Contractibility techniques as a closure concept

Zdenék Ryjacek
Department of Mathematics
University of West Bohemia

and
Institute of Theoretical Computer Science (ITT)
Charles University
306 14 Pilsen
Czech Republic

e-mail ryjacek@kma.zcu.cz

R.H. Schelp
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
U.S.A.

e-mail schelpr@msci.memphis.edu

November 8, 2002

Abstract

We introduce a closure concept in the class of line graphs and claw-free graphs based
on contractibility of certain subgraphs in the line graph preimage. The closure
can be considered as a common generalization and strengthening of the reduction
techniques of Catlin and Veldman and of the closure concept introduced by the first
author. We show that the closure is uniquely determined and the closure operation
preserves the circumference of the graph.
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1 Introduction

All graphs considered here are finite undirected graphs without loops. However, in some
situations we allow the graphs to have multiple edges. We follow the most common
graph-theoretic terminology and notation. For concepts and notation not defined here
we refer the reader to [2]. Specifically, N(x) and N(M) denote the neighborhood of a
vertex © € V(G) or a set M C V((G), i.e. the set of all vertices that are adjacent to x (or
adjacent to a vertex in M), and dy(x) denotes the degree of a vertex x in H. If F'is a
subgraph of a graph H, then a vertex z is said to be a vertex of attachment of F' in H if
x € V(F) and x has a neighbor in V(H) \ V(F'). The set of all vertices of attachment of
a subgraph F'in H is denoted by Ay (F). For a set M C H, (M)y denotes the subgraph
induced by M in H.

The line graph of a graph H is denoted by L(H). It is well-known that for every line
graph GG which is not a triangle there is a unique graph H such that L(H) = G. This
graph H is called the line graph preimage of GG and denoted by H = L™Y(G). A pendant
edge is an edge having a vertex of degree 1; a pendant edge corresponds to a simplicial
vertex in L(H), a vertex the neighborhood of which induces a complete graph.

A dominating closed trail (abbreviated DCT) in a graph H is a closed trail T such
that every edge of H has at least one vertex in T. (A closed trail is defined as usual,
except that we allow a single vertex to be such a trail.) Harary and Nash-Williams [5]
proved the following result, relating the existence of a DCT in H to the hamiltonicity of
L(H).

Theorem A [5]. Let H be a graph with at least three edges. Then L(H) is hamiltonian
if and only if H contains a DCT.

In particular, if H has a spanning eulerian subgraph, then L(H ) is hamiltonian. Let dr(H)
denote the maximum number of edges of a graph H that are dominated by a closed trail
T (a maximum closed trail) and let ¢(() denote the circumference (the length of a longest
cycle) of GG. Clearly, if G = L(H) is hamiltonian, then dr(H) = |[E(H)| = |V(G)] = ¢(G).
It is easy to see that in fact dy(H) = ¢(L(H)) for any graph H with at least three edges.

A graph G is claw-free if G does not contain a copy of the claw K3 as an induced
subgraph. Beineke [1] characterized line graphs by showing that a graph G is a line graph
(of some graph) if and only if G does not contain an induced subgraph which is isomorphic
to some of nine given graphs, one of them being the claw. Thus, the class of claw-free
graphs can be considered as a natural extension of the class of line graphs.

Let GG be a claw-free graph. A vertex x € V(G) is locally connected if (N(x))q is a
connected graph. A nonsimplicial locally connected vertex is called eligible. The graph
G" with vertex set V(GL) = V(G) and edge set F(G)) = F(G) U {ay| z,y € N(x)} is
called the local completion of G at x. It was shown in [6] that the local completion of a
claw-free graph G at x is again claw-free, and if « is eligible, then ¢(G”) = ¢(G'). Based
on this result, the following closure concept for claw-free graphs was introduced in [6].



Let GG be a claw-free graph and let cl°F(() be a graph obtained from G by recursively
performing the local completion operation at eligible vertices, as long as this is possible.
The following was proved in [6].

Theorem B [6]. Let GG be a claw-free graph. Then
(1) cI“¥(G) is uniquely determined,
(i) (el (G)) = e(),
(121) clF (@) is the line graph of a triangle-free graph.

The graph cl®¥ (&) is called the (claw-free) closure of .

