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Abstract

Let G be a claw-free graph and let cl(G) be the closure of G. We present a method for
characterizing classes G;, i = 3,...,7, of 2-connected closed claw-free graphs with the
following properties.
(1) Theorem. Let G be a 2-connected claw-free graph of order n > 153 such that
§(G) > 20 and 0g(G) > n+39. Then either G is hamiltonian or cl(G) € U_; G;.
(¢7) Corollary. Let G be a 2-connected claw-free graph of order n > 153 with
§(G) > ™32, Then either G is hamiltonian or cl(G) € U3 G
The family of exceptions contains 318 infinite classes. The majority of these exception
classes were found with the help of a computer.
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1 Introduction

We consider finite undirected graphs G = (V(G), E(G)) without loops and multiple edges.
We follow the most common terminology and notation and for concepts not defined here
we refer e.g. to [1]. For any set A C V(G) we denote by (A)s the subgraph of G induced
on A and G — A stands for (V(G) \ A). A graph G is H-free (where H is a graph), if G
does not contain an induced subgraph isomorphic to H. In the special case H = K3 we
say that G is claw-free. The independence number of G is denoted by a(G) and the clique
covering number of G (i.e. the minimum number of cliques necessary for covering V(G))
by 6(G). For a set Y C V(G), G|y is the graph obtained by contracting (Y )¢ to a vertex,
i.e. the graph with vertex set V(Gly) = (V(G) \ Y) U {z} (where z ¢ V(G)) and edge set
E(Gly) = E(G-=Y)U{wz| w € V(G) \Y and wz € E(G) for some z € Y}. We denote
by 0(G) the minimum degree of G and by oy (G) (k > 1) the minimum degree sum over all
independent sets of k vertices in G (for k > a(G) we set 0 (G) = 00).

The line graph of a graph H is denoted by L(H). If G = L(H), then we also denote
H = L7Y(G) and say that H is the line graph preimage of G (recall that for any line graph
G nonisomorphic to K3, its line graph preimage is uniquely determined).

A vertex x € V(G) is said to be locally connected if its neighborhood N(z) induces a
connected graph. The closure of a claw-free graph G (introduced in [11] by the third author)
is defined as follows: the closure cl(G) of G is the (unique) graph obtained by recursively
completing the neighborhood of any locally connected vertex of GG, as long as this is possible.
The closure cl(G) remains a claw-free graph and its connectivity is at least equal to the
connectivity of G. The following basic properties of the closure cl(G) were proved in [11].

Theorem A [11]. Let G be a claw-free graph and cl(G) its closure. Then
(i) there is a triangle-free graph H¢ such that cl(G) = L(Hg),
(it) the length of a longest cycle in G and in cl(G)) is the same.

Consequently, G is hamiltonian if and only if cl(G) is hamiltonian. If G is a claw-free
graph such that G = cl(G), then we say that G is closed. It is apparent that a claw-free
graph G is closed if and only if every vertex x € V(G) is either simplicial (i.e. (N(z))q is a
clique), or is locally disconnected (i.e. (N(z))¢ consists of two vertex disjoint cliques).

A closed trail T in a graph H is said to be dominating if every edge of H has at least
one vertex on 7. Harary and Nash-Williams [9] proved the following result, showing that
hamiltonicity of a line graph is equivalent to the existence of a dominating closed trail in its

preimage.

Theorem B [9]. Let H be a graph without isolated vertices. Then L(H) is hamiltonian
if and only if either H is isomorphic to Ky, (for some r > 3) or H contains a dominating
closed trail.



2 Main result

We begin with a brief overview of the history of consecutive improvements of minimum degree
conditions for hamiltonicity in claw-free graphs. The first result in this direction was given
by Dirac [2].

Theorem C [2]. Let G be a graph of order n > 3 with minimum degree 6(G) > n/2.
Then G is hamiltonian.

