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Abstract

Let C be the claw Kj 3 and N the net, i.e. the only connected graph with degree
sequence 333111. It is known [Bedrossian 1991; Faudree and Gould 1997] that if XY
is a pair of connected graphs, then, for any 2-connected graph G, G being XY -free
implies G is hamiltonian if and only if X is the claw C' and Y belongs to a finite list of
graphs, one of them being the net N.

For any such pair X,Y we show that the closures of all 2-connected XY -free graphs
form a subclass of the class of C'N-free graphs, and we fully describe their structure.
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1 Introduction

We consider finite simple undirected graphs G = (V(G), E(G)). For concepts and notation
not defined here we refer the reader to [2].

We denote by ¢(G) the circumference of G, i.e. the length of a longest cycle in G, by
Ne(z) the neighborhood of a vertex z in G, and we denote Ng[z] = Ng(z) U {z}. For a set
A C V(Q), the induced subgraph on A is denoted by (A). Similarly, for a set B C E(G), the
(not necessarily induced) subgraph of G with edge set B and with the corresponding edge
set is denoted by (B)g. For a set A C V(G), the notation G — A stands for (V(G) \ A)¢
and we set Ng(A) = {x € V(G)| N(z) N A # 0} and Ng[A] = Ng(A) U A. For a subgraph
X C G we denote Ng(X) = Ng(V (X)) and Ng[X]| = Ng[V(X)]. If X, Y are graphs, then
we say that a graph G is X -free (XY -free), if G does not contain a copy of the graph X (a
copy of either of the graphs X,Y) as an induced subgraph. The graphs X, Y will be referred
to in this context as forbidden induced subgraphs. In the special case X = K 3 we say that G
is claw-free. Other graphs that will be often used as forbidden induced subgraphs are shown
in Figure 1. Whenever we list the vertices of an induced subgraph X, the vertices are always
ordered such that their degrees (in X) form a nonincreasing sequence.
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Figure 1

The following results were proved by Goodman and Hedetniemi [9], Duffus, Jacobson and
Gould [6], Gould and Jacobson [10], and by Broersma and Veldman [3].

Theorem A.
(i) [9] Every 2-connected CZ,-free graph is hamiltonian.
) [6] Every 2-connected C' N-free graph is hamiltonian.
(7ii) [10] Every 2-connected C Zy-free graph is hamiltonian.
) [3] Every 2-connected C Ps-free graph is hamiltonian.

Bedrossian [1] characterized all pairs of forbidden subgraphs for hamiltonicity.

Theorem B [1]. Let X,Y be connected graphs with X, Y # Py and let G be a 2-connected
graph that is not a cycle. Then, G being XY -free implies G is hamiltonian if and only if (up
to a symmetry) X = C and Y is an induced subgraph of at least one of the graphs Py, Z,,
W or N.

Since it was shown in [8] that the graphs in Figure 2 are the only two 2-connected
nonhamiltonian C'Z3-free graphs, Theorem B was reconsidered by Faudree and Gould [7]
(when the proof of the ’only if’ part is now based on infinite families of graphs).



Figure 2

Theorem C [7]. Let X,Y be connected graphs with X,Y % Pj and let G be a 2-connected
graph of order n > 10 that is not a cycle. Then, G' being XY -free implies G is hamiltonian
if and only if (up to a symmetry) X = C and Y is an induced subgraph of at least one of
the graphs FPs, Z3, W or N.

The line graph of a graph H is denoted by L(H). If G = L(H), then we also say that H
is the line graph preimage of G and write H = L~(G). It is well-known that for any line
graph G # Kj its line graph preimage is uniquely determined, and that G is k-connected
(k > 1) if and only if H = L™(@) is essentially k-edge-connected (i.e., every edge cut M
of H such that at least two components of H — M are not edgeless must contain at least k
edges, or, equivalently, for any two vertex-disjoint edges e; = uyvy, es = ugvy of H there are k
edge-disjoint paths from u; or vy to up or vy in H). It is also easy to observe that G contains
an induced subgraph isomorphic to a graph X if and only if L7!(G) contains a subgraph
(not necessarily induced) isomorphic to L™!(X). The preimages of some of the graphs of
Figure 1 are shown in Figure 3. When referring to the graph L~'(N), we will always keep
the labelling of its vertices as in Figure 3.

a; e; by
c as ey by
as €3 bs
P = L7Y(F) L~ Y(Z3) L~Y(W) L7Y(N)
Figure 3

For a vertex z € V(G), set B, = {uv| u,v € N(z),uv ¢ F(G)} and G, = (V(G), E(G)U
B,). The graph G’ is called the local completion of G at x. It was proved in [11] that if G
is claw-free, then so is G/, and if © € V(G) is a locally connected vertex (i.e., (N(x))q is a
connected graph), then ¢(G) = ¢(G%). A vertex with connected noncomplete neighborhood
is called eligible (in G) and the set of all eligible vertices of G is denoted by Vg (G).