Independently, Catlin [4] introduced a reduction technique based on contracting col-
lapsible subgraphs to a vertex. A graph H is collapsible if for every even set S C V(H)
there is a subgraph I' C H such that

(1) H— E(I') is connected,

(1) v € S if and only if dp(v) is odd.
Every graph has a unique collection of maximal collapsible subgraphs, and contracting
each of them to a single vertex affects neither the existence nor the nonexistence of a

spanning eulerian subgraph.

Veldman [7] refined the Catlin’s technique by handling vertices of degree 1 and 2. This
refinement can be described in the following way. For a simple graph H let D(H) = {v €
V(H)| dg(v) = 1 or 2}. For an independent set X C D(H), let Ix(H) be the graph
obtained from H by contracting one edge incident with each vertex of X. Veldman then
defined H as X-collapsible if Ix(H) is collapsible in the Catlin sense.

Both of these reduction techniques are powerful tools for studying hamiltonicity of
line graphs. However, their main drawback is that the search for maximal collapsible
subgraphs is very difficult.

In this context, a natural question is whether the claw-free closure concept can be
strengthened by using line graph techniques or by combining them with closure techniques.
(Recall that cl“F(G) is a line graph.) A first attempt in this direction was done in paper [3].
We continue in this direction and in the next two sections we show that the reduction
techniques of Catlin and Veldman can be reformulated in terms of a closure technique for
line graphs. The closure technique is more convenient to use since it avoids the necessity of
a search for maximal contractible subgraphs — in many cases even closing (= contracting
in L7'(H)) a small subgraph can start a “domino effect” resulting in closing the whole
graph. We show that the closure is unique and that it strengthens all the above mentioned
techniques.

2 A-contractible graphs

If H is a graph and F' C H is a subgraph of H, then H|p denotes the graph obtained
from H by identifying the vertices of F' as a (new) vertex vy, and by replacing the created
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loops by pendant edges. Observe that H|z may contain multiple edges. If H is a graph,
X C V(H), and A is a partition of X into subsets, then E(A) denotes the set of all edges
aay (not necessarily in H) such that ay, ay are in the same element of A. Further HA
denotes the graph with vertex set V(H*4) = V(H) and edge set E(H*) = E(H)U E(A).
Note that E(H) and E(A) are considered to be disjoint, i.e., if e; = ayas € F(H) and
€3 = ajay € E(A), then ey, ey are parallel edges in HA.

Let F' be a graph and let A C V(F'). We say that F' is A-contractible, if for every
even subset X C A and for every partition A of X into two-element subsets the graph F'4
has a DCT containing all vertices of A and all edges of E(A). Note that this definition
allows X to be empty, in which case FA = F. Also, if F' is A-contractible, then F is
A’-contractible for any A" C A (since every subset X of A’ is a subset of A).

Theorem 1. Let F' be a connected graph and let A C V(F'). Then F is A-contractible
if and only if
dp(H) = dp(H|r)

for every graph H such that F' C H and Ag(F) = A.

Proof. Obviously, if ' C H, every closed trail 7" in H has a corresponding closed trail
in H|p, the closed trail T'|r, dominating at least as many edges as T'. This immediately
implies that dr(H) < dr(H|F).

First suppose that F'is A-contractible, and let 7" be a maximum closed trail in H|p.
If T" does not contain vg, then T" is also a closed trail in H, implying dr(H|p) < dr(H),
as desired. Hence suppose T contains vg. The edges of T” which are in H determine a
system of trails P = {P,..., Py} such that every endvertex of every P; € P is a vertex of
attachment of F', and every closed trail in P contains at least one vertex of attachment of
F. Choose the trails P; such that |P| is minimum. Then every @ € Ay (F) is an endvertex
of at most one trail from P (otherwise we can reduce |P| by joining some of the trails
ending at ).

Set X = {x € Ap(F)| x is an endvertex of some P, € P} and A = {Ay,..., Ax},
where A; is the (two-element) set of endvertices of P;, 1 = 1,... k. By the assumption,
F is A-contractible and hence F'* has a DCT Q. The trail @ determines in F' a system
of trails Q)1,..., Q) such that every (); has its two endvertices in two different elements
of A. The trails @); together with the system P then form a closed trail in H, dominating
at least as many edges as 1". Hence dr(H|r) < dp(H), implying dp(H|p) = dr(H).

