On traceability and 2-factors in claw-free graphs

Dalibor Fronček
Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, MN 55810, U.S.A., and
Department of Applied Mathematics, Technical University of Ostrava Ostrava, Czech Republic
e-mail dfroncek@d.umn.edu
Zdeněk Ryjáček
Department of Mathematics, University of West Bohemia, and Institute of Theoretical Computer Science, Charles University
Univerzitní 8, 30614 Plzeñ, Czech Republic
e-mail ryjacek@kma.zcu.cz
Zdzisław Skupień
Faculty of Applied Mathematics, University of Mining and Metallurgy AGH
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail skupien@uci.agh.edu.pl

November 12, 2002

Abstract

If G is a claw-free graph of sufficiently large order n, satisfying a degree condition $\sigma_{k}>n+k^{2}-4 k+7$ (where k is an arbitrary constant), then G has a 2 -factor with at most $k-1$ components. As a second main result, we present classes of graphs $\mathcal{C}_{1}, \ldots, \mathcal{C}_{8}$ such that every sufficiently large connected claw-free graph satisfying degree condition $\sigma_{6}(k)>n+19$ (or, as a corollary, $\delta(G)>\frac{n+19}{6}$) either belongs to $\cup_{i=1}^{8} \mathcal{C}_{i}$ or is traceable.

Keywords: traceability, 2-factor, claw, degree condition, closure
1991 Mathematics Subject Classification: 05C45, 05C70.

1 Introduction

We consider finite undirected graphs $G=(V(G), E(G))$ without loops and multiple edges. We follow the most common terminology and notation and for concepts not defined here we refer e.g. to [1]. For any set $A \subset V(G)$ we denote by $\langle A\rangle_{G}$ the subgraph of G induced on A and $G-A$ stands for $\langle V(G) \backslash A\rangle$. A graph G is H-free (where H is a graph), if G does not contain an induced subgraph isomorphic to H. In the special case $H=K_{1,3}$ we say that G is claw-free. The independence number of G is denoted by $\alpha(G)$ and the clique covering number of G (i.e. the minimum number of cliques necessary for covering $V(G))$ by $\theta(G)$. We denote by $\delta(G)$ the minimum degree of G and by $\sigma_{k}(G)(k \geq 1)$ the minimum degree sum over all independent sets of k vertices in G (for $k>\alpha(G)$ we set $\sigma_{k}(G)=\infty$). The circumference of G, i.e. the length of a longest cycle in G, is denoted by $c(G)$, and the length of a longest path in G is denoted by $p(G)$. A graph G of order n is hamiltonian or traceable if $c(G)=n$ or $p(G)=n$, respectively.

The line graph of a graph H is denoted by $L(H)$. If $G=L(H)$, then we also denote $H=L^{-1}(G)$ and say that H is the line graph preimage of G (recall that for any line graph G nonisomorphic to K_{3}, its line graph preimage is uniquely determined).

A vertex $x \in V(G)$ is said to be locally connected if its neighborhood $N(x)$ induces a connected graph. The closure of a claw-free graph G (introduced in [12] by the first author) is defined as follows: the closure $\operatorname{cl}(G)$ of G is the (unique) graph obtained by recursively completing the neighborhood of any locally connected vertex of G, as long as this is possible. The closure $\operatorname{cl}(G)$ remains a claw-free graph and its connectivity is at least equal to the connectivity of G. The following basic properties of the closure $\operatorname{cl}(G)$ were proved in [12], [3] and [13].

Theorem A. Let G be a claw-free graph and $\operatorname{cl}(G)$ its closure. Then
(i) [12] there is a triangle-free graph H_{G} such that $\operatorname{cl}(G)=L\left(H_{G}\right)$,
(ii) [12] $c(G)=c(\mathrm{cl}(G))$,
(iii) $[3] p(G)=p(\operatorname{cl}(G))$,
(iv) [13] G has a 2-factor with at most k components if and only if $\operatorname{cl}(G)$ has a 2-factor with at most k components.

Consequently, G is hamiltonian (traceable) if and only if $\operatorname{cl}(G)$ is hamiltonian (traceable). If G is a claw-free graph such that $G=\operatorname{cl}(G)$, then we say that G is closed. It is apparent that a claw-free graph G is closed if and only if every vertex $x \in V(G)$ is either simplicial (i.e. $\langle N(x)\rangle_{G}$ is a clique), or is locally disconnected (i.e. $\langle N(x)\rangle_{G}$ consists of two vertex disjoint cliques).

In [12], the closure concept was used to answer an old question by showing that every 7-connected claw-free graph is hamiltonian. H. Li [10] extended this result as follows.

Theorem B [10]. Every 6-connected claw-free graph with at most 34 vertices of degree 6 is hamiltonian.

In [5], the following result on 2-factors with limited number of components was proved.
Theorem C [5]. If G is a claw-free graph of order n and minimum degree $\delta \geq 4$, then G contains a 2 -factor with at most $\frac{6 n}{\delta+2}-1$ components.

This result was improved by Gould and Jacobson [8].
Theorem D [8]. Let $k \geq 2$ be an integer and let G be a claw-free graph of order $n \geq 16 k^{3}$ and minimum degree $\delta \geq \frac{n}{k}$. Then G contains a 2 -factor with at most k components.

In the first main result of this paper, Theorem 3, we give a strengthening of this result.
A trail T (closed or not) in a graph H is said to be dominating if every edge of H has at least one vertex on T. Harary and Nash-Williams [11] proved the following result, showing that hamiltonicity of a line graph is equivalent to the existence of a dominating closed trail in its preimage.

Theorem E [11]. Let H be a graph without isolated vertices. Then $L(H)$ is hamiltonian if and only if either H is isomorphic to $K_{1, r}$ (for some $r \geq 3$) or H contains a dominating closed trail.