Although Dirac’s condition is sharp in general, Matthews and Sumner [10] showed that
it can be improved in the class of claw-free graphs.

Theorem D [10].  Let G be a 2-connected claw-free graph of order n with minimum
degree 6(G) > (n—2)/3. Then G is hamiltonian.

The graph G5 in Figure 1 (where the elliptical parts represent cliques of appropriate order
containing at least one simplicial vertex) shows that Theorem D is sharp. However, Hao Li
[7] showed that this example is, in a sense, the only possible one. Let Gs be the class of all
spanning subgraphs of the graph in Fig. 1.

Theorem E [7]. Let G be a 2-connected claw-free graph of order n with minimum degree
6(G) > n/4. Then either G is hamiltonian or G € Gs.

The bound in Theorem E is sharp; however, Li, Lu, Tian and Wei [8] showed that an-
other improvement was possible by enlarging the number of exceptions (for the class G see
Figure 1).

Gs (Gy) is the set of all spanning subgraphs of G3 (G} and G?)

Figure 1

Theorem F [8]. Let G be a 2-connected claw-free graph of order n with minimum degree
§(G) > (n+ 5)/5. Then either G' is hamiltonian, or G € G5 U G,.

Theorem F' is the strongest result in this direction that was achieved without using closure
techniques.

Using the closure concept in claw-free graphs [11], Favaron, Flandrin, Li and Ryjacek
[3] observed that there is a close relation between the minimum degree sum oy (G) (or the
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minimum degree 6(G), respectively) of a closed claw-free graph G and its clique covering
number. These connections are established in the following results [3].

Theorem G [3]. Let k > 2 be an integer and let G be a claw-free graph of order n such
that 6(G) > 3k — 5 and 03 (G) > n+ k* — 2k. Then 0(cl(@)) < k — 1.

Corollary H [3]. Let k > 2 be an integer and let G be a claw-free graph of order
n > 2k* — 3k and minimum degree 6(G) > % 4+ k — 2. Then 0(cl(G)) < k — 1.

The bounds on 04 (G) (6(G)) in the previous results are sharp (this can be easily seen
considering the cartesian product of cliques). However, these results can be improved under
an additional assumption that G is not hamiltonian.

Theorem I [3]. Let k > 4 be an integer and let G be a 2-connected claw-free graph with
|V(G)| = n such that n > 3k* — 4k — 7, §(G) > 3k — 4 and

or(G) >n+k*>— 4k + 7.

Then either 0(cl(G)) < k — 1, or G is hamiltonian.

Corollary J [3]. Let k > 4 be an integer and let G be a 2-connected claw-free graph with
|V(G)| = n such that n > 3k* — 4k — 7 and

n+k?>—4k+7
k .

Then either 0(cl(G)) < k — 1, or G is hamiltonian.

I(G) >

In [3], the classes of all 2-connected nonhamiltonian closed claw-free graphs with small
clique covering number were listed for §# < 5 using an exhaustive case-analysis. In this way,
the following results were proved in [3] (for the class G5 see Figure 2).

Theorem K [3]. Let G be a 2-connected claw-free graph with n > 77 vertices such that
d(G) > 14 and
06(G) >n+ 19.

Then either G is hamiltonian or G € g}, U g} U g}.

Theorem K implies the following minimum degree result (which was also proved indepen-
dently, using a different technique, by Kuipers and Veldman in [6]).

Corollary L [3], [6]. Let G be a 2-connected claw-free graph of order n > 78 with

5(G) > n%(;16'

Then either GG is hamiltonian or G' € Gz U G, U Gs.




