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Abstrat

A onjeture of Alspah and Rosenfeld states that the prism G2K

2

over any 3-onneted ubi graphG has a deomposition into two Hamilton

yles. Using a method based on olored diagrams, we show this onjeture

to hold for 3-onneted planar bipartite ubi graphs and for one other lass

of planar ubi graphs known as `kleetope duals'. We also give a new proof

of the fat that G2K

2

is hamiltonian for any 3-onneted ubi graph G.

1 Introdution

The prism over a graph G, denoted by G2K

2

, is obtained by taking two opies

of G and joining the two lones of eah vertex by an edge. The motivation for

studying Hamilton yles in prisms over ubi 3-onneted graphs goes bak to

the (still open) onjeture of Barnette that all simple 4-polytopes are hamiltonian.

Initally, Rosenfeld and Barnette [7℄ proved that the prism over simple 3-polytopes

(whih are the 1-skeleton of some simple 4-polytopes) are hamiltonian if the 4-

olor onjeture is true (at that time it was still a onjeture). Later, this result

was extended by various authors using tehniques that avoided use of the 4-olor

theorem. Finally, in 1993 Paulraja [6℄ proved the most general possible result:
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Theorem 1.1 The prism over any 3-onneted ubi graph is hamiltonian.

A simple proof of this result, whih lends itself to estimating the omplexity

of onstruting the Hamilton yle in the prism, is inluded in Setion 3 of the

present paper.

Alspah and Rosenfeld [1℄ onjetured that the prism over any 3-onneted

ubi graph atually admits a hamiltonian deomposition, and they proved the

onjeture for some in�nite families of graphs. We shall show that the onjeture

holds for two lasses of graphs.

A kleetope is any planar triangulation whih an be obtained from the om-

plete graph K

4

by repeatedly adding a vertex and joining it to the 3 verties of

a fae. We prove the following theorem in Setion 8.

Theorem 1.2 The prism over the dual of any kleetope admits a hamiltonian

deomposition.

We remark that by [4℄, kleetopes are preisely the planar graphs with a unique

4-oloring of the verties.

Using a haraterization of 3-onneted bipartite ubi planar graphs due to

Batagelj [2℄, we obtain the following result.

Theorem 1.3 The prism over any 3-onneted bipartite planar ubi graph ad-

mits a hamiltonian deomposition.

In Setion 4, we shall see that the onnetivity requirement in Alspah and

Rosenfeld's onjeture annot be relaxed sine there are 2-onneted planar ubi

graphs whose prisms have no hamiltonian deomposition. In fat, one an make

the examples bipartite, thereby showing that 3-onnetivity is also essential in

Theorem 1.3.

2 Notation

Let G be a graph. We generally write V (G) for the set of verties and E(G) for

the set of edges of G. Only simple graphs are onsidered. We refer the reader to

[3℄ for any graph-theoreti onepts we use without de�nition.

The prism over G was de�ned in the Introdution; note that it an be viewed

as the Cartesian (or box) produt G2K

2

of G with K

2

as well. We identify G

with one of its opies in G2K

2

, and write v

�

for the lone of a vertex v 2 V (G)

in the other opy of G.

If w = v

�

, we set w

�

= v; in other words, (v

�

)

�

= v.

This notation is extended, in the obvious way, to edges, sets of verties,

and sets of edges in G2K

2

. For instane, if F � E(G2K

2

), then F

�

=

f u

�

v

�

j uv 2 F g.
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3 The hamiltoniity of prisms

We shall now present a simpli�ed proof of Theorem 1.1. The original proof

appears in [6℄.

We begin with the following lemma.

Lemma 3.1 A 3-onneted ubi graph ontains a 2-onneted bipartite spanning

subgraph.

Proof. Let H be a maximal 2-onneted, bipartite subgraph of G. If H does

not span G, there is a vertex g 2 V (G)�V (H). Assume further that the verties

of H are properly olored in blak and white. Sine G is 3-onneted, it ontains

3 vertex-disjoint paths P

1

; P

2

; P

3

, eah onneting g to a vertex in H. Let h

i

be the �rst verties of H on eah of the paths. Without loss of generality, we

may assume that h

1

and h

2

are olored white. Then the lengths of P

1

and P

2

have distint parities, for otherwise P

1

, P

2

an be added to H, ontraditing its

maximality. If h

3

is also olored white, then among the 3 paths there are two

with the same parity, and we an add these two paths to H, obtaining a larger

spanning 2-onneted bipartite subgraph. Hene h

3

is olored blak. Sine the

lengths of P

1

and P

2

have distint parities, one of these lengths will have distint

parity from the length of the path P

3

, we an add these two paths to H and again

inrease the size of H. Hene if H is maximal it must be a spanning subgraph.

