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e-mail ryjacek@kma.zcu.cz

Zdzis law Skupień
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Abstract

If G is a claw-free graph of sufficiently large order n, satisfying a degree condition

σk > n + k2 − 4k + 7 (where k is an arbitrary constant), then G has a 2-factor with at

most k−1 components. As a second main result, we present classes of graphs C1, . . . , C8

such that every sufficiently large connected claw-free graph satisfying degree condition

σ6(k) > n+19 (or, as a corollary, δ(G) > n+19
6 ) either belongs to ∪8

i=1Ci or is traceable.
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1 Introduction

We consider finite undirected graphs G = (V (G), E(G)) without loops and multiple edges.

We follow the most common terminology and notation and for concepts not defined here we

refer e.g. to [1]. For any set A ⊂ V (G) we denote by 〈A〉G the subgraph of G induced on A

and G− A stands for 〈V (G) \ A〉. A graph G is H-free (where H is a graph), if G does not

contain an induced subgraph isomorphic to H. In the special case H = K1,3 we say that G is

claw-free. The independence number of G is denoted by α(G) and the clique covering number

of G (i.e. the minimum number of cliques necessary for covering V (G)) by θ(G). We denote

by δ(G) the minimum degree of G and by σk(G) (k ≥ 1) the minimum degree sum over all

independent sets of k vertices in G (for k > α(G) we set σk(G) = ∞). The circumference

of G, i.e. the length of a longest cycle in G, is denoted by c(G), and the length of a longest

path in G is denoted by p(G). A graph G of order n is hamiltonian or traceable if c(G) = n

or p(G) = n, respectively.

The line graph of a graph H is denoted by L(H). If G = L(H), then we also denote

H = L−1(G) and say that H is the line graph preimage of G (recall that for any line graph

G nonisomorphic to K3, its line graph preimage is uniquely determined).

A vertex x ∈ V (G) is said to be locally connected if its neighborhood N(x) induces a

connected graph. The closure of a claw-free graph G (introduced in [12] by the first author)

is defined as follows: the closure cl(G) of G is the (unique) graph obtained by recursively

completing the neighborhood of any locally connected vertex of G, as long as this is possible.

The closure cl(G) remains a claw-free graph and its connectivity is at least equal to the

connectivity of G. The following basic properties of the closure cl(G) were proved in [12], [3]

and [13].

Theorem A. Let G be a claw-free graph and cl(G) its closure. Then

(i) [12] there is a triangle-free graph HG such that cl(G) = L(HG),

(ii) [12] c(G) = c(cl(G)),

(iii) [3] p(G) = p(cl(G)),

(iv) [13] G has a 2-factor with at most k components if and only if cl(G) has a 2-factor

with at most k components.

Consequently, G is hamiltonian (traceable) if and only if cl(G) is hamiltonian (traceable).

If G is a claw-free graph such that G = cl(G), then we say that G is closed. It is apparent

that a claw-free graph G is closed if and only if every vertex x ∈ V (G) is either simplicial (i.e.

〈N(x)〉G is a clique), or is locally disconnected (i.e. 〈N(x)〉G consists of two vertex disjoint

cliques).

In [12], the closure concept was used to answer an old question by showing that every

7-connected claw-free graph is hamiltonian. H. Li [10] extended this result as follows.
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Theorem B [10]. Every 6-connected claw-free graph with at most 34 vertices of degree 6

is hamiltonian.

In [5], the following result on 2-factors with limited number of components was proved.

Theorem C [5]. If G is a claw-free graph of order n and minimum degree δ ≥ 4, then G

contains a 2-factor with at most 6n
δ+2 − 1 components.

This result was improved by Gould and Jacobson [8].

Theorem D [8]. Let k ≥ 2 be an integer and let G be a claw-free graph of order n ≥ 16k3

and minimum degree δ ≥ n
k
. Then G contains a 2-factor with at most k components.

In the first main result of this paper, Theorem 3, we give a strengthening of this result.

A trail T (closed or not) in a graph H is said to be dominating if every edge of H has at

least one vertex on T . Harary and Nash-Williams [11] proved the following result, showing

that hamiltonicity of a line graph is equivalent to the existence of a dominating closed trail

in its preimage.