Suppose ' is not A-contractible. Then there is an X C A and a partition A of X
into two-element sets such that F* has no DCT containing all vertices of A and all edges
of E(A). Let A= {{af,2!},... {2}, 2{}}, and construct a graph H by joining k vertex
disjoint !, ”-paths P; of length at least 3,2 =1,...,k, to F' and by attaching a pendant
edge to every vertex of ['in A\ X. If Tis a DCT in H, then T contains all the paths
Pi,..., P, implying that E(T) N E(F) determines a DCT in F4, containing all vertices



of A and all edges of F(A), a contradiction. Hence H has no DCT. Since clearly H|p has
a DCT, we have dp(H) < dr(H|F). [ |

Our next theorem shows that a contractible graph remains contractible after a partial
contraction. For any two sets A, B C V(I), ANB # 0, A|p denotes the set (A\B)U{vg} C
V(F|g). For AN B =) we set A|lgp = A.

Theorem 2. Let F' be a graph and let A, B C V(F). If ' is A-contractible, then F|p
is A|g-contractible.

Equivalently, Theorem 2 says that the family F = {(F, A)| F' is A-contractible} is closed

under partial contraction.

Proof. Let X C A|g be an even subset and let A be a partition of X into two-element
subsets. If vg ¢ X, then set X’ = X, otherwise choose arbitrarily a b € AN B, set
X" = (X \ {vs}) U {b} and let A" be the partition of X’ obtained by replacing vg by
b. Then X' C A is even and A’ is a partition of X’ into two-element subsets. By the
A-contractibility of F', there is a DCT 7" in F' containing all vertices of A’ and all edges
of E(A). But then the trail T =T'|g is a DCT in F|p containing all vertices of A|p and
all edges of E(A). Hence F|p is A|g-contractible. |

Theorem 2 has the following consequence, showing that contractible graphs can be

“built” from smaller ones.

Corollary 3.  Let F be a graph, A C V(F'), and let Fy, F; be subgraphs of F' such that
F=FUF,and Ap(FiNF,) CA. Let A, =V(F,))NA, 1 =1,2. If F; is A;-contractible,
1 = 1,2, then F' is A-contractible.

Proof. Let H be an arbitrary graph such that Fy, Fy C H and Ag(F;) = A;, 0 =1,2.
Set H = H|p and F, = Fy|p. Since Fy is Aj-contractible, dr(H) = dr(H'). By
Theorem 2, Fy is Agly (5)-contractible and hence further dr(H') = dr(H'|p;). Obviously
H’|F2/ = H|rup,, implying dr(H) = dp(H|pur, ). Since H is arbitrary, the graph Fy U F
is Ay U As-contractible by Theorem 1. [ |

In the next section we show that the concept of A-contractibility in H can be refor-

mulated as a closure concept in L(H).

3 Closure concept

If FF'C H, then the set of all edges of H, having at least one vertex in V(F'), corresponds
in H|p to the set of all edges that contain the vertex vp. In the line graph this means

that the set of all vertices, corresponding to the set of edges of H with at least one vertex



in V(F), induces a clique in L(H|p). Equivalently, L(H|r) is obtained from L(H) by
making the neighborhood of the graph L(F') complete.

Following [6], we introduce similar terminology. Let G be a graph and M an induced
subgraph of ;. The graph G, with vertex set V(G,) = V(G) and edge set E(GY,) =
E(GYU{zy| x,y € N(M)} is called the local completion of Gt at M. Obviously, if ' C H,
G = L(H) and M = L(F), then M is an induced subgraph of G, L(H|r) = G, and
dr(H) = ¢(G). We say that the induced subgraph M of G is eligible, if F' = L~'(M)
is Ag(F')-contractible. If we speak of eligibility of some line graph M without pointing
out explicitly any of its supergraphs G, we always suppose that in F' = L™'(M) a subset
A C V(F) is specified. (Note that this is equivalent to specifying a collection of cliques
of attachment in M.)

In this terminology, Theorem 1 has the following immediate consequence for line

graphs.
Corollary 4. Let G be a line graph and let M C G be eligible. Then

c(G) = e(GYy).

It should be noted that if M is not eligible, then M is an induced subgraph of some
graph (¢ such that G is a line graph and c(é) < C(GM)

The local completion of G at M consists in adding edges to G such that (M)er
is complete. Theorem 1 and Corollary 4 show that the completion of M leaves the
circumference of G unchanged for any supergraph G if and only if M is eligible. Thus,
the definition of eligibility as given in this paper is the most general one, and no further

generalization of this type of closure is possible.