Gs is the set of spanning subgraphs of G}, G2, G2, G¢, G2, G¢ and G

Figure 2

Let F; (i = 3,...,7) be the classes of graphs listed in the Appendix. For any F/ € F;,
let G/ be the set of all spanning subgraphs of all graphs obtained from the line graph L(F})
of Flfj by adding an appropriate number of simplicial vertices to those cliques of L(Fij ) that
correspond to the black vertices of Fij, and set G; = U';ié_l g{, t = 3,...,7. Then it is
easy to see that for i = 3,4,5, G, = {cl(G)| G € G, is 2-connected and claw-free}, where G;
(1 = 3,4,5) are the classes of graphs from Figures 1 and 2.

In Sections 3 and 4 we present a method that was used for finding the classes Fg and
F7 and establishing the fact that a 2-connected closed claw-free graph G with #(G) < 7
is nonhamiltonian if and only if G € Ul_;G;. This result together with Theorem I and
Corollary J yields the following theorem (which is the main result of this paper).

Theorem 1.  Let G be a 2-connected claw-free graph of order n > 153 such that §(G) > 20
and
Og(G) > n+ 39.

Then either G is hamiltonian or G € JI_; G;.

Theorem 1 immediately implies the following minimum degree result.

Corollary 2.  Let G be a 2-connected claw-free graph of order n > 153 with minimum
degree
39
5(G) > ”E .

Then either G is hamiltonian or G € Ul_; G;.

Proof of Theorem 1 and Corollary 2 follows immediately from Theorem I and Corollary J,
respectively, and from the above mentioned properties of the classes F;. In the following



sections we present the method which was used for the computer search for the classes of
exceptions with # = 6, 7.

3 Preliminary observations

In this section we present basic definitions, notation and some auxiliary statements that will
ensure the correctness and finiteness of the algorithm presented in Section 4.

We basically follow the terminology and notation introduced in [3]. Let Gy be the class of
all 2-connected nonhamiltonian closed claw-free graphs with clique covering number 6. By
Theorem A, every G' € Gy is the line graph of some (unique) triangle-free graph H. Let Dy (H)
be the set of all degree 1 vertices of H and put H' = H—D,(H). Set Ho = {LY(G)| G € Gy}
and Hp = {H — D1(H)| H € Hp}. Since every G € Gy is 2-connected, every H € Hy or
H' € Hj is essentially 2-edge-connected or 2-edge-connected, respectively.

In every G € Gy choose a fixed minimum clique covering Pg = {By, ..., By} of G such
that each clique B; is maximal. Since Pg is minimum, every B; contains at least one proper
verter, i.e. a vertex belonging to no other clique of Pg. The centers By, ..., By of the stars
of H = L7Y(@) that correspond to the cliques of G will be called the black vertices of H.
The other vertices of H are called white. The set of black (white) vertices of H is denoted
by B(H) (W (H)), respectively. Two vertices by, by € B(H) are said to be related if they are
either adjacent or they have a white common neighbor. Since B(H) is a vertex covering of
H (i.e., every edge of H has at least one vertex in B(H)), the set W (H) is independent.

It is easy to see that for any G € Gy, any graph obtained from G by adding/removing
simplicial vertices to/from cliques of Pg also belongs to Gy as long as (in the case of removal)
at least one simplicial vertex in the clique remains (while the removal of the last simplicial
vertex of a clique can turn G into a hamiltonian graph). Hence we can without loss of
generality denote for any H' € Hj by L(H) the line graph of H' in which one simplicial
vertex is added to every clique corresponding to a black vertex of H'.

Let G1,Gy € Gy. We say that Gy is an ss-subgraph of G, if Gy is isomorphic to a
spanning subgraph of a graph, which is obtained from G5 by adding an appropriate number
of simplicial vertices to some cliques of Pg,, and that G is a proper ss-subgraph of G if G,
is an ss-subgraph of G5 and 1, G5 are nonisomorphic. In the following we present a method
for finding a subset Fy C Hj, such that

(1) every G € Gy is an ss-subgraph of L(F) for some F € Fy,

(¢7) for any Fy, Fy € Fy, L(F}) is not an ss-subgraph of L(F}).
By the previous observations, the class Gy is fully characterized by Fy.
If, for some H € H,y, the corresponding H' € Hj has a black closed trail (abbreviated

BCT), i.e. a closed trail containing all black vertices of H', then clearly H has a DCT. Since,
by Theorem B, no H € Hy has a DCT, no H' € H; has a BCT.