It is straightforward to verify the following analogue of Theorem E for traceability.
Theorem F. Let H be a graph without isolated vertices. Then $L(H)$ is traceable if and only if either H is isomorphic to $K_{1, r}$ (for some $r \geq 3$) or H contains a dominating trail.

Using the closure concept in claw-free graphs [12], Favaron, Flandrin, Li and Ryjáček [6] observed that there is a close relation between the minimum degree sum $\sigma_{k}(G)$ (or the minimum degree $\delta(G)$, respectively) of a closed claw-free graph G and its clique covering number. These connections are established in the following results [6].

Theorem G [6]. Let $k \geq 2$ be an integer and let G be a claw-free graph of order n such that $\delta(G)>3 k-5$ and $\sigma_{k}(G)>n+k^{2}-2 k$. Then $\theta(\operatorname{cl}(G)) \leq k-1$.

Corollary H [6]. Let $k \geq 2$ be an integer and let G be a claw-free graph of order $n \geq 2 k^{2}-3 k$ and minimum degree $\delta(G)>\frac{n}{k}+k-2$. Then $\theta(\operatorname{cl}(G)) \leq k-1$.

The bounds on $\sigma_{k}(G)(\delta(G))$ in the previous results are sharp (this can be easily seen considering the cartesian product of cliques).

It was shown in [6] and [9] that these results can be slightly strengthened under an additional assumption that G is not hamiltonian, and this result was used to obtain degree conditions for hamiltonicity (by characterizing the classes of all 2-connected nonhamiltonian closed claw-free graphs with small clique covering number). In the second main result of this paper, Theorem 6, we follow up with this study by considering analogous questions for traceability.

2 Main results

We begin with a structural result that can be considered, in a sense, as a strengthening of Theorem G.

Theorem 1. Let $k \geq 2$ be an integer, let G be a claw-free graph of order n and let $\kappa=\kappa(\mathrm{cl}(G))$. Suppose that G is such that $n \geq 3 k^{2}+k-(k+1) \kappa-2, \delta(G) \geq 3 k-4$ and

$$
\sigma_{k}(G)>n+k^{2}-4 k+2+\kappa
$$

Then either $\theta(\operatorname{cl}(G)) \leq k-1$, or $\alpha(\operatorname{cl}(G)) \leq \kappa$.
Before proving Theorem 1, we first recall the following auxiliary results that were proved in [6].

Lemma I [6]. Let G be a closed claw-free graph of order n and $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subset V(G)$ an independent set. Then
(i) $\left|N\left(a_{i}\right) \cap N\left(a_{j}\right)\right| \leq 2, \quad 1 \leq i<j \leq t$,
(ii) $\sum_{i=1}^{t} d\left(a_{i}\right) \leq n+t^{2}-2 t$.

Lemma J [6].

(i) Any triangle-free graph H whose matching number $\nu(H)$ and vertex covering number $\tau(H)$ satisfy $\nu(H)<\tau(H)$, contains an edge $x y$ such that $d(x)+d(y) \leq \nu(H)+\tau(H)$.
(ii) Let G be a closed claw-free graph. If $\alpha(G)<\theta(G)$, then $\delta(G) \leq \alpha(G)+\theta(G)-2$.

Lemma K [6]. Let G be a closed claw-free graph. Then $\theta(G) \leq 2 \alpha(G)$.

Lemma L [6]. Let G be a closed claw-free graph of order n and connectivity $\kappa(G)$ such that $1 \leq \kappa(G)<\alpha(G)$ and let $A=\left\{a_{1}, \ldots, a_{\alpha}\right\}$ be a maximum independent set in G. Then

$$
\sum_{i=1}^{\alpha} d\left(a_{i}\right) \leq n+\alpha^{2}-4 \alpha+2+\kappa(G) .
$$

Proof of Theorem 1. If G is a counterexample to Theorem 1 such that G satisfies the assumptions but $\kappa<\alpha(\operatorname{cl}(G))$ and $\theta(\operatorname{cl}(G)) \geq k$, then so is the closure $\operatorname{cl}(G)$. Hence we can suppose that G is closed.

If $\alpha(G) \geq k+1$, then by Lemma I we have $\sigma_{k+1}(G) \leq n+(k+1)^{2}-2(k+1)=n+k^{2}-1$, implying $\sigma_{k}(G) \leq \frac{k}{k+1}\left(n+k^{2}-1\right) \leq n+k^{2}-4 k+2+\kappa$ for $n \geq 3 k^{2}+k-(k+1) \kappa-2$, a contradiction. Hence $\alpha(G) \leq k$.

If $\alpha(G) \leq k-1$, then $\alpha(G)<\theta(G)$ and, by Lemma J and Lemma K, $\delta(G) \leq \alpha(G)+$ $\theta(G)-2 \leq(k-1)+2(k-1)-2=3 k-5$, a contradiction.

Hence we have $\alpha(G)=k$. Since $\kappa(G)<\alpha(G)$, Lemma L gives $\sigma_{k}(G) \leq n+k^{2}-4 k+\kappa+2$, a contradiction.

From Theorem 1 we obtain the following minimum degree result.
Corollary 2. Let $k \geq 2$ be an integer, let G be a claw-free graph of order n and let $\kappa=\kappa(\mathrm{cl}(G))$. Suppose that G is such that $n \geq 3 k^{2}-k-\kappa-2$ and

$$
\delta(G)>\frac{n+k^{2}-4 k+2+\kappa}{k} .
$$

Then either $\theta(\operatorname{cl}(G)) \leq k-1$, or $\alpha(\operatorname{cl}(G)) \leq \kappa$.

