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Abstract

The local independence number �

i

(G) of a graph G at a distance i is the maximum

number of independent vertices at distance i from any vertex. We study the impact

of restricting �

i

(G) on the (global) independence number �(G). Among others, we

show that in graphs with bounded diameter, �(G) is bounded if and only if �

i

(G)

is bounded for at least one i, 2 � i � (diam(G)� 1)=4.
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1 Introduction

All graphs G = (V (G); E(G)) considered in this paper are simple, �nite and undirected.

We assume all graphs G under consideration to be connected (otherwise the results can be

applied to the components of G). We follow the most common graph-theoretical notation

and terminology. For concepts and notation not de�ned here we refer the reader to [1].

Speci�cally, dist(x; y) denotes the distance of vertices x; y 2 V (G). For any x 2 V (G)

we set dist(x; x) = 0. For e = uv 2 E(G) and x 2 V (G), dist(x; e) denotes the distance

of x from e, i.e. the minimum of dist(x; u) and dist(x; v). The diameter of G, i.e. the

maximum distance between a pair of vertices of G, is denoted by diam(G). For any

x 2 V (G) and an integer i, 0 � i � diam(G), N

i

(x) = fy 2 V (G)j dist(x; y) = ig denotes

the neighborhood of x at distance i. For a set S � V (G), hSi denotes the subgraph

induced by S, and d

S

(u) = jfx 2 Sj xu 2 E(G)gj denotes the relative degree of a vertex

u 2 V (G) with respect to S.

The independence number of a graph G is denoted by �(G). For any i, 0 � i �

diam(G), we set �

i

(G) = maxf�(hN

i

(x)i)j x 2 V (G)g. The number �

i

(G) is called the
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local independence number of G at a distance i. If B is a family of graphs, then G is said

to be B-free if G does not contain an induced subgraph isomorphic to any of the graphs

from B. Speci�cally, the graph K

1;3

is called the claw and for B = fK

1;3

g we say that

G is claw-free. By a clique we mean a (not necessarily maximal) complete subgraph of a

graph G.

There are many results dealing with properties of claw-free graphs. In our notation,

it is easy to see that G is claw-free if and only if �

1

(G) � 2 (or, more generally, G is

K

1;r+1

-free if and only if �

1

(G) � r). However, the graph G obtained by removing one

copy of K

r

from the Cartesian product K

r

�K

r

shows that �(G) can be arbitrarily large

even in claw-free graphs of bounded diameter and arbitrarily large connectivity.

In [3], several upper bounds on �(G) were given in the class of K

1;r+1

-free graphs

involving several additional parameters. Shepherd [4] showed that the additional restric-

tion �

2

(G) � 2 on a claw-free graph has many global consequences. In this paper, we

follow up in this direction by showing that restricting �

i

(G) only at a few distance levels

implies a restriction on the global independence number �(G). For more related results

on claw-free graphs we refer the reader to survey paper [2].

2 Main results

For any integers r; t � 2 we set S

r;t

= fGj �

1

(G) � r; �

2

(G) � tg. Note that all classes S

2;t

are subclasses of the class of claw-free graphs, and S

2;2

is the family of distance claw-free

graphs, introduced in [4].

For any integers k; i, 0 � i � b

k

2

c, B

k;i

denotes the graph obtained by joining all

vertices of a disjoint union K

i

[K

k�i+1

to a (new) vertex x and by attaching a pendant

edge to each vertex except x. For a given k � 2, B

k

denotes the family of all such graphs

B

k;i

, 0 � i � b

k

2

c.

Proposition 1. Let G be a graph. Then G 2 S

2;k

if and only if G is claw-free and

B

k

-free.

Proof. If G contains a claw, then �

1

(G) � 3, and if G contains an induced subgraph

B 2 B

k

, then �

2

(G) � k + 1. In both cases, G =2 S

2;k

.

