Strengthening the closure concept in claw-free graphs

Hajo Broersma
Faculty of Mathematical Sciences
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands
e-mail broersma@math.utwente.nl

Zdeněk Ryjáček
Department of Mathematics
University of West Bohemia
Univerzitní 22
30614 Plzeň
Czech Republic
e-mail ryjacek@kma.zcu.cz

January 28, 2000

Abstract

We give a strengthening of the closure concept for claw-free graphs introduced by the second author in 1997. The new closure of a claw-free graph G defined here is uniquely determined and preserves the value of the circumference of G. We present an infinite family of graphs with n vertices and $\frac{3}{2} n-1$ edges for which the new closure is the complete graph K_{n}.

Keywords: closure, cycle closure, claw-free graph, circumference, hamiltonian graph

AMS Subject Classifications (1991): 05C45, 05C35

1 Introduction

We consider finite simple undirected graphs $G=(V(G), E(G))$. For concepts and notation not defined here we refer the reader to [1]. We denote by $c(G)$ the circumference of G, i.e. the length of a longest cycle in G, by $N_{G}(x)$ the neighborhood of a vertex x in G (i.e., $N_{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$), and we denote $N_{G}[x]=N_{G}(x) \cup\{x\}$. For a nonempty set $A \subseteq V(G)$, the induced subgraph on A is denoted by $\langle A\rangle_{G}$, the notation $G-A$ stands for $\langle V(G) \backslash A\rangle_{G}$ (if $A \neq V(G)$) and we put $N_{G}(A)=\{x \in V(G) \mid N(x) \cap A \neq \emptyset\}$ and $N_{G}[A]=N_{G}(A) \cup A$. For a subgraph X of G we denote $N_{G}(X)=N_{G}(V(X))$ and $N_{G}[X]=N_{G}[V(X)]$.

If F is a graph, then we say that a graph G is F-free if G does not contain a copy of F as an induced subgraph. The graph $K_{1,3}$ will be called the claw and in the special case $F=K_{1,3}$ we say that G is claw-free (instead of F-free). The line graph of a graph H is denoted by $L(H)$. If $G=L(H)$, then we also say that H is the line graph preimage of G and denote $H=L^{-1}(G)$. It is well-known that for any connected line graph $G \not 千 K_{3}$ its line graph preimage is uniquely determined.

Let T be a closed trail in G. We say that T is a dominating closed trail (abbreviated DCT), if $V(G) \backslash V(T)$ is an independent set in G (or, equivalently, if every edge of G has at least one vertex on T). Harary and Nash-Williams [6] proved the following result, relating the existence of a DCT in a graph to the hamiltonicity of its line graph.

Theorem A [6]. Let H be a graph with $|E(H)| \geq 3$ without isolated vertices. Then $L(H)$ is hamiltonian if and only if H contains a DCT.

A special case is that $H=K_{1, r}$ for some $r \geq 3$; then $L(H)=K_{r}$ and the DCT in H consists of a single vertex.

For a vertex $x \in V(G)$, set $B_{x}=\{u v \mid u, v \in N(x), u v \notin E(G)\}$ and $G_{x}^{\prime}=(V(G), E(G) \cup$ $\left.B_{x}\right)$. The graph G_{x}^{\prime} is called the local completion of G at x. It was proved in [8] that if G is claw-free, then so is G_{x}^{\prime}, and if $x \in V(G)$ is a locally connected vertex (i.e., $\langle N(x)\rangle_{G}$ is a connected graph), then $c(G)=c\left(G_{x}^{\prime}\right)$. A locally connected vertex x with $B_{x} \neq \emptyset$ is called eligible (in G) and the set of all eligible vertices of G is denoted by $V_{E L}(G)$.

We say that a graph F is a closure of G, denoted $F=\operatorname{cl}(G)$ (see [8]), if $V_{E L}(F)=\emptyset$ and there is a sequence of graphs G_{1}, \ldots, G_{t} and vertices x_{1}, \ldots, x_{t-1} such that $G_{1}=G, G_{t}=F$, $x_{i} \in V_{E L}\left(G_{i}\right)$ and $G_{i+1}=\left(G_{i}\right)_{x_{i}}^{\prime}, i=1, \ldots, t-1$ (equivalently, $\operatorname{cl}(G)$ is obtained from G by a series of local completions at eligible vertices, as long as this is possible). The following basic result was proved in [8].

