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Abstract

The well-known greedy algorithm MIN for finding a maximal independent set in a
graph G is based on recursively removing the closed neighborhood of a vertex which
has (in the currently existing graph) minimum degree. We give a forbidden induced
subgraph condition under which algorithm MIN always results in finding a maximum
independent set of G, and hence yields the exact value of the independence number of

G in polynomial time.
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1 Introduction

Throughout the paper, we consider only finite undirected graphs G = (V(G'), E(G)) without
loops and multiple edges. By Ng(a) we denote the neighborhood of a vertex x € V(G), i.e.,
the set of all neighbors of . We further denote by Ng[x] = Ng(x)U{x} the closed neighbor-
hoodof x in GG, by dg(x) = | Ne(x)| the degree of x in GG and by 6(G) = min{dg ()|« € V(G)}
the minimum degree of G. For a set M C V() we denote by (M) the induced subgraph of
G'on M and we set G—M = (V(G)\ M)q. By a(G) we denote the independence number of
(G, i.e., the size of a maximum (i.e. largest) independent set in G. If Fy,..., F} are graphs,
then we say that G is {Fy,..., Fj.}-free if G does not contain a copy of any of the graphs
Fi, ..., Fy as an induced subgraph. For other terminology and notation not defined here we
refer to [1].

The well-known greedy algorithm MIN for finding a maximal independent set in a graph
(' [4] can be stated as follows.

Algorithm MIN (Minimum degree).
1. H :=G;1:=1; Syy = 0.

2. Choose a vertex v; € V(H,;) such that dy,(v;) = §(H;) and set Syin = Svrnv U {v};
Hi-l—l = HZ — NH, [UZ]

3. If V(H;41) # 0 then i := i+ 1 and go to 2.
4. STOP.

Obviously, the set Syrn, generated by Algorithm MIN, is a maximal (but not necessarily
maximum) independent set in (7, and hence o(G') > |Sain|-

Mahadev and Reed [3] considered the following (also greedy) algorithm for finding a
maximal independent set in (&, based on an ordering of the vertices of G according to their

degrees in (. This algorithm can be equivalently formulated as follows.

Algorithm VO (Vertex order).

1. Order the vertices of (¢ into a sequence vy, ...,v, such that dg(v;) < dg(vy) for any
1,k 1<j7<k<n.

2. Gy :=G;1:=1; Syo = 0.

3. Fori:=1 ton do:
Ing(UZ) N SVO == @, then SVO = SVO U {UZ}

4. STOP.



It is clear that the set Sy, generated by Algorithm VO, is a maximal independent set
in (¢, and hence also a(G) > |Svol.

Note that both Algorithm MIN and Algorithm VO have polynomial time complexity
whereas the determination of «((G) is difficult since the corresponding decision problem

INDEPENDENT SET is a well-known NP-complete problem [2].

Denote by karrn(G) and kyo(G) the smallest cardinality of an independent set of (7 that
Algorithm MIN and Algorithm VO can create, respectively. Let Fy, ..., Fg be the graphs in
Flg 1 and let fA == {F17F27F37F4,F5,F6

W
ST,

The following theorem, which forms the essential part of the main result of [3], shows

Figure 1

that in the class of F4-free graphs Algorithm VO always yields a maximum independent set.

Theorem A [3]. Let (G be an Fu-free graph. Then
kvo(G) == oz(G)

2 Main result

Let F%, ..., Fi3 be the graphs shown in Fig. 2 and let Fy; = {F}, Fs, F5, Fg, Fr, Fs, Fy, Fio,
Py, Fig, Fis).

Since Fy is an induced subgraph of F; and Fj is an induced subgraph of each of the graphs
Fy., ..., Fi3, the class of F4-free graphs is a proper subclass of the class of Fi-free graphs.
Thus, the following theorem, which is the main result of this paper, extends Theorem A
in the sense that even for Fj-free graphs the independence number can be calculated in

polynomial time.
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Figure 2

Theorem 1.  Let GG be an Fi-free graph of order n > 7. Then

kM[N(G) = oz(G)

Equivalently, Theorem 1 gives a collection of forbidden induced subgraphs which imply
that Algorithm MIN always yields a maximum independent set. The proof of Theorem 1 is
postponed to Section 3.

As already noted, Fs-free = Fi-free. However, the price for a more general result is paid
here in larger number of forbidden subgraphs. The following corollary of Theorem 1 avoids
this drawback and still extends Theorem A.