Proof. We can again suppose that G is closed. If $n \geq 3 k^{2}-k-\kappa-2$, then obviously $\delta(G)>\frac{n+k^{2}-4 k+2+\kappa}{k} \geq 3 k-5$ and hence $\delta(G) \geq 3 k-4$. The rest of the proof follows immediately from Theorem 1 .

Now we can prove our first main result that gives a degree condition for the existence of a 2 -factor with limited number of components.

Theorem 3. Let $k \geq 2$ be an integer, let G be a claw-free graph of order n and let $\kappa=\kappa(\mathrm{cl}(G))$. Suppose that G is such that $n \geq 3 k^{2}+k-(k+1) \kappa-2, \delta(G) \geq 3 k-4$ and

$$
\sigma_{k}(G)>n+k^{2}-4 k+2+\kappa .
$$

Then G has a 2 -factor with at most $k-\kappa$ components.

Proof. If G satisfies the assumptions of the theorem but has no 2-factor with at most $k-\kappa$ components, then, since $\delta(G) \leq \delta(\mathrm{cl}(G))$ and by Theorem $\mathrm{A}(i v)$, so does its closure $\mathrm{cl}(G)$. Since $\operatorname{cl}(G)$ is nonhamiltonian, by the well-known theorem of Chvátal and Erdős (see [2]), $\alpha(\operatorname{cl}(G))>\kappa(\operatorname{cl}(G))$. By Theorem 1, we have $\theta(\operatorname{cl}(G)) \leq k-1$.

Let $\mathcal{P}=\left\{K_{1}, \ldots, K_{\theta}\right\}$ be a minimum clique covering of $\operatorname{cl}(G)$ such that each of the cliques $K_{1}, \ldots, K_{\theta}$ is maximal. We show that each clique of \mathcal{P} has at least $2 k-1$ vertices. This follows immediately from $\delta(\operatorname{cl}(G)) \geq 3 k-4$ for those K_{i} 's that contain at least one simplicial vertex. Thus, suppose that (say) K_{1} contains no simplicial vertex. By the minimality of \mathcal{P}, there is a clique K^{\prime} with $K_{1} \cap K^{\prime} \neq \emptyset$ and $K^{\prime} \notin \mathcal{P}$ (otherwise $\mathcal{P} \backslash\left\{K_{1}\right\}$ is also a clique covering of $\operatorname{cl}(G)$). Since clearly every clique in $\operatorname{cl}(G)$ that contains a simplicial vertex must be in \mathcal{P}, K^{\prime} has no simplicial vertex. By the structure of the closure, $\left|K_{1} \cap K^{\prime}\right|=1$.

Denote $K_{1} \cap K^{\prime}=\{x\},\left|K_{1}\right|=t$ and $\left|K^{\prime}\right|=r$. Then we have $d(x)=t-1+r-1 \geq$ $\delta(\operatorname{cl}(G)) \geq 3 k-4$, implying $t+r \geq 3 k-2$. Since $K^{\prime} \notin \mathcal{P}$, there are $r-1$ further cliques $K_{i_{1}}, \ldots, K_{i_{r-1}} \in \mathcal{P}$ having a common vertex with K^{\prime}. By the structure of the closure, $K_{i_{j}} \neq$ $K_{i_{\ell}}, j \neq \ell, j, \ell=1, \ldots, r-1$, implying $\theta \geq r$. Since $\theta \leq k-1$, we have $3 k-2 \leq t+r \leq t+k-1$, from which $t \geq 2 k-1$.

Now, since $\theta \leq k-1$, each clique of \mathcal{P} contains at least $2 k-1-(k-2)=k+1$ vertices that are in no other clique of \mathcal{P}. Since $k \geq 2$, every $K_{i} \in \mathcal{P}$ contains a cycle C_{i} that is vertex-disjoint from all other cliques of \mathcal{P}. Let $x_{i} \in K_{i}, i=1, \ldots, \theta$ be such that each x_{i} is in no other clique of \mathcal{P}. Since $\kappa=\kappa(\operatorname{cl}(G))$, by a well-known theorem by Dirac [4], there is a cycle C in $\operatorname{cl}(G)$ containing all the vertices $x_{1}, \ldots, x_{\kappa}$. Let \mathcal{C} be the collection of those of the cycles $C_{\kappa+1}, \ldots, C_{\theta}$, which are vertex-disjoint with C. Then the collection of cycles $\{C\} \cup \mathcal{C}$ can be easily extended to a 2 -factor of $\mathrm{cl}(G)$ with at most $k-\kappa$ components. The result then follows by Theorem $\mathrm{A}(i v)$.

Corollary 4. Let $k \geq 4$ be an integer and G be a connected claw-free graph of order $n \geq 3 k^{2}-3, \delta(G) \geq 3 k-4$ and

$$
\sigma_{k}(G)>n+k^{2}-4 k+7
$$

Then G has a 2-factor with at most $k-1$ components.

Proof. We can again suppose that G is closed. If $\kappa(\operatorname{cl}(G)) \geq 6$, then G has a required 2-factor since G is hamiltonian by Theorem B (note that $\delta(G) \geq 3 k-4 \geq 8$). Hence suppose $1 \leq \kappa(\mathrm{cl}(G)) \leq 5$. Then we have $n \geq 3 k^{2}-3 \geq 3 k^{2}-(k+1) \kappa+2$ since $\kappa \geq 1$ and $\sigma_{k}(G)>n+k^{2}-4 k+7 \geq n+k^{2}-4 k+\kappa+2$ since $\kappa \leq 5$. Then G has a 2 -factor with at most $k-1$ components by Theorem 3 .

Remark. It would be possible to formulate minimum degree results corresponding to Theorem 3 and Corollary 4. Details are left to the reader.

Next we turn our attention to traceability. Let $\mathcal{C}_{i}, i=1, \ldots, 8$, be the class of all spanning subgraphs of the graphs $G_{i}, i=1, \ldots, 8$, shown in Figure 1 (where the circular and elliptical parts represent cliques of arbitrary order). Using a technique similar to that of [6], we can prove the following result.