Conversely, let G =2 S

2;k

. If �

1

(G) � 3, then clearly G contains a claw; hence suppose

�

1

(G) � 2 (implyingG is claw-free) and �

2

(G) � k+1. Let x be a vertex such that N

2

(x)

contains an independent set I with jIj � k + 1. For every y

i

2 I choose a z

i

2 N

1

(y

i

) \

N

1

(x), i = 1; : : : ; k+1. Since G is claw-free, z

i

6= z

j

for i 6= j. Thus, if z

i

z

j

1

; z

i

z

j

2

2 E(G)

for some i; j

1

; j

2

, then z

j

1

z

j

2

2 E(G), for otherwise hfz

i

; z

j

1

; z

j

2

; y

i

gi is a claw. This implies

that hfz

1

; : : : ; z

k+1

gi is a disjoint union of cliques. Since G is claw-free, hfz

1

; : : : ; z

k+1

gi

consists of at most two cliques, implying hfx; z

1

; : : : ; z

k+1

; y

1

; : : : ; y

k+1

gi 2 B

k

.

The following theorem shows that the restriction on independence number at distances

1 and 2, given in the de�nition of the class S

2;k

, implies an upper bound on �

`

(G) at all

distances `.
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Theorem 2. Let G 2 S

2;k

and let ` � 3. Then

�

`

(G) �

(

k(b

k

2

cd

k

2

e)

`

2

�1

for ` even,

2(b

k

2

cd

k

2

e)

`�1

2

for ` odd,

and this bound is sharp.

Before proving Theorem 2, we �rst prove one auxiliary statement on trees.

Proposition 3. Let k be a positive integer and let T be a tree rooted at edge e such

that d(x) + d(y) � k + 2 for every edge xy of T . Let A

i

= fx 2 V (T )j dist(x; e) = ig,

i = 1; : : : ;diam(T )� 1. Then, for any �xed i � 2, jA

i

j is maximum if d(x) + d(y) = k+2

for every non-end edge xy of T and d(x) = d

k

2

e + 1 or d(x) = b

k

2

c+ 1 for every non-end

vertex x of T . In this case,

jA

i

j =

(

2(b

k

2

cd

k

2

e)

i

2

for i even,

k(b

k

2

cd

k

2

e)

i�1

2

for i odd.

(Equivalently, jA

i

j is maximum if and only if T is a balanced or a nearly balanced tree

rooted at e.)

Proof. Let e = uv 2 E(T ), and set A

u

j

= fx 2 V (T )j dist(x; u) = j; dist(x; v) = j+1g

and A

v

j

= fx 2 V (T )j dist(x; v) = j; dist(x; u) = j + 1g , j = 0; 1; : : : ; i.

We �rst prove that jA

i

j is maximum if d(x) + d(y) = k + 2 for any non-end edge xy

and d(x) = d

k

2

e + 1 or d(x) = b

k

2

c + 1 for every non-end vertex x of T . We prove this

statement by induction on i. We will anchor the induction for i = 1 and i = 2, and show

when the result holds for i, it also holds for i+ 2.

1. Let �rst i = 2 and let d(u) = r + 1, d(v) = s + 1, r + s � k. Every vertex in A

u

1

has, under the degree constraint, at most k� r neighbors in A

u

2

and, similarly, any vertex

in A

v

1

has at most k � s neighbors in A

v

2

. Since jA

u

1

j = r and jA

v

1

j = s, we have

jA

2

j = jA

u

2

j+ jA

v

2

j � r(k � r) + s(k � s):

Under the asumption r + s � k, this function is maximized when r = d

k

2

e and s = b

k

2

c,

or r = b

k

2

c and s = d

k

2

e.

2. Assume for any tree T

0

rooted at e a maximum number of vertices in level i, i � 1,

is attained if T

0

is a balanced or a nearly balanced tree with d(x) + d(y) = k + 2 for any

non-end edge xy. Let T be a tree rooted at e and having maximum number of vertices in

level i+ 2, i � 1. Consider an arbitrary vertex x 2 A

u

i

. Assuming no degree constraint

on x, if x has r neighbors in A

u

i+1

, then x has a maximum number of descendants in A

u

i+2

if r(k � r) is maximum, i.e. when r = b

k

2

c or r = d

k

2

e. Let T

�

= T � (A

i+1

[A

i+2

). If T

�

does not have maximum number of vertices at level i, then, by the induction assumption,