Let Fy = {F}, F5, Fy, F5, Fg, Fr}. Note that, since Fr contains an induced F; and each of
the graphs Fg, ..., Fi3 contains an induced Fjy, we have Fu-free = Fy-free = Fi-free.

Corollary 2.  Let GG be an Fy-free graph of order n > 7. Then
kM[N(G) == oz(G)
The following statement shows that Corollary 2 (and hence also Theorem 1) is consid-
erably stronger than Theorem A. More specifically, it says that under the assumptions of

Corollary 2 the difference between the output of Algorithm MIN and that of Algorithm VO

can be arbitrarily large.



Theorem 3.  For every integer k there is an F,-free graph G such that

kvin(G) — kvo(G) > k.

Proof. Let G be the class of graphs defined recursively as follows:

(i) B, €0,

(ii) for any Gy, Gy € G let also (G + G2)V Ky € G and (G +Go)V K, € G.
(Following [1], we denote by "+ the disjoint union and by ”V” the join of two graphs,
respectively).

We show that every graph GG € G is Fy-free. We first have the following observation, the

proof of which is obvious.

Claim. Let I' € F, with |V(F)| = r. Then dp(z) < r — 2 for every x € V(F) and
min{dp(x),dr(y)} <r — 3 for any pair of independent vertices x,y € V(F). O

Since Fy ¢ F3, the graph Fy is Fy-free. Suppose now that Gy, Gy are Fy-free. If (G +
Go) V Ky or (Gy + Gq) V Ky contains an induced F' € JFy, then, since F is connected, V(F)
contains at least one vertex outside V(G1) U V(Gy), but then we have a contradiction with

the claim. Hence every graph in G is Fy-free.

If we now set (f = Fy and G', = (G} + G}) V Ky for ¢ > 1, then G € G for any ¢ > 1

and it is apparent that kyn(GH) = o(Gh) = 3271 but kyo(Gh) = 2°. [ |

Remark. By Theorem 1, in the class of Fj-free graphs Algorithm MIN is always at least
as good as Algorithm VO and by Theorem 3 the difference can be arbitrarily large. The
following construction shows that without the assumption of F-freeness Algorithm VO can
be better than Algorithm MIN (i.e., for all graphs, the two algorithms are incomparable).

Let p > 3 be an arbitrary integer, let G!' ~ G* ~ K,, G® ~ K; and G* ~ K, be
vertex-disjoint, let G, be the graph obtained by joining by an edge all pairs of vertices z,y
for z € V(G"), y € V(G*) (mod 4), and let G, be the graph obtained by adding one
new vertex to G, and joining it to all vertices of G*. Then clearly kyn(G,) = 3, while
kvo(Gy) =p+ 1.

Since Algorithm MIN is (clearly) polynomial, we further have the following consequence
of Theorem 1.

Corollary 4.  In the class of Fi-free graphs the independence number can be computed

in polynomial time.

Note that it is obvious that Fj-free graphs are recognizable in polynomial time.



3 Proof of Theorem 1

We basically follow the general idea of the proof of Theorem A in [3], with replacing Algo-
rithm VO by Algorithm MIN and the set F4 by the set F;. For the sake of clarity, whenever
we list vertices of some induced subgraph F', we always order the vertices of the list such
that their degrees (in F') form a nonincreasing sequence (with the exception of Fy ~ P,
where the ordering follows the path).

Let GG be a (without loss of generality) connected graph satisfying the assumptions of
Theorem 1 and suppose that Algorithm MIN creates a maximal independent set S in G
such that |S| = m < a(G), i.e., such that S is not maximum. Let the notation of v;, H;
be chosen in accordance with the description of Algorithm MIN in Section 1, i.e., such that
S=Avr,...,0om}, Hi =G, dg,(v;) = §(H;)and H;y1 = H;— N[v;], and set S; = SNV(H;) =
{vj,...,om}t, 7 =1,...,m. Choose a maximum independent set T' = {t1,...,{,} in G such
that |S N 7T| is maximum, and set T; = T N V(H;), j = 1,...,m. Since both S and T
are independent, (S U T)q is bipartite with all its isolated vertices in S NT. Let R be a
component of (SUT)¢ with |RNS| < |[RNT| (such an R always exists since |S| < |T'|) and
set k =min{s € {1,...,m}| v; € RN S} (with a slight abuse of notation, we will use R for
both the component and its vertex set).

We have the following observations.

Claim 1. 5; is a dominating set in H;, j =1,...,m.