2

A atus is a onneted graph C suh that any two yles in C are vertex-

disjoint, every vertex of degree at least 3 lies on a yle, and C has at least two

verties. The yles of C are alled its leaves. A atus is even if all of its leaves

are yles of even length. See Fig. 1 for an example of an even atus.

Figure 1: An even atus.

Lemma 3.2 Any 2-onneted graph H of maximum degree �(H) � 3 has a

spanning subgraph C suh that C is a atus (not neessarily even) and its leaves

ontain all verties v with deg

H

(v) = 3.
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Proof. The proof proeeds by indution on the number of verties of H. The

lemma is trivially true for graphs H of order at most 4.

If H is ubi, then sine it is 2-onneted, it ontains a 1-fator F by the

Petersen theorem. The omplement

�

F of F is a 2-fator. If we ontrat, in H,

eah omponent of

�

F to a single vertex, we obtain a onneted graph H

0

. Adding

the edge set of any spanning tree of H

0

to

�

F (with the obvious identi�ations),

we get a spanning atus of H.

Thus, we may assume that H ontains verties of degree 2. Let h be suh a

vertex and let a; b be its two neighbors.

If ab 2 E(H), then 2-onnetedness (and the fat that H has more than 4

verties) implies that a; b eah have one additional neighbor a

0

; b

0

(respetively),

where a

0

6= b

0

. We now shrink the triangle ahb to a single vertex  of degree 2 as

in Fig. 2.

aa

0

b

b

0

b

0

a

0



h

Figure 2: The ontration of a triangle.

The new graph learly remains 2-onneted. By the indution hypothesis, it

ontains a spanning atus C. If the path a

0

b

0

is part of a leaf, we modify it to

the path a

0

ahbb

0

(and get a spanning atus in G). If a

0

b

0

is not part of a leaf,

then without loss of generality we may assume that a

0

 is ontained in E(C). We

an now modify C by removing , adding the triangle ahb and the edge aa

0

; if

b

0

 2 E(C), we also add bb

0

. In either ase, the resulting atus has the required

properties (note that the triangle is a leaf).

If ab 62 E(H), we remove the vertex h and add the edge ab. Again, by the

indution hypothesis, the resulting graph ontains a spanning atus C. We note

that the degrees of a or b have not hanged in this graph. If ab 2 E(C), we just

replae it by the path ahb. Assume ab =2 E(C). If one of the verties, say a, has

degree 3 (in H), then by the indution hypothesis it is ontained in a leaf and we

may extend C by adding the edge ah. If both a and b have degree 2, then sine

ab =2 E(C), a has degree 1 in C. Again, we an add the edge ah to C. In either

ase we obtain the desired spanning atus. 2

The relevane of even ati to Hamilton yles is shown by the following simple

lemma.

Lemma 3.3 The prism over any even atus C with �(C) � 3 is hamiltonian.
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Proof. We prove, by indution on the number of verties of C, that C2K

2

has

a Hamilton yle F suh that:

F ontains the edge xx

�

for eah degree 2 vertex x belonging to a leaf of C.

(1)

The assertion is trivial if jV (C)j = 2. We may also assume that C is not a

yle. Let T be the tree obtained by ontrating eah yle Q of C to a vertex

v

Q

and disarding loops. Sine T ontains at least two verties, we may hoose a

vertex t of degree 1 in T .

Assume �rst that t 2 V (C), i.e. t is of degree one in C and does not lie on a

leaf. Let u be the unique neighbor of t in C. If u belongs to a leaf of the atus

C � t, then by indution (using (1) and the bound on the maximum degree),

(C � t)2K

2

has a Hamilton yle ontaining the edge uu

�

. But if u does not

belong to a leaf of C � t, then its degree in C � t is 1, and so any Hamilton yle

of (C � t)2K

2

must ontain uu

�

. In either ase, we an replae the edge uu

�

by

the path utt

�

u

�

, obtaining a Hamilton yle in C2K

2

, moreover one for whih

(1) holds.