We say that a graph F'is a closure of G, denoted F' = cl(G) (see [11]), if Vg (F) = () and
there is a sequence of graphs G, ..., G, and vertices x1,...,x;_; such that G; = G, Gy = F),
z; € Vpr(G) and G4 = (G;)L, i =1,...,t — 1 (equivalently, cl(G) is obtained from G by a
series of local completions, as long as this is possible). It was proved in [11] that

(1) the closure cl(G) is well-defined (i.e., uniquely determined),

(¢7) there is a triangle-free graph H such that cl(G) = L(H),
(i17) ¢(G) = c(cl(@)).



Consequently, a claw-free graph G is hamiltonian if and only if its closure cl(G) is too.
A claw-free graph G for which G = cl(G) will be called closed. Clearly, G is closed if and
only if Vg (G) = 0, i.e. every vertex x € V(G) is either simplicial ({(N(x))¢q is a clique), or
is locally disconnected ((N(x))q is disconnected, implying that, since G is claw-free, (N(x))q
consists of two vertex disjoint cliques).

It is easy to see that if G is k-connected (k > 1) then so is cl(G). In Theorem 4 of [5], a
characterization was given of all connected graphs X for which G being C' X -free implies that
cl(G) is also C X -free (such a C'X-free class is called a stable class). From this characterization
it follows that, among the graphs Y of Theorem C, the class of C'Y-free graphs is stable for
Y € {Ps, Z3, N}, but not for Y = W.

In the main results of this paper, Theorems 6 and 8, we show that for any pair of graphs
X,Y of Theorem C, the closure of any 2-connected X, Y -free graph is C'N-free (with one
simple class of exceptions) and has a very simple structure. These results are further extended
in Section 4, Theorem 9, by using a recently introduced strengthening of the closure concept.

2 Closures of 2-connected (' X-free graphs are C' N-free

We begin with the case of the class of C'FPs-free graphs.

Theorem 1. Let G be a 2-connected graph. If G is C Ps-free, then cl(G) is C N-free.

Proof. Suppose there is a 2-connected CPs-free graph G such that cl(G) contains an
induced N. Since G being C Ps-free implies cl(G) is also C FPs-free (see [5]), we can suppose
that G is closed. Let H = L™!(G). Then H contains a (not necessarily induced) subgraph T
isomorphic to L™'(N) (with the labelling of vertices and edges as in Fig. 3). We show that
H contains a copy of L™} (Ps) = Px.

Since G is 2-connected, H is essentially 2-edge-connected. By symmetry, we can suppose
that H contains an e, es-path P that is edge-disjoint from the path a,cas and does not
contain either of the vertices ag,bs. Let P = dod;...dy with k& > 1, dy € {a1,b} and
dy € {CLQ, bg}

Suppose first that dy = by. If ¢ ¢ V(P), then for dy = ay the path bydidy 1 ... dpaicasbs
and for dy = by the path aidod; .. .dgascagbs contains a P;. Hence ¢ € V(P). Since H is
triangle-free, ¢ # d;. Similarly, ¢ # dy_; if dy = by and ¢ ¢ {dy_o,dx_1} if dy, = ay. But
then dydyaicasdpdy 1 (if dp = by) or didpaycdydy 1dg o (if dy = ag) is a P;. Hence we have
dy = a; and, by symmetry, dp = ay. This immediately implies k£ > 2 since H is triangle-free.
If ¢ ¢ V(P), then bsascdpd, . . . dby contains a Py, hence ¢ € V(P). Then analogously k > 6
and ¢ ¢ {dy,dy, d_o,di_1} since H is triangle-free, but then dyod;docdydy_1dg_o is a P;. This
contradiction completes the proof. [ |

The next theorem gives an analogous result for the class of C'Z;-free graphs. The basic
idea of its proof is similar to that of Theorem 1, but more complicated since in the case of
CZs-free graphs several small exceptions are possible (these are avoided by the assumption
on the order of GG) and there is also one infinite class of exceptions.
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Let C%2 be the class of graphs obtained by identifying the endvertices of k& > 3 copies of
a P, with 2k distinct vertices of a clique of order at least 2k (see Fig. 4).