Examples. 1. Catlin [4] introduced a concept of collapsible graphs. Since every vertex
of H|p, for which |#=!(z)| > 1 (in the notation of [4]), is incident to at least one pendant
edge, from Theorem 8(vii) of [4] and from Theorem A it follows that H has a DCT if and
only if H|p has a DCT. If H has no DCT, then we can without loss of generality restrict
ourselves to the subgraph given by the edges of its maximum closed trail. By Theorem 1,
we have the following.

(1) Every collapsible graph F'is V(F')-contractible.

(17) If G is a line graph and M C G is an induced subgraph such that L='(M) is

collapsible, then M is eligible.

2. Veldman [7] refined the Catlin’s reduction technique by introducing a concept of X-
collapsibility of a graph F' (where X is an independent subset of the set D(F') of vertices
of F' of degree 1 or 2). From Lemma 5 of [7] we obtain, similarly as in the previous

example, the following statements.



(1) If F'is X-collapsible for some independent set X C D(F), then F'is (V(F)\ D(F))-
contractible.

(i1) If G is a line graph and M C G is an induced subgraph such that L™'(M) is
X-collapsible, then M is eligible.

3. A closure concept in the class of claw-free graphs based on the operation of a local
completion at eligible vertices was introduced in [6] by the first author. It is easy to
see that in the special case of a line graph, a nonsimplicial vertex « of L(H) is locally
connected if and only if the corresponding edge ¢ = ujuy of H is in a triangle (say,
T = ({ur,uz,v})p), or in a cycle of length 2. In the first case, let y;,y> be the vertices
of L(H) corresponding to the edges uyv, ugv. By [4], the triangle is collapsible, and it is
apparent that L(H|r) is obtained from L(H) by local completion at x if v ¢ Ay(F), or
by two local completions at @ and at one of yq, y2, if v € Ag(F'). The second case (e is

in a cycle of length 2) is similar.

4. In [3], the closure for claw-free graphs was strengthened by showing that ¢(G',;) = ¢(G)
if G = L(H) is a line graph, H is triangle-free, and F' = L™Y(M) is a Cy, C5 or Cg such that
|Ap(F)| = 3 and the vertices of Y = V(F')\ Ay(F') (of degree 2 in H) are not consecutive
on F. In the terminology of this paper, let Fy, Fy, F5 be the graphs of Figure 1 and
A; = {a1,a9,a2} C V(F;) (the vertices of attachment a; € A; are double-circled in the
figure).

F alo b I ay s ay bs
by by

bl as

~
<
w

P! as P! by

GQCJ

Figure 1

Then it is straightforward to verify that each of these graphs is A-contractible. We
check (up to a symmetry) all possible even subsets X C A and their partitions A (in fact,
there is only one since |A| = 3), and we show the corresponding DCT T in F4. The edge
of E(A) is overlined.

X A T
Graph Fi: 0 {0} ajagasbay
{ar, a2} {{a1,a2}} a1azasba,
{ar,as}  {{a1,as}} 103020,
Graph Fy: 0 {0} arbyazasbyay

{ar, a2} {{a1,a2}} a1azazbya

{ag,as} {{az,as}}  azasbyaibiag
Graph Fjs: 0 {0} a1biasbyasbzay

{ar, a2} {{a1,a2}}  @razbaasbsas



5. Let F' be the graph of Figure 2 and let A = {ay,az2,as,a4} C V(F) (the vertices of
attachment a; € A are again double-circled in the figure). Then F' is A-contractible, but
neither of the techniques of Examples 1 — 4 applies to F.

®

as by as

Figure 2

Indeed, F is not collapsible (in the sense of [4]) since for the set S = V(F') there is no
S-subgraph (a subgraph I' such that G — E(T") is connected and v € S if and only if dr(v)
is odd). Also, F cannot be an X-collapsible subgraph of any graph H in the sense of [7],
since 1t is not collapsible and all its vertices of degree 2 are its vertices of attachment in
H. Similarly, the techniques of Examples 3 and 4 are not applicable as well. However, it
is not difficult to check that F' is A-contractible.

X A T

0 {@} ayazbrazasbiaq
{ay,az} Har,a2}} @1azbyazashiay
{a1,as} {Har,as}} arazagbibiasay
{ar, a4} Har,a4}} a1agasbyasay

A {{G17G2}7{G3,a4}} ayazbyasashiay
A {{G17G3}7{G2,a4}} ayazbyagzaghiay
A {{Gh G4}7 {Clz, G3}} a10q A3az02b1a4

Our next result shows that, in a line graph G, performing a local completion at some

eligible subgraph does not affect elibigibility of other eligible subgraphs of G.

