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Abstract
A conjecture of Alspach and Rosenfeld states that the prism GOK,
over any 3-connected cubic graph G has a decomposition into two Hamilton
cycles. Using a method based on colored diagrams, we show this conjecture
to hold for 3-connected planar bipartite cubic graphs and for one other class
of planar cubic graphs known as ‘kleetope duals’. We also give a new proof
of the fact that GOK5 is hamiltonian for any 3-connected cubic graph G.

1 Introduction

The prism over a graph G, denoted by GOK5, is obtained by taking two copies
of G and joining the two clones of each vertex by an edge. The motivation for
studying Hamilton cycles in prisms over cubic 3-connected graphs goes back to
the (still open) conjecture of Barnette that all simple 4-polytopes are hamiltonian.
Initally, Rosenfeld and Barnette [7] proved that the prism over simple 3-polytopes
(which are the 1-skeleton of some simple 4-polytopes) are hamiltonian if the 4-
color conjecture is true (at that time it was still a conjecture). Later, this result
was extended by various authors using techniques that avoided use of the 4-color
theorem. Finally, in 1993 Paulraja [6] proved the most general possible result:
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Theorem 1.1 The prism over any 3-connected cubic graph is hamiltonian.

A simple proof of this result, which lends itself to estimating the complexity
of constructing the Hamilton cycle in the prism, is included in Section 3 of the
present paper.

Alspach and Rosenfeld [1] conjectured that the prism over any 3-connected
cubic graph actually admits a hamiltonian decomposition, and they proved the
conjecture for some infinite families of graphs. We shall show that the conjecture
holds for two classes of graphs.

A kleetope is any planar triangulation which can be obtained from the com-
plete graph K, by repeatedly adding a vertex and joining it to the 3 vertices of
a face. We prove the following theorem in Section 8.

Theorem 1.2 The prism over the dual of any kleetope admits a hamiltonian
decomposition.

We remark that by [4], kleetopes are precisely the planar graphs with a unique
4-coloring of the vertices.

Using a characterization of 3-connected bipartite cubic planar graphs due to
Batagelj [2], we obtain the following result.

Theorem 1.3 The prism over any 3-connected bipartite planar cubic graph ad-
mits a hamiltonian decomposition.

In Section 4, we shall see that the connectivity requirement in Alspach and
Rosenfeld’s conjecture cannot be relaxed since there are 2-connected planar cubic
graphs whose prisms have no hamiltonian decomposition. In fact, one can make
the examples bipartite, thereby showing that 3-connectivity is also essential in
Theorem 1.3.

2 Notation

Let G be a graph. We generally write V (G) for the set of vertices and E(G) for
the set of edges of G. Only simple graphs are considered. We refer the reader to
[3] for any graph-theoretic concepts we use without definition.

The prism over G was defined in the Introduction; note that it can be viewed
as the Cartesian (or box) product GOK, of G with K, as well. We identify G
with one of its copies in GOK5, and write v* for the clone of a vertex v € V(G)
in the other copy of G.

If w = v*, we set w* = v; in other words, (v*)" = v.

This notation is extended, in the obvious way, to edges, sets of vertices,
and sets of edges in GOK,. For instance, if F¥ C FE(GOK,), then F* =
{u*v*|uv € F}.



3 The hamiltonicity of prisms

We shall now present a simplified proof of Theorem 1.1. The original proof
appears in [6].
We begin with the following lemma.

Lemma 3.1 A 3-connected cubic graph contains a 2-connected bipartite spanning
subgraph.

Proof. Let H be a maximal 2-connected, bipartite subgraph of G. If H does
not span G, there is a vertex g € V(G) —V(H). Assume further that the vertices
of H are properly colored in black and white. Since GG is 3-connected, it contains
3 vertex-disjoint paths Py, P, P3, each connecting ¢ to a vertex in H. Let h;
be the first vertices of H on each of the paths. Without loss of generality, we
may assume that h; and h, are colored white. Then the lengths of P, and P,
have distinct parities, for otherwise P, I’ can be added to H, contradicting its
maximality. If hs is also colored white, then among the 3 paths there are two
with the same parity, and we can add these two paths to H, obtaining a larger
spanning 2-connected bipartite subgraph. Hence hs is colored black. Since the
lengths of P, and P, have distinct parities, one of these lengths will have distinct
parity from the length of the path Ps, we can add these two paths to H and again
increase the size of H. Hence if H is maximal it must be a spanning subgraph.
O

A cactus is a connected graph C' such that any two cycles in C' are vertex-
disjoint, every vertex of degree at least 3 lies on a cycle, and C has at least two
vertices. The cycles of C' are called its leaves. A cactus is even if all of its leaves
are cycles of even length. See Fig. 1 for an example of an even cactus.

