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Abstract

We give a strengthening of the closure concept for claw-free graphs introduced by the
second author in 1997. The new closure of a claw-free graph GG defined here is uniquely
determined and preserves the value of the circumference of G. We present an infinite
family of graphs with n vertices and %n — 1 edges for which the new closure is the
complete graph K.
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1 Introduction

We consider finite simple undirected graphs G = (V(G), E(G)). For concepts and notation
not defined here we refer the reader to [1]. We denote by ¢(G) the circumference of G,
i.e. the length of a longest cycle in i, by Ng(x) the neighborhood of a vertex z in ¢
(i.e., Ng(x) = {y € V(G)| zy € E(G)}), and we denote Nglz] = Ng(x) U {x}. For a
nonempty set A C V(G), the induced subgraph on A is denoted by (A)q, the notation GG — A
stands for (V(G)\ A)e (if A # V(G)) and we put Ng(A) = {z € V(G)| N(z)nN A # 0}
and Ng[A] = Ng(A) U A. For a subgraph X of G we denote Ng(X) = Ng(V(X)) and
Ne[X] = Ne[V(X)].

If F'is a graph, then we say that a graph G is F-free if (G does not contain a copy of
F' as an induced subgraph. The graph K 3 will be called the claw and in the special case
F = K3 we say that G is claw-free (instead of F-free). The line graph of a graph H is
denoted by L(H). If G = L(H), then we also say that H is the line graph preimage of G
and denote H = L™Y(G). Tt is well-known that for any connected line graph G' %2 K3 its line
graph preimage is uniquely determined.

Let T' be a closed trail in (. We say that T is a dominating closed trail (abbreviated
DCT), if V(G)\ V(T) is an independent set in (¢ (or, equivalently, if every edge of GG has at
least one vertex on T'). Harary and Nash-Williams [6] proved the following result, relating
the existence of a DCT in a graph to the hamiltonicity of its line graph.

Theorem A [6]. Let H be a graph with |E(H)| > 3 without isolated vertices. Then
L(H) is hamiltonian if and only if H contains a DC'T.

A special case is that H = K;, for some r > 3; then L(H) = K, and the DCT in H
consists of a single vertex.

For a vertex « € V(G), set B, = {uv| u,v € N(z),uv ¢ F(G)} and G, = (V(G), E(G) U
B.). The graph G is called the local completion of GG at x. It was proved in [§] that if G
is claw-free, then so is G, and if @ € V() is a locally connected vertex (i.e., (N(x))g is a
connected graph), then ¢(G) = ¢(G%). A locally connected vertex = with B, # 0 is called
eligible (in (&) and the set of all eligible vertices of (i is denoted by Vg (G).

We say that a graph F' is a closure of GG, denoted F' = cl(G) (see [8]), if Vi (F) =0 and
there is a sequence of graphs G'1,..., G, and vertices xy,...,x;_1 such that G; =G, Gy = F,
r; € Vpr(Gi) and Giqy = (Gi)),., 1 = 1,...,t —1 (equivalently, cl(&) is obtained from G by a
series of local completions at eligible vertices, as long as this is possible). The following basic
result was proved in [8].

Theorem B [8]. Let GG be a claw-free graph. Then
(1) (@) is well-defined (i.e., uniquely determined),
(17) there is a triangle-free graph H such that cl(G) = L(H),
(111) e(G) = c(cd(G)).



Consequently, a claw-free graph G is hamiltonian if and only if so is its closure cl(G). A
claw-free graph G for which G = cl(G) will be called closed. Clearly, GG is closed if and only
if Vgi(G) = 0, i.e. if every vertex x € V(@) is either simplicial ({(N(z))q is a clique), or is
locally disconnected ((N(x))¢ is disconnected, implying that, since G is claw-free, (N(2))q
consists of two vertex disjoint cliques). It is easy to observe that (i is a closed claw-free graph
if and only if G is claw-free and (K4 — e)-free. This implies that if ¢ is closed claw-free, then
so 1s every induced subgraph of GG. It is also straightforward to check that for any edge e of
a closed claw-free graph the largest clique containing e is uniquely determined. The order of
the largest clique in a closed claw-free graph G containing a given edge e will be denoted by
wa(e).