Proof. If x € V(H;)\ S;, then Ng(x) N {vy,...,v;_1} = 0, since otherwise x ¢ V(H;) by
the definition of H;. Since S is a dominating set in (G, necessarily Ng(x)NS; # @, implying
NH](J})QS]‘%Q. O
Claim 2. dg,(z) > du,(v;) for every x € V(H;) and for every j =1,...,m.

Proof follows immediately from the definition of Algorithm MIN.

Claim 3. R C V(Hy).

Proof. Obviously RNS C V(Hy). If y € (RNT)\ V(Hy), then y € Ny, (v;) for some j < k
and hence v; € RN S, contradicting the choice of k. Hence also RNT C V(Hy). O

The following simple observation will be often used implicitly throughout the proof.
Claim 4. If F' is a subgraph of H; tor some j € {1,...,m}, then F' is induced in H; if and
only if F' is induced in G. O

In the sequel, we will use the following notation: |[RN S| =p, |[RNT| =¢qg, RNS =
{vi,o. v, RNT ={ty,...,1,}, and we suppose the notation of the vertices in RN .S is
chosen such that 11 = & and ¢;, < ¢j, for j; < 72.



Case 1: R contains a cycle.

If R contains an induced cycle of length ¢ > 8, then R contains also an induced Fj, a
contradiction.

Suppose that R contains an induced cycle €' of length 6, and let C' = syt;s9t983t351,
where s; € RN S, t;, € RNT, v =1,2,3. Since |RN S| < |RNT|, thereisaty € RNT,
adjacent to (say) s1. If soty € E(G), then (since € is induced and T is independent),
({s2,t4, 81,11, 12} )¢ =~ F5, a contradiction. Hence syty ¢ E(G), and similarly ssty ¢ E(G).
But then ({s1,t1, 82,12, 83,t3,t4})¢ =~ Fr, a contradiction. Hence every induced cycle in R
has length exactly 4. Since R is bipartite and Fs-free, it follows easily (by induction, starting
with a Cy) that R is a complete bipartite graph with 2 <|RN S| < |[RNT].

Consider the vertex v, € RN S. We have dr(vy) > dgr(y) for every y € RNT (since
|[RN S| < |RNT|), but, on the other hand, by the choice of vy and by Claim 2, dy, (vy) <
d, (y) for every y € RN T. It follows that there are vertices z € V(Hi)\ Rand y € RNT
such that zy € E(G), but zvy ¢ E(G).

Claim 5. Let z € V(Hy)\ R be such that zv, ¢ E(G) and Npar(z) # 0. Then Npas(z) # 0
and Npar(z) = {t1,...,t,}.

Proof. Let (without loss of generality) zt; € E(G). Suppose first that Ngas(z) = 0. Then
Ng(z) = RN T, since otherwise (RU {z})y, contains an induced F3. Since S is dominating,
zs € E(G) for some s € S\ R. Then Npns(s) =0 (since S is independent) and Nrar(s) = 0
(otherwise s € R), implying Ng(s) = 0 and ({z, 1, vk, 12,5} )¢ ~ F3. Hence Npns(z) # 0.
Let (without loss of generality) zv,, € E(G). Recall that iy = k, i.e, v;; = vp. If
zty, 2ty & E(G) for some a,b € {2,...,q}, then ({vi,, 10, vi), 1y, 2} ) = F5, and if zt, ¢ E(G)
and zt, € E(G) for some a,b € {2,...,q}, then ({v;, 11, 2,5, 1.} ) >~ F5. Hence zt; € E(G)
forevery 1 =1,...,4q. a

Now, by Claim 5, ¢ > 4 implies ({z, v, vi,,t1,t2,13,ta})e >~ Fs. Hence ¢ = 3 and,
consequently, p = 2.

Denote H = ({z,v;,,v;,,t1, 12,13} ) (note that H ~ Fy). Since |V(G)| > 7, there is a
vertex y € V(G) \ V(H) with Ng(y) # 0.

Suppose first that yv;, € E(G). If y € V(Hy) and yt; € E(G) for ¢ = 1,2,3, then
({y, z,vi, 04y, 1, 12, 13} ) is isomorphic to one of the graphs Fiq, Fia or Fis, depending on
the existence of the edges yv;,,yz. If y € V(Hy) and (say) yt; ¢ E(G), then, by the choice of
vi (as a vertex of minimum degree in Hy) and by Claim 2, there is a 2z’ € V(Hy)\ V(H) such
that z'v,, ¢ E(G) but 2ty € E(G). By Claim 5, {vi,, t1,13,13} C Ng(2'), i.e., (V(H)\ {z} U
{z'})¢ =~ Fy. Then (V(H)U {z'})¢ induces Fig or Fy, depending on whether zz' € F(G) or
not.