Figure 1: An even cactus.

Lemma 3.2 Any 2-connected graph H of mazimum degree A(H) < 3 has a
spanning subgraph C such that C is a cactus (not necessarily even) and its leaves
contain all vertices v with degy (v) = 3.



Proof. The proof proceeds by induction on the number of vertices of H. The
lemma is trivially true for graphs H of order at most 4.

If H is cubic, then since it is 2-connected, it contains a 1-factor F' by the
Petersen theorem. The complement F of F is a 2-factor. If we contract, in H,
each component of F to a single vertex, we obtain a connected graph H'. Adding
the edge set of any spanning tree of H' to F' (with the obvious identifications),
we get a spanning cactus of H.

Thus, we may assume that H contains vertices of degree 2. Let h be such a
vertex and let a, b be its two neighbors.

If ab € E(H), then 2-connectedness (and the fact that H has more than 4
vertices) implies that a,b each have one additional neighbor a', 0" (respectively),
where o' # 0. We now shrink the triangle ahb to a single vertex ¢ of degree 2 as
in Fig. 2.

ad a h
a' ¢
b y
bl

Figure 2: The contraction of a triangle.

The new graph clearly remains 2-connected. By the induction hypothesis, it
contains a spanning cactus C'. If the path a'cb’ is part of a leaf, we modify it to
the path a’ahbb’ (and get a spanning cactus in G). If a'cb’ is not part of a leaf,
then without loss of generality we may assume that o'c is contained in E(C'). We
can now modify C by removing ¢, adding the triangle ahb and the edge aa'; if
b'e € E(C), we also add bb'. In either case, the resulting cactus has the required
properties (note that the triangle is a leaf).

If ab ¢ E(H), we remove the vertex h and add the edge ab. Again, by the
induction hypothesis, the resulting graph contains a spanning cactus C'. We note
that the degrees of a or b have not changed in this graph. If ab € E(C), we just
replace it by the path ahb. Assume ab ¢ E(C). If one of the vertices, say a, has
degree 3 (in H), then by the induction hypothesis it is contained in a leaf and we
may extend C by adding the edge ah. If both a and b have degree 2, then since
ab ¢ E(C), a has degree 1 in C. Again, we can add the edge ah to C. In either
case we obtain the desired spanning cactus. O

The relevance of even cacti to Hamilton cycles is shown by the following simple
lemma.

Lemma 3.3 The prism over any even cactus C' with A(C') < 3 is hamiltonian.



Proof. We prove, by induction on the number of vertices of C', that C' 0K, has
a Hamilton cycle F' such that:

F' contains the edge xzx* (1)
for each degree 2 vertex = belonging to a leaf of C.

The assertion is trivial if |V(C)| = 2. We may also assume that C is not a
cycle. Let T be the tree obtained by contracting each cycle @ of C' to a vertex
v and discarding loops. Since T' contains at least two vertices, we may choose a
vertex t of degree 1 in T

Assume first that t € V(C), i.e. t is of degree one in C' and does not lie on a
leaf. Let u be the unique neighbor of ¢ in C'. If u belongs to a leaf of the cactus
C' — t, then by induction (using (1) and the bound on the maximum degree),
(C'—t)OK, has a Hamilton cycle containing the edge wu*. But if u does not
belong to a leaf of ' — ¢, then its degree in C'—t is 1, and so any Hamilton cycle
of (C' — t)0K, must contain wu*. In either case, we can replace the edge uu* by
the path utt*u*, obtaining a Hamilton cycle in C'OK5, moreover one for which
(1) holds.