Figure 4

Theorem 2. Let G be a 2-connected graph of order n > 11. If G is C'Zs-free, then cl(G)
is C'N-free or cl(G) € C%.

Proof. Proof of Theorem 2 is lengthy and is therefore postponed to Section 5.

Remark. The graph in Fig. 5a shows that the assumption n > 11 in Theorem 2 is sharp.

Figure 5

The situation with C'W-free graphs is different due to the fact that, as already noted,
G being CW-free does not imply that cl(G) is CW-free. An example is shown in Fig. 5b.
The following two propositions help to deal with the induced W’s that can possibly appear
during the process of constructing cl(G). We denote by E, S; and S, the graphs shown in
Figure 6.

b1 bl
a1 a1
E as A as € as
bg b3 2 b3
E Lil(E) Sl Lil(Sl) SQ Lil(SQ)
Figure 6
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Proposition 3.  Let G be a CW-free graph. Then cl(G) does not contain an induced
subgraph isomorphic to any of the graphs E, Sy, Ss.



Proof.  Suppose G is CW-free and let G = G,Gs,...,G; = cl(G) be the sequence of
graphs that yields cl(G).

Claim 1. If some G, 1 < j <, contains an induced E, then G;_; contains an induced E.
Proof follows immediately from [5], Theorem 4. O
Claim 2. If G contains an induced S; for some j, 1 < j < ¢, then G;_; contains an induced FE.

Proof. Let H be an induced S in G; (with the labelling of vertices as in Fig. 6). We can
suppose |E(H)NB,,_,| > 1, where the z;’s are as in the definition of closure (otherwise we are
done). Suppose that |E(H)NB,, | > 2. Then, since (Ng, (z;-1))q, is a clique, Ng,_, (2;-1)N
V(H) = {a1,as,as}, implying |E(H)NB,, ,| = 2 (otherwise ({x;_1, a1, az,as})q;_, is a claw).
Thus, by symmetry, either E(H)NB,,_, = {a1as, azas}, or E(H)NB,,_, = {a1as,a1a3}. Then
either ({as,z; 1,a1,b3,¢,a0,b1})e, , =~ E or ({xj_1,a2,a3,a1,b1,02,b3})q,_, ~ E. Hence
|E(H) N By,_,| = 1. Then, up to symmetry, aiby € By,_,, asbs € By, , or bye € B,,_,,
implying that ({ai,az,as, x;1,b1,02,03})c;_, ~ E, ({as,a1,as,b3,¢,01,751})g,, ~ E or
({as, a1, a2,b3,¢,b1, b2} )g,_, ~ E. a

Claim 3. If G contains an induced S5 for some j, 1 < j <t, then G;_; contains an induced
E or S;.

Proof. Let H be an induced .S, in Gij. Arguing as above, 1 < |[E(H)NB,, | < 2. First observe
that if [F(H) N B,,_,| = 1, then ayay ¢ B,,_, (since otherwise ({as, a1, as,b3})q,_, ~ C) and,
analogously, aias, asas, asbs, brc ¢ By,_,, and that if |[E(H) N By, | = 2, then both these
edges are in one of the two triangles of H. Hence it remains to consider, up to symmetry,

the following possibilities.
Case |[E(H)N B, | =1

Subcase Induced subgraph

aby € By, ({a1,az,a3,75-1,01,02,03})g, , ~ F
azbs € By,_, ({as, a1, a0, 2j_1,03,01,b2} ), ~ E
bsc € By, _, ({as, a1, a9,b3,5_1,01,b2} ), ~ E
asc € By, ({as, a1, az,by,¢,b3,b1} ), = S

Case |[E(H)N By, || =2
Subcase Induced subgraph
ayag, a1a3 € By, | ({zj_1,a2,a3,a1,b1,02,03})g, , ~ F
ayaz, azaz € By, _, ({xj-1,01,02,a3,b3,01,b2})c;_, ~ E
ayag, aza3 € By, ({zj_1,0a1,a3,a2,02,01,03})g, , ~ F
aba, boc € By, ({ag,a1,a3,151,02,01,03})g, , ~ F
agby, asc € By, _, ({az, a1, a3,5_1,b2,01,b3});_, ~ E
asc, byc € By, | ({as,a1,a2,15-1,¢,b3,01})q, , = S1
It is clear that, since H is induced and (Ng, (zj-1))q; is a clique, all these subgraphs are
induced in G;_;. O

Now we can complete the proof of Proposition 3. If cl(G) contains an induced F, S; or
Sy, then, by Claims 1-3 and by induction, so does GG. Since each of the graphs E, Sy, S
contains an induced W, G is not W-free, a contradiction. [ |
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Proposition 4. Let G be a 2-connected closed claw-free graph. If G contains an induced
N, then G contains an induced E, Sy or Ss.