Theorem 5.  Let (1, Gy be two eligible subgraphs of a line graph GG = L(H) and let
G' = G, be the local completion of G at Giy. Then the subgraph (V(Gy))qr is eligible in
G

Proof. Let F; = L7YG;), i = 1,2. It V(F,) N V(Fy) = (, there is nothing to prove.
Hence let V(F1) N V(Fy) = M # (. Then (V(Gy))a corresponds to F|p, which is
AH|F1 (F3|ar)-contractible by Theorem 2. [ |

Having the results established in Theorems 2 and 5, we can introduce the main concept
of this paper. Although a characterization of eligible graphs is given, we are not able to

give a complete list of them (and we doubt this might ever be possible). In practical
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situations, the closure concept will always be used with a certain restricted family of

“known” eligible graphs. This is the main motivation of the following definition.

Let GG be a line graph and let C be a family of eligible subgraphs of GG. We say
that the family C is complete, if the corresponding family F = {(F, A)| L(F') € C, F is
A-contractible} is closed under partial contraction. (Specifically, by Theorems 2 and 5,
this is always the case if C is the family of all eligible graphs).

The C-closure of G is a graph cl°((G) for which there is a sequence of graphs G, ..., Gy
such that
(1) Gi =G, Gy = cl°(G),
(11) Gip1 = (Gy))y for some eligible induced subgraph M C G;, M € C,
(111) Gy = cl°(G) contains no induced subgraph from C.

Theorem 6. Let G be a line graph and let C be a complete family of eligible line
graphs. Then

(i) cl°(G) is uniquely determined,

(i1) ¢(G) = c(cl(G)).

Proof. (i) Let G', G" be two C-closures of G and suppose that E(G")\ E(G") # 0. Let
G=G,...,G" =G and G = GY,...,GY = G" be the corresponding sequences of local
completions. Let j be the smallest integer for which there is an edge ¢ = zy € E(G}) \
E(G"). Then x,y € V(M) for some eligible subgraph M C G’_,. But E(G'_;) C E(G"),
implying M C G". By Theorem 5 and since C is complete, (V(M))qn is eligible, implying
e € E(G"), a contradiction.

(1) From Corollary 4, ¢(G) = ¢(cl°(G)). [ ]

There are two observations to be emphasized. The first one is that the concept of C-
closure can be extended to the class of claw-free graphs. To see this, let G be a claw-free
graph (not necessarily a line graph) and let cI°F (&) be the closure of & introduced in [6].
Then the concept of C-closure is extended to a closure defined on the class of claw-free
graphs by setting

A(G) = (I (@)).

Since both the closures are unique and preserve the value of circumference, the same holds
for cl(G).

Secondly, if C contains all collapsible and X-collapsible graphs, then cl(() is the
line graph of a graph which is reduced both in the sense of Catlin [4] and Veldman [7].
Moreover, Example 5 shows that cl(() is stronger than the techniques of [4] and [7].

Examples. 6. Each of the graphs F; in Figure 3 is A;-contractible (the vertices of attach-
ment a; € A; are double-circled). We verify the contractibility of the graphs Fi, ..., Fgin

a way similar to that of Examples 4 and 5.



