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Abstract

The local independence number a;(G) of a graph G at a distance ¢ is the maximum
number of independent vertices at distance ¢ from any vertex. We study the impact
of restricting a;(G) on the (global) independence number a(G). Among others, we
show that in graphs with bounded diameter, a(G) is bounded if and only if a;(G)
is bounded for at least one ¢, 2 < ¢ < (diam(G) — 1) /4.
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1 Introduction

All graphs GG = (V(G), E(G)) considered in this paper are simple, finite and undirected.
We assume all graphs ¢ under consideration to be connected (otherwise the results can be
applied to the components of (). We follow the most common graph-theoretical notation
and terminology. For concepts and notation not defined here we refer the reader to [1].

Specifically, dist(x, y) denotes the distance of vertices x,y € V(G). For any « € V(G)
we set dist(x,2) = 0. For e = wv € F(G) and @ € V(G), dist(x, €) denotes the distance
of x from e, i.e. the minimum of dist(xz,u) and dist(x,v). The diameter of G, i.e. the
maximum distance between a pair of vertices of (7, is denoted by diam((G'). For any
x € V(@) and an integer i, 0 <1 < diam(G), N;(x) = {y € V(G)| dist(x,y) = i} denotes
the neighborhood of x at distance i. For a set S C V((), (S) denotes the subgraph
induced by 5, and ds(u) = [{x € S| xu € E(G)}| denotes the relative degree of a vertex
u € V(@) with respect to S.

The independence number of a graph G is denoted by a(G). For any ¢, 0 < i <
diam(G), we set o;(G) = max{a((N;(z)))] * € V(G)}. The number o;(G) is called the
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local independence number of G at a distance 1. If B is a family of graphs, then ' is said
to be B-free if G does not contain an induced subgraph isomorphic to any of the graphs
from B. Specifically, the graph K3 is called the claw and for B = {K; 3} we say that
G is claw-free. By a clique we mean a (not necessarily maximal) complete subgraph of a

graph G.

There are many results dealing with properties of claw-free graphs. In our notation,
it is easy to see that G is claw-free if and only if a1(G) < 2 (or, more generally, GG is
Ky ,41-free if and only if a4(G) < r). However, the graph (i obtained by removing one
copy of K, from the Cartesian product K, x K, shows that o(G) can be arbitrarily large
even in claw-free graphs of bounded diameter and arbitrarily large connectivity.

In [3], several upper bounds on () were given in the class of Kj,i-free graphs
involving several additional parameters. Shepherd [4] showed that the additional restric-
tion az(G) < 2 on a claw-free graph has many global consequences. In this paper, we
follow up in this direction by showing that restricting «;(G) only at a few distance levels
implies a restriction on the global independence number a((). For more related results
on claw-free graphs we refer the reader to survey paper [2].

2 Main results

For any integers r,t > 2 we set S,; = {G| a1(G) < r, az(G) < t}. Note that all classes Sy,
are subclasses of the class of claw-free graphs, and S35 is the family of distance claw-free
graphs, introduced in [4].

For any integers k,1, 0 < 1 < L%J, By, denotes the graph obtained by joining all
vertices of a disjoint union K; U Kj_;41 to a (new) vertex x and by attaching a pendant
edge to each vertex except z. For a given k& > 2, B denotes the family of all such graphs

By, 0<i < |E].

Proposition 1.  Let G be a graph. Then G € Sy, if and only if G is claw-free and
B-free.

Proof. If ¢ contains a claw, then «a4(G) > 3, and if G contains an induced subgraph
B € By, then ax(G) > k+ 1. In both cases, G ¢ Sy .

Conversely, let G ¢ Sy . If a1(G) > 3, then clearly ¢ contains a claw; hence suppose
a1(G) <2 (implying G is claw-free) and a(G) > k+1. Let « be a vertex such that Ny(x)
contains an independent set [ with |I| > k + 1. For every y; € I choose a z; € Ni(y;) N
Ni(z),t=1,...,k+1. Since GG is claw-free, z; # z; for i # j. Thus, if z;2;,, z;z;, € E(G)
for some 1, j1, jo, then z;, z;, € E(G), for otherwise ({2, zj,, 24,, i }) is a claw. This implies
that ({z1,...,2k+1}) is a disjoint union of cliques. Since G is claw-free, ({z1,..., zk41})
consists of at most two cliques, implying ({x, z1,.. ., Zk41, Y1, - - -, Ykt1}) € By. [ |

The following theorem shows that the restriction on independence number at distances
1 and 2, given in the definition of the class Ss, implies an upper bound on a,(G) at all
distances /.