Theorem B [8]. Let G be a claw-free graph. Then
(i) $\operatorname{cl}(G)$ is well-defined (i.e., uniquely determined),
(ii) there is a triangle-free graph H such that $\operatorname{cl}(G)=L(H)$,
(iii) $c(G)=c(\mathrm{cl}(G))$.

Consequently, a claw-free graph G is hamiltonian if and only if so is its closure $\operatorname{cl}(G)$. A claw-free graph G for which $G=\operatorname{cl}(G)$ will be called closed. Clearly, G is closed if and only if $V_{E L}(G)=\emptyset$, i.e. if every vertex $x \in V(G)$ is either simplicial $\left(\langle N(x)\rangle_{G}\right.$ is a clique), or is locally disconnected $\left(\langle N(x)\rangle_{G}\right.$ is disconnected, implying that, since G is claw-free, $\langle N(x)\rangle_{G}$ consists of two vertex disjoint cliques). It is easy to observe that G is a closed claw-free graph if and only if G is claw-free and ($K_{4}-e$)-free. This implies that if G is closed claw-free, then so is every induced subgraph of G. It is also straightforward to check that for any edge e of a closed claw-free graph the largest clique containing e is uniquely determined. The order of the largest clique in a closed claw-free graph G containing a given edge e will be denoted by $\omega_{G}(e)$.

The closure concept for claw-free graphs has been studied intensively since it has been introduced in [8]. It is known to preserve a number of graph properties and values of graph parameters, and has found many applications. Interested readers can find more information e.g. in the survey paper [3].

In the following section we introduce a strengthening of this closure concept, and we show that this new closure is again uniquely determined and that it preserves the value of the circumference of G.

2 The cycle closure

Let G be a closed claw-free graph and let C be an induced cycle in G of length k. We say that the cycle C is eligible in G if $4 \leq k \leq 6$ and $\omega_{G}(e)=2$ for at least $k-3$ nonconsecutive edges $e \in E(C)$ (or, equivalently, if the k-cycle $L^{-1}(C)$ in $H=L^{-1}(G)$ contains at least $k-3$ nonconsecutive vertices of degree 2).

For an eligible cycle C in G set $B_{C}=\left\{u v \mid u, v \in N_{G}[C], u v \notin E(G)\right\}$. The graph G_{C}^{\prime} with vertex set $V\left(G_{C}^{\prime}\right)=V(G)$ and edge set $E\left(G_{C}^{\prime}\right)=E(G) \cup B_{C}$ is called the C-completion of G at C.

The following proposition shows that the C-completion of a closed claw-free graph at an eligible cycle C is again claw-free and has the same circumference. Note that a C completion of a closed claw-free graph is not necessarily closed (for example, the graph G with $V(G)=\{a, b, c, d, e, f, g\}$ and $E(G)=\{a b, b c, c d, d e, e f, f a, g a, g b, g d, g e\}$ is closed and claw-free, the 4-cycle $C=$ agefa is eligible in G, but G_{C}^{\prime} is not closed since $b, d \in V_{E L}\left(G_{C}^{\prime}\right)$).

Proposition 1. Let G be a closed claw-free graph, let C be an eligible cycle in G and let G_{C}^{\prime} be the C-completion of G. Then
(i) G_{C}^{\prime} is claw-free,
(ii) $c\left(G_{C}^{\prime}\right)=c(G)$.