We say that a graph H' € Hj, is reducible if there is a graph H| € H; for some ¢ < 6 such
that either

(1) Hj isobtained from H' by adding a relation (i.e., an edge or a white common neighbor)

between two black vertices, or

(it) H] = H'|y for some Y C V(H') with |Y| > 2.
In the first case, we say that H' is r-reducible. In the second case, H' is said to be ww-reducible
if Y N B(H')| =0, bw-reducible if |Y N B(H')| = 1, bb-reducible if |Y N B(H')| > 2.

The following statement shows that reducibility in #j is closely linked with ss-subgraphs
in Gg.

Theorem 3. Let G € Gy, H =L '(G) € Hy and H = H — D,(H) € Hj. Then H' is
reducible if and only if there is a graph Gy € G; (for some t < @) such that G is a proper
ss-subgraph of G .

Proof. 1. Suppose first that H' is reducible. If H{ is obtained by adding a relation
between b;,b; € B(H'), then L(H]) is obtained from L(H') either by adding a new vertex
and joining it with all vertices of B; and B, (where B; and B; are the cliques corresponding
to b; and b;) if an edge is added, or by adding a simplicial vertex to each of B;, B, and joining
these vertices with an edge, if a relation with a new white vertex was added. In both cases,
L(H) is a proper ss-subgraph of L(H]).

Let H] = H'|y for a set Y C V(H') with |Y| > 2. Denote by Y the set of edges of
H' that have at least one vertex in Y and by Y}, the corresponding set of vertices of L(H').
Then L(H]) can be equivalently obtained from L(H') by adding all missing adges with both
vertices in Y}, (i.e., by making (V%) a clique) and then removing an appropriate number of
simplicial vertices. Thus, L(H) is again a proper ss-subgraph of L(H}).

2. Let now G be a proper ss-subgraph of some G| € G;, ¢ < 0. Then G is a spanning
subgraph of a graph G7 € G;, where G was obtained from G, by adding simplicial vertices
to cliques of Pg. Clearly also G5 € G;; hence we can suppose GY = Gj.

Let wv € E(G1)\ E(G). Since Pg is a clique covering of G, there are cliques B, B, € Pg
such that u € B, \ B, and v € B, \ B,. Let b,, b, be the corresponding black vertices in H'.

First suppose that there is a vertex z € B, N B,. Then, since {u, v, 2z} induces a triangle
and G is closed, (B, UB,)¢, is a clique. Hence H is bb-reducible (with Y = {b,, b,}). Thus,
in the sequel we can suppose that B, N B, = (). We distinguish several cases.

Case 1: Both v and v are simplicial in G.

Then adding uv corresponds in H to adding a relation bjwby, where w is a (new) white
vertex. Hence H is r-reducible.



Case 2: One of u, v is not simplicial in G.

By symmetry, suppose v is simplicial and « is not. Then v € K, for some clique K, C
V(G), B, # K, # B,. Let z, € V(H') be the vertex corresponding to K,. If K, N B, # 0,
then, since G is closed, (K, U B,)q, is a clique, implying H' is bw-reducible or bb-reducible
with Y = {z,,b,} (depending on whether z, is white or black in H'). If K, N B, = (), then,
since u cannot be a center of a claw in G, we have the following three possibilities.

e (B, U{v})q, is a clique. Then H'is r-reducible with adding the edge b,b,.

o (K, U{v})g, is a clique. Then similarly H' is r-reducible with adding the edge z,b,
(and hence, if z, is white, the relation b,z,b,).

e (K, U By,})g, is a clique. Then even the graph, obtained from G just by making
(K, U By})g, a clique (i.e. without adding uv) also belongs to G;, implying that H’
is bb-reducible or bw-reducible with Y = {b,, z,} (depending on whether z, is black or
white). The possibility of adding the edge uv then yields r-reducibility by Case 1.