Theorem E [11]. Let H be a graph without isolated vertices. Then L(H) is hamiltonian

if and only if either H is isomorphic to K1,r (for some r ≥ 3) or H contains a dominating

closed trail.

It is straightforward to verify the following analogue of Theorem E for traceability.

Theorem F. Let H be a graph without isolated vertices. Then L(H) is traceable if and

only if either H is isomorphic to K1,r (for some r ≥ 3) or H contains a dominating trail.

Using the closure concept in claw-free graphs [12], Favaron, Flandrin, Li and Ryjáček

[6] observed that there is a close relation between the minimum degree sum σk(G) (or the

minimum degree δ(G), respectively) of a closed claw-free graph G and its clique covering

number. These connections are established in the following results [6].

Theorem G [6]. Let k ≥ 2 be an integer and let G be a claw-free graph of order n such

that δ(G) > 3k − 5 and σk(G) > n + k2 − 2k. Then θ(cl(G)) ≤ k − 1.

Corollary H [6]. Let k ≥ 2 be an integer and let G be a claw-free graph of order

n ≥ 2k2 − 3k and minimum degree δ(G) > n
k

+ k − 2. Then θ(cl(G)) ≤ k − 1.
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The bounds on σk(G) (δ(G)) in the previous results are sharp (this can be easily seen

considering the cartesian product of cliques).

It was shown in [6] and [9] that these results can be slightly strengthened under an

additional assumption that G is not hamiltonian, and this result was used to obtain degree

conditions for hamiltonicity (by characterizing the classes of all 2-connected nonhamiltonian

closed claw-free graphs with small clique covering number). In the second main result of

this paper, Theorem 6, we follow up with this study by considering analogous questions for

traceability.

2 Main results

We begin with a structural result that can be considered, in a sense, as a strengthening of

Theorem G.

Theorem 1. Let k ≥ 2 be an integer, let G be a claw-free graph of order n and let

κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2 + k − (k + 1)κ− 2, δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 2 + κ.

Then either θ(cl(G)) ≤ k − 1, or α(cl(G)) ≤ κ.

Before proving Theorem 1, we first recall the following auxiliary results that were proved

in [6].

Lemma I [6]. Let G be a closed claw-free graph of order n and {a1, a2, . . . , at} ⊂ V (G)

an independent set. Then

(i) |N(ai) ∩N(aj)| ≤ 2, 1 ≤ i < j ≤ t,

(ii)
t∑

i=1

d(ai) ≤ n + t2 − 2t.

Lemma J [6].

(i) Any triangle-free graph H whose matching number ν(H) and vertex covering number

τ(H) satisfy ν(H) < τ(H), contains an edge xy such that d(x) +d(y) ≤ ν(H) + τ(H).

(ii) Let G be a closed claw-free graph. If α(G) < θ(G), then δ(G) ≤ α(G) + θ(G)− 2.

Lemma K [6]. Let G be a closed claw-free graph. Then θ(G) ≤ 2α(G).

4



Lemma L [6]. Let G be a closed claw-free graph of order n and connectivity κ(G) such

that 1 ≤ κ(G) < α(G) and let A = {a1, . . . , aα} be a maximum independent set in G. Then

α∑

i=1

d(ai) ≤ n + α2 − 4α + 2 + κ(G).

Proof of Theorem 1. If G is a counterexample to Theorem 1 such that G satisfies the

assumptions but κ < α(cl(G)) and θ(cl(G)) ≥ k, then so is the closure cl(G). Hence we can

suppose that G is closed.

If α(G) ≥ k +1, then by Lemma I we have σk+1(G) ≤ n+(k +1)2−2(k +1) = n+k2−1,

implying σk(G) ≤ k
k+1(n + k2 − 1) ≤ n + k2 − 4k + 2 + κ for n ≥ 3k2 + k − (k + 1)κ − 2, a

contradiction. Hence α(G) ≤ k.