Proof. (i) Let $H=\left\langle\left\{z, y_{1}, y_{2}, y_{3}\right\}\right\rangle_{G_{C}^{\prime}}$ be a claw. Then $1 \leq\left|E(H) \cap B_{C}\right|$ since G is claw-free, and $\left|E(H) \cap B_{C}\right| \leq 1$ since $\langle N[C]\rangle_{G_{C}^{\prime}}$ is a clique. Let $z y_{1} \in B_{C}$. Then $z \in N[C]$, implying $z u \in E(G)$ for some $u \in V(C)$. Then obviously $u y_{2}, u y_{3} \notin E(G)$ (otherwise H is not a claw in G_{C}^{\prime}), but then $\left\langle\left\{z, u, y_{2}, y_{2}\right\}\right\rangle_{G}$ is a claw in G, a contradiction.
(ii) Obviously $c\left(G_{C}^{\prime}\right) \geq c(G)$ since every cycle in G is a cycle in G_{C}^{\prime}. To prove the converse, it is sufficient to show that for every longest cycle C_{1}^{\prime} in G_{C}^{\prime} there is a cycle C_{1} in G with $V\left(C_{1}\right)=V\left(C_{1}^{\prime}\right)$. This is clear if $E\left(C_{1}^{\prime}\right) \cap B_{C}=\emptyset$; hence suppose $E\left(C_{1}^{\prime}\right) \cap B_{C} \neq \emptyset$. Since C_{1}^{\prime} is longest and $\langle N[C]\rangle_{G_{C}^{\prime}}$ is a clique, $N[C] \subset V\left(C_{1}^{\prime}\right)$, implying that $\left\langle V\left(C_{1}^{\prime}\right)\right\rangle_{G_{C}^{\prime}}$ is the C-completion of $\left\langle V\left(C_{1}^{\prime}\right)\right\rangle_{G}$. Since every induced subgraph of a closed claw-free graph is again claw-free and closed, it is sufficient to show that if G_{C}^{\prime} is hamiltonian then so is G.

Let $H=L^{-1}(G)$ and suppose that C is a k-cycle $(4 \leq k \leq 6)$. Since C is eligible in G, the k-cycle $L^{-1}(C)$ in H contains $k-3$ nonconsecutive vertices $x_{i}, i=1, \ldots, k-3$, of degree 2 . Let x_{i}^{-}, x_{i}^{+}be the predecessor and successor of x_{i} on $L^{-1}(C)$, respectively.

It is straightforward to check that G_{C}^{\prime} can be equivalently obtained by the following construction:
(i) denote by H^{\prime} the graph obtained from H by replacing the path $x_{i}^{-} x_{i} x_{i}^{+}$by the edge $x_{i}^{-} x_{i}^{+}, i=1, \ldots, k-3$;
(ii) denote by a_{i} the vertices of $L\left(H^{\prime}\right)$ corresponding to the edges $x_{i}^{-} x_{i}^{+}, i=1, \ldots, k-3$;
(iii) construct a graph \bar{G} from $L\left(H^{\prime}\right)$ by a series of consecutive local completions at the vertices a_{1}, \ldots, a_{k-3};
(iv) add $k-3$ vertices z_{1}, \ldots, z_{k-3} to \bar{G} and turn the set $\left\{z_{1}, \ldots, z_{k-3}\right\} \cup N_{\bar{G}}\left[\left\{a_{1}, \ldots, a_{k-3}\right\}\right]$ into a clique.
Note that step (i) turns C into a triangle, and hence the vertices a_{1}, \ldots, a_{k-3} are locally connected in $L\left(H^{\prime}\right)$.

By the main result of [8], by the above considerations and by Theorem A, it is sufficient to show that if H^{\prime} contains a DCT, then so does H. Let T be a DCT in H^{\prime}.

Suppose first that $k=4$ and, for simplicity, set $x=x_{1}$. If $x^{-} x^{+} \in E(T)$, then, replacing in T the edge $x^{-} x^{+}$by the path $x^{-} x x^{+}$, we have a DCT in H. Hence suppose $x^{-} x^{+} \notin E(T)$. Since T is dominating, $\left|\left\{x^{-}, x^{+}\right\} \cap V(T)\right| \geq 1$. If both x^{-}, x^{+}are on T, then T is dominating in H. Hence we can suppose $x^{-} \in V(T)$ and $x^{+} \notin V(T)$. If $x^{-} x^{++} \in E(T)$, then we replace in T the edge $x^{-} x^{++}$by the path $x^{-} x x^{+} x^{++}$, and if $x^{-} x^{++} \notin E(T)$, then we add to T the 4-cycle $x^{-} x x^{+} x^{++} x^{-}$. In both cases, we have a DCT in H.

