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Abstract

A generalized (4,7, k)-net N; ;) is the graph obtained by identifying each of the
vertices of a triangle with an endvertex of one of three vertex-disjoint paths of lengths
i,J,k. We prove that every 2-connected claw-free Ny o j-free graph of diameter at
least max{7,25} (j > 2) is hamiltonian.

Keywords: hamiltonian graphs, forbidden subgraphs, claw-free graphs
1991 Mathematics Subject Classification: 05C45

*Research supported by grant GA CR No. 201/97/0407

1



1 Introduction

In this paper we consider finite simple undirected graphs G = (V(G), E(G)) and for
concepts and notations not defined here we refer the reader to [2].

For a set S C V(G) we denote by N(S) the neighborhood of S, i.e. the set of all
vertices of G which have a neighbor in S. If S = {z}, we simply write N(z) for N({z}).
For any subset M C V(G), we denote Ny (S) = N(S)nN M. If H is a subgraph of
G, we write Ny (S) for Ny)(S). For subsets M, N C V(G), M NN = (), we denote
E(M,N) ={xy € E(G)| + € M,y € N}. The induced subgraph on a set A C V(G) in
G will be denoted by (M)¢.

We denote by diam(G) the diameter of G, i.e. the largest distance of a pair of vertices
x,y € V(G). A path with endvertices z,y will be sometimes referred to as an xy-path. If
x, z are vertices at distance diam(G), then any shortest zz-path will be called a diameter
path of G. By ¢(G) we denote the circumference of G, i.e. the length of a longest cycle in
G. A graph G is hamiltonian if ¢(G) = |V (G)].

If Hy,...,Hy (k> 1) are graphs, then a graph G is said to be HiHy ... Hy-free if G
contains no copy of any of the graphs Hy,..., Hy as an induced subgraph. The graphs
H,, ..., Hj will be also referred to in this context as forbidden subgraphs. Specifically, the
graph K 5 will be also denoted by C' and called the claw and in this case we say that G
is claw-free. Whenever vertices of an induced claw are listed, its center, (i.e. its unique
vertex of degree 3) is always the first vertex of the list. We denote by P; the path on i
vertices. Further graphs that will be often considered as forbidden subgraphs are shown
in Figure 1.
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Figure 1

We say that a vertex x € V(G) is locally connected if (N(x))q is a connected graph. A
locally connected vertex with a noncomplete neighborhood is called eligible and the graph
G!,, obtained from G by adding to the neighborhood of an eligible vertex z all missing

edges, (i.e. such that N(x) induces in G', a complete graph), is called the local completion
of G at x. The following was proved in [12].

Theorem A [12]. Let G be a claw-free graph and let x be an eligible vertex of G.
Let N. = {uv | u,v € Ng(x),uv ¢ E(G)} and let G, be the graph with vertex set
V(G,) = V(G) and with edge set E(G') = E(G) U N_. Then

(i) the graph G, is claw-free,

(i1) (@) = ¢(G).



It can be shown that a graph which is obtained from a claw-free graph G by recursively
performing the local completion operation, as long as there is at least one eligible vertex,
is uniquely determined and is again claw-free. This graph is called the closure of G and is
denoted by cl(G). The following theorem summarizes the basic properties of the closure.

Theorem B [12]. Let G be a claw-free graph. Then
(i) cl(G) is well-defined (i.e., uniquely determined by G),
(1) there is a triangle-free graph H such that cl(G) is the line graph of H,
(1) c(cl(G)) = c(G),
)

(iv) G is hamiltonian if and only if c1(G) is hamiltonian.

If G = cl(G), then we say that the graph G is closed (thus, G is closed if and only if
G is the line graph of a triangle-free graph).

There are many results dealing with hamiltonian properties in classes of graphs defined
in terms of forbidden induced subgraphs (see e.g. [10], [7], [11], [3], [4]). Bedrossian [1]
(see also [8]) characterized all pairs X,Y of connected forbidden subgraphs implying
hamiltonicity.

Theorem C [1]. Let X and Y be connected graphs with X, Y # Ps, and let G be a
2-connected graph that is not a cycle. Then, G being XY -free implies G' is hamiltonian
if and only if (up to symmetry) X = C and Y = Py, P5, Ps,C3, Zy, Zo, B, N or W.