Proof. Let H = L Y(G) and let T = L Y(N) and P = dyd; ...d), be the same as in
the proof of Theorem 1. We show that in each of the possible cases we find in H a (not
necessarily induced) subgraph 7" isomorphic to L™(E), L=(S;) or L™(S,).
If ¢ = d; for some 1, then, since H is triangle-free, we have i > 3 for dy = a; and ¢ > 2 for

dy = by, respectively.

Case Subgraph T"

do = a; {{cdy, dody, didy, cas, ashs, cas, azbs}yy ~ L~ H(E)

do =b  {({cay, ardy, dody, cas, asbs, caz, azbs}yg ~ L7 (E)
Hence ¢ ¢ V(P). Then we have, up to symmetry and since H is triangle-free, the following
possibilities.

Case Subgraph T"

do = ay,dy, = as, k =2 ({cay, ardy, dyas, asc, caz, azbs, arby )y g ~ L™1(Ss)

do = ay,dy = as, k > 2 ({cay, ardy, didy, cay, asby, caz, azbs}) g ~ L~1(E)

do = ay,dy = by, k =1  ({cay, aiby, bras, asc, cag, azbs, a1by }yg ~ L71(Sy)

do = ay,dy, = by, k> 1 ({cay, ashy, body_1, cay, arby, cas,azbs})y ~ L1 (E)

do = by,dy =by, k=1 ({cay, aiby, biby, bras, asc, caz, azbs}yg ~ L1 (S))

do = by, dr, = by, k > 1  ({cay,arby, bidy, cas, asbs, cas, azbs})yy ~ L~ E)
This completes the proof of Proposition 4. [ |

e~~~ o~~~

Now we can prove the following result which gives a C'W -free analogue of Theorems 1 and 2.

Theorem 5. Let G be a 2-connected graph. If G is CW-free, then cl(G) is C N-free.

Proof. If cI(G) contains an induced N, then, by Proposition 4, cl(G) contains an induced
E, S, or Sy, contradicting Proposition 3. [ |

The results of Section 2 can now be summarized as follows.

Theorem 6. Let G be a 2-connected graph of order n > 11. If G is C'X-free for X €
{Ps, Z3,W, N}, then either cl(G) is CN-free or cl(G) € C%. ]

3 Structure of closed C N-free graphs

In this section we describe the structure of all 2-connected closed C'N-free graphs. Denote
by CV the class of graphs obtained by the following construction (see Fig. 7a).
(i) Take k > 1 complete graphs K, ..., Ky with |[V(K;)| >4 for2<i:<k—1 (if £ > 3)
and |V(K;)| > 2 for i = 1, k.
(¢i) Choose subsets K? C V(K;) and K} C V(K}) such that |[K?| > 2 and |K}| > 2.



Figure 7

(ii7) In each of the K;’s, 2 < i < k — 1, choose disjoint subsets K}, K? C V(K;) such that
|K}| > 2, |K2| >2and |K}| =|K},|foreveryi=1,... . k—1.

(tv) For every i =1,...,k — 1 join the vertices of K7 and K}, with a matching.
Further denote by C2 the class of graphs obtained by the following construction (see
Fig. 7b).

(i) Take k > 3 complete graphs K, ..., K with |V(K;)| >2fori=1,... k.
(4i) In each of the K;’s choose nonempty disjoint subsets K}, K? C V(K;) such that
|K?| = |K},|,i=1,...,k =1, and |K}| = |K]| (for k = 3 furthermore |K}| > 2 for
at least one i, 1 <i < 3).
(¢4i) Forevery i =1,...,k identify K7 with K}, if |K?| = |K},,| = 1 and join the vertices
of K and K}, with a matching if |K?| = |K},,| > 2 (indices modulo k), respectively.

Theorem 7. Let G be a graph of order n > 10. Then G is a 2-connected closed C'N-free
graph if and only if G € CY UCY.

Proof. It is straightforward to check that every graph in C{¥ UCY is 2-connected, closed
and C'N-free. Let, conversely, G be a 2-connected closed C'N-free graph and let H = L™ (G).
We distinguish two cases.