Let now $k=5$ and suppose the notation is chosen such that $x_{1}^{+}=x_{2}^{-}$. If $x_{1}^{-} x_{1}^{+} \in E(T)$ and $x_{2}^{-} x_{2}^{+} \in E(T)$, then, replacing in T the edges $x_{1}^{-} x_{1}^{+}$and $x_{2}^{-} x_{2}^{+}$by the paths $x_{1}^{-} x_{1} x_{1}^{+}$and $x_{2}^{-} x_{2} x_{2}^{+}$, we have a DCT in H. If $x_{1}^{-} x_{1}^{+} \notin E(T)$ and $x_{2}^{-} x_{2}^{+} \notin E(T)$, then for $x_{1}^{-} x_{2}^{+} \in E(T)$ we replace in T the edge $x_{1}^{-} x_{2}^{+}$by the path $x_{1}^{-} x_{1} x_{1}^{+} x_{2} x_{2}^{+}$, and for $x_{1}^{-} x_{2}^{+} \notin E(T)$ we add to T the cycle $x_{1}^{-} x_{1} x_{1}^{+} x_{2} x_{2}^{+} x_{1}^{-}$. In both cases, we have a DCT in H (note that at least two of the vertices $x_{1}^{-}, x_{1}^{+}, x_{2}^{+}$are on T since T is dominating). Up to symmetry, it remains to consider the case when $x_{1}^{-} x_{1}^{+} \in E(T)$ and $x_{2}^{-} x_{2}^{+} \notin E(T)$. Then for $x_{1}^{-} x_{2}^{+} \in E(T)$ the trail T is a DCT in H, and for $x_{1}^{-} x_{2}^{+} \notin E(T)$ we get a DCT in H by replacing in T the edge $x_{1}^{-} x_{1}^{+}$by the path $x_{1}^{-} x_{2}^{+} x_{2} x_{2}^{-}\left(=x_{1}^{+}\right)$. Thus, in all cases we have a DCT in H.

Finally, let $k=6$ and choose the notation such that $x_{1}^{+}=x_{2}^{-}$and $x_{2}^{+}=x_{3}^{-}$. If at least two of the edges $x_{1}^{+} x_{2}^{+}, x_{2}^{+} x_{3}^{+}, x_{3}^{+} x_{1}^{+}$are on T (say, $x_{1}^{+} x_{2}^{+}, x_{2}^{+} x_{3}^{+}$are on T), then, replacing in T the edges $x_{1}^{+} x_{2}^{+}$and $x_{2}^{+} x_{3}^{+}$by the paths $x_{1}^{+} x_{2} x_{2}^{+}$and $x_{2}^{+} x_{3} x_{3}^{+}$, we get a DCT in H. If none of the edges $x_{1}^{+} x_{2}^{+}, x_{2}^{+} x_{3}^{+}, x_{3}^{+} x_{1}^{+}$is on T, then we get a DCT in H by adding to T the
cycle $x_{1} x_{1}^{+} x_{2} x_{2}^{+} x_{3} x_{3}^{+} x_{1}$ (note that again at least two of the vertices $x_{1}^{+}, x_{2}^{+}, x_{3}^{+}$are on T since T is dominating). Hence it remains to consider the case that exactly one of these edges, say, $x_{1}^{+} x_{2}^{+}$, is on T, but in this case we obtain a DCT in H by replacing in T the edge $x_{1}^{+} x_{2}^{+}$by the path $x_{1}^{+} x_{1} x_{3}^{+} x_{3} x_{2}^{+}$.

Now we can define the main concept of this paper which strengthens the closure concept introduced in [8].

Definition 2. Let G be a claw-free graph. We say that a graph F is a cycle closure of G, denoted $F=\mathrm{cl}_{C}(G)$, if there is a sequence of graphs G_{1}, \ldots, G_{t} such that
(i) $G_{1}=\operatorname{cl}(G)$,
(ii) $G_{i+1}=\operatorname{cl}\left(\left(G_{i}\right)_{C}^{\prime}\right)$ for some eligible cycle C in $G_{i}, i=1, \ldots, t-1$,
(iii) $G_{t}=F$ contains no eligible cycle.