It remains to consider the case where ¢t = vg corresponds to a cycle @) of C.
The fact that ¢ has degree one in 7" implies that only one vertex w € V(Q) has
degree 3 in C. Let C' be obtained by removing all the vertices of @, except for
w, from C. By induction, C'OK, has a Hamilton cycle F’ satisfying (1), which
must necessarily contain ww* as the degree of w in C" is one. The cycle F' is
easily modified to a Hamilton cycle of C' that uses all the edges between () and
Q* except for ww*, and agrees with F” outside ). Thus, (1) is preserved. The
proof is complete. O

We are now in a position to prove the main result of this section.

Proof of Theorem 1.1. We first show that GG contains a spanning even cactus.
By Lemma 3.1, G contains a spanning 2-connected bipartite subgraph H with
A(H) < 3. By Lemma 3.2, H contains a spanning cactus C. Since H is bipartite,
C'is even. Finally, Lemma 3.3 implies that COK, (and hence GOK>) contains a
Hamilton cycle. O

Remark 3.4 It is easy to see that the complexity of constructing a Hamilton
cycle in HOK, is dominated by the complexity of finding a 1-factor in the cubic
graph H.

4 Non-3-connected graphs
As mentioned in the Introduction, prisms over 2-connected cubic planar graphs

do not necessarily possess a hamiltonian decomposition. The following class
of examples was found by W. McCuaig [5]. Join two vertices u and v by three



internally disjoint paths of at least 3 edges each, and replace every degree 2 vertex
by a ‘diamond’ (K, minus an edge) so as to obtain a cubic graph G (shown in
Fig. 3). It is easy to see that G is 2-connected and planar, and we shall show
that GOK, has no hamiltonian decomposition.

Suppose that GOK, can be decomposed into Hamilton cycles C, Cy. One of
the cycles (say, (') does not contain the edge uu*. Since both u and u* are of
degree two in C1, there is an edge of G adjacent to u (say, e; as shown in Fig. 3)
such that both e; and e;* are contained in C}.

€2

e1 €3

Figure 3: Cubic, 2-connected planar graphs whose prisms do not admit hamilto-
nian decompositions.

Consider now the edges e, and ez as in Fig. 3. Since { e, e;*, e9,€2" } is an
edge cut in GOK,, it must be intersected by both € and C,. It follows that
both e, and e;* are contained in Cy. By the same token, e3 and e3* are contained
in Cy. But then Cy contains all of the edge cut {es,es*, e3,e3* }, which means
that C cannot be a Hamilton cycle, a contradiction.

Observe also that it is easy to modify this example to obtain a bipartite cubic
planar 2-connected graph (simply replacing each diamond by the 3-cube minus an
edge). This shows that the assumption of 3-connectivity in Theorem 1.3 cannot
be removed.

5 Colorings and 2-factors

Let G be a cubic graph and let F' be a 2-factor of the prism GOK,. The factor
F induces a coloring of the edges of GG in 4 colors by the following rule.

We color an edge e € E(G) (with respect to F') blue if e € E(F) and e* ¢
E(F); yellow if e ¢ E(F) and ¢* € E(F); and green if e,e* € E(F). The
remaining edges of G' will be colored red. (The green color was chosen to represent
‘both blue and yellow’. Admittedly, using black in place of red might be more in
the spirit of this analogy.)

Note that this coloring need not be a proper edge-coloring of G. However,
only 4 combinations of colors can appear at any given vertex. We abbreviate
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colors by the initial letter (e.g. blue is B) and define the type of a vertex to be
the unordered collection of colors of the adjacent edges. Then it is easy to see
that

any vertex of GG is of type BYG, BYR, GGR or RRG. (2)

Indeed, consider a vertex v € V(G) and distinguish two cases. Firstly, if
vv* € E(F), denote the edge in E(G)NE(F) by e. In case ¢* € E(F), the vertex
v is RRG, otherwise v is BYR. Secondly, if vv* ¢ E(F), denote the two edges in
E(G)NE(F) by e; and ey. The vertex v is GGR or BYG according to whether
both of e;* and ey* are contained in E(F) or they are not.

Note the effect of passing to the complement F of F: the coloring induced by
[ has blue interchanged with yellow, and green with red.

The above correspondence can be reversed. That is, any edge-coloring of ¢
with property (2) determines a 2-factor in the prism, which can be obtained as
follows. If z,y € V(G), then the edges of F' will include:

e 1y if it is colored blue or green,
e 1*y* if xy is colored yellow or green,
e xx* if x is of type BYR or RRG.