If α(G) ≤ k − 1, then α(G) < θ(G) and, by Lemma J and Lemma K, δ(G) ≤ α(G) +

θ(G)− 2 ≤ (k − 1) + 2(k − 1)− 2 = 3k − 5, a contradiction.

Hence we have α(G) = k. Since κ(G) < α(G), Lemma L gives σk(G) ≤ n+k2−4k+κ+2,

a contradiction.

From Theorem 1 we obtain the following minimum degree result.

Corollary 2. Let k ≥ 2 be an integer, let G be a claw-free graph of order n and let

κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2 − k − κ− 2 and

δ(G) >
n + k2 − 4k + 2 + κ

k
.

Then either θ(cl(G)) ≤ k − 1, or α(cl(G)) ≤ κ.

Proof. We can again suppose that G is closed. If n ≥ 3k2 − k − κ − 2, then obviously

δ(G) > n+k2−4k+2+κ
k

≥ 3k − 5 and hence δ(G) ≥ 3k − 4. The rest of the proof follows

immediately from Theorem 1.

Now we can prove our first main result that gives a degree condition for the existence of

a 2-factor with limited number of components.

Theorem 3. Let k ≥ 2 be an integer, let G be a claw-free graph of order n and let

κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2 + k − (k + 1)κ− 2, δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 2 + κ.

Then G has a 2-factor with at most k − κ components.
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Proof. If G satisfies the assumptions of the theorem but has no 2-factor with at most k−κ

components, then, since δ(G) ≤ δ(cl(G)) and by Theorem A(iv), so does its closure cl(G).

Since cl(G) is nonhamiltonian, by the well-known theorem of Chvátal and Erdős (see [2]),

α(cl(G)) > κ(cl(G)). By Theorem 1, we have θ(cl(G)) ≤ k − 1.

Let P = {K1, . . . , Kθ} be a minimum clique covering of cl(G) such that each of the cliques

K1, . . . , Kθ is maximal. We show that each clique of P has at least 2k − 1 vertices. This

follows immediately from δ(cl(G)) ≥ 3k−4 for those Ki’s that contain at least one simplicial

vertex. Thus, suppose that (say) K1 contains no simplicial vertex. By the minimality of

P , there is a clique K ′ with K1 ∩K ′ 6= ∅ and K ′ /∈ P (otherwise P \ {K1} is also a clique

covering of cl(G)). Since clearly every clique in cl(G) that contains a simplicial vertex must

be in P , K ′ has no simplicial vertex. By the structure of the closure, |K1 ∩K ′| = 1.

Denote K1 ∩ K ′ = {x}, |K1| = t and |K ′| = r. Then we have d(x) = t − 1 + r − 1 ≥
δ(cl(G)) ≥ 3k − 4, implying t + r ≥ 3k − 2. Since K ′ /∈ P , there are r − 1 further cliques

Ki1 , . . . , Kir−1 ∈ P having a common vertex with K ′. By the structure of the closure, Kij 6=
Ki` , j 6= `, j, ` = 1, . . . , r−1, implying θ ≥ r. Since θ ≤ k−1, we have 3k−2 ≤ t+r ≤ t+k−1,

from which t ≥ 2k − 1.

Now, since θ ≤ k − 1, each clique of P contains at least 2k − 1− (k − 2) = k + 1 vertices

that are in no other clique of P . Since k ≥ 2, every Ki ∈ P contains a cycle Ci that is

vertex-disjoint from all other cliques of P . Let xi ∈ Ki, i = 1, . . . , θ be such that each xi is

in no other clique of P . Since κ = κ(cl(G)), by a well-known theorem by Dirac [4], there is a

cycle C in cl(G) containing all the vertices x1, . . . , xκ. Let C be the collection of those of the

cycles Cκ+1, . . . , Cθ, which are vertex-disjoint with C. Then the collection of cycles {C} ∪ C
can be easily extended to a 2-factor of cl(G) with at most k−κ components. The result then

follows by Theorem A(iv).

Corollary 4. Let k ≥ 4 be an integer and G be a connected claw-free graph of order

n ≥ 3k2 − 3, δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 7.

Then G has a 2-factor with at most k − 1 components.