Theorem 5. Let G be a connected closed claw-free graph with clique covering number $\theta \leq 5$. Then either $G \in \cup_{i=1}^{8} \mathcal{C}_{i}$, or G is traceable.

Proof of Theorem 5 is lengthy and it is therefore postponed to Section 3.

Figure 1

Combining Theorem 5 and Theorem 1, we can now obtain the following theorem, which is the second main result of this paper.

Theorem 6. Let G be a connected claw-free graph of order $n \geq 112-7 \kappa(\mathrm{cl}(G))$ such that $\delta(G) \geq 14$ and

$$
\sigma_{6}(G)>n+14+\kappa(\operatorname{cl}(G)) .
$$

Then either $\operatorname{cl}(G) \in \cup_{i=1}^{8} \mathcal{C}_{i}$, or G is traceable.

Proof. If G is a nontraceable graph satisfying the asumptions of the theorem, then clearly so is $\operatorname{cl}(G)$. Thus, suppose that G is closed. By a well-known consequence of a theorem by Chvátal and Erdős [2] (see e.g. [7], Part I, Corollary 4.17), nontraceability of G implies $\alpha(G)>\kappa+1$. From Theorem 1 (for $k=6$) we then obtain $\theta(G) \leq 5$. The rest of the proof follows from Theorem 5 .

Corollary 7. Let G be a connected claw-free graph of order $n \geq 105$ such that $\delta(G) \geq 14$ and

$$
\sigma_{6}(G)>n+19 .
$$

Then either $\operatorname{cl}(G) \in \cup_{i=1}^{8} \mathcal{C}_{i}$, or G is traceable.

Proof. We can again suppose that G is closed. If G is nontraceable, then Theorem B implies $1 \leq \kappa(G) \leq 5$. Rest of the proof follows immediately from Theorem 6.

Corollary 8. Let G be a connected claw-free graph of order $n \geq 105$ with minimum degree

$$
\delta(G)>\frac{n+19}{6} .
$$

Then either $\operatorname{cl}(G) \in \cup_{i=1}^{8} \mathcal{C}_{i}$, or G is traceable.

3 Proof of Theorem 5

We basically follow the terminology and notation introduced in [6] and [9]. Let \mathcal{G}_{θ} be the class of all connected nontraceable closed claw-free graphs with clique covering number θ. By Theorem A, every $G \in \mathcal{G}_{\theta}$ is the line graph of some (unique) triangle-free graph H. Let $D_{1}(H)$ be the set of all degree 1 vertices of H and put $H^{\prime}=H-D_{1}(H)$. Set $\mathcal{H}_{\theta}=\left\{L^{-1}(G) \mid G \in \mathcal{G}_{\theta}\right\}$ and $\mathcal{H}_{\theta}^{\prime}=\left\{H-D_{1}(H) \mid H \in \mathcal{H}_{\theta}\right\}$.

In every $G \in \mathcal{G}_{\theta}$ choose a fixed minimum clique covering $\mathcal{P}_{G}=\left\{B_{1}, \ldots, B_{\theta}\right\}$ of G such that each clique B_{i} is maximal. Since \mathcal{P}_{G} is minimum, every B_{i} contains at least one proper vertex, i.e. a vertex belonging to no other clique of \mathcal{P}_{G}. The centers $B_{1}, \ldots, B_{\theta}$ of the stars of $H=L^{-1}(G)$ that correspond to the cliques of G will be called the black vertices of H. The other vertices of H are called white. The set of black (white) vertices of H is denoted by $B(H)(W(H))$, respectively. Since $B(H)$ is a vertex covering of H (i.e., every edge of H has at least one vertex in $B(H)$), the set $W(H)$ is independent.

It is easy to see that for any $G \in \mathcal{G}_{\theta}$, any graph obtained from G by adding/removing simplicial vertices to/from cliques of \mathcal{P}_{G} also belongs to \mathcal{G}_{θ} as long as (in the case of removal)
at least one simplicial vertex in the clique remains (while the removal of the last simplicial vertex of a clique can turn G into a traceable graph). Hence we can without loss of generality denote for any $H^{\prime} \in \mathcal{H}_{\theta}^{\prime}$ by $L(H)$ the graph obtained from the line graph of H^{\prime} by adding one simplicial vertex to every clique corresponding to a black vertex of H^{\prime}.

Let $G_{1}, G_{2} \in \mathcal{G}_{\theta}$. We say that G_{1} is an ss-subgraph of G_{2}, if G_{1} is isomorphic to a spanning subgraph of a graph, which is obtained from G_{2} by adding an appropriate number of simplicial vertices to some cliques of $\mathcal{P}_{G_{2}}$, and that G_{1} is a proper ss-subgraph of G_{2} if G_{1} is an $s s$-subgraph of G_{2} and G_{1}, G_{2} are nonisomorphic. In the following we present a method for finding a subset $\mathcal{F}_{\theta} \subset \mathcal{H}_{\theta}^{\prime}$ such that
(i) every $G \in \mathcal{G}_{\theta}$ is an $s s$-subgraph of $L(F)$ for some $F \in \mathcal{F}_{\theta}$,
(ii) for any $F_{1}, F_{2} \in \mathcal{F}_{\theta}, L\left(F_{1}\right)$ is not an $s s$-subgraph of $L\left(F_{2}\right)$.

By the previous observations, the class \mathcal{G}_{θ} is fully characterized by \mathcal{F}_{θ}.
If, for some $H \in \mathcal{H}_{\theta}$, the corresponding $H^{\prime} \in \mathcal{H}_{\theta}^{\prime}$ has a black trail (abbreviated BT), i.e. a trail containing all black vertices of H^{\prime}, then clearly H has a dominating trail. Since, by Theorem F, no $H \in \mathcal{H}_{\theta}$ has a dominating trail, no $H^{\prime} \in \mathcal{H}_{\theta}^{\prime}$ has a BT.