The closure concept for claw-free graphs has been studied intensively since it has been
introduced in [8]. It is known to preserve a number of graph properties and values of graph
parameters, and has found many applications. Interested readers can find more information
e.g. in the survey paper [3].

In the following section we introduce a strengthening of this closure concept, and we
show that this new closure is again uniquely determined and that it preserves the value of

the circumference of (.

2 The cycle closure

Let G be a closed claw-free graph and let C' be an induced cycle in GG of length k. We say
that the cycle C is eligible in G if 4 < k <6 and wg(e) = 2 for at least & — 3 nonconsecutive
edges e € E(C) (or, equivalently, if the k-cycle L™'(C) in H = L™'(G) contains at least k —3
nonconsecutive vertices of degree 2).

For an eligible cycle €' in G set Be = {uv| u,v € Ng[Cl,uv ¢ E(G)}. The graph G,
with vertex set V(G ) = V(G) and edge set E(Gy) = E(G)U Be is called the C'-completion
of G at C.

The following proposition shows that the C-completion of a closed claw-free graph at
an eligible cycle €' is again claw-free and has the same circumference. Note that a C-
completion of a closed claw-free graph is not necessarily closed (for example, the graph ¢
with V(G) = {a,b,¢,d,e, f,g} and E(G) = {ab,be, cd, de, ef, fa,ga,gb,gd, ge} is closed and
claw-free, the 4-cycle C' = agefa is eligible in GG, but G, is not closed since b,d € Vgr(G})).

Proposition 1.  Let G be a closed claw-free graph, let C' be an eligible cycle in G and let
G/l be the C-completion of GG. Then
(1) G, is claw-free,

(1) e(Ge) = (@)

Proof. (¢) Let H = ({z,y1,¥2,y3})c. be a claw. Then 1 < |E(H) N Bel since G is
claw-free, and [E(H) N Be| <1 since (N[C])¢r, is a clique. Let zy, € Be. Then z € N[C],
implying zu € E(G) for some u € V(C'). Then obviously uy,, uys ¢ E(G) (otherwise H is

not a claw in G.), but then ({z,u, ys,y2} )¢ is a claw in (7, a contradiction.
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(17) Obviously ¢(GY) > ¢(G) since every cycle in G is a cycle in Gf,. To prove the
converse, it is sufficient to show that for every longest cycle ] in G7. there is a cycle Cy in
G with V(Cy) = V(C]). This is clear if E(C})N Be = 0; hence suppose E(C1) N Be # 0.
Since (] is longest and (N[C])gr, is a clique, N[C] C V(CT), implying that (V(C7))ar. is the
C-completion of (V(C7))g. Since every induced subgraph of a closed claw-free graph is again
claw-free and closed, it is sufficient to show that if G}, is hamiltonian then so is G.

Let H = L' () and suppose that C' is a k-cycle (4 < k < 6). Since C is eligible in
G, the k-cycle L7'(C') in H contains k — 3 nonconsecutive vertices z;, i = 1,...,k — 3, of

7, #1 be the predecessor and successor of x; on L~(C), respectively.

degree 2. Let x
It is straightforward to check that G}, can be equivalently obtained by the following
construction:
(1) denote by H’ the graph obtained from H by replacing the path z;z;z} by the edge
zrati=1,...k—3;
(1) denote by a; the vertices of L(H') corresponding to the edges z;zf, i =1,...,k — 3;
(i17) construct a graph G from L(H') by a series of consecutive local completions at the
vertices ay,...,a5_3;
(iv) add k—3 vertices 2, ..., 2p_3 to G and turn the set {z1,..., zp_3} UNg[{ar, ..., ar_3}]
into a clique.
Note that step (¢) turns C into a triangle, and hence the vertices ay,...,ay_5 are locally
connected in L(H").
By the main result of [§], by the above considerations and by Theorem A, it is sufficient
to show that if H' contains a DCT, then so does H. Let T" be a DCT in H'.
Suppose first that & = 4 and, for simplicity, set @ = ;. If 2~z € E(T), then, replacing
in T the edge 2% by the path 2~ za™, we have a DCT in H. Hence suppose -zt ¢ E(T).
Since T'is dominating, [{z~, 2t} NV(T)| > 1. If both 7, % are on T, then 7" is dominating
in H. Hence we can suppose =~ € V(T') and zt ¢ V(T). If 2~ 2™+ € E(T), then we replace
in T the edge =2 by the path a7 zata™ and if =2t ¢ E(T'), then we add to T' the

4-cycle z7xatzTt2~. In both cases, we have a DCT in H.