Proof. We can again suppose that G is closed. If κ(cl(G)) ≥ 6, then G has a required

2-factor since G is hamiltonian by Theorem B (note that δ(G) ≥ 3k−4 ≥ 8). Hence suppose

1 ≤ κ(cl(G)) ≤ 5. Then we have n ≥ 3k2 − 3 ≥ 3k2 − (k + 1)κ + 2 since κ ≥ 1 and

σk(G) > n + k2 − 4k + 7 ≥ n + k2 − 4k + κ + 2 since κ ≤ 5. Then G has a 2-factor with at

most k − 1 components by Theorem 3.
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Remark. It would be possible to formulate minimum degree results corresponding to The-

orem 3 and Corollary 4. Details are left to the reader.

Next we turn our attention to traceability. Let Ci, i = 1, . . . , 8, be the class of all spanning

subgraphs of the graphs Gi, i = 1, . . . , 8, shown in Figure 1 (where the circular and elliptical

parts represent cliques of arbitrary order). Using a technique similar to that of [6], we can

prove the following result.

Theorem 5. Let G be a connected closed claw-free graph with clique covering number

θ ≤ 5. Then either G ∈ ∪8
i=1Ci, or G is traceable.

Proof of Theorem 5 is lengthy and it is therefore postponed to Section 3.
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Ci is the class of all spanning subgraphs of Gi, i = 1, . . . , 8.

Figure 1

Combining Theorem 5 and Theorem 1, we can now obtain the following theorem, which

is the second main result of this paper.

Theorem 6. Let G be a connected claw-free graph of order n ≥ 112−7κ(cl(G)) such that

δ(G) ≥ 14 and

σ6(G) > n + 14 + κ(cl(G)).

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.
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Proof. If G is a nontraceable graph satisfying the asumptions of the theorem, then clearly

so is cl(G). Thus, suppose that G is closed. By a well-known consequence of a theorem

by Chvátal and Erdős [2] (see e.g. [7], Part I, Corollary 4.17), nontraceability of G implies

α(G) > κ + 1. From Theorem 1 (for k = 6) we then obtain θ(G) ≤ 5. The rest of the proof

follows from Theorem 5.

Corollary 7. Let G be a connected claw-free graph of order n ≥ 105 such that δ(G) ≥ 14

and

σ6(G) > n + 19.

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.

Proof. We can again suppose that G is closed. If G is nontraceable, then Theorem B

implies 1 ≤ κ(G) ≤ 5. Rest of the proof follows immediately from Theorem 6.

Corollary 8. Let G be a connected claw-free graph of order n ≥ 105 with minimum

degree

δ(G) >
n + 19

6
.

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.

3 Proof of Theorem 5

We basically follow the terminology and notation introduced in [6] and [9]. Let Gθ be the

class of all connected nontraceable closed claw-free graphs with clique covering number θ. By

Theorem A, every G ∈ Gθ is the line graph of some (unique) triangle-free graph H. Let D1(H)

be the set of all degree 1 vertices of H and put H ′ = H−D1(H). Set Hθ = {L−1(G)| G ∈ Gθ}
and H′

θ = {H −D1(H)| H ∈ Hθ}.
In every G ∈ Gθ choose a fixed minimum clique covering PG = {B1, . . . , Bθ} of G such

that each clique Bi is maximal. Since PG is minimum, every Bi contains at least one proper

vertex, i.e. a vertex belonging to no other clique of PG. The centers B1, . . . , Bθ of the stars

of H = L−1(G) that correspond to the cliques of G will be called the black vertices of H.

The other vertices of H are called white. The set of black (white) vertices of H is denoted

by B(H) (W (H)), respectively. Since B(H) is a vertex covering of H (i.e., every edge of H

has at least one vertex in B(H)), the set W (H) is independent.

It is easy to see that for any G ∈ Gθ, any graph obtained from G by adding/removing

simplicial vertices to/from cliques of PG also belongs to Gθ as long as (in the case of removal)
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at least one simplicial vertex in the clique remains (while the removal of the last simplicial

vertex of a clique can turn G into a traceable graph). Hence we can without loss of generality

denote for any H ′ ∈ H′
θ by L(H) the graph obtained from the line graph of H ′ by adding

one simplicial vertex to every clique corresponding to a black vertex of H ′.