Theorem 2. Let G € Sy, and let £ > 3. Then

Eirk1y5-1
adlG) < { k(bkj [QIJ) - for { even,
201511512 for { odd,
and this bound is sharp.
Before proving Theorem 2, we first prove one auxiliary statement on trees.

Proposition 3. Let k be a positive integer and let T be a tree rooted at edge e such
that d(x) 4+ d(y) < k + 2 for every edge xy of T. Let A, = {x € V(T)| dist(x,e) = ¢},
i =1,...,diam(T") — 1. Then, for any fixed 1 > 2, |A;| is maximum if d(x) + d(y) = k +2
for every non-end edge xy of T and d(x) = [%] +1 ord(z) = L%J + 1 for every non-end
vertex x of T'. In this case,

L Q(ng [%D% for 1 even,
| Al = { k(L%J [%})151 for i odd.

(Equivalently, |A;| is maximum if and only if T' is a balanced or a nearly balanced tree
rooted at e.)

Proof. Lete=wuv € E(T), and set AY = {z € V(T')| dist(z,u) = j, dist(z,v) = j+1}
and AY = {x € V(T')| dist(z,v) = j, dist(z,u) =5+ 1} ,5=0,1,...,1.

We first prove that |A;| is maximum if d(z) + d(y) = k + 2 for any non-end edge zy
and d(x) = [%] + 1 ord(x) = L%J + 1 for every non-end vertex x of T. We prove this
statement by induction on ¢. We will anchor the induction for ¢ =1 and ¢ = 2, and show
when the result holds for 7, it also holds for ¢ + 2.

1. Let first ¢ = 2 and let d(u) = r+ 1, d(v) = s+ 1, r + s < k. Every vertex in A}
has, under the degree constraint, at most & — r neighbors in A% and, similarly, any vertex
in A} has at most k — s neighbors in AY. Since |A}| = r and |A}]| = s, we have

| Ao| = [A3] + [A3] < r(k—7) + s(k — ).

Under the asumption r 4+ s < k, this function is maximized when r = [%] and s = L%J,
orr = L%J and s = [%]

2. Assume for any tree T" rooted at e a maximum number of vertices in level 7, 7 > 1,
is attained if 7" is a balanced or a nearly balanced tree with d(z) + d(y) = k + 2 for any
non-end edge zy. Let T' be a tree rooted at e and having maximum number of vertices in
level ¢ + 2, 1 > 1. Consider an arbitrary vertex @ € A}. Assuming no degree constraint

on z, if x has r neighbors in A, |, then z has a maximum number of descendants in A},
if r(k —r) is maximum, i.e. when r = L%J orr = [%] Let T* =T — (Aiq1 U Ajyo). IFT™
does not have maximum number of vertices at level ¢, then, by the induction assumption,
it can be maximized by replacing 7™ by a balanced or nearly balanced tree T™*. Replacing
T* by T** in T, we can enlarge the number of vertices at level : + 2. Consequently, we
can assume that 7™ is the required (nearly) balanced tree. By the first part of the proof,
Aiyo is maximized if the subtrees at levels 7,7 4 1,7 + 2 are also (nearly) balanced. This

gives the required statement.



By symmetry, we can assume d(u) = r + 1 = L%J +1land dv) = k—r+1 =
[£] 4+ 1. A simple counting argument then gives [AY] = |AY] = (r(k — r))z for j even,
and |AY| = r(r(k — r))% and [AY] = (K —r)(r(k — r))% for j odd, 1 < j <. Hence
| Al = Z(T(k—r))% for 7 even, and |A;| = (k(r(k—r))% for 7 odd, which gives the required
result. |

Proof of Theorem 2. Let @ € V(G) be such that Ny(a) # 0 for ¢ > 2 and
let A = {z{,...,2¢} be a maximum independent set in (N,(z)). For each vertex z?,
choose its neighbor :L'Z_l € Ni_i(x). Then the vertices o7t are distinct, for
otherw1se if :Jcé1 = :1; L for some i, # 1y, then, for a neighbor y of :1; in Ny_a(x),
<{:Jc21 \ “, 22, y})isa Claw Next observe that <Ng 1(x)) consists of a collectlon of vertex
disjoint cliques, since if 2~ '2{"' € E(G) and 2~ 1:1;53 '€ E(G), but 22t ¢ E(G),

then <{:Jc21 Latt pfot gt > is a claw. Finally, if B is a clique in (Np_y(x )> then all ver-

? 22 >3 0Ty
tices of B are adjacent to the same vertex in N;_s(x), for if :ch1 h f2 ' € V(B) are such
that :L'Z_lyl € E(G) and :1; “ly, € E(G) but :chl_lyg ¢ E(G) for some y1,y2 € Ny_o(x),
then <{:1;Z Y f2,xfl L Y21 is a claw.

