj u; v 2 N

G

[C]; uv =2 E(G)g. The graph G

0

C

with vertex set V (G

0

C

) = V (G) and edge set E(G

0

C

) = E(G)[B

C

is called the C-completion

of G at C.

The following proposition shows that the C-completion of a closed claw-free graph at

an eligible cycle C is again claw-free and has the same circumference. Note that a C-

completion of a closed claw-free graph is not necessarily closed (for example, the graph G

with V (G) = fa; b; c; d; e; f; gg and E(G) = fab; bc; cd; de; ef; fa; ga; gb; gd; geg is closed and

claw-free, the 4-cycle C = agefa is eligible in G, but G

0

C

is not closed since b; d 2 V

EL

(G

0

C

)).

Proposition 1. Let G be a closed claw-free graph, let C be an eligible cycle in G and let

G

0

C

be the C-completion of G. Then

(i) G

0

C

is claw-free,

(ii) c(G

0

C

) = c(G).

Proof. (i) Let H = hfz; y

1

; y

2

; y

3

gi

G

0

C

be a claw. Then 1 � jE(H) \ B

C

j since G is

claw-free, and jE(H) \ B

C

j � 1 since hN [C]i

G

0

C

is a clique. Let zy

1

2 B

C

. Then z 2 N [C],

implying zu 2 E(G) for some u 2 V (C). Then obviously uy

2

; uy

3

=2 E(G) (otherwise H is

not a claw in G

0

C

), but then hfz; u; y

2

; y

2

gi

G

is a claw in G, a contradiction.
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(ii) Obviously c(G

0

C

) � c(G) since every cycle in G is a cycle in G

0

C

. To prove the

converse, it is su�cient to show that for every longest cycle C

0

1

in G

0

C

there is a cycle C

1

in

G with V (C

1

) = V (C

0

1

). This is clear if E(C

0

1

) \ B

C

= ;; hence suppose E(C

0

1

) \ B

C

6= ;.

Since C

0

1

is longest and hN [C]i

G

0

C

is a clique, N [C] � V (C

0

1

), implying that hV (C

0

1

)i

G

0

C

is the

C-completion of hV (C

0

1

)i

G

. Since every induced subgraph of a closed claw-free graph is again

claw-free and closed, it is su�cient to show that if G

0

C

is hamiltonian then so is G.

Let H = L

�1

(G) and suppose that C is a k-cycle (4 � k � 6). Since C is eligible in

G, the k-cycle L

�1

(C) in H contains k � 3 nonconsecutive vertices x

i

, i = 1; : : : ; k � 3, of

degree 2. Let x

�

i

, x

+

i

be the predecessor and successor of x

i

on L

�1

(C), respectively.

It is straightforward to check that G

0

C

can be equivalently obtained by the following

construction:

(i) denote by H

0

the graph obtained from H by replacing the path x

�

i

x

i

x

+

i

by the edge

x

�

i

x

+

i

, i = 1; : : : ; k � 3;

(ii) denote by a

i

the vertices of L(H

0

) corresponding to the edges x

�

i

x

+

i

, i = 1; : : : ; k � 3;

(iii) construct a graph

�

G from L(H

0

) by a series of consecutive local completions at the

vertices a

1

; : : : ; a

k�3

;

(iv) add k�3 vertices z

1

; : : : ; z

k�3

to

�

G and turn the set fz

1

; : : : ; z

k�3

g[N

�

G

[fa

1

; : : : ; a

k�3

g]

into a clique.

Note that step (i) turns C into a triangle, and hence the vertices a

1

; : : : ; a

k�3

are locally

connected in L(H

0

).

By the main result of [8], by the above considerations and by Theorem A, it is su�cient

to show that if H

0

contains a DCT, then so does H. Let T be a DCT in H

0

.

Suppose �rst that k = 4 and, for simplicity, set x = x

1

. If x

�

x

+

2 E(T ), then, replacing

in T the edge x

�

x

+

by the path x

�

xx

+

, we have a DCT in H. Hence suppose x

�

x

+

=2 E(T ).