Let G1, G2 ∈ Gθ. We say that G1 is an ss-subgraph of G2, if G1 is isomorphic to a

spanning subgraph of a graph, which is obtained from G2 by adding an appropriate number

of simplicial vertices to some cliques of PG2 , and that G1 is a proper ss-subgraph of G2 if G1

is an ss-subgraph of G2 and G1, G2 are nonisomorphic. In the following we present a method

for finding a subset Fθ ⊂ H′
θ such that

(i) every G ∈ Gθ is an ss-subgraph of L(F ) for some F ∈ Fθ,

(ii) for any F1, F2 ∈ Fθ, L(F1) is not an ss-subgraph of L(F2).

By the previous observations, the class Gθ is fully characterized by Fθ.

If, for some H ∈ Hθ, the corresponding H ′ ∈ H′
θ has a black trail (abbreviated BT), i.e.

a trail containing all black vertices of H ′, then clearly H has a dominating trail. Since, by

Theorem F, no H ∈ Hθ has a dominating trail, no H ′ ∈ H′
θ has a BT.

For a trail T in H ′ ∈ H′
θ we denote by bla(T ) the black length of T , i.e., the number of

black vertices of H ′ that are on T , and by cro(T ) the number of “crossings” of T , i.e., the

number of vertices of H ′ that are visited by T at least twice.

Two vertices of H ′ are said to be related if they are adjacent or if they are both black and

have a common white neighbor. If T is a (fixed) trail in H ′ and x, y are vertices of H ′, then

we say that x, y are T̄ -related (denoted x ∼ y) if xy ∈ E(H ′) \E(T ) or x and y have a white

common neighbor outside T .

Let now H ′ ∈ H′
θ, and let T be a trail in H ′ such that

(i) bla(T ) is maximum,

(ii) subject to (i), cro(T ) is minimum,

(iii) subject to (i) and (ii), the length of T is minimum.

Then T has two black vertices of degree 1. We will always denote by b1, . . . , bk the black

vertices of T labelled along T , and by wi the white successor of bi on T , if it exists. Note

that, since T is a trail, possibly bi = bj or wi = wj for some i 6= j. If bi ∼ bj, then the

(possible) white common neighbor of bi, bj outside T will be denoted by wij.

Case θ = 3. Let B = {b1, b2, b3}. Then, clearly, bla(T ) = 2, cro(T ) = 0 and T = b1(w1)b2.

Since H ′ is connected and the set {b1, b2, b3} is dominating, b3 is T̄ -related to some vertex of

T . Clearly both b3 ∼ b1 and b3 ∼ b2 imply traceability of L(H ′), hence b3 ∼ w1, implying

b3w1 ∈ E(H ′). The existence of any further relation implies traceability of L(H ′), hence

V (H ′) = {b1, b2, b3, w1} and E(H ′) = {w1b1, w1b2, w1b3}, implying L(H ′) ∈ C1.

Case θ = 4. Let B = {b1, b2, b3, b4}. Then obviously 2 ≤ bla(T ) ≤ 3 and cro(T ) = 0, i.e.,

T is a path. We have two subcases.
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Subcase bla(T ) = 3. Then T = b1(w1)b2(w2)b3. Suppose first that b4 is T̄ -related to

some black vertex. Then necessarily b4 ∼ b2. If b4 ∼ x for some x ∈ {b1, (w1), b3, (w2)},
then we immediately have a trail T ′ with bla(T ′) = 4. Similarly, b1 ∼ b2 yields T ′ =

b3(w2)b2(w1)b1(w12)b2(w24)b4, b1 ∼ w2 gives T ′ = b3w2b1(w1)b2(w24)b4, and for b1 ∼ b3

we have T ′ = b3(w13)b1(w1)b2(w24)b4. By symmetry and since H ′ is triangle-free, these

are all possibilities. Hence there are no further T̄ -relations, implying L(H ′) ∈ C1.