If y ¢ V(Hy), then yv;, € E(G) for some i, 1 < ig < k. Note that Ny(v,) = 0 (since
io < k). Then either Ny(y) = V(H), implying (V(H) U{y})a =~ Fi1, or y is nonadjacent to



some vertex of H, and then it is easy to see that (V(H) U {y,v;,})a contains an induced F3
for any possible structure of Ny (y). This contradiction proves that yv;, ¢ F(G).

If Npar(y) =0, then yz € E(G) or yv;, € E(G), but in both cases we have an induced
F3. Hence Npar(y) # 0. By Claim 5, yv;, € E(G) and yt; € E(G) for i = 1,2,3. Then
again (V(H) U {y})¢ induces an Fig or Fy, depending on whether yz € FE(G) or not. This
contradiction completes the proof in Case 1.

Case 2: R is a tree.

Claim 6. All leaves of R are in T
Proof. If s € S is a leaf of R and ¢ € T' is the (only) neighbor of s in R, then T'\ {t} U {s}

is also a maximum independent set, contradicting the maximality of |S N 7T'|. O

Claim 6 immediately implies that every longest path in R has an odd number of vertices.

Since (G is Fi-free, a longest path in R can be only a P5 or a Ps.

Subcase 2.1: R contalns a [’s both endvertices of which are leaves of R.

By Claim 6, let t,v;,t, (where 1 </ < pand 1 < a,b < q) be the vertices of the P5. First
observe that t,,t, € V(H;,) (since otherwise e.g. t, ¢ V(H;,) would imply t,v. € E(G) for
some ¢, 1 < ¢ < 1y, but then for 1 < ¢ < k the vertex t, would not be in Hy, and for &£ < ¢ < 1,
the vertex ¢, would not be a leaf of R). By Claim 2, there are vertices @, € V(H;,)\ R such
that x,t, € E(G) and x4ty € E(G), but x,v;,, 2pv;, ¢ £(G). By Claim 1, each of ,, 23 has a
neighbor (say, v, and vy) in S;,. Note that v,/, vy are nonadjacent to ¢, and ¢, (otherwise t,,
ty are not leaves). Now we have x, # 13, (otherwise ({x4, 14, vi,, o, var })a > F3), x4ty & E(G)
and xyt, ¢ E(G) (otherwise ({4, 15, vy, ta, Vo })a = F5 or ({a,ta, iy, th v ) =~ F3) and,
finally, x,2, ¢ E(G) and vy = vy (otherwise ({4, T, ta, tp, Vi, Var, Uy } ) induces Fy, Fg or
Fs).

Since the vertex v, (= vy ) is in S;, (but not necessarily in R), we have v, = vy for some
U 1y < 0 < m. Suppose that, among all common neighbors of z,, z; in 5;,, v, is chosen
such that ¢ is minimum. Then z,,x, € Hpy, but t,,t, ¢ Hy. By Claim 2 (for 7 = ('), there
are zq, 2z, € V(Hy) such that z,2, € E(G) and za, € E(G), but z,, 2, ¢ Ng(ve) (and also
Zas Zh Qé Ng(U”)).

Suppose first that z, = z,. Since ({2, 2, Ty, vt} ) % Fs, we have t,z, € E(G).
Symmetrically, ({xy, 24, T, ver, ) 2 F5 implies tyz, € E(G). Then z, ¢ Sy (otherwise
ta,tp are not leaves). By Claim 1, z, has a neighbor s in S, but then ({z,, t4, v;,, ts, s} >~ F5.
Hence z, # z, (implying z,2p ¢ E(G) and za, ¢ E(G)).

We show that z,t, ¢ F(G). Let z,t, € E(G). If z,t, € E(G), then ({ty,v;,, ta, 20, o ) =
F3; hence z,t, ¢ E(G). Clearly z, ¢ S (otherwise ¢, is not a leaf) and hence, by Claim 1, z,
has a neighbor s, in S. Obviously, s, is not adjacent to any of v;,, vp, tq,ty. If s,z ¢ E(G),



then ({s4, za, ta, Vigy by, o, 00 } ) =~ Fi; hence s,a, € FE(G), but then for sz, € F(G) we
have ({@p, v, 4, Sa, th })e = F3, and for sz, ¢ E(G) we have ({24, 24, Sa, o, Vo, o} > F.
Hence z,t, ¢ E(G).