Let now k& = 5 and suppose the notation is chosen such that xf = z;. If 272f € E(T)
and x;x3 € E(T), then, replacing in T' the edges z; #{ and z; =] by the paths z7 z 2] and
a3 923, we have a DCT in H. If a72f ¢ FE(T) and 2;25 ¢ E(T), then for 2723 € E(T)
we replace in T' the edge 7 x5 by the path z]z z{z.2], and for 725 ¢ E(T) we add to T
the cycle a7 x2f 2223 27 . In both cases, we have a DCT in H (note that at least two of the
vertices 7, xf, 23 are on T since T is dominating). Up to symmetry, it remains to consider
the case when z7xf € F(T) and 2y 23 ¢ E(T). Then for 7 x5 € E(T) the trail T is a DCT
in H, and for 2723 ¢ E(T) we get a DCT in H by replacing in T' the edge a7 2} by the path
zyxFxyxy (= 27). Thus, in all cases we have a DCT in H.

Finally, let £ = 6 and choose the notation such that 2} = 25 and 3 = z3. If at least
two of the edges xfad, aFad, a3af are on T (say, 223, 323 are on T'), then, replacing
in T the edges xf 25 and 25z by the paths zf 2,23 and 25 x323, we get a DCT in H. If
none of the edges xf2¥, 323, 32T is on T, then we get a DCT in H by adding to T the



cycle xyafay2d x323 2, (note that again at least two of the vertices af, 23, 23 are on T since
T is dominating). Hence it remains to consider the case that exactly one of these edges, say,
23, is on T, but in this case we obtain a DCT in H by replacing in T the edge xfz3 by

the path =]z 23 z327. [ |

Now we can define the main concept of this paper which strengthens the closure concept

introduced in [8].

Definition 2.  Let G be a claw-free graph. We say that a graph F' is a cycle closure of GG,
denoted F' = cl¢((), if there is a sequence of graphs Gy, ..., Gy such that
(i) Gr = dl(G),
(1) Gip1 = cl((G))) for some eligible cycle C in G, 1 =1,...,t — 1,
(111) Gy = F contains no eligible cycle.

Thus, clo(G) is obtained from cl() by recursively performing C-completion operations
at eligible cycles and each time closing the resulting graphs with the closure defined in [§],
as long as this is possible (i.e., as long as there is some eligible cycle). It is easy to see that
clg(G) can be computed in polynomial time.

It follows immediately from the definition that FE(cl(G)) C E(cle(G)) for any claw-free
graph GG. We show that clo(() is well-defined (i.e., uniquely determined) and that the cycle

closure operation preserves the value of the circumference of G.

Theorem 3. Let GG be a claw-free graph. Then
(1) clg(G) is well-defined,
(11) ¢(G) = c(cle(GY).

From Theorem 3 we immediately have the following consequence.

Corollary 4. Let GG be a claw-free graph. Then
(1) G is hamiltonian if and only if clc(() is hamiltonian;
(12) if cle(G) is complete, then (G is hamiltonian.

Before proving Theorem 3, we first prove the following lemma.

Lemma 5. Let GG be a closed claw-free graph, let C, C'y be two eligible cycles in GG and
let G = cl(GY), where G, is the C-completion of GG at C. Then either (V(Ci))gr is a
clique, or there is a cycle Cy such that V(C3) C V(Cy), Cy is eligible in G and, in the graph
G" = (G, (V(C1))an is a clique.

This implies, in particular, that all vertices of Cy are locally connected in G' or G”,

respectively.