Case 1: ¢(H) > 5.

Let C' be alongest cycle in H. Suppose first that C' has a chord xy. Since H is triangle-free,
V(C)| > 6. If|V(C)| > 7, we can choose an orientation of C' such that the segment xCy of C
has least three interior vertices, but then ({zy,yy~, va™, o o™ zx= 272 ")y ~ L7YN),
a contradiction. If |[V(C)| = 6, then, since H is triangle-free and |E(H)| = |V (G)| > 10,
there is an edge uv with u € V(C) and v ¢ V(C). Up to symmetry, we can suppose that
u = x or u = x", but then again either ({yx,zv,yy ",y v ,yy", y Tyt Py ~ L H(N) or
{zzt, o v, 2y, yy~, xzx,x" 2~ })g ~ L7 (N), respectively. Hence C' is chordless.

If all neighbors outside C' of the vertices on C' are of degree 1, then clearly L(H) € CY.
Hence we can suppose that there are vertices x,y, z such that zy,yz € E(H), x € V(C)
and y ¢ V(C). Clearly z ¢ {x~,2"} (since H is triangle-free). If z ¢ V(C) or z € V(C) \
{z=, 2"}, then {ay,yz, 20, v a  ,zxt,aTat"})y ~ L71(N); hence z € {z, 271}

By symmetry, let z = .



Suppose y has another neighbor u. Then u ¢ V(C) (otherwise we have a longest cycle
with a chord) and ({zy,yu,za™, x 2™ xo~ v 2~ })y ~ L 1(N). Hence the vertex y,
and indeed all common neighbors of x and z*, are of degree 2. This fact together with a
straightforward inductive argument shows that L(H) = G € CY.

Case 2: ¢(H) = 4.

Let P = dyd, ...dy; be a diameter path in H (i.e. a shortest path joining two vertices
at maximum distance in H). Suppose first that ¢ > 5. Since H is essentially 2-edge-
connected, didy cannot be a cut-edge. If d; and d, have adjacent neighbors u; and wus,
respectively, then ({dyusg, usuy, dady, didy, dads, dsds}) g ~ L~ (N). Hence |[N(dy) N N(ds)| >
2 or [N(dy) N N(ds)| > 2 (recall that ¢(H) = 4 and H is triangle-free). Now, if some
x € N(dy) N N(dy) has another neighbor z, then z ¢ V(P) (since P is a diameter path) and
({dyx, w2, dody, didy, dods, d3dy} )y ~ L~ (N). Hence in the first case all common neighbors of
dp and dy (or, analogously, in the second case of d; and ds) are of degree 2. A straightforward
inductive argument then gives G = L(H) € CY.

Let next ¢ = 4. Arguing as above, for |[N(dy) N N(dy)| > 2 we get G = L(H) € CV.
Let thus x € N(dy) N N(d3),  # dy. If [N(dy) N N(d3)| = 2, then all neighbors of z and
dy outside P are of degree 1 (otherwise we have an L '(N)), implying G = L(H) € C&¥
(with k£ = 4); if |N(d;) N N(ds)| > 3, then moreover at most one common neighbor of d;, d;
can have some further neighbors of degree 1 (otherwise we have an L~!(V)), implying again
G = L(H) € C (with k = 3).

The cases ¢ = 2,3 are trivial. [ |

Combining Theorems 6 and 7, we now have the following result.

Theorem 8. Let G be a 2-connected graph of order n > 11. If G is C'X-free for X €
{Ps, Z3,W, N}, then cl(G) € C#* UCN UCY. |

4 Strong closure

In [4], the closure concept was strengthened in the following way.

Let G be a closed claw-free graph and let H = L™'(G). A k-cycle C' in G is said to
be eligible if 4 < k < 6 and at least k& — 3 nonconsecutive edges of C' are contained in no
clique of order at least 3 (or, equivalently, if the k-cycle L™1(C) in H contains at least k — 3
nonconsecutive vertices of degree 2).

For an eligible cycle C' in G set By, = {uv| u,v € Ng[C],u,v ¢ E(G)}. The graph

o = (V(G), E(G)U Bg,) is called the cycle-completion of G at C.

Let now G be a claw-free graph. A graph clo(G) is said to be a cycle closure of G, if
there is a sequence of graphs Gy, ..., G, such that

(1) Gy = cl(G),

(i1) Giy1 = cl((Gy)¢) for some eligible cycle C'in G, i =1,...,t — 1,
(1ii) Gy = clg(G) contains no eligible cycle.