It is straightforward to check, for the 4 possible types of x, that x and z* are
of degree two in F'. Thus F' is a 2-factor. Moreover, we have obtained a bijection
between 2-factors of GOK, and edge-colorings of G satisfying (2). We shall call
any such coloring admissible.

A more dynamic view of the above correspondence may be helpful. Starting
with an admissible coloring, we can trace the associated 2-factor as follows. Imag-
ine a robot with two possible states (labeled blue and yellow) walking through
G. The green edges of G are taken to be colored both yellow and blue, while
the red edges have none of these colors. To each of the two states, we associate
one of the two copies of G in GOK, and refer to them as the blue copy and the
yellow copy. If an edge is used during the walk in a particular state, we include
its clone from the corresponding copy in the 2-factor.

The walk begins by choosing a blue edge arbitrarily and traversing it to one
of its endvertices in the blue state. At each vertex, the robot determines the edge
to take next, after a possible change of state. Let us say that it has arrived to a
vertex v along an edge e in the blue state. If there is a blue edge ¢’ # e adjacent
to v, then the walk will continue on e’. If not, the state will change to yellow
(which corresponds to including the vertical edge vv* in the 2-factor) and a yellow
edge € # e will be chosen. If there is none, then it must be that e is a green edge
which is adjacent to 2 red edges at v, and the robot will return along e. Once
it visits a vertex in the same state for the second time, a new starting vertex is
chosen among those which have not been visited in both states, and the process



is repeated (possibly starting in the yellow state). If there are no such vertices,
we have a collection of closed walks which represents the associated 2-factor.

For an example, consider the coloring of the 3-cube given in Fig. 4. The figure
also shows the convention used to represent colored edges. Starting at x in the
blue state, we continue in the same state to w, z and y, where we are forced to
switch to yellow and go on to 3', where we switch back to blue, etc. The whole
walk is zwzy/y'/x'w'Z' [ zww'z'z/, where the slashes indicate a change of state.
In fact, one can see that each vertex was visited precisely once in each state.
Thus the 2-factor in the prism corresponding to this walk is connected, hence a
Hamilton cycle in the prism.

w V4
o K
: i blue
1 - 1
: w, -t Z, : ............ yellOW
1 1
E 37’ o .y/ E green
: : red
.
'y Y

Figure 4: A coloring of the 3-cube inducing a Hamilton cycle in the prism.

In some of the subsequent sections, we shall be interested in colorings whose
associated 2-factors, as well as their complements, are Hamilton cycles — in other
words, colorings which induce a hamiltonian decomposition of GOKj5.

6 Matchings

We shall now describe how a 2-factor in the prism over a graph G induces a
matching on a set of vertices of any subgraph H of G. The idea is simple, and if
the description seems to be a bit technical, it is because in Section 10, we shall
need a fairly rigorous treatment of this correspondence.

Let G be a cubic graph and F" a 2-factor in the prism over G. For any subgraph
H of G, let F|H be the restriction of F' to V(HOK,) minus all edges za*, where
x is a vertex of H whose degree (in H) is even.

The set of terminals of H (with respect to F), Tr(H) C V(HOK,), consists
of all vertices of HOK, whose degree in F'|H is 1. Note that some terminals may
correspond to vertices of H with degree larger than 1 (that is, 2), and, on the
other hand, there need not be any corresponding terminal for a vertex of degree
lin H.



Let G — H be the graph arising from G by removing all vertices of degree 3
in H, along with all edges of H. Note that if H has no isolated vertices, then
G — (G —H)=H, and in any case, E(G — H) = E(G) — E(H).

Observe also that the edge sets of F|H and F|(G — H) form a partition of
E(F). It follows that the set of terminals of G — H coincides with Tp(H).

There is a naturally defined perfect matching My (H) in the complete graph
on the vertex set Tx(H): since all degrees in F'|H are at most 2, F/|H is a disjoint
union of paths and cycles (and isolated vertices), and the endvertices of the paths
are precisely the terminals. We shall match two terminals by an edge in Mp(H)
if they are distinct endvertices of the same path. (Matchings like Mp(H) will
be simply referred to as matchings on 7w (H ), without explicitly mentioning the
complete graph they are contained in. Such matchings are never assumed to exist
in G or H.)