Case 3: Neither u nor v is simplicial in G.

Then v € K, for some clique K, different from K,, B,, B,. It is straightforward to check
that, since neither u nor v can be a center of a claw, some two of the cliques K, K,, By, B,
induce one clique, implying that H' is reducible. [ |

4 Algorithm

In this section we present the general idea of the algorithm used for generating all graphs
from the classes F3 and F;. We do not give all technical details of the implementation.
The interested reader can find this information in the thesis [5] which is (with the complete
version of the source code of the program) available on www.

By Theorem 3, we have Fy = {F € Hy| F is ireducible}. For any closed trail T in a
graph F' € Fy, denote by bla(T") the number of black vertices of T and by blo(T") the number
of blocks of T". In every F' € JFy choose a closed trail T such that, among all closed trails
in F',

(1) bla(Ty) is maximum,

(i7) subject to (i), blo(Ty) is minimum,

(1i4) subject to (i) and (i7), Ty has minimum number of edges.
Such a T clearly exists and, since F' has no BCT, bla(7y) < 6. Hence every F' € Fy consists
of the trail T with properties (i) — (¢i7), some black vertices outside Tp and some additional
relations. This gives the following general idea of an algorithm for finding all graphs from
the class Fp.



Step 1. Generate all minimal closed trails 7" with bla(7) < 6.

Step 2. For each closed trail T" from Step 1, generate all minimal 2-edge-connected graphs
T?, consisting of the trail T, additional 6 — bla(T") black vertices and connecting

relations.

Step 3. Check each of the graphs T! from Step 2 for bb-reducibility. If T" is not bb-
reducible, keep it (as T?) for Step 4; otherwise generate all graphs T? obtained
from T} by adding a minimal set of relations such that 7 is not bb-reducible.

Step 4. a) For each of the graphs T2 from Step 3, generate all graphs T2, obtained from T
by adding all possible sets of relations that do not imply the existence of a closed
trail 7”7 with bla(7") > bla(7) or with bla(7") = bla(7) and blo(7") < blo(T').

b) For each of the graphs T2 from Step 4a, create all possible graphs T by replacing
by an edge all relations containing a white vertex of degree 2 for which the
replacement does not yield a triangle.

Step 5. Check each of the graphs 77 from Step 4b for reducibility. F, is the set of all
ireducible graphs T2

In Step 1, for the considerations that follow, suppose without loss of generality that the
generated minimal trails 7" are ordered in the order suggested by the preferences of the choice
of Tr, i.e. in nonincreasing order of bla(7") and, for each value of bla(7T), in nondecreasing
order of blo(T).

In Step 2, the graphs T are generated, for any fixed closed trail 7' from Step 1, by
checking all possible relations between 7" and the vertices outside 7'. In order to reduce the
number of cases to be considered, each of these graphs is checked for minimality (this can be
supposed without loss of generality since the possibly missed relations are added later on in
Step 4 anyway).

In Step 3, bb-reducibility of T means that L(T') is an ss-subgraph of a graph from F;
for some t < 0, i.e. it is already known. However, this bb-reducibility can be due to some
missing relations, and not considering this possibility could result in missing some cases.

In all steps from Step 1 to Step 4a, all realtions are supposed to contain a white vertex
(this can be supposed without loss of generality since the white vertices which do not yield
any new case are removed in Step 4b anyway).

In Step 4c, all further relations are added.

In all steps, the constructed graphs are checked for isomorphism with the previously
generated (and stored) graphs.