Thus, clo(G) is obtained from cl(G) by recursively performing the cycle-completion operation
at eligible cycles and then closing the resulting graph with the (obvious) closure, as long as
this is possible. The following result was proved in [4].

Theorem D [4]. Let G be a claw-free graph. Then
(i) cle(G) is uniquely determined,
(17) (@) = c(cle(@)).

Let now CV C C} be the subclass of all graphs from CY for which |K}| = |K?| = 1 for
all i, 1 <4 <k (see Figure 8). Then it is straightforward to check that
(i) if G € C%, then cl¢(Q) is complete (and hence N-free),
(i) if G € CV, then clc(G) is complete,
(ii1) if G € CY, then either cl(G) is complete, or clg(G) € CV.

Figure 8

From Theorems 6 and 8 we then immediately have the following result.

Theorem 9. Let G be a 2-connected graph of order n > 11. If G is C'X-free for X €
{Ps, Z3,W, N}, then its cycle closure clc(G) is either complete or belongs to CV. [ |

5 Proof of Theorem 2

Let, to the contrary, G be a 2-connected C'Zs-free graph such that cl(G) contains an induced
N. Since G being C' N-free implies that cl(G) is also C' N-free (see [5]), we can suppose that
G is closed. Let H, T and P = dy,dy,...,d; be the same as in the proof of Theorem 1.

Case 1: c € V(P).

Then ¢ = dy for some ¢, | < ¢ < k — 1. If dy = ay, then, since H is triangle-free, ¢ > 3, but
then ({cas, cay,cdy 1, dg 1dg o, ...,diay, arby}) g contains an L='(73). Hence dy # a; and, by
symmetry, di # ao, implying that dy = b; and d = b,.

Since H is triangle-free, 2 < ¢ < k — 2. If £ > 3, then ({cas, cas, cay, a1by,b1dy, dydo}) g =~
L=Y(Z3); hence £ = 2. By symmetry, k = 4. Relabel the vertices d; := z; and d3 := 2, and set
Ty = (E(T)U{b1 21, z1¢, bazg, 29¢}) . Since G is 2-connected, there is a path P’ = dyd . .. d},
(k" > 1) in H such that df, € {as, b3}, d}, € V(T1) \ {as, b3} and P" does not contain the edge
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caz. Immediately k' > 2, for otherwise P’ is an edge, but every such additional edge in T}
that does not create a triangle yields an L~1(Z3):

Case Contradiction

dy = as,d} = by {{cag,cz1,car, a1y, bras, azbs}) g ~ L~1(Z3)

dy = bs,d} = b, {({cay,cas, cz1, 2101, b1bs, bsas}yg ~ L™ (73)

dy = bs,d} = ar  ({cag, caz, cz1, 2101, bray, a1bs3 }yy ~ L1 (Z;3)
Hence k' > 2, implying that some interior vertex of P'is in V(H) \ V(T}).

We show that if xy € E(H) for some x € V(H) \ V(11) and y € V(1}), then y = b3 or

y = c¢. Indeed, there are, up to symmetry, the following remaining subcases.

Case  Contradiction

y=>br  ({bix,biz1,bra1, arc, cas, asbs})y ~ L7 (Zs)

y=ua; ({cas,cay,cz1,21by,b1a1, a2}y ~ L~ (Zs3)

y=az {({asbs,asr,asc,cay, aby,biz1}yg ~ L7 (73)
This implies that djy = bs, d}, = c and, as with P, k' = 2. Relabel the vertex d} := 23 and set
Ty = (E(11)U{czs, z3b3}) u. By the above considerations and by symmetry, there are no more
edges between the vertices of Tj (i.e., T is induced in H), and zy € E(H) for x € V(H)\V (1)
and y € V(T3) implies y = ¢. Let thus zc € E(H). If dg(z) > 2 and ux € E(H), u # ¢, then
clearly v ¢ V(T3) (since e.g. u = by implies ({biay, b z1, b1x, xC, cas, ashs } )y ~ L~1(Z3); the
other cases are symmetric or yield a triangle), and then the 2-connectedness of H implies,
as above, the existence of a path P" = djd}...d}, with dj = u, d), = ¢ and k" = 2.
Relabelling z := a4, u := by, d} := 24 and setting T3 = (E(T5) U {cay, asby, byzy, z4c}) g, by a
straightforward inductive argument we get that H consists of 4-cycles ({ca;, a;b;, b;z;, zic}) o,
i=1,...,s, and of edges cz;, j = 1,...,¢, for some integers s > 3, ¢ > 0. This implies that
G =L(H) e C?.