Applying the same procedure to the 2-factor F, we obtain another matching
on Tp(H), namely Mz(H). The following simple observation will often be useful.

Proposition 6.1 For any subgraph H of G, the factor F' is a Hamilton cycle if
and only if

(a) Mp(H)U Mp(G — H) is the edge set of a cycle on Ty (H), and
(b) neither F|H nor F|(G — H) contain cycles. O

Two perfect matchings M, M, on the same vertex set will be called compatible
if, as in (a) above, their union is a single cycle.

7 Local modifications

In this section, we develop tools allowing us to alter a given coloring after a
local modification of the underlying graph while preserving the existence of a
hamiltonian decomposition of the prism.

Let G, G' be cubic graphs with admissible colorings inducing 2-factors F' and
F" in the prisms over G and G’, respectively. Let H C G and H' C G' be
subgraphs such that G — H equals G' — H' as a colored graph. This is the setting
for all the assertions of the present section.

Proposition 7.1 The restrictions F'|(G' — H') and F|(G — H) are equal. In
particular, Tp (G' — H') = Tp(G — H) and Mpw(G' — H') = Mp(G — H).

Proof. By definition, an edge e belongs to E(F|(G—H)) if and only if e € E(F),
e€ E(G—H) and e # xza* for all x € V(G — H) of even degree in G — H. But
since G — H = G' — H', the edge sets and vertex degrees in these graphs are the
same. The fact that the colorings of these graphs are identical implies that an
edge of G — H is in E(F) iff it is in E(F"). The rest of the proposition is trivial.
O



Proposition 7.2 Assume that F' is a Hamilton cycle. If F'|H' contains no cycles
and Mg (H') is compatible with Mp(G — H), then F' is a Hamilton cycle.

Proof. If F' is a Hamilton cycle, then Propositions 6.1 and 7.1 imply that
F'|(G'—H') contains no cycles and that My (H') is compatible with Mp (G'—H'").
Since we are assuming that F'|H’ contains no cycles, it follows from Proposi-
tion 6.1 that /" is a Hamilton cycle. O

In most situations we shall deal with, Mz (H') happens to be equal to My (H),
so by Proposition 6.1, it is automatically compatible with My (G — H).

Corollary 7.3 If F is a Hamilton cycle, F'|H' contains no cycles, and Mp(H) =
Mg (H'), then F' is a Hamilton cycle. O

Turning to hamiltonian decompositions, we have to ensure that F is also a
Hamilton cycle. For this, Proposition 7.2 can be used twice:

Corollary 7.4 Assume that F' and F are both Hamilton cycles. If
(a) F'|H' and F'|H' contain no cycles, and
(b) Mp(H) = Mp(H') and Mp(H) = Mz(H'),

then F' U F' is a hamiltonian decomposition of G'OK,. O

8 Kleetope duals

From the definition of kleetopes in the introduction, it is easy to see that their
duals are precisely the graphs which can be obtained from the complete graph K,
by repeated triangle inflations as shown in Fig. 5. We now show that the prisms
over all kleetope duals possess a hamiltonian decomposition (Theorem 1.2).

Figure 5: The triangle inflation at a vertex v.

Let G be a cubic graph with an edge-coloring that induces a hamiltonian
decomposition of the prism over G (the Hamilton cycle corresponding to the
coloring will be denoted by F), and let G' arise from G by a triangle inflation at
v. Assume that v is a BYG vertex.
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Denoting the new added triangle by 7', we identify E(G') — E(T") with E(G)
in the obvious way, and use the color of any edge of GG to color the corresponding
edge of G'. It remains to color T

Here and in the following sections, if X C V, we write Ag(X) for the subgraph
of G formed by the edges with at least one end in X, together with all their
endvertices. For v € V(G), Ag(v) stands for Ag({v}).

Let H = Ag(v) and H' = Ae(V(T')), and use the coloring of Fig. 7 to color
H'. The coloring corresponds to a 2-factor F’ in G'OK,. Although My (H) and
Mpg(H) cannot be explicitly determined from the type of v alone, it is not hard
to check that Corollary 7.4 applies, ensuring that the new coloring induces a
hamiltonian decomposition of G'OK,.

Figure 6: A coloring of Kj.