The classes of C' B-free graphs and C' N-free graphs were extended in [5] as follows. We
denote by (see also Figure 2):

Bi; (1>i>1) — the generalized (i, j)-bull, i.e. the graph which is obtained by
identifying each of some two distinct vertices of a triangle with an
endvertex of one of two vertex-disjoint paths of lengths i, j,
Nijr (k> j>1i>1) — the generalized (i, j, k)-net, i.e. the graph which is obtained by
identifying each vertex of a triangle with an endvertex
of one of three vertex-disjoint paths of lengths 1, 5, k.
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Thus, By ~ B, By ~ W and Ny;; ~ N. The graphs Z; (i > 1) can be defined
analogously (see Figure 1). We further denote by H the hourglass, i.e. the graph consisting
of two triangles with a common vertex.



A class C of graphs such that cl(G) € C for every G € C is called a stable class. Clearly,
the class of C'A-free graphs is trivially stable if A is not claw-free or if A is not closed.
The following theorem characterizes all connected closed claw-free graphs A for which the
C A-free class is stable.

Theorem D [6]. Let A be a closed connected claw-free graph. Then G being C' A-free
implies cl(G) is C A-free if and only if

A€ {H,C}U{P|i>3U{Z|i>1}U{Nijsli,j k> 1},

Making use of the special structure of closed claw-free graphs, the results on hamil-
tonicity in C'P;-free, C'Z;-free and C'N-free graphs were extended in [5] and [6] to larger
classes of C Pr-free, C'Z,-free and CN; 9N 1 3-free graphs by characterizing the classes of
nonhamiltonian exceptions. Specifically, the following was proved in [5] (F denotes the
class of graphs shown in Figure 3, where the elliptical parts represent cliques of arbitrary
order).

f
Figure 3

Theorem E [5]. IfG is a 2-connected C'Ny  o-free graph, then either G is hamiltonian
orG e F.

In the class of C'B; j-free graphs, the following result was proved in [9].

Theorem F [9]. Let j > 2 be an integer and let G be a 2-connected C By j-free graph
of diameter d > max{7,2j}. Then G is hamiltonian.

In the main result of this paper we extend this result to the class of all 2-connected
CN,  j-free graphs.

2 Main result

It is easy to see that, for any i4,j,k > 1, there are CN;;,-free graphs of arbitrarily
large diameter. A simple example can be obtained by taking d + 1 vertex-disjoint cliques
Ky, Ky, ..., K, (for sufficiently large d) and by adding all of the edges between consecutive
cliques, namely {zy| = € K;,y € K;11,1=0,1,...,d—1}).



In the main result of this paper, Theorem 1, we show that nonhamiltonian 2-connected
CN, 2 j-free graphs must have small diameter.

Theorem 1. Let j > 2 be an integer and let G be a 2-connected C'N,  j-free graph of
diameter d > max{7,2j}. Then G is hamiltonian.

Since every By j-free or N, j-free graph is also N; j-free, Theorem 1 implies as im-
mediate corollaries Theorem I and a corresponding result for Ny ; j-free graphs. However,
while it is shown in [9] that the assumptions of Theorem F are sharp, the lower bound on
the diameter of G can be slightly improved in the case of N; ;-free graphs.

Corollary 2. Let j > 2 be an integer and let G be a 2-connected C'N, ; j-free graph of
diameter d > max{4,2;j}. Then G is hamiltonian.

The proofs of Theorem 1 and Corollary 2 are postponed to Section 3.

Remarks. 1. From [7] we know that every 2-connected C'Ny ; -free graph is hamiltonian.
The graph in Figure 4 indicates that there are 2-connected nonhamiltonian graphs of
diameter d = 6 that are C'N, » j-free for any j > 2. The example in Figure 5 shows that
there are 2-connected nonhamiltonian graphs which are C'N, 5 j-free and have diameter
d=2j —1 for any j > 3. Hence the requirement d > max{7,2j} in Theorem 1 is sharp.

Moreover, for any 7 > 3, the graph in Figure 6 is an example of a 2-connected non-
hamiltonian C'N, 3 j-free graph of arbitrarily large diameter, and, similarly, the graph
in Figure 7 is 2-connected, nonhamiltonian, C'N,, j-free and has also arbitrarily large
diameter. Hence the assumption C'N; 5 j-free in Theorem 1 is also best possible.

It is easy to see that, in fact, each of the examples in Figures 4 — 7 yields an infinite
family, since each of the vertical edges in the graphs of Figures 4, 5 (marked in the figure
by K;) and each of the edges incident with a vertex of degree 2 in the graphs of Figures 6, 7
can be blown up to a clique of arbitrary order.