Proof. The last statement follows obviously from the eligibility of C'; in G and the
completeness of (V(C1))a or (V(Cy))gn, respectively. To prove the first statement, denote
by k= |V(Cy)| and let ¢; = a;a} (i = 1,...,k — 3) be the nonconsecutive edges of 'y with
we(e;) = 2. Suppose the notation is chosen such that af = a; if & > 5 and, moreover,
ay = aj if k = 6. We can suppose that (V(C}))e is not a clique (otherwise we are done)
and that C; is not eligible in ' (otherwise we are done with Cy = ).

Suppose that wei(e;) = 2 for all ¢, 1 < ¢ < k — 3. Since (4 is not eligible, C is not an
induced cycle in (/. For k = 4 this immediately implies that (V(C}))a is a clique (since ¢
is closed), a contradiction. For k& = 5, the only chord in C is a;aj (all other chords would
imply wer(e;) > 3 for some 7), but then we are done with Cy = ayaf azafa;. For k = 6, any
chord in 7 implies wer(e;) > 3 for some ¢ (using the fact that G’ is claw-free). Hence we can
suppose that wgr(e;) > 3 for some 1, 1 <7 <k — 3. By symmetry, suppose that wei(ey) > 3.
We claim the following.

Claim 1. Let e = aa™ be an edge of C; such that wg(e) = CUG/C(G) = 2 but wgi(e) > 3. Then
either aa™ € KE(G'), or a”at € E(G).

Proof of Claim 1. Suppose that wgi(e) > 3. By the definition of G/, there is a sequence of
graphs Fi,..., Fy and vertices xy,..., 2,y such that Fy = G, Fy = G, x1 € Vgr(F;) and
Fiyp = (Fy),.,i=1,....0 —=1. Let j (1 <j < {—1) be the smallest integer for which
wr,(€) > 3. Then there is a vertex ¢ € V() such that ca,ca® € E(F}), but at least one of
ca,ca™ is not in E(F;_y).

Let first ca ¢ E(IF;_1). Then cxj_q,ax;—y € E(F;_1). Clearly x,_1a™ ¢ E(F;_;) (oth-
erwise wr,_ (¢) > 3) and a"at ¢ FE(F;_y) (otherwise there is nothing to prove). Since

({a,a™,a®,2;_1})p,_, is not a claw, we have z;_ya~ € E(F;_y). From z;_jat ¢ L(1;_1) we
also have ca™ € E(I;_1), since otherwise cannot be cat € FE(F;). But then atex;_ja™ is
an (a*,a”)-path in Ng,(a), implying a € Vgr(F}), from which, since G' = cl(17}), we have
a~at € E(G").

If cat ¢ E(F;_y), then symmetrically aa™* € E(G"). Hence the claim follows. O

Claim 2. Let ¢ = aa® be an edge of C; such that wg(e) = 2 and CUG/C(G) > 3. Then
({a",a,a™,a*})a is a clique.

Proof of Claim 2. Let ¢ € V() be such that ca,cat € E(GL). By symmetry, suppose ca® ¢
E(G). Then ¢,a™ € Ng[C]. Let d be a neighbor of a* on (', and denote by K (K~) the
largest clique in G, containing the edge ata*™ (a~a), respectively. Since ({a*,at" a,d})q
cannot be a claw and da,a*a ¢ E(G) (since wg(e) = 2), we have da™t € E(G), implying,
since (7 is closed, d € V(K ™). Since ¢d, cat € E(G}) and G' is closed, we have aa®™t € E(G").
For k = 4 this immediately implies that (V(C}))e is a clique, hence |V (Cy)| > 5.

Now we consider the edge ca. If ca ¢ E(G), then, by a symmetric argument, we have
a~a®t € E(G") and we are done since G’ is closed. Hence ca € E(G). Since ({a,c,a™,a™ })g
cannot be a claw and ca®™ ¢ E(G), either a~at € F(G) (and we are done), or ca™ € E(G),
implying ¢ € V(K 7). But then, since ca™ € E(G},) and G’ is closed, again a~at € FE(G')
and hence also a~att € F(G"). This proves Claim 2. O
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Now for k = 4 from wei(er) > 3 and from Claims 1 and 2 we immediately have that
(V(C1))er is a clique.