It remains to onsider the ase where t = v

Q

orresponds to a yle Q of C.

The fat that t has degree one in T implies that only one vertex w 2 V (Q) has

degree 3 in C. Let C

0

be obtained by removing all the verties of Q, exept for

w, from C. By indution, C

0

2K

2

has a Hamilton yle F

0

satisfying (1), whih

must neessarily ontain ww

�

as the degree of w in C

0

is one. The yle F

0

is

easily modi�ed to a Hamilton yle of C that uses all the edges between Q and

Q

�

exept for ww

�

, and agrees with F

0

outside Q. Thus, (1) is preserved. The

proof is omplete. 2

We are now in a position to prove the main result of this setion.

Proof of Theorem 1.1. We �rst show that G ontains a spanning even atus.

By Lemma 3.1, G ontains a spanning 2-onneted bipartite subgraph H with

�(H) � 3. By Lemma 3.2, H ontains a spanning atus C. Sine H is bipartite,

C is even. Finally, Lemma 3.3 implies that C2K

2

(and hene G2K

2

) ontains a

Hamilton yle. 2

Remark 3.4 It is easy to see that the omplexity of onstruting a Hamilton

yle in H2K

2

is dominated by the omplexity of �nding a 1-fator in the ubi

graph H.

4 Non-3-onneted graphs

As mentioned in the Introdution, prisms over 2-onneted ubi planar graphs

do not neessarily possess a hamiltonian deomposition. The following lass

of examples was found by W. MCuaig [5℄. Join two verties u and v by three
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internally disjoint paths of at least 3 edges eah, and replae every degree 2 vertex

by a `diamond' (K

4

minus an edge) so as to obtain a ubi graph G (shown in

Fig. 3). It is easy to see that G is 2-onneted and planar, and we shall show

that G2K

2

has no hamiltonian deomposition.

Suppose that G2K

2

an be deomposed into Hamilton yles C

1

; C

2

. One of

the yles (say, C

1

) does not ontain the edge uu

�

. Sine both u and u

�

are of

degree two in C

1

, there is an edge of G adjaent to u (say, e

1

as shown in Fig. 3)

suh that both e

1

and e

1

�

are ontained in C

1

.

e

3

e

1

e

2

u

v

Figure 3: Cubi, 2-onneted planar graphs whose prisms do not admit hamilto-

nian deompositions.

Consider now the edges e

2

and e

3

as in Fig. 3. Sine f e

1

; e

1

�

; e

2

; e

2

�

g is an

edge ut in G2K

2

, it must be interseted by both C

1

and C

2

. It follows that

both e

2

and e

2

�

are ontained in C

2

. By the same token, e

3

and e

3

�

are ontained

in C

2

. But then C

2

ontains all of the edge ut f e

2

; e

2

�

; e

3

; e

3

�

g, whih means

that C

1

annot be a Hamilton yle, a ontradition.

Observe also that it is easy to modify this example to obtain a bipartite ubi

planar 2-onneted graph (simply replaing eah diamond by the 3-ube minus an

edge). This shows that the assumption of 3-onnetivity in Theorem 1.3 annot

be removed.

5 Colorings and 2-fators

Let G be a ubi graph and let F be a 2-fator of the prism G2K

2

. The fator

F indues a oloring of the edges of G in 4 olors by the following rule.

We olor an edge e 2 E(G) (with respet to F ) blue if e 2 E(F ) and e

�

62

E(F ); yellow if e 62 E(F ) and e

�

2 E(F ); and green if e; e

�

2 E(F ). The

remaining edges ofG will be olored red. (The green olor was hosen to represent

`both blue and yellow'. Admittedly, using blak in plae of red might be more in

the spirit of this analogy.)

Note that this oloring need not be a proper edge-oloring of G. However,

only 4 ombinations of olors an appear at any given vertex. We abbreviate

6



olors by the initial letter (e.g. blue is B) and de�ne the type of a vertex to be

the unordered olletion of olors of the adjaent edges. Then it is easy to see

that

any vertex of G is of type BYG, BYR, GGR or RRG. (2)

Indeed, onsider a vertex v 2 V (G) and distinguish two ases. Firstly, if

vv

�

2 E(F ), denote the edge in E(G)\E(F ) by e. In ase e

�

2 E(F ), the vertex

v is RRG, otherwise v is BYR. Seondly, if vv

�

=2 E(F ), denote the two edges in

E(G) \ E(F ) by e

1

and e

2

. The vertex v is GGR or BYG aording to whether

both of e

1

�

and e

2

�

are ontained in E(F ) or they are not.