Hence b4 is related to white vertices only. If both b4 ∼ w1 and b4 ∼ w2, then H ′ contains

no more relations, implying L(H ′) ∈ C2. If (by symmetry) b4 ∼ w1 and b4 6∼ w2, then

the only possible additional relation that does not create a trail T ′ with bla(T ) = 4 is

b1 ∼ w2. Then for b1 6∼w2 we have L(H ′) ∈ C1 and for b1 ∼ w2 we have L(H ′) ∈ C4.

Subcase bla(T ) = 2. Then T = b1(w1)b2. Then immediately b3 ∼ w1 and b4 ∼ w1. If

b3 ∼ b4, then L(H ′) is traceable; hence b3 6∼b4, implying L(H ′) ∈ C2.

Case θ = 5. Let B = {b1, b2, b3, b4, b5}. We have obviously 2 ≤ bla(T ) ≤ 4. If 2 ≤ bla(T ) ≤
3, then cro(T ) = 0 (since H ′ is triangle-free), for bla(T ) = 4 we have 0 ≤ cro(T ) ≤ 1. We

will denote these subcases by k/`, where k = bla(T ) and ` = cro(T ). Thus, we have subcases

4/0, 4/1, 3/0 and 2/0. The subcase 4/1 splits into two subcases 4/1w and 4/1b according

to whether the vertex visited twice by T is white or black, respectively. We consider these

subcases separately.

Subcase 4/0. Then T = b1(w1)b2(w2)b3(w3)b4 is a path. It is straightforward to check

that b5 can be T̄ -related to at most one black vetex of T (for otherwise L(H ′) is

traceable). Thus, we have two possibilities.

Subcase 4/0-1: b5 is T̄ -related to exactly one black vertex of T . By symmetry, let

b5 ∼ b2.

Subcase 4/0-1-1: b5 is T̄ -related to some white vertex on T . Then the only

possibility that does not imply L(H ′) is traceable is b5 ∼ w3. Then it is

straightforward to check that any further T̄ -relation between vertices of T

implies L(H ′) is traceable, but then L(H ′) ∈ C4.

Subcase 4/0-1-2: b2 is the only T̄ -relation of b5 on T . We consider possible

T̄ -relations between vertices of T .

If b1 ∼ w3, then we are in a situation symmetric to the subcase 4/0-1-1 and

hence L(H ′) ∈ C4. All the other relations of b1 on T imply L(H ′) is traceable.

Hence we can assume b1 has no T̄ -relation on T . Now, if also b4 has no T̄ -

relation on T , then we have L(H ′) ∈ C1. Hence we can suppose b4 ∼ x for some

x ∈ V (T ). If x ∈ {b1, w1, b2}, then L(H ′) is traceable. Hence x ∈ {w2, b3}.
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Now, if there is no T̄ -relation y ∼ z for any y ∈ {w1, b2}, z ∈ {w2, b3, w3, b4},
then we have L(H ′) ∈ C1. It is straightforward to check that all such relations

y ∼ z imply L(H ′) is traceable.

Subcase 4/0-2: b5 is T̄ -related only to white vertices on T .

Subcase 4/0-2-1: b5 is T̄ -related to w1, w2 and w3. Then there is no further

T̄ -relation on T and L(H ′) ∈ C6.

Subcase 4/0-2-2: b5 is T̄ -related to two white vertices on T . By symmetry, we

can suppose that b5 ∼ w1 and either b5 ∼ w2 or b5 ∼ w3.

Let first b5 ∼ w2. If no vertices on T are T̄ -related, then L(H ′) ∈ C4 (with

b3, (w3), b4 in one clique of L(H ′)). Hence suppose there is a T̄ -relation between

some vertices of T . Clearly b1 6∼b2, b1 6∼w2, b1 6∼b3, b1 6∼b4, w1 6∼b3, w1 6∼b4, b2 6∼b3,

b2 6∼b4 and w2 6∼b4, since any of these relations implies L(H ′) is traceable. It

remains to consider the possibilities b1 ∼ w3, b2 ∼ w3 and b3 ∼ b4.