Since T is dominating, jfx

�

; x

+

g\V (T )j � 1. If both x

�

, x

+

are on T , then T is dominating

in H. Hence we can suppose x

�

2 V (T ) and x

+

=2 V (T ). If x

�

x

++

2 E(T ), then we replace

in T the edge x

�

x

++

by the path x

�

xx

+

x

++

, and if x

�

x

++

=2 E(T ), then we add to T the

4-cycle x

�

xx

+

x

++

x

�

. In both cases, we have a DCT in H.

Let now k = 5 and suppose the notation is chosen such that x

+

1

= x

�

2

. If x

�

1

x

+

1

2 E(T )

and x

�

2

x

+

2

2 E(T ), then, replacing in T the edges x

�

1

x

+

1

and x

�

2

x

+

2

by the paths x

�

1

x

1

x

+

1

and

x

�

2

x

2

x

+

2

, we have a DCT in H. If x

�

1

x

+

1

=2 E(T ) and x

�

2

x

+

2

=2 E(T ), then for x

�

1

x

+

2

2 E(T )

we replace in T the edge x

�

1

x

+

2

by the path x

�

1

x

1

x

+

1

x

2

x

+

2

, and for x

�

1

x

+

2

=2 E(T ) we add to T

the cycle x

�

1

x

1

x

+

1

x

2

x

+

2

x

�

1

. In both cases, we have a DCT in H (note that at least two of the

vertices x

�

1

; x

+

1

; x

+

2

are on T since T is dominating). Up to symmetry, it remains to consider

the case when x

�

1

x

+

1

2 E(T ) and x

�

2

x

+

2

=2 E(T ). Then for x

�

1

x

+

2

2 E(T ) the trail T is a DCT

in H, and for x

�

1

x

+

2

=2 E(T ) we get a DCT in H by replacing in T the edge x

�

1

x

+

1

by the path

x

�

1

x

+

2

x

2

x

�

2

(= x

+

1

). Thus, in all cases we have a DCT in H.

Finally, let k = 6 and choose the notation such that x

+

1

= x

�

2

and x

+

2

= x

�

3

. If at least

two of the edges x

+

1

x

+

2

, x

+

2

x

+

3

, x

+

3

x

+

1

are on T (say, x

+

1

x

+

2

, x

+

2

x

+

3

are on T ), then, replacing

in T the edges x

+

1

x

+

2

and x

+

2

x

+

3

by the paths x

+

1

x

2

x

+

2

and x

+

2

x

3

x

+

3

, we get a DCT in H. If

none of the edges x

+

1

x

+

2

, x

+

2

x

+

3

, x

+

3

x

+

1

is on T , then we get a DCT in H by adding to T the
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cycle x

1

x

+

1

x

2

x

+

2

x

3

x

+

3

x

1

(note that again at least two of the vertices x

+

1

; x

+

2

; x

+

3

are on T since

T is dominating). Hence it remains to consider the case that exactly one of these edges, say,

x

+

1

x

+

2

, is on T , but in this case we obtain a DCT in H by replacing in T the edge x

+

1

x

+

2

by

the path x

+

1

x

1

x

+

3

x

3

x

+

2

.

Now we can de�ne the main concept of this paper which strengthens the closure concept

introduced in [8].

De�nition 2. Let G be a claw-free graph. We say that a graph F is a cycle closure of G,

denoted F = cl

C

(G), if there is a sequence of graphs G

1

; : : : ; G

t

such that

(i) G

1

= cl(G),

(ii) G

i+1

= cl((G

i

)

0

C

) for some eligible cycle C in G

i

, i = 1; : : : ; t� 1,

(iii) G

t

= F contains no eligible cycle.

Thus, cl

C

(G) is obtained from cl(G) by recursively performing C-completion operations

at eligible cycles and each time closing the resulting graphs with the closure de�ned in [8],

as long as this is possible (i.e., as long as there is some eligible cycle). It is easy to see that

cl

C

(G) can be computed in polynomial time.