For a trail T in $H^{\prime} \in \mathcal{H}_{\theta}^{\prime}$ we denote by bla (T) the black length of T, i.e., the number of black vertices of H^{\prime} that are on T, and by $\operatorname{cro}(T)$ the number of "crossings" of T, i.e., the number of vertices of H^{\prime} that are visited by T at least twice.

Two vertices of H^{\prime} are said to be related if they are adjacent or if they are both black and have a common white neighbor. If T is a (fixed) trail in H^{\prime} and x, y are vertices of H^{\prime}, then we say that x, y are \bar{T}-related (denoted $x \sim y$) if $x y \in E\left(H^{\prime}\right) \backslash E(T)$ or x and y have a white common neighbor outside T.

Let now $H^{\prime} \in \mathcal{H}_{\theta}^{\prime}$, and let T be a trail in H^{\prime} such that
(i) $\mathrm{bla}(T)$ is maximum,
(ii) subject to $(i), \operatorname{cro}(T)$ is minimum,
(iii) subject to (i) and (ii), the length of T is minimum.

Then T has two black vertices of degree 1 . We will always denote by b_{1}, \ldots, b_{k} the black vertices of T labelled along T, and by w_{i} the white successor of b_{i} on T, if it exists. Note that, since T is a trail, possibly $b_{i}=b_{j}$ or $w_{i}=w_{j}$ for some $i \neq j$. If $b_{i} \sim b_{j}$, then the (possible) white common neighbor of b_{i}, b_{j} outside T will be denoted by $w_{i j}$.

Case $\theta=3$. Let $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. Then, clearly, $\operatorname{bla}(T)=2, \operatorname{cro}(T)=0$ and $T=b_{1}\left(w_{1}\right) b_{2}$. Since H^{\prime} is connected and the set $\left\{b_{1}, b_{2}, b_{3}\right\}$ is dominating, b_{3} is \bar{T}-related to some vertex of T. Clearly both $b_{3} \sim b_{1}$ and $b_{3} \sim b_{2}$ imply traceability of $L\left(H^{\prime}\right)$, hence $b_{3} \sim w_{1}$, implying $b_{3} w_{1} \in E\left(H^{\prime}\right)$. The existence of any further relation implies traceability of $L\left(H^{\prime}\right)$, hence $V\left(H^{\prime}\right)=\left\{b_{1}, b_{2}, b_{3}, w_{1}\right\}$ and $E\left(H^{\prime}\right)=\left\{w_{1} b_{1}, w_{1} b_{2}, w_{1} b_{3}\right\}$, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$.
$\underline{\text { Case } \theta=4}$. Let $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. Then obviously $2 \leq \operatorname{bla}(T) \leq 3$ and $\operatorname{cro}(T)=0$, i.e., T is a path. We have two subcases.

Subcase bla $(T)=3$. Then $T=b_{1}\left(w_{1}\right) b_{2}\left(w_{2}\right) b_{3}$. Suppose first that b_{4} is \bar{T}-related to some black vertex. Then necessarily $b_{4} \sim b_{2}$. If $b_{4} \sim x$ for some $x \in\left\{b_{1},\left(w_{1}\right), b_{3},\left(w_{2}\right)\right\}$, then we immediately have a trail T^{\prime} with $\operatorname{bla}\left(T^{\prime}\right)=4$. Similarly, $b_{1} \sim b_{2}$ yields $T^{\prime}=$ $b_{3}\left(w_{2}\right) b_{2}\left(w_{1}\right) b_{1}\left(w_{12}\right) b_{2}\left(w_{24}\right) b_{4}, b_{1} \sim w_{2}$ gives $T^{\prime}=b_{3} w_{2} b_{1}\left(w_{1}\right) b_{2}\left(w_{24}\right) b_{4}$, and for $b_{1} \sim b_{3}$ we have $T^{\prime}=b_{3}\left(w_{13}\right) b_{1}\left(w_{1}\right) b_{2}\left(w_{24}\right) b_{4}$. By symmetry and since H^{\prime} is triangle-free, these are all possibilities. Hence there are no further \bar{T}-relations, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$.

Hence b_{4} is related to white vertices only. If both $b_{4} \sim w_{1}$ and $b_{4} \sim w_{2}$, then H^{\prime} contains no more relations, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{2}$. If (by symmetry) $b_{4} \sim w_{1}$ and $b_{4} \nsim w_{2}$, then the only possible additional relation that does not create a trail T^{\prime} with $\operatorname{bla}(T)=4$ is $b_{1} \sim w_{2}$. Then for $b_{1} \nsim w_{2}$ we have $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ and for $b_{1} \sim w_{2}$ we have $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$.

Subcase bla $(T)=2$. Then $T=b_{1}\left(w_{1}\right) b_{2}$. Then immediately $b_{3} \sim w_{1}$ and $b_{4} \sim w_{1}$. If $\overline{b_{3} \sim b_{4} \text {, then } L\left(H^{\prime}\right)}$ is traceable; hence $b_{3} \nsim b_{4}$, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{2}$.

Case $\theta=5$. Let $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. We have obviously $2 \leq \operatorname{bla}(T) \leq 4$. If $2 \leq \operatorname{bla}(T) \leq$ 3 , then $\operatorname{cro}(T)=0$ (since H^{\prime} is triangle-free), for $\operatorname{bla}(T)=4$ we have $0 \leq \operatorname{cro}(T) \leq 1$. We will denote these subcases by k / ℓ, where $k=\operatorname{bla}(T)$ and $\ell=\operatorname{cro}(T)$. Thus, we have subcases $4 / 0,4 / 1,3 / 0$ and $2 / 0$. The subcase $4 / 1$ splits into two subcases $4 / 1 \mathrm{w}$ and $4 / 1 \mathrm{~b}$ according to whether the vertex visited twice by T is white or black, respectively. We consider these subcases separately.