If b1 ∼ w3, then both b2 6∼w3 and b3 6∼b4 (otherwise L(H ′) is traceable), and

then L(H ′) ∈ C5; if b2 ∼ w3, then b1 6∼w3 and b3 6∼b4, implying L(H ′) ∈ C6; and

if b3 ∼ b4, then similarly b1 6∼w3, b2 6∼w3 and L(H ′) ∈ C4 (in which b3, b4 and

their common neighbors are in one clique).

Hence suppose b5 ∼ w3. Similarly as before, no T̄ -relation between vertices

of T implies L(H ′) ∈ C4 with b2, (w2), b3 in one clique. Thus, suppose some

vertices of T are T̄ -related. Immediately b1 6∼b2, b1 6∼b3, b1 6∼w3, b1 6∼b4 and

w1 6∼b3, since any of these relations implies L(H ′) is traceable. By symmetry,

it remains to consider the possibilities b1 ∼ w2 and b2 ∼ b3. If b1 ∼ w2, then

b2 6∼b3 (otherwise L(H ′) is traceable), implying L(H ′) ∈ C5; if b2 ∼ b3, then

similarly b1 6∼w2 and L(H ′) ∈ C4 (with b2, b3 and their common neighbors in

one clique).

Subcase 4/0-2-3: b5 is T̄ -related to exactly one white vertex on T . By sym-

metry, either b5 ∼ w1 or b5 ∼ w2.

Let first b5 ∼ w1. If b1 is not T̄ -related to any of b2, w2, b3, w3, b4, then L(H ′) ∈
C1 (with b2, b3 and b4 in one clique). The relations b1 ∼ b2 and b1 ∼ b4

immediately imply traceability. Hence b1 is T̄ -related to w2, b3 or w3.

If b1 ∼ b3 and, at the same time, b1 ∼ w2 or b1 ∼ w3, then L(H ′) is traceable,

and if b1 ∼ w2 and b1 ∼ w3, then we are in Subcase 4/0-2-1 (where b1 plays

the role of b5). Hence b1 is T̄ -related to exactly one of b3, w2, w3.

If b1 ∼ b3, then any additional relation implies L(H ′) is traceable, and hence

we have L(H ′) ∈ C4.

If b1 ∼ w2, then for b2 ∼ w3 we are in Subcase 4/0-2-1 (where b2 plays the role

of b5) and L(H ′) ∈ C6. Any other additional relation except b3 ∼ b4 implies
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L(H ′) is traceable. If b3 ∼ b4, or if there is no additional relation, we have

L(H ′) ∈ C4 (with b3, b4 in one clique).

If b1 ∼ w3, then any additional relation except for b2 ∼ b3 or w2 ∼ b4 implies

L(H ′) is traceable. For w2 ∼ b4 we have L(H ′) ∈ C5, and if b2 ∼ b3 or if there

is no additional relation, then L(H ′) ∈ C4 (with b2 and b3 in one clique).

Let now b5 ∼ w2. First observe that there is no T̄ -relation containing w2 since

H ′ is triangle-free and both w2 ∼ b1 and w2 ∼ b4 imply traceability. Secondly,

if there is no T̄ -relation x ∼ y with x ∈ {b1, w1, b2} and y ∈ {b3, w3, b4}, then

L(H ′) ∈ C1. Since b1 ∼ b3 and b1 ∼ b4 imply traceability, by symmetry, we

have b2 ∼ b3, w1 ∼ b3 or b1 ∼ w3. We consider these possibilities separately.

If b2 ∼ b3, then there is no additional T̄ -relation containing b1 (or symmetri-

cally b4), for otherwise L(H ′) is traceable. This implies L(H ′) ∈ C1.

If w1 ∼ b3, then similarly L(H ′) ∈ C1, unless there is an additional T̄ -relation

containing b1 or b4. The only such relations that do not imply traceability are

b1 ∼ w3 or b3 ∼ b4, but then L(H ′) ∈ C6 or L(H ′) ∈ C4, respectively.

Finally, if b1 ∼ w3, then we already know there is no further relation, and we

have L(H ′) ∈ C4.