Since ({xq,ta, Vip, te, Tpy Vo, 20} 2 Fr, we obtain z,t, € F(G). Symmetrically, z,t, ¢
E(G) and zt, € FE(G). This also implies that z,,z, ¢ S (otherwise ¢, or ¢, is not a
leaf). By Claim 1, there are vertices s,,s, € Sy such that z,s, € E(G) and zs, € E(G)
(possibly s, = s). Obviously, s, and s, are not adjacent to any of t,, s, vi,, ve. If sz, €
E(G), then for s, = s, and a8, € F(G) we have ({x,,ve, @b, Sasta})e >~ F5, otherwise
({xa,ta, Vi o, o, v, 8o 1) =~ Fr. Hence s,x, ¢ E(G) and, similarly, s,2, ¢ E(G). But then
({xay 2as ty, o, Ve, 1ay S0 ) > Fo. This contradiction completes the proof in Subcase 2.1.

Subcase 2.2: R contailns no F5 both endvertices of which are leaves of R.

In this subcase R contains a Ps (but no Pr). Using Claim 6, it is easy to show (by
induction, starting with a Ps) that R is isomorphic to the subdivision of a star with center
and leaves in R NT and with vertices of degree 2 in RN S. Choose the notation such that
v;; is adjacent to the center {g and to the leaf ¢;, 7 = 1,...,p. By Claim 2, there is a vertex
z1 € V(H;,) such that z1t; € E(G), but zv,, ¢ E(G). Clearly, z; ¢ S; thus, by Claim 1,
z1ve € E(G) for some vy € S with 13 < £ < m. Note that v, is not adjacent to any of v;,, t1,
but possibly tov, € E(G).

Suppose first that z¢; € E(G) for some j, 2 < j < p. Then clearly also vov;,,vit; ¢
E(G). We further have tozy ¢ E(G) (since otherwise ({21, %1, v;),%0,1;})a >~ Fs) and v;;2, ¢
E(G) (otherwise ({vy,, 21,11, vi,,to, 8} ) ~ F5). Now we have tov, € E((), since otherwise
({1, 11,05, Lo, vijs Ly, veb)e o~ Fr. This implies v, € RN S and, by the structure of R, v, has
a (unique) neighbor 4, in RNT. But now ({{¢, ve, 21,11, v, Lo, vi, })a = Fe if 1z ¢ E(G), or
({ve, z1,t1, vy, to, Lo} = Fs, if tiz1 € E(G), respectively. This contradiction proves that z
is not adjacent to any of tg,...,%,.

Now suppose that zjv;, ¢ E(G) for some a, 2 < a < p. Then toz; ¢ E(G) (otherwise
({to,vi,, t1, 21, i, 1o =~ F3) and tovy € E(G) (otherwise ({vg, 21,11, vi, 0, Vig, ta f)a = F1).
This implies, as before, that v, is in RN S and has a (unique) neighbor ¢, in RN T, but then
({ve, to, viy, t1, 21,05, e} ) =~ Fs. Hence z; is adjacent to all vertices in (RN .S) \ {v;, }. This
immediately implies p = |R N S| = 2, for otherwise ({to, vi,, 21, vis, vi, } ) = Fi.

Summarizing, it remains to consider the case when RNS = {v;, v, }, RNT = {to, 1,12}
and Ng(z1) = {t1,v;,}. We consider the graph H,,. Since iy < i3, {v;,to,t1} NV (H,,) = 0,
and since zyv;,, v, ¢ E(G), we have z1,t3 € V(H,;,). By Claim 2 (for j = i3), there is a
vertex z; € V(H,,) such that zjz; € F(G) but zjv, ¢ E(G) (and, of course, zjv;, ¢ FE(G)).
If tozy ¢ E(G), then for t12] € E(G) we have ({t1, z1,vi,, to, viy, 21 1) =~ F5, and for ;2] ¢
E(G) we have ({z1,11, v, 10, viy, 21, t2} ) = Fo if z1ta ¢ E(G) and ({vi,,t2, 21, 21, t0} ) =~ F5
if 21ty € E(G). Hence toz] € E(G), but this implies ({to,vi,, z1, 21, vi, })¢ = F5. This final
contradiction completes the proof. [ |
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