By induction, we obtain that the vertices of the system of distance paths from the
vertices of A to the vertex = induce in GG a tree-like subgraph H with the following
properties:

e (N;(z)NV(H)) is a disjoint union of cliques,
e for each clique in (N;(z) N V(H)), all its vertices have the same neighbor in
Ny () 0 V),
g =1,....0—1. Moreover, by Proposition 1, for any two cliques in H sharing a vertex the
sum of their orders is at most k for otherwise we have a forbidden subgraph from Bj. This
implies that the graph H — A is the line graph of a tree in which d(u)+d(v) < k42 for any
its edge uv. Proposition 3 (for i = ¢ —1) then gives the required bound on N,_;(x)NV(H)

and hence also on |A| = a((Ny(x))). Since x is arbitrary, the result follows. [ |

Our next result shows that arbitrary fixed upper bounds on «a;(G) and az(G) (not
necessarily aq(G) < 2) also imply an upper bound on oy () for any /.

Theorem 4. Let r,s > 2 be fixed integers and let G € S, ;. Then
a(G) < s[r(r4s+1)])72
for any { = 3,..., diam(G).
Corollary 5.  Let r,s,d > 2 be fixed integers and let Sf,{s be the class of all graphs

G € S, with diam(G) < d. Then there is a constant K such that o(G) < K for any
Gedse,.



(Equivalently, in graphs with bounded diameter, an upper bound on o (G) and ay(G)
implies an upper bound on «o(G).)

Proof of Theorem 4. Let 2 € V(G) and let A be a maximum independent set in
(N;(x)) for an arbitrary fixed ¢, 3 < i < (. For each vertex a € A choose exactly one
neighbor b € N;_;(x) and let S C N;_1(x) be the set of these neighbors. Since oy (G) < r,
every vertex in S has at most r neighbors in A, implying |A| = o((N;(2))) < r|S], from

whieh (M)
o T

5> U, )
If a vertex u € S is adjacent to vy,...,v; € S5, then from the choice of S the set
of vertices {vy,vq,...,v;} has at least ¢ neighbors in A. Let this set of neighbors of
U1, U2, ..., 0 in A be {wy,wa, ... w}. Since o (G) < r, vertex u is adjacent to at most
r of wy,ws,. .., w;, making at least t — r of them at distance 2 from u. Since ay(G) < s,
this implies ds(u) < r+s for any v € S. Since |V(H)| < (A(H)+1)-a(H) for any graph

H, we have |S| < (r+ s+ 1) a((5)), implying

|5
>

(s> 2)

From (1) and (2) we then have

a((Nia(2))) > a((s)) > — 2L 5 aliNi(@))

r+s+1 " r(r+s+1)

from which
a((Ni(@))) <r(r+s+1) - a((Niei())).
Hence

o((Ne(w))) < slr(r 45+ 1))

Since x is arbitrary, the result follows. [ |

The next theorem shows that a bound on the independence number at a certain
distance implies bounds at all smaller distances.

Theorem 6. Let k be a positive integer and let GG be a graph of diameter d > 4k + 1.
Then
ap(G) < 2k + 1) - ap (G).

Proof.  We show that a;(G) = s implies apq1(G) > g Let ¢ € V(G) be such that

a({(Ng(z))) = s and let S be a maximum independent set in (Ny(x)). Let y be a vertex at
distance 2k + 1 from « and let P : @ = xg, 1, ...,T9141 = y be a shortest x,y-path. Set
S1=Hu € S| dist(u,xy) =k+1}and S; ={u € S\ (S1U...US;_1)| dist(u, ;) = k+ 1},

i =2,...,2k 4+ 1. Then {S,...,S2k41} is a partition of S. Thus |S;| > 25-'1 for some 1,

1 <¢ < 2k+41. Since all vertices in S; are at distance k 4+ 1 from x;, this implies
|5 ax(G)
> a((Negq () > |S:] > - :
s (6) > al (Nis(e))) > 81 > o1 = S
as requested. [ |



Combining Theorems 4 and 6, we obtain the following result.

Theorem 7. Let d > 9 be an integer, let C* = {G| diam(G) = d} and let C C C?. Then
a(G) is bounded in C if and only if o;(() is bounded in C for at least one 1,2 < i < dle.

Proof. Clearly, any bound on () is a bound on «;(G) as well. Conversely, suppose
a;(() is bounded for some 7, 2 <7 < dle. Then both a;(G) and ay(G) are bounded by
Theorem 6, implying a,(G) is bounded for all £, 1 < ¢ < d, by Theorem 4. But then
a(G) < 1 ay(@) is also bounded. |
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