Case 2: c ¢ V(P).
We distinguish (up to symmetry) three possible subcases.

Subcase 2a: dy = a1, d, = as.

Since H is triangle-free, k > 2. If k > 3, then ({a1b1,a1¢,a1dy, dyds, . . ., dgbo}) y contains
an L™1(Z3), hence k = 2. Set Ty = (E(T)U{aydy, dias}) . We check that there is no edge zy
with z € V(H)\ V(7)) and y € V(T1). Up to symmetry, there are the following possibilities.

Case Contradiction
y=>0y {{aghy, asc, asdy, dyay, arby, by} y ~ L™ (Z3)
{ayz, a1by, ardy, dyas, ase, caz})y ~ L™H(Z3)

y=ar (

y=c {{cx,cas, cay,ardy, dias, ashe}) g ~ L™ (Z3)
y=di ({diz,dvas,diar, arc, caz,asbs}yy ~ L (Z3)
y=as ({asw,asbs,asc, car, ardy, dias})m =~ L_I(Z?,)
Yy = bg <{a,1b1, aldl, aic, cas, (lgbg, b3$}>H ~ L_I(Zg)

Since n > 11 and |E(T})| = 8, there are at least three further edges joining the vertices of
Ty. The following edges are impossible:
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Edge Contradiction
biay ({@252, azby, azdy, dyay, axc, CCL3}>H = L_I(Z?,)
bias  ({asbs,asc, asby, biay, ardy, dyay})y ~ L™ (Zs)
bibs  ({asdy, asbs, asc, cas, asby, bsbi })y ~ L™(Z;)
aiby ({@151, arby, ardy, dyay, asc, CCL3}>H = L_I(Z?,)
arbs  ({aiby, ardy, arbs, bsas, asc, cas})y ~ L~(Z3)
Thus, it is straightforward to check that among the edges that do not create a triangle the
only remaining possibilities are the edges b b,, dias and dibs. Since H is triangle-free, only
one of the edges dyas, dibs can be present. Hence n = |E(H)| < 10, a contradiction.

Subcase 2b: dy = by, di = bs.

For k > 2 we have ({cay, cas, cay, aiby,bidy, dids}) g ~ L™Y(Z3), hence k = 1 (i.e. byby €
E(H)). Set 71 = (E(T) U {b1by})n. Up to symmetry, the only possible further edges that
join two vertices of 77 and do not create a triangle are the edges b,as3, b;b3 and a,b3. Since H
is triangle-free, at most one of the edges byas, b1bs can be present. Since n > 11, H contains
at least two edges having at least one vertex in R = V(H) \ V(71). We consider the possible
edges xy with z € R and y € V(T}):

Case Contradiction
y =0y {({bix,bray,biby,bray, asc,caz})y ~ L™ (Z3)
y=c ({cx,cas, car,aib,biby, bras})y ~ L1 (Z3)
y=uas {{asr,asbs,asc,car,arby,bibo}) g ~ L™ (Z3)
Thus, up to symmetry, the only remaining possibilities are either y = a; or y = bs.

If a; has two distinct neighbors x1, 29 € R, then ({a121, ajxs, a1by, b1by, boay, ascl)y ~
L~Y(Z3). Similarly, z1, 25 € Ny(b3)NR implies ({bsz1, b3wa, b3as, asc, cay, a1y }) g ~ L~ (Z3).
Hence a; and b3 (and, by symmetry also as) can have at most one neighbor in R.

Next we show that at most one of ay, as can have a neighbor in R. Let thus z; € N(a;) N R,
i =1,2. If y = x5, we are in Subcase 2a; hence x1 # o, but then ({a;z1,a;1¢, a1by, bibs,
boty, as2} g =~ L1 (Z3), a contradiction. Hence we can suppose that N(as) N R = 0.

If a; has no neighbor in R, then (since n > 11 and G is connected) there are x1, 25 € R
such that byxy, 179 € E(H), implying ({cay, cas, cas, azbs, bsxy, 1179} ) i =~ L7 (Z3). Thus,
|N(a1) N R| = 1. Denote the (only) neighbor of a; in R by w.

Suppose that ubs € E(H). Then, since H is triangle-free, a;b3 ¢ E(H). Since n > 11 and
at most one of the two remaining possible edges inside T}, namely b;a3 and b;b3, can occur,
necessarily ux € E(H) for some further x € R. But then ({uz, ubs,uay, a1by,bibs, boas})y ~
L™Y(Z3). Hence ubs ¢ E(H).