it can be maximized by replacing T

�

by a balanced or nearly balanced tree T

��

. Replacing

T

�

by T

��

in T , we can enlarge the number of vertices at level i + 2. Consequently, we

can assume that T

�

is the required (nearly) balanced tree. By the �rst part of the proof,

A

i+2

is maximized if the subtrees at levels i; i+ 1; i + 2 are also (nearly) balanced. This

gives the required statement.
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By symmetry, we can assume d(u) = r + 1 = b

k

2

c + 1 and d(v) = k � r + 1 =

d

k

2

e + 1. A simple counting argument then gives jA

u

j

j = jA

v

j

j = (r(k � r))

j

2

for j even,

and jA

u

j

j = r(r(k � r))

j�1

2

and jA

v

j

j = (k � r)(r(k � r))

j�1

2

for j odd, 1 � j � i. Hence

jA

i

j = 2(r(k�r))

i

2

for i even, and jA

i

j = (k(r(k�r))

i�1

2

for i odd, which gives the required

result.

Proof of Theorem 2. Let x 2 V (G) be such that N

`

(x) 6= ; for ` � 2 and

let A = fx

`

1

; : : : ; x

`

r

g be a maximum independent set in hN

`

(x)i. For each vertex x

`

i

,

choose its neighbor x

`�1

i

2 N

`�1

(x). Then the vertices x

`�1

1

; : : : ; x

`�1

r

are distinct, for

otherwise, if x

`�1

i

1

= x

`�1

i

2

for some i

1

6= i

2

, then, for a neighbor y of x

`�1

i

1

in N

`�2

(x),

hfx

`�1

i

1

; x

`

i

1

; x

`

i

2

; ygi is a claw. Next observe that hN

`�1

(x)i consists of a collection of vertex

disjoint cliques, since if x

`�1

i

1

x

`�1

i

2

2 E(G) and x

`�1

i

1

x

`�1

i

3

2 E(G), but x

`�1

i

2

x

`�1

i

3

=2 E(G),

then hfx

`�1

i

1

; x

`�1

i

2

; x

`�1

i

3

; x

`

i

1

gi is a claw. Finally, if B is a clique in hN

`�1

(x)i, then all ver-

tices of B are adjacent to the same vertex in N

`�2

(x), for if x

`�1

i

1

; x

`�1

i

2

2 V (B) are such

that x

`�1

i

1

y

1

2 E(G) and x

`�1

i

2

y

2

2 E(G) but x

`�1

i

1

y

2

=2 E(G) for some y

1

; y

2

2 N

`�2

(x),

then hfx

`�1

i

2

; x

`

i

2

; x

`�1

i

1

; y

2

gi is a claw.

By induction, we obtain that the vertices of the system of distance paths from the

vertices of A to the vertex x induce in G a tree-like subgraph H with the following

properties:

� hN

j

(x) \ V (H)i is a disjoint union of cliques,

� for each clique in hN

j

(x) \ V (H)i, all its vertices have the same neighbor in

N

j�1

(x) \ V (H),

j = 1; : : : ; `�1. Moreover, by Proposition 1, for any two cliques in H sharing a vertex the

sum of their orders is at most k for otherwise we have a forbidden subgraph from B

k

. This

implies that the graph H�A is the line graph of a tree in which d(u)+d(v) � k+2 for any

its edge uv. Proposition 3 (for i = `�1) then gives the required bound on N

`�1

(x)\V (H)

and hence also on jAj = �(hN

`

(x)i). Since x is arbitrary, the result follows.

Our next result shows that arbitrary �xed upper bounds on �

1

(G) and �

2

(G) (not

necessarily �

1

(G) � 2) also imply an upper bound on �

`

(G) for any `.

Theorem 4. Let r; s � 2 be �xed integers and let G 2 S

r;s

. Then

�

`

(G) � s[r(r + s+ 1)]

`�2

for any ` = 3; : : : ;diam(G).