In Steps 2 — 4, all constructed graphs are checked for nonexistence of a closed trail 7"
such that bla(7") > bla(7) or bla(7") = bla(7) and blo(7") < blo(7) (where 7' is the closed
trail that the graph under consideration was obtained from) since otherwise the subcase can



be transformed to some of the previous ones. All constructed graphs are of course checked
for being triangle-free.

It is clear that the algorithm, if it stops, yields all ireducible 2-edge-connected triangle-
free graphs covered by a set of # black vertices and with no BCT, i.e., by Proposition 3, the
class Fy.

Kuipers and Veldman [6] proved that, for each 6 > 0, the set Fy is finite (using a different,
nonalgorithmic approach). Thus, to establish the finiteness of the algorithm, it suffices to
show that the method used for generating closed trails in Step 1 always halts.

Let ¢ be an integer and let T" be a closed trail containing a covering set of bla(T) = ¢
black vertices. Suppose that 7" is minimal (i.e., no proper subtrail of 7" contains all its black
vertices). Let Cr be a cycle such that T is obtained from Cr by a series of identificatons of
some of its vertices of the same color. For any ¢ > 1 denote by m;(T) the number of black
vertices of 1" that the trail T passes through i-times (i.e., the number of black vertices of
degree 2i). Then we have the following statement.

Theorem 4.  Let t be an integer and let T be a minimal closed trail with bla(T) = t.
Then
(¢) mi(T) +mo(T) + ... =bla(T),
(i1) if mj(T") # 0 for some j > 2, then m,(T) > j,
(¢13) m;(T )—Oforj>t,
() Cy has at most (¢ + 1)? black vertices.

Remark. Part (iv) of Theorem 4 establishes finiteness of Step 1 of the algorithm.

Proof. (i) Part (7) is straightforward.

(¢7) Let m;(T) # 0, let y be a vertex of T' with degree 2j and suppose that y is obtained
by identifying vertices z1,...,z; (j > 2) of Cp. If my(T") < j, then, in some of the segments
of Cp between two consecutive x;’s (say, in x1Cpa5), all interior black vertices are identified
in 7" with some other vertices. But then the cycle (z; = 23)Cra; (obtained from Cyp by
identifying x; with 25 and removing all interior vertices of the segment x,C7pz5) yields a
shorter trail 7" with bla(7”) = bla(T"), contradicting the minimality of T

(¢73) If m;(T') # 0 for some j > ¢, then, by (i7), my(T) > j, implying ¢t > mqy +mo+... +
mj > my +m; > j+12>1¢+1, a contradiction.

(tv) Let m = max{j > 1| m;(T) # 0}. By (4i7), m < t—1, and by (4i), m;(T") > m. Hence
at least m black vertices of T have degree 2, and the remaining at most ¢ — m black vertices

of T have degree at most 2m. This implies bla(C7) < 1-m+m-(t—m) = —m?+ (t+1)m =
D (g — )2 < (D n
1 2 TR
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Concluding remarks.

1. The algorithm was implemented in parallel on a cluster of 6 parallel workstations
(6x Pentium Xeon 450 MHz, 6x 256 MB RAM, interconnection 1,6 Gb/s), running MPI
(Message passing interface). A nonparallel version of the algorithm was also developed and
implemented. The computing time of the parallel version was approx. 1 minute for 8 = 6
and 107 minutes for § = 7.

2. Generally speaking, it could be possible to obtain the exception classes even for larger
values of . Nevertheless, the authors are convinced that a result presenting a degree condition
for hamiltonicity in 2-connected claw-free graphs of type o9(G) > n + 52 (or, as a corollary,
d(G) > (n+52)/9) with a book of exceptions probably would not be very useful (although
some of the exceptional graphs could be of interest on their own right). Thus, the authors
believe that in the chase of improvements of degree conditions for hamiltonicity in 2-connected
claw-free graphs there not much remains to be done.

Acknowledgement. The cluster used for the computation was built under a project MSMT
No. LB98246 ”Lyra”.
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