Subcase 4/1w. Recall that in this subcase T visits twice one white vertex. Choose

the notation such that T = b1w1b2w2b3w1b4. Clearly, b5 6∼b1, b5 6∼b4 and b5 cannot be

T̄ -related to both b2, b3 (since in each of these cases L(H ′) is traceable). Thus, b5 is

T̄ -related to at most one black vertex on T .

Subcase 4/1w-1: b5 is T̄ -related to one black vertex on T . By symmetry, let b5 ∼ b2.

Then L(H ′) ∈ C1 (with w1, b2, w2, b3 in one clique), since any additional T̄ -relation

involving any of b1, b4, b5 implies L(H ′) is traceable.

Subcase 4/1w-2: b5 is T̄ -related only to white vertices.

Subcase 4/1w-2-1: b5 ∼ w1, b5 ∼ w2. Then there is no other relation and

L(H ′) ∈ C7.

Subcase 4/1w-2-2: b5 ∼ w1, b5 6∼w2. If there is no other relation involving any

of b1, b2, then we have L(H ′) ∈ C1 (with b2, b3 and their common neighbors in

one clique). It is straightforward to check that any further T̄ -relation involving

b1 or b4 gives L(H ′) ∈ C8 (if some of b1, b2 is T̄ -related to w2), or traceability

of L(H ′).

Subcase 4/1w-2-3: b5 ∼ w2, b5 6∼w1. Then L(H ′) ∈ C1 (with w1, b2, w2, b3 in

one clique) and any T̄ -relation between any of b2, w2, b3 and the rest implies

traceability of L(H ′).
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Subcase 4/1b. Choose the notation such that the vertex b2 is visited twice by T , i.e.,

T = b1(w1)b2w2b3w3b2(w4)b4. Similarly as before, b5 is T̄ -related to at most one black

vertex on T , and neither to b1 nor to b4.

Subcase 4/1b-1: b5 ∼ b2, b5 6∼b3. In this case b2 is the only T̄ -relation of b5 on T

(since any other relation implies traceability). Now L(H ′) ∈ C2 and any other

T̄ -relation between vertices of T gives L(H ′) ∈ C1 or traceability.

Subcase 4/1b-2: b5 ∼ b3, b5 6∼b2. In this subcase immediately L(H ′) ∈ C1 with

{b2, w2, b3, w3} in one clique and any relation joining a vertex from this set to the

rest gives traceability.

Subcase 4/1b-3: b5 is T̄ -related only to white vertices. Then b5 can have T̄ -relations

in at most one of the sets {w1, w4}, {w2, w3} (otherwise L(H ′) is traceable).

Subcase 4/1b-3-1: b5 ∼ w1. For b5 6∼w4 we have L(H ′) ∈ C1, and for b5 ∼ w4

we have L(H ′) ∈ C4 (with b2, w2, b3, w3 in one clique).

Subcase 4/1b-3-2: b5 ∼ w2. If b5 6∼w3, then L(H ′) ∈ C1 (with b2, w2, b3, w3 in

one clique), and if b5 ∼ w3, then L(H ′) ∈ C8.

Subcase 3/0. Let T = b1(w1)b2(w2)b3.

Subcase 3/0-1: b4 ∼ b5. If b4 or b5 is T̄ -related to any vertex on T , then we have

a path T ′ with bla(T ′) ≥ 4, except for the case if w45 = w24 = w25. In this case,

L(H ′) ∈ C2.

Subcase 3/0-2: b4 6∼b5. If b4 has two relations on T , then the only possibility that

does not create a trail T ′ with bla(T ′) ≥ 4 is b4 ∼ w1, b4 ∼ w2, but then, for any

T̄ -relation of b5 on T we again have a trail T ′ with bla(T ′) ≥ 4. Hence both b4

and b5 have one T̄ -relation on T . Then it is straightforward to check that in all

nontraceable cases we have L(H ′) ∈ C2 or L(H ′) ∈ C1.

Subcase 2/0. Let T = b1(w1)b2. If any two of b3, b4, b5 are T̄ -related, we have a trail T ′

with bla(T ′) ≥ 3. Hence b3 ∼ w1, b4 ∼ w1, b5 ∼ w1, implying L(H ′) ∈ C3.
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