The case of v being a BYR vertex is similar. In the remaining two cases,
however, it is not clear how to color H'. Nevertheless, this case will never occur:
all vertices in the coloring for K, in Fig. 6 are BYG or BYR, and this is preserved
by each triangle inflation. This proves Theorem 1.2.

l

7 .
, .
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"' ~ /
.t ~
. ~
. ~ ~
. ~

Figure 7: A coloring for the triangle inflation.

9 Bipartite planar graphs

The objective of this and the following sections is to show that the prism over
any 3-connected cubic planar bipartite graph has a hamiltonian decomposition
(Theorem 1.3).

Batagelj [2] proved that all 3-connected cubic bipartite planar graphs can be
obtained from the cube by a succession of the two operations depicted in Fig. 8:
the diamond inflation of any vertex, and the A, subdivision. The latter operation,
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applied to a pair of non-adjacent edges uv,wz, adds 2 new vertices to each of
uv,wz, and also adds 2 independent edges on these 4 vertices. (The operations
can be chosen such that all the intermediate graphs are planar bipartite, but this
is not important for our needs.)

Aerpn o n

Figure 8: Transformations generating the 3-connected bipartite planar cubic
graphs: (a) diamond inflation, (b) A; subdivision.

A hamiltonian decomposition for the prism over the 3-cube is given by the col-
oring in Fig 4. In the following, we shall prove that hamiltonian-decomposeability
of the prism is preserved by diamond inflations and A; subdivisions.

We consider the diamond inflation first. Let a graph G have a hamiltonian-
decomposeable prism, and let G arise from G by the diamond inflation of a vertex
v e V(G).

Let H = Ag(v) and H' = Ag/(X), where X is the set of the 7 new added
vertices in G'. There are essentially two cases to distinguish: v is either a BYG
vertex or a GGR vertex (the other possibilities are covered by symmetry). In
both of these cases, it is easy to extend the existing coloring to the diamond.
Explicitly, the colorings in Fig. 9 show how to color H', keeping the old coloring
on the rest of G’, so that the hypotheses of Corollary 7.4 are satisfied. The check
is straightforward.

B ——

N RN

Figure 9: Colorings for the diamond inflation.

Most cases of the A; subdivision are no harder. Assume we subdivide edges
uv and wz in G to obtain G'. (No restrictions are placed on uv and wz except
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that they are independent.) Let H be the subgraph of G formed by wv, wz and
their endvertices. Let H' = A (V (1)), where 7' is the 4-cycle on the new added
vertices.

There are, up to symmetry, five possible combinations of colors of uv and wz.
Four of them are covered by the colorings of H' in Fig. 10. (The coloring of the
rest of G' is as in G.) Corollary 7.4 implies that these colorings correspond to
hamiltonian decompositions. Note that in these cases, each outward edge of H'
is given the same color as the edge of G which gave rise to it by subdivision.

In the fifth (and last) case, both uwv and wz are colored green. We cannot
hope to find a suitable coloring of H' with all the outward edges colored green,
for the green edges would separate the 4-cycle in H' from the rest of G', and the
complement of the associated 2-factor would necessarily be disconnected. Thus
we cannot get a hamiltonian decomposition in this manner. We discuss the A;
subdivision of two green edges in the following section.

B e 1

Figure 10: Colorings for the easy cases of A; subdivision.

10 The green-green case

In this section, we show that the A; subdivision preserves the existence of a
hamiltonian decomposition of the prism in the last remaining case: when both
edges being subdivided are green (or both red) in the coloring induced by the
original hamiltonian decomposition.

Let G be a cubic graph and let G’ be the result of the A; subdivision performed
on edges uwv,wz € E(G). Assume that GOK, has a Hamilton cycle F' whose
complement F' is also hamiltonian, and consider the corresponding coloring of
G. It is sufficient to discuss the case where uv and wz are colored green: if they
are both red, we may interchange the red and green colors. All the other color
combinations have been dealt with in the preceding section.

Set X = {u,v,w,z} C V(G) and let T" = Tp(H) be the set of terminals,
as defined in Section 6. The assumption that uv and wz are green means that
{uv, v v, wz,w*z* } C E(F). We let X' = {d,v/,w', 2"} C V(G') be the four
vertices that were added to G in the construction of G', where for each z € X,
x' is adjacent to x in G’. Let H' be the subgraph of G’ on X U X' formed by all
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edges with at least one endvertex in X’. We shall denote the vertex set of HOK,
by XT.