Thus, $\mathrm{cl}_{C}(G)$ is obtained from $\operatorname{cl}(G)$ by recursively performing C-completion operations at eligible cycles and each time closing the resulting graphs with the closure defined in [8], as long as this is possible (i.e., as long as there is some eligible cycle). It is easy to see that $\mathrm{cl}_{C}(G)$ can be computed in polynomial time.

It follows immediately from the definition that $E(\operatorname{cl}(G)) \subseteq E\left(\mathrm{cl}_{C}(G)\right)$ for any claw-free graph G. We show that $\mathrm{cl}_{C}(G)$ is well-defined (i.e., uniquely determined) and that the cycle closure operation preserves the value of the circumference of G.

Theorem 3. Let G be a claw-free graph. Then
(i) $\mathrm{cl}_{C}(G)$ is well-defined,
(ii) $c(G)=c\left(\mathrm{cl}_{C}(G)\right)$.

From Theorem 3 we immediately have the following consequence.
Corollary 4. Let G be a claw-free graph. Then
(i) G is hamiltonian if and only if $\mathrm{cl}_{C}(G)$ is hamiltonian;
(ii) if $\mathrm{cl}_{C}(G)$ is complete, then G is hamiltonian.

Before proving Theorem 3, we first prove the following lemma.
Lemma 5. Let G be a closed claw-free graph, let C, C_{1} be two eligible cycles in G and let $G^{\prime}=\operatorname{cl}\left(G_{C}^{\prime}\right)$, where G_{C}^{\prime} is the C-completion of G at C. Then either $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique, or there is a cycle C_{2} such that $V\left(C_{2}\right) \subseteq V\left(C_{1}\right), C_{2}$ is eligible in G^{\prime} and, in the graph $G^{\prime \prime}=\left(G^{\prime}\right)_{C_{2}}^{\prime},\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime \prime}}$ is a clique.

This implies, in particular, that all vertices of C_{1} are locally connected in G^{\prime} or $G^{\prime \prime}$, respectively.

Proof. The last statement follows obviously from the eligibility of C_{1} in G and the completeness of $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ or $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime \prime}}$, respectively. To prove the first statement, denote by $k=\left|V\left(C_{1}\right)\right|$ and let $\epsilon_{i}=a_{i} a_{i}^{+}(i=1, \ldots, k-3)$ be the nonconsecutive edges of C_{1} with $\omega_{G}\left(e_{i}\right)=2$. Suppose the notation is chosen such that $a_{1}^{+}=a_{2}^{-}$if $k \geq 5$ and, moreover, $a_{2}^{+}=a_{3}^{-}$if $k=6$. We can suppose that $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is not a clique (otherwise we are done) and that C_{1} is not eligible in G^{\prime} (otherwise we are done with $C_{2}=C_{1}$).

Suppose that $\omega_{G^{\prime}}\left(e_{i}\right)=2$ for all $i, 1 \leq i \leq k-3$. Since C_{1} is not eligible, C_{1} is not an induced cycle in G^{\prime}. For $k=4$ this immediately implies that $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique (since G is closed), a contradiction. For $k=5$, the only chord in C_{1} is $a_{1} a_{2}^{+}$(all other chords would imply $\omega_{G^{\prime}}\left(e_{i}\right) \geq 3$ for some i), but then we are done with $C_{2}=a_{1} a_{1}^{+} a_{2} a_{2}^{+} a_{1}$. For $k=6$, any chord in C_{1} implies $\omega_{G^{\prime}}\left(e_{i}\right) \geq 3$ for some i (using the fact that G^{\prime} is claw-free). Hence we can suppose that $\omega_{G^{\prime}}\left(e_{i}\right) \geq 3$ for some $i, 1 \leq i \leq k-3$. By symmetry, suppose that $\omega_{G^{\prime}}\left(e_{1}\right) \geq 3$. We claim the following.

Claim 1. Let $e=a a^{+}$be an edge of C_{1} such that $\omega_{G}(e)=\omega_{G_{C}^{\prime}}(e)=2$ but $\omega_{G^{\prime}}(e) \geq 3$. Then either $a a^{++} \in E\left(G^{\prime}\right)$, or $a^{-} a^{+} \in E\left(G^{\prime}\right)$.