Let & = 5. If wg (e1) = 3, then (V(C1))e is a clique by Claim 2 and since G' is
closed. Thus, let wgr (e1) = 2. By Claim 1, ayal € E(G') or ajay € E(G'). If both these
edges are present or if wegi(ez) > 3, then clearly (V(Cy))gr is a clique. Otherwise, we set
Cy = ajafazafay (if ayaf € E(G')) or Cy = ayazafayay (if ayay € E(G')).

Finally, suppose that & = 6. We show that wer (1) = 2. If wgr, (e1) > 3 and wgi(ez) > 3
or wgi(es) > 3, then, by Claims 1 and 2 and since G’ is closed, (V(Cy))gr is a clique. If
wglc(el) > 3 and we(ez) = wer(ez) = 2, then we are done with Cy = asad azaia,. Hence
wgr, (e1) = 2. By a symmetric argument we can prove that also wgr (€2) = wgy, (e3) = 2. By
the assumption wgi(er) > 3 and by Claim 1, at least one of the chords a7 af, ajasy is present.
Now, if both ayaf € E(G') and azas € E(G'), then, since (' is closed, also a; a3z € E(G'),
which together with any of the chords ajaf, ajay implies that (V(C}))a is a clique. Hence
at most one of aja}, asas is present. Symmetrically, at most one of a5ad, asa; is present.
Hence we have at least one of the chords ajaf, ajas, at most one of a5 ad, asas, and at most
one of a3 ad, asa;. Then it is straightforward to check that in each of the possible cases either

(V(C1))er is a clique or we can find a required cycle Cs. [ ]

Proof of Theorem 3. (i) Let I}, I, be two cycle closures of G, suppose E(Fy)\ E(Fy) # 0
and let Gy,..., Gy be the sequence of graphs that yields Fy. Let e = zy € E(G;) \ E(F3)
be chosen such that j is as small as possible. Since e € F (), either x,y € N[C] for some
eligible cycle C' in G;_1, or there is a sequence of vertices xy,...,z; and graphs Hy, ..., Hj
such that Hy = (Gj_1)g, x4 is eligible in H;, Hiyy = (H;),,., 0 =1,...,k, and 2,y € Ng, (2).
By Lemma 5 (in the first case) and since obviously a locally connected vertex remains locally
connected after adding edges to the graph (in the second case), we have xy € E(F), a
contradiction.

(17) Part (i7) follows immediately from Proposition 1 and from the main result of [8]. M

Example 1. The graph in Figure la) shows that Proposition 1 fails if we require only one
edge e with wg(e) = 2 in a C5 or if we admit the two edges to be consecutive. The graph in

Figure 1b) gives a similar example for a C (elliptical parts represent cliques of order at least
three).

Figure 1



Example 2. Linderman [7] proved that the minimum number of edges of a claw-free graph
G of order n with a complete closure cl(() equals 2n —3. The graph in Figure 2 is an example
of a claw-free graph G of order n = 0 (mod 6) with a complete cycle closure clo(G') and with

only %n — 1 edges.

Figure 2

Remarks. (i) The graph in Figure 2 is a closed claw-free graph that contains neither a
C4 nor a Ky — e as an induced subgraph. This implies that the closure concepts based on
neighborhood conditions for the vertices of an induced K, — e introduced in [2] and [4] cannot
be applied to add new edges to this graph (while its cycle closure is a complete graph). On
the other hand, the closures from [2] and [4] do not assume claw-freeness of the original
graph, and yield additional edges in graphs for which the closure of [8] and the cycle closure
are not defined.

(7¢) Catlin [5] has introduced a powerful reduction technique that reduces the order of
the line graph preimage, preserving the existence of a spanning closed trail, and, with some
restrictions, of a DCT in this preimage. Considering the graph H = K, for { > 3, it is
not difficult to check that H is equal to its reduction (i.e. Catlin’s reduction technique is
not applicable), L(H) is a closed claw-free graph (hence the closure technique introduced in
[8] is also not applicable), but the cycle closure of L(H) is a complete graph. This example
shows that the cycle closure technique is not a special case of Catlin’s reduction technique.
Moreover, it is not known whether the reduction of a graph in the sense of Catlin’s technique

can be obtained in polynomial time. The same holds for the refinement of Catlin’s technique

due to Veldman [10].
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