K K,

K K
K Ky
Figure 4

2. The graph in Figure 5 is also an example of a nonhamiltonian C'N; ; j-free graph
of diameter d = 2j — 1. Moreover, the graph in Figure 3 is a nonhamiltonian C'N; ; o-free
graph of diameter 3. Hence the assumption d > max{4,2;j} of Corollary 2 is also best
possible.
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Figure 7
3 Proofs

Before we prove the main result of the paper, Theorem 1, we first make some preliminary
observations on shortest paths and their neighborhoods. Their main idea can be found
already in [7], however, for the sake of completeness, we include them here as well.

Let G be a claw-free graph, let z,y € V(G) and let P: x = vyv1vg...vx =y, k > 4,
be a shortest zy-path in G. Let z € V(G) \ V(P).

1. If INp(2)| = 1, then, since G is claw-free, z is adjacent to  or to y.
2. If [Np(2)| > 2 and {v;,v;} C Np(2), then, since P is a shortest path, |i — j| < 2.

3. By (1) and (2), |Np(z)| < 3 for every vertex z € V(G) \ V(P). Moreover, the
vertices of Np(z) are consecutive on P.

This motivates the following notation:
N;:={z2€ V(G)\V(P)| Np(2) ={vi_1,v5,vi41}} for 1 <i <k -1,
Mi = {Z € V(G) \ V(P)‘ NP(Z) = {’Ul‘,l,vi}} for 1 S 1 S k,
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My = {z € V(G)\ V(P)| Np(2) = {vo}},
Myyy = {2z € V(G)\V(P)| Np(2) = {ve}}-

Thus, by (1), (2) and (3), N(P)UV(P) = (UL, N)) U (UL M) UV(P).
We further denote S = V(P)UN(P), R=V(G)\ S, M} = Ng(M;), 1 <i <k, and
The sets M;, N;, M}, N; have the following properties.

Lemma 3. Let G be a claw-free graph, x,y € V(G), and let P : © = vyv1vy... 0 =Y
(k > 3) be a shortest x,y-path in G. Then
(i) (N; U{v;})g is complete for 1 < i < k —1 and (M; U {v,_1,v;})¢ is complete for
1<i<k,
(27) (N; 1 UM;U{v; 1,v;})¢ and (M; UN;U{v; 1,v;})q are complete for2 <i < k—1,
(iii) Nf =0 for1 <i<k-—1.

Proof. (i) If some N; or M; is not complete, then some v;, j € {i —1,4,i+ 1}, is a center
of an induced claw, a contradiction.

(i1) If # € N;—; and y € M; are nonadjacent, then ({v;,z,y,vi11})¢ is an induced
claw. Hence (N; 1 U M;)¢ (and similarly also (M; U N;)¢) is complete; v; ;1 and v; are
adjacent to all its vertices.

(130) If x € N}, then z has a neighbor y in N; and ({y,x,v;_1,v;11})g is a claw. W

If, moreover, GG is net-free, then we know more about its structure.

Lemma 4. Let j > 2, let G be a CN, 4 j-free graph, let x,y € V(G) and let P : = =
VoU1Vs . .. Uy =y be a shortest xy-path of length k > max{7,2j} in G. Then
(1) My =0 for3<i<k-—2,
(i1) for every vertex z € R we have Np(z) = () and Ng(z) C Mo U My U My U M, U
My U M.

Proof. (i) Suppose z € M} for some i, 3 < i < k — 2, and let y be a neighbor of z in
M;. Then for i < |k/2| we have ({vi_s, vi_2,Vii1, VY, %, v, ..., Vit })e = Nigj. The case
i > |k/2] is symmetric.

(i1) Np(z) = 0 follows from the definition of R; the rest follows from (3) of Lemma 3
and from (1) of Lemma 4. |

Proof of Theorem 1. Let G' be a 2-connected C'N, 3 j-free graph of diameter d >
max{7,2j}, j > 2, and let P : wvyvjvs...v4 be a diameter path in G. Let M;, N;, M}, S, R
be as above. Set ¢ = [d/2].

We distinguish two cases.

Case 1: M. U N_.U {v.} is not a cutset of G.
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Let H=G — {M.UN_.U{v.}} and let P’ : v404410g42 - .. Vgre-1V4+e = Up be a shortest
vgvo-path in H. Since P is a diameter path, ¢ > d. Since H is CN; o j-free and P’ is a
shortest path in H, we can define analogously the sets M;, N;, M} fori=d+1,...d+¢.
Specifically, by (1) of Lemma 4 we have M} =0 for d+3 <i<d+ (- 2.