As we shall see, the only really interesting case is when no vertex from X is
RRG (i.e. adjacent to two red edges in ). Let us treat the opposite case first.

Case I: some vertices from X are RRG. Note that u and v cannot be RRG
at the same time. Otherwise, the edge uv would be separated from the rest of
the graph by a cut consisting of red edges, contradicting the fact that F'is a
Hamilton cycle. The same applies to w and z.

Thus, there are (up to symmetry) only 3 possible placements of RRG vertices:
(a) z is the only RRG vertex, (b) v and z are RRG, or (c¢) v and z are RRG.

Assume that z is the only RRG vertex. It is easy to see that in this case,
Tp(H) equals {u, v, w,u* v*,w*}, and Mp(H), Mz(H) are as given in Fig. 11.
We color H' as in Fig. 12a, and use the coloring of G in the rest of G’. This
gives an admissible coloring; let F' be the corresponding 2-factor. Looking at Fig.
12b, one can check directly that F'|H' and F'|H’ contain no cycles, Mz (H') =
Mp(H), and M7 (H') = M%(H). By Proposition 7.4, the coloring of G' induces
a hamiltonian decomposition.

U v ” v
u* v* u* v*
w w

el Me(H) el M)

w™ z*
Figure 12: (a) a coloring of H', (b) the restriction F'|H" if z is the only RRG
vertex.

Next, assume that there are two RRG vertices v and z. The set of terminals
of H is then {u,w,u*, w*}. Mp(H) matches u to u* and w to w*, and so does
Mpu(H). As before, one can check that the coloring of H' given in Fig. 12a
extends the hamiltonian decomposition.
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The same coloring works in the third subcase also, namely when « and z are
the RRG vertices.

Case II: no verter from X is RRG. With this assumption, one can see that
the set of terminals of H is X, and Mp(H), Mp(H) are as in Fig. 13. The
difficulty with this case is that it is the only one where Corollary 7.4 cannot be
applied, as there is no coloring of H' which would have the associated matchings
on X identical to My (H) and Mz(H). Instead, we prove that for at least one
out of a certain set of colorings of H', My (H') is compatible with My (G — H),
which makes Proposition 7.2 applicable.

Mp(H) Mp(H)
u v u v
U e—————e " u* v*
We————e 2 w z
w* z* w* z*

Figure 13: The matchings Mp(H) and Mz(H) in Case II.

Identify X+ with the set of vertices of the combinatorial 3-cube Z3 (viewed as
a vector space over GF'(2)) as follows. Make u, v, w and z correspond to vectors
(001), (011),(101) and (111), respectively; for each z € X, make x* correspond
to (001) plus the vector for z. See Fig. 14 in which a vector is represented by a
point with the corresponding coordinates in the 3-space. Note that the cube is
not necessarily a subgraph of the prism of G or G'.

Y v (001)

. (010)

w F4

Figure 14: The 3-cube and the coordinate system used to draw it. The point
representing «* is at the origin (000).

Let 7 = (010). Since the matching O = Mp(G — H) is compatible with
Mp(H), we get that

if {z,y}isin O, then {z + 7,y + 7} is not, (3)
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and in fact this characterizes the perfect matchings compatible with Mp(H). We
call any matching satisfying (3) asymmetric.

Unless otherwise specified, all matchings considered in this section are perfect
matchings on X .

For x € X, set |« | to be the scalar product -z modulo 2. This corresponds
to a linear form on Z3. By an edge on Z3, we simply mean any pair of distinct
vertices. The direction of an edge xy is the vector y —x = x+y. We call the edge
odd if |z +vy| =1 and even otherwise. A 7T-edge is an edge of type {z,z + 7 };
that is, an edge parallel to the y axis in Fig. 14. Note that an asymmetric
matching cannot contain any 7-edge.

We call a (perfect) matching on X special if it consists of odd edges with
pairwise distinct directions. It is easy to see that any pair of odd edges on X
with distinct directions can be completed to a unique special matching. It follows
that there are exactly 8 special matchings.