Fy @
by
a2
by
alo ®
Fy
bl L
bz L

GQO ®

Graph F

Graph F,

Graph Fj

be

bz b b
bg q b4
b3 @ as

X

0
{ar, as}
{ar, as}

{ah%}
A

b
F2 aiy aq Fgal
by bs
4P)
4P) a3
by
alo @ b‘ N\ a4
i s 07
by ¢ by by b bg
bz blobll b5
GzO bs by Qa:a
Figure 3
A T
{@} alblagbga363a4b4a1
{{ala%}} ayazbsasbsasbsay
{{alaGB}} a1 azbsasbsbyazbiay
{{ala%}} a1 asbsasbaasbiay
{{Gh G2}7 {G3, G4}} ayazbya3a4b4aq
{{Gh G3}7 {Clz, G4}} ayazbyazagbyay
{{Gh G4}7 {Clz, G3}} a1a404bya3a30104
A T
{@} alblagbga363a4b4a1
{{ala%}} ayazbsasbsasbsay
{{alaGB}} a1 azbsasbsbyazbiay
{{Gh G2}7 {G3, G4}} a1azbya3a4b3b1a4
{{Gh G3}7 {Cl2, G4}} a1a30304a202b4a4
A T
{@} ayazbybsasasbsbiay
{{ala%}} a1 azb2b3asa4b4b1aq
{{GDGB}} ayazaqbsbybsbyazay
{{ala%}} a1 aaa3b3b1bybrasay
{{Gh G2}7 {Cl3, G4}} a1 azbobsazasbabyay
{{Gh G3}7 {Cl2, G4}} ayazbsbyazaybabyay
{{Gh G4}7 {Cl2, G3}} a1 a4baby@zazbsbyay
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Graph Fj X A
0 {0}
{ar, as} Hai, a2t}
{ar, as} Hai,ast}
{ar, as} Hai,aat}
A Hai, a2}, {as, as}}
A Hai,ast, {as, aq}}
A Har, ast, {as, a3}t

T
Cllbl bga263a364b5a4b6a1
@1a303a3b4b7b6a4bsbsbiay
@1a303a2b2b704b5a4bsay

@1 a1bebrboasbsasbabsbsbyay

@10309b7b403a4b5bsby
@10304b7b9@2a4b5bsby ay

@10a405bsbsazrazbabrbsay

Graph Fj X
0

{ar, as}

{ar, as}

A Har,as}, {as, as}}
A Har,as}, {az, a4} }

Graph Fg X
0
{ar, a2}
{a1,as}
{ar, as}
{G17G2,G3,G4}
{G17G2,G3,G4}
{G17G2,G3,G4}
{G17G2,G3,G5}
{G17G2,G3,G5}
{G17G2,G3,G6}
{G17G2,G3,G6}

{alv G2,ds, a6}

e

Note that none of the graphs

(tedious) proof of this fact.

7. Let H be the Petersen graph. Then H contains a subgraph F'isomorphic to the graph
F5 from the previous example with Ay (F) = {ay, a2, as, a4} (see Figure 4, vertices of F
are labeled as in Fig. 3). In H|p, every edge is in a cycle of length 2 or 3. Hence the

C-closure of L(H) is a complete graph. However, it is not difficult to check H contains no

A T

{@} Cl1b159511556135453@252510512566145758@1
{{Gh Gz}} Cllszz51053546135556@457585951Cl1
{{Gh G3}} a1 G3b4b11b5b6a4b7b1zb1ob3azbz515958611

A
{0}

Har, a2t}

Har,as}}

Har, as}}
Hai, a2}, {as, as}}
Hai,as}, {as, as}}
Har, ast, {as, a3}t
Hai, a2}, {as, a5} }
Hai,as}, {as, a5} }
Hai, a2}, {as, a6}t
Hai,as}, {as, a6}t
Hai, a6}, {as, as}}

Har, a2}, {as, as}, {as, as}t}
Har, a2}, {as, a5}, {aq, as}}
Har, a2}, {as, as}, {aq, as}}
Har, ast, {as, a5}, {aq, as}}
Har, ast, {as, as}, {aq, as}}
Har, ast, {as, as}, {az, as}}

Fi, ..., Fs is collapsible in the sense of [4] or [7].
be checked that F3 is A-contractible even for A = {ay,az, a3, aq,b1,b4}. We omit the

11

a1 szzb1ob3b4b11b5a3a4b6b1zb7bsb9b1al

a1 G3b4b11b5b6b12b7a4azb3b1obzblb9bsal

T
alagbgbla3a4bga6a5bl aq
@1az02a6a5b1 azasbabyay

a1azasbabrasacbyasay
ayagasbiasagbyasay
a1 azbyagasbysasbabray
ayazbyasagbytsaray
ayasbyagasbyasazay
a1azbsa6a5a304020101
1304020605020,
1 azbsaqazasasbiay
arasasbytaasasbiay

G1G6G56162G4G3G2G1

G1azbza6a5blbza4a3b1 a1

a1a262a4a6 a5a3b1al

a1a262a4a5 a6a3b1al

@103 Aad6 a5agbgbla1

103 aqds a6azbzb1al

104 A3de a5agbgbla1

It can



collapsible subgraph.

Figure 4

This example shows that there is often no need to search for maximal contractible sub-

graphs since contracting (or, in L(H), completing) even a small subgraph can create

triangles, and the subsequent “domino effect” results in turning the whole L(H) into a

clique.
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