Proof of Claim 1. Suppose that $\omega_{G^{\prime}}(e) \geq 3$. By the definition of G^{\prime}, there is a sequence of graphs F_{1}, \ldots, F_{ℓ} and vertices $x_{1}, \ldots, x_{\ell-1}$ such that $F_{1}=G_{C}^{\prime}, F_{\ell}=G^{\prime}, x_{1} \in V_{E L}\left(F_{i}\right)$ and $F_{i+1}=\left(F_{i}\right)_{x_{i}}^{\prime}, i=1, \ldots, \ell-1$. Let $j(1 \leq j \leq \ell-1)$ be the smallest integer for which $\omega_{F_{j}}(e) \geq 3$. Then there is a vertex $c \in V(G)$ such that $c a, c a^{+} \in E\left(F_{j}\right)$, but at least one of $c a, c a^{+}$is not in $E\left(F_{j-1}\right)$.

Let first $c a \notin E\left(F_{j-1}\right)$. Then $c x_{j-1}, a x_{j-1} \in E\left(F_{j-1}\right)$. Clearly $x_{j-1} a^{+} \notin E\left(F_{j-1}\right)$ (otherwise $\omega_{F_{j-1}}(e) \geq 3$) and $a^{-} a^{+} \notin E\left(F_{j-1}\right)$ (otherwise there is nothing to prove). Since $\left\langle\left\{a, a^{-}, a^{+}, x_{j-1}\right\}\right\rangle_{F_{j-1}}$ is not a claw, we have $x_{j-1} a^{-} \in E\left(F_{j-1}\right)$. From $x_{j-1} a^{+} \notin E\left(F_{j-1}\right)$ we also have $c a^{+} \in E\left(F_{j-1}\right)$, since otherwise cannot be $c a^{+} \in E\left(F_{j}\right)$. But then $a^{+} c x_{j-1} a^{-}$is an (a^{+}, a^{-})-path in $N_{F_{j}}(a)$, implying $a \in V_{E L}\left(F_{j}\right)$, from which, since $G^{\prime}=\operatorname{cl}\left(F_{j}\right)$, we have $a^{-} a^{+} \in E\left(G^{\prime}\right)$.

If $c a^{+} \notin E\left(F_{j-1}\right)$, then symmetrically $a a^{++} \in E\left(G^{\prime}\right)$. Hence the claim follows.
Claim 2. Let $e=a a^{+}$be an edge of C_{1} such that $\omega_{G}(e)=2$ and $\omega_{G_{C}^{\prime}}(e) \geq 3$. Then $\left\langle\left\{a^{-}, a, a^{+}, a^{++}\right\}\right\rangle_{G^{\prime}}$ is a clique.

Proof of Claim 2. Let $c \in V(G)$ be such that $c a, c a^{+} \in E\left(G_{C}^{\prime}\right)$. By symmetry, suppose $c a^{+} \notin$ $E(G)$. Then $c, a^{+} \in N_{G}[C]$. Let d be a neighbor of a^{+}on C, and denote by $K^{+}\left(K^{-}\right)$the largest clique in G, containing the edge $a^{+} a^{++}\left(a^{-} a\right)$, respectively. Since $\left\langle\left\{a^{+}, a^{++}, a, d\right\}\right\rangle_{G}$ cannot be a claw and $d a, a^{++} a \notin E(G)$ (since $\omega_{G}(e)=2$), we have $d a^{++} \in E(G)$, implying, since G is closed, $d \in V\left(K^{+}\right)$. Since $c d, c a^{+} \in E\left(G_{C}^{\prime}\right)$ and G^{\prime} is closed, we have $a a^{++} \in E\left(G^{\prime}\right)$. For $k=4$ this immediately implies that $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique, hence $\left|V\left(C_{1}\right)\right| \geq 5$.

Now we consider the edge $c a$. If $c a \notin E(G)$, then, by a symmetric argument, we have $a^{-} a^{+} \in E\left(G^{\prime}\right)$ and we are done since G^{\prime} is closed. Hence $c a \in E(G)$. Since $\left\langle\left\{a, c, a^{+}, a^{-}\right\}\right\rangle_{G}$ cannot be a claw and $c a^{+} \notin E(G)$, either $a^{-} a^{+} \in E(G)$ (and we are done), or $c a^{-} \in E(G)$, implying $c \in V\left(K^{-}\right)$. But then, since $c a^{+} \in E\left(G_{C}^{\prime}\right)$ and G^{\prime} is closed, again $a^{-} a^{+} \in E\left(G^{\prime}\right)$ and hence also $a^{-} a^{++} \in E\left(G^{\prime}\right)$. This proves Claim 2.