Observe that if we extend the coloring of G to G’ by coloring H' as in Fig. 12a,
then My (H') is special and F'|H' contains no cycles. (See Fig. 15.) Both of
these assertions remain true if we interchange (in H') the colors of the red edge
and any green edge, and/or interchange all the blue and yellow colors. There are
8 ways to make these changes, and in fact they yield all the special matchings.

w” <

Figure 15: F'|H' and My (H') (shown in the cube) for the diagram of Fig. 12a
in Case IL.

We do not have to worry about Mz (H'): for all of the above colorings, it
equals Mz(H) as shown in Fig. 13, and obviously induces no cycles in F'|H’.
Roughly speaking, this is because these colorings of H' only include 1 red edge;
I is just like F, except that it enters H'0K, through this edge, traverses it and
exits through the red edge again.

In view of Proposition 7.2, our only concern is to find, for a given asymmetric
matching O, a compatible special matching. To get one, it is sufficient to find
a partial matching S consisting of 3 odd edges with distinct directions, in such
a way that there is an induced path in (X, S U O), consisting of 3 S-edges
alternating with 2 O-edges. (Here, an S-edge is simply an edge from S.) Indeed,
since the path is induced, its endvertices are not connected by an O-edge, so the
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remaining 2 O-edges extend the path to an alternating path of length 7, and it
is easy to see that we may add the edge connecting its endvertices to S. This
observation will be useful in the proof of the following proposition.

Proposition 10.1 For any asymmetric matching O on X, there is a compatible
special matching.

Proof. Any 7-edge is adjacent to exactly 2 edges from O. Assume first that
there is a 7-edge, say { a,a + 7}, such that both of the adjacent edges from O
are of the same parity.

Since O does not include any 7-edge, we may put {a,a+ 7} in S. Let
{a,z},{a+7,y} be the adjacent O-edges. We may assume that |y| = |a],
using a + 7 instead of a if necessary.

Clearly =,y ¢ {a,a+ 7}, x #y,and by (3), v #y+ 7.

Set

alz) = a+zr+y+r,
aly) = a+z+y.

Define the two remaining edges of S by joining = to a(z) and y to a(y). First,
it is easy to check algebraically that a(x), «(y) do not fall in { z,y,a,a + 7 }. For
instance, if a(z) = y, then = a + 7, which we know to be false. The other
inequalities are no harder.

Second, a(z) and a(y) form a 7-edge, which cannot appear in O. It follows
that (a(x),z,a,a + 7,y,a(y)) is an induced alternating path in S U O.

Finally, note that {z,«(z)} and {y,a(y)} are odd edges whose directions
are distinct and both different from 7. Thus we are free to add them to S. This
finishes the first case.

For the second case, assume that all 7-edges are adjacent to one odd and one
even edge of O. Take the 7-edge { (000), 7 }; let a be the end-vertex adjacent to
an even O-edge ax and let y be the end-point of the (odd) edge adjacent to a+ 7.
Clearly |z |=|y| =]al.

Set

alr) = a+zx+y+r,
aly) = o+

As before, it is straightforward to check that the sequence («(z),x,a,a +
7,9, a(y)) defines an alternating path, the edges {z,a(x)} and {y,a(y)} are
odd, and their directions are distinct and different from 7.

We need to show, however, that O does not join a(x) to a(y). Since

|a(z) +a(y) | =]a+y|=0,
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{a(z),a(y)} is an even edge. If it were contained in O, then the 7-edge
{z,x+7} = {x,a(y)} would be adjacent to two even O-edges, contrary to
our assumption. Hence we may complete S as necessary. O

Using Proposition 7.2, we can easily finish the argument for the green-green
case, thus establishing Theorem 1.3.

References

[1] B. Alspach and M. Rosenfeld, On Hamilton decompositions of prisms over
simple 3-polytopes, Graphs Comb. 2 (1986), 1-8.

[2] V. Batagelj, Inductive definition of two restricted classes of triangulations.
Discr. Math. 52 (1984), 113-121.

(3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan,
London, 1976.

[4] T. Fowler, Unique coloring of planar graphs, Ph.D. Thesis, Georgia Institute
of Technology, Atlanta, 1998.

[5] W. McCuaig, personal communication.

[6] P. Paulraja, A characterization of Hamiltonian prisms. J. Graph Theory 17
(1993), 161-171.

[7] M. Rosenfeld and D. Barnette, Hamiltonian circuits in certain prisms, Discr.
Math. 5 (1973), 389-394.

18