Subcase 4/0. Then $T=b_{1}\left(w_{1}\right) b_{2}\left(w_{2}\right) b_{3}\left(w_{3}\right) b_{4}$ is a path. It is straightforward to check that b_{5} can be \bar{T}-related to at most one black vetex of T (for otherwise $L\left(H^{\prime}\right)$ is traceable). Thus, we have two possibilities.

Subcase 4/0-1: b_{5} is \bar{T}-related to exactly one black vertex of T. By symmetry, let $b_{5} \sim b_{2}$.

Subcase 4/0-1-1: b_{5} is \bar{T}-related to some white vertex on T. Then the only possibility that does not imply $L\left(H^{\prime}\right)$ is traceable is $b_{5} \sim w_{3}$. Then it is straightforward to check that any further \bar{T}-relation between vertices of T implies $L\left(H^{\prime}\right)$ is traceable, but then $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$.
Subcase 4/0-1-2: b_{2} is the only \bar{T}-relation of b_{5} on T. We consider possible $\overline{\bar{T}}$-relations between vertices of T.
If $b_{1} \sim w_{3}$, then we are in a situation symmetric to the subcase 4/0-1-1 and hence $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$. All the other relations of b_{1} on T imply $L\left(H^{\prime}\right)$ is traceable. Hence we can assume b_{1} has no \bar{T}-relation on T. Now, if also b_{4} has no \bar{T} relation on T, then we have $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$. Hence we can suppose $b_{4} \sim x$ for some $x \in V(T)$. If $x \in\left\{b_{1}, w_{1}, b_{2}\right\}$, then $L\left(H^{\prime}\right)$ is traceable. Hence $x \in\left\{w_{2}, b_{3}\right\}$.

Now, if there is no \bar{T}-relation $y \sim z$ for any $y \in\left\{w_{1}, b_{2}\right\}, z \in\left\{w_{2}, b_{3}, w_{3}, b_{4}\right\}$, then we have $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$. It is straightforward to check that all such relations $y \sim z$ imply $L\left(H^{\prime}\right)$ is traceable.

Subcase 4/0-2: b_{5} is \bar{T}-related only to white vertices on T.
Subcase 4/0-2-1: b_{5} is \bar{T}-related to w_{1}, w_{2} and w_{3}. Then there is no further $\overline{\bar{T}}$-relation on T and $L\left(H^{\prime}\right) \in \mathcal{C}_{6}$.
Subcase 4/0-2-2: b_{5} is \bar{T}-related to two white vertices on T. By symmetry, we can suppose that $b_{5} \sim w_{1}$ and either $b_{5} \sim w_{2}$ or $b_{5} \sim w_{3}$.
Let first $b_{5} \sim w_{2}$. If no vertices on T are \bar{T}-related, then $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (with $b_{3},\left(w_{3}\right), b_{4}$ in one clique of $\left.L\left(H^{\prime}\right)\right)$. Hence suppose there is a \bar{T}-relation between some vertices of T. Clearly $b_{1} \nsim b_{2}, b_{1} \nsim w_{2}, b_{1} \nsim b_{3}, b_{1} \nsim b_{4}, w_{1} \nsim b_{3}, w_{1} \nsim b_{4}, b_{2} \nsim b_{3}$, $b_{2} \nsim b_{4}$ and $w_{2} \nsim b_{4}$, since any of these relations implies $L\left(H^{\prime}\right)$ is traceable. It remains to consider the possibilities $b_{1} \sim w_{3}, b_{2} \sim w_{3}$ and $b_{3} \sim b_{4}$.
If $b_{1} \sim w_{3}$, then both $b_{2} \nsim w_{3}$ and $b_{3} \nsim b_{4}$ (otherwise $L\left(H^{\prime}\right)$ is traceable), and then $L\left(H^{\prime}\right) \in \mathcal{C}_{5}$; if $b_{2} \sim w_{3}$, then $b_{1} \nsim w_{3}$ and $b_{3} \nsim b_{4}$, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{6}$; and if $b_{3} \sim b_{4}$, then similarly $b_{1} \nsim w_{3}, b_{2} \nsim w_{3}$ and $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (in which b_{3}, b_{4} and their common neighbors are in one clique).
Hence suppose $b_{5} \sim w_{3}$. Similarly as before, no \bar{T}-relation between vertices of T implies $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ with $b_{2},\left(w_{2}\right), b_{3}$ in one clique. Thus, suppose some vertices of T are \bar{T}-related. Immediately $b_{1} \nsim b_{2}, b_{1} \not \not b_{3}, b_{1} \nsim w_{3}, b_{1} \nsim b_{4}$ and $w_{1} \nsim b_{3}$, since any of these relations implies $L\left(H^{\prime}\right)$ is traceable. By symmetry, it remains to consider the possibilities $b_{1} \sim w_{2}$ and $b_{2} \sim b_{3}$. If $b_{1} \sim w_{2}$, then $b_{2} \nsim b_{3}$ (otherwise $L\left(H^{\prime}\right)$ is traceable), implying $L\left(H^{\prime}\right) \in \mathcal{C}_{5}$; if $b_{2} \sim b_{3}$, then similarly $b_{1} \nsim w_{2}$ and $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (with b_{2}, b_{3} and their common neighbors in one clique).
Subcase 4/0-2-3: b_{5} is \bar{T}-related to exactly one white vertex on T. By symmetry, either $b_{5} \sim w_{1}$ or $b_{5} \sim w_{2}$.