Now, if € R is adjacent to bz, then x # u, implying ({aju, a1by, ay¢, cas, azbs, b3z })y ~
L~Y(Z3). Hence by has no neighbor in R.

Since n > 11, [N(a;)NR| =1 and |N(y)NR| = 0 for all other y € V(1}), there is a vertex
v € R with uv € E(H). Since u,v € R and the vertices of 7} can have no other adjacencies
in R, ua, is a cut-edge separating the edge uv from 7}, a contradiction.

Subcase 2c: dy = a1, di = bs.
For k > 3 the subgraph ({aibi,aic,aidy,dids, ... byas})y contains an L~1(Z3), hence
k=1or k=2
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First suppose that k = 1, i.e. ayby € E(H). Let T} = (E(T) U {a1b2})r and denote
R=V(H)\ V(I1). We again consider further possible edges joining vertices of 77.
Edge Contradiction
bias  ({asbs, asc, asbi,biay, arby, boas})y ~ L™1(Z3)
aibs  ({aiby, a1by, a1bs, bsas, asc, cas }yg ~ L™ (Z3)
asby  ({aiby, aic, arby, baas, ashs, bsaz})y ~ L~1(Z3)
Since H is triangle-free and since the edges bib3 and bybs reduce the situation to Sub-
case 2b, the only possible edges inside 77 are bjay and byasz. If both are present, then
({agbs, azc, azby, baay, asby, biar }) g ~ L™1(Z3). Hence at most one of the edges byay, byay is
in F(H). Since n > 11, there are at least three edges having a vertex in R.
Next we consider the edges xy with z € R and y € V(T}).
Case Contradiction
y=a, {{aix,a1by,aiby,bray,asc, caz}t)y ~ L™ Z3)
y=c ({cx,cas,cay,azby, boay,a1by }) g ~ L1 (Z3)
y=0by {({byx,boay,bsas,asc,caz, azbs})m !
y=uas {{aszx,asbs,asc, cas, asbo, boay})y ~ L7
g~ L Y(Zs)
Thus, the only possible cases are y = b; and y = as. If by has two neighbors zy, 25 in R,
then ({b1x1,b172,b1a1, a1, caz, asbs}yy ~ L7 (Z3). Hence |[N(b) N R| < 1 and, similarly,
|N(az) N R| < 1. This implies that there are vertices x1, 29 € R such that either byzq, x129 €
E(H), or ayxy, 1179 € E(H). But then either ({cas, cas, cay, aiby,bixy, v1209}) g ~ L1 (73)
or ({aic, aiby, ayby, boay, aswy, v112}) g =~ L™ (Z3), respectively.

It remains to consider the case £ = 2. Set Ty = (E(T) U {ady,d1by})y and R =
V(H)\V(T1). Now it is straightforward to check that d,b3 € E(H) implies ({d,ay, d1by, d1b3,
bsas, asc, cas}yy ~ L™1(Z3), and that each of the further edges with both vertices in T} ei-
ther creates a triangle or reduces the situation to one (or more) of the previous subcases.
Considering the edges zy with € R and y € V(1}), we have the following.

Case  Contradiction
y=ay, {{a1x,a1by,aidy,diby,bray, asc})e ~ L™ (7Z3)

y = b3 ({Chbl, aibs, arc, cas, azbs, b3$}>

y=c ({cx,cas,cay,azby, body, diar })g ~ L1 (Z3)
y=d, {{diz,dyay,dibs, boas,asc, caz})g ~ L™ (Z3)
y="by ({baz, bady, bra, asc, cas, azbs})g ~ L1 (Z3)
y=ay ({asx,asc,azby, body, diay, a1br})g =~ L71(Zs)
y =as ({asw,asbs, asc, cay, ashy, bady }) o ~ L™ (Zs)

y=>bs ({aibi,aidy,aic, cas,azbs, bsx})g ~ L1 (Z3)
Thus, the only possible case is y = b;. Since n > 11, there is a vertex x € R with xb; € E(H).
But then, since a; is the only neighbor of b; in V(77) and since the other vertices of T} have
no adjacencies in R, a;b; is a cut-edge separating the edge b,z from the rest of 7). This
contradiction completes the proof of Theorem 2. [ |

Acknowledgement. The author is grateful to J. Brousek, Plzen, for suggesting an idea
that led to a simplification of some of the proofs.
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