It follows immediately from the de�nition that E(cl(G)) � E(cl

C

(G)) for any claw-free

graph G. We show that cl

C

(G) is well-de�ned (i.e., uniquely determined) and that the cycle

closure operation preserves the value of the circumference of G.

Theorem 3. Let G be a claw-free graph. Then

(i) cl

C

(G) is well-de�ned,

(ii) c(G) = c(cl

C

(G)).

From Theorem 3 we immediately have the following consequence.

Corollary 4. Let G be a claw-free graph. Then

(i) G is hamiltonian if and only if cl

C

(G) is hamiltonian;

(ii) if cl

C

(G) is complete, then G is hamiltonian.

Before proving Theorem 3, we �rst prove the following lemma.

Lemma 5. Let G be a closed claw-free graph, let C, C

1

be two eligible cycles in G and

let G

0

= cl(G

0

C

), where G

0

C

is the C-completion of G at C. Then either hV (C

1

)i

G

0

is a

clique, or there is a cycle C

2

such that V (C

2

) � V (C

1

), C

2

is eligible in G

0

and, in the graph

G

00

= (G

0

)

0

C

2

, hV (C

1

)i

G

00

is a clique.

This implies, in particular, that all vertices of C

1

are locally connected in G

0

or G

00

,

respectively.
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Proof. The last statement follows obviously from the eligibility of C

1

in G and the

completeness of hV (C

1

)i

G

0

or hV (C

1

)i

G

00

, respectively. To prove the �rst statement, denote

by k = jV (C

1

)j and let e

i

= a

i

a

+

i

(i = 1; : : : ; k � 3) be the nonconsecutive edges of C

1

with

!

G

(e

i

) = 2. Suppose the notation is chosen such that a

+

1

= a

�

2

if k � 5 and, moreover,

a

+

2

= a

�

3

if k = 6. We can suppose that hV (C

1

)i

G

0

is not a clique (otherwise we are done)

and that C

1

is not eligible in G

0

(otherwise we are done with C

2

= C

1

).

Suppose that !

G

0

(e

i

) = 2 for all i, 1 � i � k � 3. Since C

1

is not eligible, C

1

is not an

induced cycle in G

0

. For k = 4 this immediately implies that hV (C

1

)i

G

0

is a clique (since G

is closed), a contradiction. For k = 5, the only chord in C

1

is a

1

a

+

2

(all other chords would

imply !

G

0

(e

i

) � 3 for some i), but then we are done with C

2

= a

1

a

+

1

a

2

a

+

2

a

1

. For k = 6, any

chord in C

1

implies !

G

0

(e

i

) � 3 for some i (using the fact that G

0

is claw-free). Hence we can

suppose that !

G

0

(e

i

) � 3 for some i, 1 � i � k � 3. By symmetry, suppose that !

G

0

(e

1

) � 3.

We claim the following.

Claim 1. Let e = aa

+

be an edge of C

1

such that !

G

(e) = !

G

0

C

(e) = 2 but !

G

0

(e) � 3. Then

either aa

++

2 E(G

0

), or a

�

a

+

2 E(G

0

).

Proof of Claim 1. Suppose that !

G

0

(e) � 3. By the de�nition of G

0

, there is a sequence of

graphs F

1

; : : : ; F

`

and vertices x

1

; : : : ; x

`�1

such that F

1

= G

0

C

, F

`

= G

0

, x

1

2 V

EL

(F

i

) and

F

i+1

= (F

i

)

0

x

i

, i = 1; : : : ; ` � 1. Let j (1 � j � ` � 1) be the smallest integer for which

!

F

j

(e) � 3. Then there is a vertex c 2 V (G) such that ca; ca

+

2 E(F

j

), but at least one of

ca; ca

+

is not in E(F

j�1

).

Let �rst ca =2 E(F

j�1

). Then cx

j�1

; ax

j�1

2 E(F

j�1

). Clearly x

j�1

a

+

=2 E(F

j�1

) (oth-

erwise !