Let first $b_{5} \sim w_{1}$. If b_{1} is not \bar{T}-related to any of $b_{2}, w_{2}, b_{3}, w_{3}, b_{4}$, then $L\left(H^{\prime}\right) \in$ \mathcal{C}_{1} (with b_{2}, b_{3} and b_{4} in one clique). The relations $b_{1} \sim b_{2}$ and $b_{1} \sim b_{4}$ immediately imply traceability. Hence b_{1} is \bar{T}-related to w_{2}, b_{3} or w_{3}.
If $b_{1} \sim b_{3}$ and, at the same time, $b_{1} \sim w_{2}$ or $b_{1} \sim w_{3}$, then $L\left(H^{\prime}\right)$ is traceable, and if $b_{1} \sim w_{2}$ and $b_{1} \sim w_{3}$, then we are in Subcase 4/0-2-1 (where b_{1} plays the role of b_{5}). Hence b_{1} is \bar{T}-related to exactly one of b_{3}, w_{2}, w_{3}.
If $b_{1} \sim b_{3}$, then any additional relation implies $L\left(H^{\prime}\right)$ is traceable, and hence we have $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$.
If $b_{1} \sim w_{2}$, then for $b_{2} \sim w_{3}$ we are in Subcase 4/0-2-1 (where b_{2} plays the role of b_{5}) and $L\left(H^{\prime}\right) \in \mathcal{C}_{6}$. Any other additional relation except $b_{3} \sim b_{4}$ implies
$L\left(H^{\prime}\right)$ is traceable. If $b_{3} \sim b_{4}$, or if there is no additional relation, we have $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (with b_{3}, b_{4} in one clique).
If $b_{1} \sim w_{3}$, then any additional relation except for $b_{2} \sim b_{3}$ or $w_{2} \sim b_{4}$ implies $L\left(H^{\prime}\right)$ is traceable. For $w_{2} \sim b_{4}$ we have $L\left(H^{\prime}\right) \in \mathcal{C}_{5}$, and if $b_{2} \sim b_{3}$ or if there is no additional relation, then $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (with b_{2} and b_{3} in one clique).
Let now $b_{5} \sim w_{2}$. First observe that there is no \bar{T}-relation containing w_{2} since H^{\prime} is triangle-free and both $w_{2} \sim b_{1}$ and $w_{2} \sim b_{4}$ imply traceability. Secondly, if there is no \bar{T}-relation $x \sim y$ with $x \in\left\{b_{1}, w_{1}, b_{2}\right\}$ and $y \in\left\{b_{3}, w_{3}, b_{4}\right\}$, then $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$. Since $b_{1} \sim b_{3}$ and $b_{1} \sim b_{4}$ imply traceability, by symmetry, we have $b_{2} \sim b_{3}, w_{1} \sim b_{3}$ or $b_{1} \sim w_{3}$. We consider these possibilities separately.
If $b_{2} \sim b_{3}$, then there is no additional \bar{T}-relation containing b_{1} (or symmetrically b_{4}), for otherwise $L\left(H^{\prime}\right)$ is traceable. This implies $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$.
If $w_{1} \sim b_{3}$, then similarly $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$, unless there is an additional \bar{T}-relation containing b_{1} or b_{4}. The only such relations that do not imply traceability are $b_{1} \sim w_{3}$ or $b_{3} \sim b_{4}$, but then $L\left(H^{\prime}\right) \in \mathcal{C}_{6}$ or $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$, respectively.
Finally, if $b_{1} \sim w_{3}$, then we already know there is no further relation, and we have $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$.

Subcase $4 / 1 \mathrm{w}$. Recall that in this subcase T visits twice one white vertex. Choose the notation such that $T=b_{1} w_{1} b_{2} w_{2} b_{3} w_{1} b_{4}$. Clearly, $b_{5} \nsim b_{1}, b_{5} \nsim b_{4}$ and b_{5} cannot be \bar{T}-related to both b_{2}, b_{3} (since in each of these cases $L\left(H^{\prime}\right)$ is traceable). Thus, b_{5} is \bar{T}-related to at most one black vertex on T.

Subcase $4 / 1 \mathrm{w}-1$: b_{5} is \bar{T}-related to one black vertex on T. By symmetry, let $b_{5} \sim b_{2}$. Then $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ (with $w_{1}, b_{2}, w_{2}, b_{3}$ in one clique), since any additional \bar{T}-relation involving any of b_{1}, b_{4}, b_{5} implies $L\left(H^{\prime}\right)$ is traceable.
Subcase $4 / 1 \mathrm{w}-2: b_{5}$ is \bar{T}-related only to white vertices.
Subcase 4/1w-2-1: $b_{5} \sim w_{1}, b_{5} \sim w_{2}$. Then there is no other relation and $L\left(H^{\prime}\right) \in \mathcal{C}_{7}$.
Subcase $4 / 1 \mathrm{w}-2-2: b_{5} \sim w_{1}, b_{5} \nsim w_{2}$. If there is no other relation involving any of b_{1}, b_{2}, then we have $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ (with b_{2}, b_{3} and their common neighbors in one clique). It is straightforward to check that any further \bar{T}-relation involving b_{1} or b_{4} gives $L\left(H^{\prime}\right) \in \mathcal{C}_{8}$ (if some of b_{1}, b_{2} is \bar{T}-related to w_{2}), or traceability of $L\left(H^{\prime}\right)$.
Subcase 4/1w-2-3: $b_{5} \sim w_{2}, b_{5} \nsim w_{1}$. Then $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ (with $w_{1}, b_{2}, w_{2}, b_{3}$ in one clique) and any \bar{T}-relation between any of b_{2}, w_{2}, b_{3} and the rest implies traceability of $L\left(H^{\prime}\right)$.