Now for $k=4$ from $\omega_{G^{\prime}}\left(e_{1}\right) \geq 3$ and from Claims 1 and 2 we immediately have that $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique.

Let $k=5$. If $\omega_{G_{C}^{\prime}}\left(e_{1}\right) \geq 3$, then $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique by Claim 2 and since G^{\prime} is closed. Thus, let $\omega_{G_{C}^{\prime}}\left(e_{1}\right)=2$. By Claim $1, a_{1}^{-} a_{1}^{+} \in E\left(G^{\prime}\right)$ or $a_{1} a_{2} \in E\left(G^{\prime}\right)$. If both these edges are present or if $\omega_{G^{\prime}}\left(e_{2}\right) \geq 3$, then clearly $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique. Otherwise, we set $C_{2}=a_{1}^{-} a_{1}^{+} a_{2} a_{2}^{+} a_{1}^{-}\left(\right.$if $\left.a_{1}^{-} a_{1}^{+} \in E\left(G^{\prime}\right)\right)$ or $C_{2}=a_{1} a_{2} a_{2}^{+} a_{1}^{-} a_{1}$ (if $a_{1} a_{2} \in E\left(G^{\prime}\right)$).

Finally, suppose that $k=6$. We show that $\omega_{G_{C}^{\prime}}\left(e_{1}\right)=2$. If $\omega_{G_{C}^{\prime}}\left(e_{1}\right) \geq 3$ and $\omega_{G^{\prime}}\left(e_{2}\right) \geq 3$ or $\omega_{G^{\prime}}\left(e_{3}\right) \geq 3$, then, by Claims 1 and 2 and since G^{\prime} is closed, $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique. If $\omega_{G_{C}^{\prime}}\left(e_{1}\right) \geq 3$ and $\omega_{G^{\prime}}\left(e_{2}\right)=\omega_{G^{\prime}}\left(e_{3}\right)=2$, then we are done with $C_{2}=a_{2} a_{2}^{+} a_{3} a_{3}^{+} a_{2}$. Hence $\omega_{G_{C}^{\prime}}^{\prime}\left(e_{1}\right)=2$. By a symmetric argument we can prove that also $\omega_{G_{C}^{\prime}}\left(e_{2}\right)=\omega_{G_{C}^{\prime}}\left(e_{3}\right)=2$. By the assumption $\omega_{G^{\prime}}\left(e_{1}\right) \geq 3$ and by Claim 1, at least one of the chords $a_{1}^{-} a_{1}^{+}, a_{1} a_{2}$ is present. Now, if both $a_{2}^{-} a_{2}^{+} \in E\left(G^{\prime}\right)$ and $a_{2} a_{3} \in E\left(G^{\prime}\right)$, then, since G^{\prime} is closed, also $a_{2}^{-} a_{3} \in E\left(G^{\prime}\right)$, which together with any of the chords $a_{1}^{-} a_{1}^{+}, a_{1} a_{2}$ implies that $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique. Hence at most one of $a_{2}^{-} a_{2}^{+}, a_{2} a_{3}$ is present. Symmetrically, at most one of $a_{3}^{-} a_{3}^{+}, a_{3} a_{1}$ is present. Hence we have at least one of the chords $a_{1}^{-} a_{1}^{+}, a_{1} a_{2}$, at most one of $a_{2}^{-} a_{2}^{+}, a_{2} a_{3}$, and at most one of $a_{3}^{-} a_{3}^{+}, a_{3} a_{1}$. Then it is straightforward to check that in each of the possible cases either $\left\langle V\left(C_{1}\right)\right\rangle_{G^{\prime}}$ is a clique or we can find a required cycle C_{2}.