Corollary 5. Let r; s; d � 2 be �xed integers and let S

d

r;s

be the class of all graphs

G 2 S

r;s

with diam(G) � d. Then there is a constant K such that �(G) � K for any

G 2 S

d

r;s

.
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(Equivalently, in graphs with bounded diameter, an upper bound on �

1

(G) and �

2

(G)

implies an upper bound on �(G).)

Proof of Theorem 4. Let x 2 V (G) and let A be a maximum independent set in

hN

i

(x)i for an arbitrary �xed i, 3 � i � `. For each vertex a 2 A choose exactly one

neighbor b 2 N

i�1

(x) and let S � N

i�1

(x) be the set of these neighbors. Since �

1

(G) � r,

every vertex in S has at most r neighbors in A, implying jAj = �(hN

i

(x)i) � rjSj, from

which

jSj �

�(hN

i

(x)i)

r

: (1)

If a vertex u 2 S is adjacent to v

1

; : : : ; v

t

2 S, then from the choice of S the set

of vertices fv

1

; v

2

; : : : ; v

t

g has at least t neighbors in A. Let this set of neighbors of

v

1

; v

2

; : : : ; v

t

in A be fw

1

; w

2

; : : : ; w

t

g. Since �

1

(G) � r, vertex u is adjacent to at most

r of w

1

; w

2

; : : : ; w

t

, making at least t� r of them at distance 2 from u. Since �

2

(G) � s,

this implies d

S

(u) � r+ s for any u 2 S. Since jV (H)j � (�(H)+1) ��(H) for any graph

H, we have jSj � (r + s+ 1) � �(hSi), implying

�(hSi) �

jSj

r + s+ 1

: (2)

From (1) and (2) we then have

�(hN

i�1

(x)i) � �(hSi) �

jSj

r + s+ 1

�

�(hN

i

(x)i)

r(r + s+ 1)

;

from which

�(hN

i

(x)i) � r(r + s+ 1) � �(hN

i�1

(x)i):

Hence

�(hN

`

(x)i) � s[r(r + s+ 1)]

`�2

:

Since x is arbitrary, the result follows.

The next theorem shows that a bound on the independence number at a certain

distance implies bounds at all smaller distances.

Theorem 6. Let k be a positive integer and let G be a graph of diameter d � 4k + 1.

Then

�

k

(G) � (2k + 1) � �

k+1

(G):

Proof. We show that �

k

(G) = s implies �

k+1

(G) �

s

2k+1

. Let x 2 V (G) be such that

�(hN

k

(x)i) = s and let S be a maximum independent set in hN

k

(x)i. Let y be a vertex at

distance 2k + 1 from x and let P : x = x

0

; x

1

; : : : ; x

2k+1

= y be a shortest x; y-path. Set

S

1

= fu 2 Sj dist(u; x

1

) = k+1g and S

i

= fu 2 S n (S

1

[ : : :[S

i�1

)j dist(u; x

i

) = k+1g,

i = 2; : : : ; 2k + 1. Then fS

1

; : : : ; S

2k+1

g is a partition of S. Thus jS

i

j �

jSj

2k+1

for some i,

1 � i � 2k + 1. Since all vertices in S

i

are at distance k + 1 from x

i

, this implies

�

k+1

(G) � �(hN

k+1

(x

i

)i) � jS

i

j �

jSj

2k + 1

=

�

k

(G)

2k + 1

;

as requested.

5



Combining Theorems 4 and 6, we obtain the following result.

Theorem 7. Let d � 9 be an integer, let C

d

= fGj diam(G) = dg and let C � C

d

. Then

�(G) is bounded in C if and only if �

i

(G) is bounded in C for at least one i, 2 � i �

d�1

4

.

Proof. Clearly, any bound on �(G) is a bound on �

i

(G) as well. Conversely, suppose

�

i

(G) is bounded for some i, 2 � i �

d�1

4

. Then both �

1

(G) and �

2

(G) are bounded by

Theorem 6, implying �

`

(G) is bounded for all `, 1 � ` � d, by Theorem 4. But then

�(G) �

P

d

`=1

�

`

(G) is also bounded.
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