Subcase $4 / 1 \mathrm{~b}$. Choose the notation such that the vertex b_{2} is visited twice by T, i.e., $T=b_{1}\left(w_{1}\right) b_{2} w_{2} b_{3} w_{3} b_{2}\left(w_{4}\right) b_{4}$. Similarly as before, b_{5} is \bar{T}-related to at most one black vertex on T, and neither to b_{1} nor to b_{4}.

Subcase 4/1b-1: $b_{5} \sim b_{2}, b_{5} \nsim b_{3}$. In this case b_{2} is the only \bar{T}-relation of b_{5} on T (since any other relation implies traceability). Now $L\left(H^{\prime}\right) \in \mathcal{C}_{2}$ and any other \bar{T}-relation between vertices of T gives $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ or traceability.

Subcase 4/1b-2: $b_{5} \sim b_{3}, b_{5} \nsim b_{2}$. In this subcase immediately $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ with $\left\{b_{2}, w_{2}, b_{3}, w_{3}\right\}$ in one clique and any relation joining a vertex from this set to the rest gives traceability.
Subcase 4/1b-3: b_{5} is \bar{T}-related only to white vertices. Then b_{5} can have \bar{T}-relations in at most one of the sets $\left\{w_{1}, w_{4}\right\},\left\{w_{2}, w_{3}\right\}$ (otherwise $L\left(H^{\prime}\right)$ is traceable).

Subcase 4/1b-3-1: $b_{5} \sim w_{1}$. For $b_{5} \nsim w_{4}$ we have $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$, and for $b_{5} \sim w_{4}$ we have $L\left(H^{\prime}\right) \in \mathcal{C}_{4}$ (with $b_{2}, w_{2}, b_{3}, w_{3}$ in one clique).
Subcase 4/1b-3-2: $b_{5} \sim w_{2}$. If $b_{5} \nsim w_{3}$, then $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$ (with $b_{2}, w_{2}, b_{3}, w_{3}$ in one clique), and if $b_{5} \sim w_{3}$, then $L\left(H^{\prime}\right) \in \mathcal{C}_{8}$.
$\underline{\text { Subcase } 3 / 0 \text {. Let } T=b_{1}\left(w_{1}\right) b_{2}\left(w_{2}\right) b_{3} . ~}$
Subcase 3/0-1: $b_{4} \sim b_{5}$. If b_{4} or b_{5} is \bar{T}-related to any vertex on T, then we have a path T^{\prime} with bla $\left(T^{\prime}\right) \geq 4$, except for the case if $w_{45}=w_{24}=w_{25}$. In this case, $L\left(H^{\prime}\right) \in \mathcal{C}_{2}$.

Subcase 3/0-2: $b_{4} \nsim b_{5}$. If b_{4} has two relations on T, then the only possibility that does not create a trail T^{\prime} with $\operatorname{bla}\left(T^{\prime}\right) \geq 4$ is $b_{4} \sim w_{1}, b_{4} \sim w_{2}$, but then, for any \bar{T}-relation of b_{5} on T we again have a trail T^{\prime} with $\operatorname{bla}\left(T^{\prime}\right) \geq 4$. Hence both b_{4} and b_{5} have one \bar{T}-relation on T. Then it is straightforward to check that in all nontraceable cases we have $L\left(H^{\prime}\right) \in \mathcal{C}_{2}$ or $L\left(H^{\prime}\right) \in \mathcal{C}_{1}$.

Subcase $2 / 0$. Let $T=b_{1}\left(w_{1}\right) b_{2}$. If any two of b_{3}, b_{4}, b_{5} are \bar{T}-related, we have a trail T^{\prime} $\overline{\text { with } \operatorname{bla}\left(T^{\prime}\right)} \geq 3$. Hence $b_{3} \sim w_{1}, b_{4} \sim w_{1}, b_{5} \sim w_{1}$, implying $L\left(H^{\prime}\right) \in \mathcal{C}_{3}$.

Acknowledgement. Parts of this paper were written while the first author was visiting the Department of Mathematics and Statistics at the University of Vermont, U.S.A. The author is grateful for the support and hospitality provided during his stay.

References

[1] J.A. Bondy, U.S.R. Murty: Graph Theory with applications. Macmillan, London and Elsevier, New York, 1976.
[2] V. Chvátal, P. Erdős: A note on hamiltonian circuits. Discrete Math. 2 (1972), 111-113.
[3] S. Brandt, O. Favaron, Z. Ryjáček: Closure and stable hamiltonian properties in claw-free graphs. J. Graph Theory 32 (2000), 30-41.
[4] G.A. Dirac: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22 (1960), 61-85.
[5] R. Faudree, O. Favaron, E. Flandrin, H. Li, Z. Liu: On 2-factors in claw-free graphs. Discrete Math. 206 (1999), 131-137.
[6] O. Favaron, E. Flandrin, H. Li, Z. Ryjáček: Clique covering and degree conditions for hamiltonicity in claw-free graphs. Discrete Math. (to appear).
[7] R.L. Graham, M. Grötschel, L. Lovász (eds.): Handbook of Combinatorics. NorthHolland, 1995.
[8] R. Gould, M. Jacobson: Two-factors with few cycles in claw-free graphs. Preprint 1999.
[9] O. Kovářík, M. Mulač, Z. Ryjáček: A note on degree conditions for hamiltonicity in 2-connected claw-free graphs. Preprint 1999, submitted.
[10] H. Li: A note on hamiltonian claw-free graphs. Rapport de Recherche LRI No. 1022, Univ. de Paris-Sud, 1996 (submitted).
[11] F. Harary, C. St.J.A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965), 701-709.
[12] Z. Ryjáček: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997), 217-224.
[13] Z. Ryjáček, A. Saito, R.H. Schelp: Closure, 2-factors and cycle coverings in claw-free graphs. J. Graph Theory 32 (1999), 109-117.