Proof of Theorem 3. (i) Let F_{1}, F_{2} be two cycle closures of G, suppose $E\left(F_{1}\right) \backslash E\left(F_{2}\right) \neq \emptyset$ and let G_{1}, \ldots, G_{t} be the sequence of graphs that yields F_{1}. Let $e=x y \in E\left(G_{j}\right) \backslash E\left(F_{2}\right)$ be chosen such that j is as small as possible. Since $e \in E\left(G_{j}\right)$, either $x, y \in N[C]$ for some eligible cycle C in G_{j-1}, or there is a sequence of vertices x_{1}, \ldots, x_{k} and graphs H_{1}, \ldots, H_{k} such that $H_{1}=\left(G_{j-1}\right)_{C}^{\prime}, x_{i}$ is eligible in $H_{i}, H_{i+1}=\left(H_{i}\right)_{x_{i}}^{\prime}, i=1, \ldots, k$, and $x, y \in N_{H_{k}}\left(x_{k}\right)$. By Lemma 5 (in the first case) and since obviously a locally connected vertex remains locally connected after adding edges to the graph (in the second case), we have $x y \in E\left(F_{2}\right)$, a contradiction.
(ii) Part (ii) follows immediately from Proposition 1 and from the main result of [8].

Example 1. The graph in Figure 1a) shows that Proposition 1 fails if we require only one edge e with $\omega_{G}(e)=2$ in a C_{5} or if we admit the two edges to be consecutive. The graph in Figure 1b) gives a similar example for a C_{6} (elliptical parts represent cliques of order at least three).

Figure 1

Example 2. Linderman [7] proved that the minimum number of edges of a claw-free graph G of order n with a complete closure $\operatorname{cl}(G)$ equals $2 n-3$. The graph in Figure 2 is an example of a claw-free graph G of order $n \equiv 0(\bmod 6)$ with a complete cycle closure $c l_{C}(G)$ and with only $\frac{3}{2} n-1$ edges.

Figure 2

Remarks. (i) The graph in Figure 2 is a closed claw-free graph that contains neither a C_{4} nor a $K_{4}-e$ as an induced subgraph. This implies that the closure concepts based on neighborhood conditions for the vertices of an induced $K_{4}-e$ introduced in [2] and [4] cannot be applied to add new edges to this graph (while its cycle closure is a complete graph). On the other hand, the closures from [2] and [4] do not assume claw-freeness of the original graph, and yield additional edges in graphs for which the closure of [8] and the cycle closure are not defined.
(ii) Catlin [5] has introduced a powerful reduction technique that reduces the order of the line graph preimage, preserving the existence of a spanning closed trail, and, with some restrictions, of a DCT in this preimage. Considering the graph $H=K_{2, t}$ for $t \geq 3$, it is not difficult to check that H is equal to its reduction (i.e. Catlin's reduction technique is not applicable), $L(H)$ is a closed claw-free graph (hence the closure technique introduced in [8] is also not applicable), but the cycle closure of $L(H)$ is a complete graph. This example shows that the cycle closure technique is not a special case of Catlin's reduction technique. Moreover, it is not known whether the reduction of a graph in the sense of Catlin's technique can be obtained in polynomial time. The same holds for the refinement of Catlin's technique due to Veldman [10].

References

[1] J.A. Bondy, U.S.R. Murty: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[2] Broersma, H.J.: A note on K_{4}-closures in hamiltonian graph theory. Discrete Math. 121 (1993), 19-23.
[3] H.J. Broersma, Z. Ryjáček, I. Schiermeyer: Closure concepts - a survey. Graphs and Combinatorics 16 (2000), No. 1.
[4] H.J. Broersma, H.J.; Trommel, H.: Closure concepts for claw-free graphs. Discrete Math. 185 (1998), 231-238.
[5] P.A. Catlin: A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12 (1988), 29-44.
[6] F. Harary, C. St.J.A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965), 701-709.
[7] W. Linderman: Edge Extremal Graphs with Hamiltonian Properties. PhD. Thesis, Univ. of Memphis, USA, 1998.
[8] Z. Ryjáček: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997), 217-224.
[9] Z. Ryjáček: Closure and forbidden pairs for hamiltonicity. Preprint 127/1999, University of West Bohemia, Pilsen, 1999.
[10] H.J. Veldman: On dominating and spanning circuits in graphs. Discrete Math. 124 (1994), 229-239.