Set H = G — {My U My o U Ny U Ngyp o U {ve,v410 2} By virtue of (1) of
Lemma 4, there is a shortest wvzvgy, s-path in H' containing all vertices v; for i €
{3,....,d=2yu{d+2,....,d+ ¢ —3}. Let Py : vsvg...09-2P%qys...045¢_3 be such
a path (where P? is a vg_svgio-path). If vg_sv44e € E(G), then vgyy € My_y, implying
({Vd+45 V43> Va+2, Va1, Vds Vd—25 - - -, Va—(j+2) } ) = Nigj, and if vy pv440 are at distance 2
with a common neighbor z, then we have similarly © € My | and ({vgys, Vay2, T, Va1, Va,
Va—2,- - Vd—(j+2) } )¢ = Ni2,;. Hence P?is of length at least 3. Then the length of P; is
at least (d—5)+3+ ({ —5) =d+{— 7> max{7,2j} (since £ > d and d > max{7,2;}).
Hence N(P?) has the structure described in Lemma 3 and Lemma 4.

Let, symmetrically, Py : 4430444 - - - Vape—2Pvs . .. v4_3 be a shortest vqy3v4_s-path in
the graph H' = G — (Mg o U Mg.o U Ng 5 U Ngyo U {vg 2, v4:2}) (where again P is a
Vare2vVo-path of length at least 1). Define the cycle C' by C : vyvs .. Vg2 PWaiovges . . .
vg10—2P%vs. Then C'is a (chordless) cycle of length ¢/ > d—5+3+/(—5+3 > 2d—4 > d.
Relabel the vertices of P, P’ such that C': vy, vy...vpvy, and define the sets M;, N;, M7,
N} accordingly (indices modulo ). Then M} = N = () foralli = 1,..., ¢, implying that
(UL (M UN)) UV (C) = V(Q), ie., V(G) = V(C)UN(C). Since clearly v; is eligible in
G if and only if N; # () or E(M;, M;,1) # 0, we conclude that cl(G) is either complete (if
N; =0 or E(M;, M;+1) = () for at most three i = 1,...,¢'), or otherwise cl(G) consists of
k cliques Ky,..., Ky (4 < k < {) such that |[V(K;,)NV(K;)| =1for |i —j| € {1,k — 1}
and V(K;) N V(K;) = 0 for i # j otherwise. In both cases, the hamiltonicity of cl(G)
(and hence also of G) is apparent.

Case 2: M.U N, U {v.} is a cutset of G.

Then, by (1) of Lemma 4 and (2) of Lemma 3, each of (M; UN; U {v;})¢ is a clique cutset
of Gfori=2,...,d—2.

First observe that M, C N(M;) and M; C Mj, for otherwise there is a vertex
x € MyUM; at distance d+1 from vy (since every xvg-path passes through MyUN,U{ws}).
Symmetrically, Mgy C N(My—1) and M; C M} . Set

G1 = ({vo, v1,v2} UNy U Ny U My U My UMy UM,
Gy = ({vs,..., 043y UN3U...Ny_s UM U... My 3)q,
Gs = ({va-2,va-1,va} U Na2 U Ngy U Mgy U Mg U Mayy U Mj_y)e

Since G is 2-connected, for any i = 2,...,d—2 we have either N; # (), or M; £ 0, M; 1 £
and E(M;, M;.1) # 0. This implies that v; is eligible in G for all i, 2 < i < d — 2, and
hence V(G2) induces a clique in cl(G).

If both V(G,) and V(G3) induce a clique in cl(G), then cl(G) is complete and we are
done. Hence, by symmetry, suppose that (V(G1))ae) is not complete. This immediately
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implies that v; cannot be eligible in G (recall that My C N(M,) and M; C M;), hence
Ny =0 and E(M;, My) = (). Since G is 2-connected, v; cannot be a cutvertex, implying
My # 0 or My # (. Then it is straightforward to check that in all possible cases (according
to which of My, M{ is nonempty), for any v, € Ny U M, there is a vyv)-path P, such
that V(P)) = V(G1) (note that (M) and all (Ng(v))q, v € Msy, are complete since G is
claw-free). By Theorem B (iv), G is hamiltonian. |

Proof of Corollary 2. Since N, j-free implies V) j-free, we immediately have the
result for d > max{7,2j}. If G is Ny, -free, then in Lemma 4 (i) we moreover get
M; = for 2 < i < d— 1, which, reconsidering the proof of Theorem 1, yields the result
for d > max{5,2j}. Finally, every CN;;o-free graph of diameter at least 4 must be
hamiltonian by Theorem E. [ |
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