F

j�1

(e) � 3) and a

�

a

+

=2 E(F

j�1

) (otherwise there is nothing to prove). Since

hfa; a

�

; a

+

; x

j�1

gi

F

j�1

is not a claw, we have x

j�1

a

�

2 E(F

j�1

). From x

j�1

a

+

=2 E(F

j�1

) we

also have ca

+

2 E(F

j�1

), since otherwise cannot be ca

+

2 E(F

j

). But then a

+

cx

j�1

a

�

is

an (a

+

; a

�

)-path in N

F

j

(a), implying a 2 V

EL

(F

j

), from which, since G

0

= cl(F

j

), we have

a

�

a

+

2 E(G

0

).

If ca

+

=2 E(F

j�1

), then symmetrically aa

++

2 E(G

0

). Hence the claim follows. 2

Claim 2. Let e = aa

+

be an edge of C

1

such that !

G

(e) = 2 and !

G

0

C

(e) � 3. Then

hfa

�

; a; a

+

; a

++

gi

G

0

is a clique.

Proof of Claim 2. Let c 2 V (G) be such that ca; ca

+

2 E(G

0

C

). By symmetry, suppose ca

+

=2

E(G). Then c; a

+

2 N

G

[C]. Let d be a neighbor of a

+

on C, and denote by K

+

(K

�

) the

largest clique in G, containing the edge a

+

a

++

(a

�

a), respectively. Since hfa

+

; a

++

; a; dgi

G

cannot be a claw and da; a

++

a =2 E(G) (since !

G

(e) = 2), we have da

++

2 E(G), implying,

sinceG is closed, d 2 V (K

+

). Since cd; ca

+

2 E(G

0

C

) and G

0

is closed, we have aa

++

2 E(G

0

).

For k = 4 this immediately implies that hV (C

1

)i

G

0

is a clique, hence jV (C

1

)j � 5.

Now we consider the edge ca. If ca =2 E(G), then, by a symmetric argument, we have

a

�

a

+

2 E(G

0

) and we are done since G

0

is closed. Hence ca 2 E(G). Since hfa; c; a

+

; a

�

gi

G

cannot be a claw and ca

+

=2 E(G), either a

�

a

+

2 E(G) (and we are done), or ca

�

2 E(G),

implying c 2 V (K

�

). But then, since ca

+

2 E(G

0

C

) and G

0

is closed, again a

�

a

+

2 E(G

0

)

and hence also a

�

a

++

2 E(G

0

). This proves Claim 2. 2

6



Now for k = 4 from !

G

0

(e

1

) � 3 and from Claims 1 and 2 we immediately have that

hV (C

1

)i

G

0

is a clique.

Let k = 5. If !

G

0

C

(e

1

) � 3, then hV (C

1

)i

G

0

is a clique by Claim 2 and since G

0

is

closed. Thus, let !

G

0

C

(e

1

) = 2. By Claim 1, a

�

1

a

+

1

2 E(G

0

) or a

1

a

2

2 E(G

0

). If both these

edges are present or if !

G

0

(e

2

) � 3, then clearly hV (C

1

)i

G

0

is a clique. Otherwise, we set

C

2

= a

�

1

a

+

1

a

2

a

+

2

a

�

1

(if a

�

1

a

+

1

2 E(G

0

)) or C

2

= a

1

a

2

a

+

2

a

�

1

a

1

(if a

1

a

2

2 E(G

0

)).

Finally, suppose that k = 6. We show that !

G

0

C

(e

1

) = 2. If !

G

0

C

(e

1

) � 3 and !

G

0

(e

2

) � 3

or !

G

0

(e

3

) � 3, then, by Claims 1 and 2 and since G

0

is closed, hV (C

1

)i

G

0

is a clique. If

!

G

0

C

(e

1

) � 3 and !

G

0

(e

2

) = !

G

0

(e

3

) = 2, then we are done with C

2

= a

2

a

+

2

a

3

a

+

3

a

2

. Hence

!

G

0

C

(e

1

) = 2. By a symmetric argument we can prove that also !

G

0

C

(e

2

) = !

G

0

C

(e

3

) = 2. By

the assumption !

G

0

(e

1

) � 3 and by Claim 1, at least one of the chords a

�

1

a

+

1

, a

1

a

2

is present.

Now, if both a

�

2

a

+

2

2 E(G

0

) and a

2

a

3

2 E(G

0

), then, since G

0

is closed, also a

�

2

a

3

2 E(G

0

),

which together with any of the chords a

�

1

a

+

1

, a

1

a

2

implies that hV (C

1

)i

G

0

is a clique. Hence

at most one of a

�

2

a

+

2

, a

2

a

3

is present. Symmetrically, at most one of a

�

3

a

+

3

, a

3

a

1

is present.

Hence we have at least one of the chords a

�

1

a

+

1

, a

1

a

2

, at most one of a

�

2

a

+

2

, a

2

a

3

, and at most

one of a

�

3

a

+

3

, a

3

a

1

. Then it is straightforward to check that in each of the possible cases either

hV (C

1

)i

G

0

is a clique or we can �nd a required cycle C

2

.

Proof of Theorem 3. (i) Let F

1

, F

2

be two cycle closures of G, suppose E(F

1

) nE(F

2

) 6= ;

and let G

1

; : : : ; G

t

be the sequence of graphs that yields F

1

. Let e = xy 2 E(G

j

) n E(F

2

)

be chosen such that j is as small as possible. Since e 2 E(G

j

), either x; y 2 N [C] for some

eligible cycle C in G

j�1

, or there is a sequence of vertices x

1

; : : : ; x

k

and graphs H

1

; : : : ;H

k

such that H

1

= (G

j�1

)

0

C

, x

i

is eligible in H

i

, H

i+1

= (H

i

)

0

x

i

, i = 1; : : : ; k, and x; y 2 N

H

k

(x

k

).

By Lemma 5 (in the �rst case) and since obviously a locally connected vertex remains locally

connected after adding edges to the graph (in the second case), we have xy 2 E(F

2

), a

contradiction.

(ii) Part (ii) follows immediately from Proposition 1 and from the main result of [8].

Example 1. The graph in Figure 1a) shows that Proposition 1 fails if we require only one

edge e with !

G

(e) = 2 in a C

5

or if we admit the two edges to be consecutive. The graph in

Figure 1b) gives a similar example for a C

6

(elliptical parts represent cliques of order at least

three).
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Figure 1
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Example 2. Linderman [7] proved that the minimum number of edges of a claw-free graph

G of order n with a complete closure cl(G) equals 2n�3. The graph in Figure 2 is an example

of a claw-free graph G of order n � 0 (mod 6) with a complete cycle closure cl

C

(G) and with

only

3

2

n � 1 edges.
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Figure 2

Remarks. (i) The graph in Figure 2 is a closed claw-free graph that contains neither a

C

4

nor a K

4

� e as an induced subgraph. This implies that the closure concepts based on

neighborhood conditions for the vertices of an induced K

4

�e introduced in [2] and [4] cannot

be applied to add new edges to this graph (while its cycle closure is a complete graph). On

the other hand, the closures from [2] and [4] do not assume claw-freeness of the original

graph, and yield additional edges in graphs for which the closure of [8] and the cycle closure

are not de�ned.

(ii) Catlin [5] has introduced a powerful reduction technique that reduces the order of

the line graph preimage, preserving the existence of a spanning closed trail, and, with some

restrictions, of a DCT in this preimage. Considering the graph H = K

2;t

for t � 3, it is

not di�cult to check that H is equal to its reduction (i.e. Catlin's reduction technique is

not applicable), L(H) is a closed claw-free graph (hence the closure technique introduced in

[8] is also not applicable), but the cycle closure of L(H) is a complete graph. This example

shows that the cycle closure technique is not a special case of Catlin's reduction technique.

Moreover, it is not known whether the reduction of a graph in the sense of Catlin's technique

can be obtained in polynomial time. The same holds for the re�nement of Catlin's technique

due to Veldman [10].
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