Note the e�et of passing to the omplement F of F : the oloring indued by

F has blue interhanged with yellow, and green with red.

The above orrespondene an be reversed. That is, any edge-oloring of G

with property (2) determines a 2-fator in the prism, whih an be obtained as

follows. If x; y 2 V (G), then the edges of F will inlude:

� xy if it is olored blue or green,

� x

�

y

�

if xy is olored yellow or green,

� xx

�

if x is of type BYR or RRG.

It is straightforward to hek, for the 4 possible types of x, that x and x

�

are

of degree two in F . Thus F is a 2-fator. Moreover, we have obtained a bijetion

between 2-fators of G2K

2

and edge-olorings of G satisfying (2). We shall all

any suh oloring admissible.

A more dynami view of the above orrespondene may be helpful. Starting

with an admissible oloring, we an trae the assoiated 2-fator as follows. Imag-

ine a robot with two possible states (labeled blue and yellow) walking through

G. The green edges of G are taken to be olored both yellow and blue, while

the red edges have none of these olors. To eah of the two states, we assoiate

one of the two opies of G in G2K

2

and refer to them as the blue opy and the

yellow opy. If an edge is used during the walk in a partiular state, we inlude

its lone from the orresponding opy in the 2-fator.

The walk begins by hoosing a blue edge arbitrarily and traversing it to one

of its endverties in the blue state. At eah vertex, the robot determines the edge

to take next, after a possible hange of state. Let us say that it has arrived to a

vertex v along an edge e in the blue state. If there is a blue edge e

0

6= e adjaent

to v, then the walk will ontinue on e

0

. If not, the state will hange to yellow

(whih orresponds to inluding the vertial edge vv

�

in the 2-fator) and a yellow

edge e

0

6= e will be hosen. If there is none, then it must be that e is a green edge

whih is adjaent to 2 red edges at v, and the robot will return along e. One

it visits a vertex in the same state for the seond time, a new starting vertex is

hosen among those whih have not been visited in both states, and the proess

7



is repeated (possibly starting in the yellow state). If there are no suh verties,

we have a olletion of losed walks whih represents the assoiated 2-fator.

For an example, onsider the oloring of the 3-ube given in Fig. 4. The �gure

also shows the onvention used to represent olored edges. Starting at x in the

blue state, we ontinue in the same state to w, z and y, where we are fored to

swith to yellow and go on to y

0

, where we swith bak to blue, et. The whole

walk is xwzy=y

0

=x

0

w

0

z

0

=zww

0

x

0

x=, where the slashes indiate a hange of state.

In fat, one an see that eah vertex was visited preisely one in eah state.

Thus the 2-fator in the prism orresponding to this walk is onneted, hene a

Hamilton yle in the prism.

w

x y

z

w

0

x

0

y

0

z

0

blue

yellow

green

red

Figure 4: A oloring of the 3-ube induing a Hamilton yle in the prism.

In some of the subsequent setions, we shall be interested in olorings whose

assoiated 2-fators, as well as their omplements, are Hamilton yles | in other

words, olorings whih indue a hamiltonian deomposition of G2K

2

.

6 Mathings

We shall now desribe how a 2-fator in the prism over a graph G indues a

mathing on a set of verties of any subgraph H of G. The idea is simple, and if

the desription seems to be a bit tehnial, it is beause in Setion 10, we shall

need a fairly rigorous treatment of this orrespondene.

Let G be a ubi graph and F a 2-fator in the prism over G. For any subgraph

H of G, let F jH be the restrition of F to V (H2K

2

) minus all edges xx

�

, where

x is a vertex of H whose degree (in H) is even.

The set of terminals of H (with respet to F ), T

F

(H) � V (H2K

2

), onsists

of all verties of H2K

2

whose degree in F jH is 1. Note that some terminals may

orrespond to verties of H with degree larger than 1 (that is, 2), and, on the

other hand, there need not be any orresponding terminal for a vertex of degree

1 in H.

8



Let G� H be the graph arising from G by removing all verties of degree 3

in H, along with all edges of H. Note that if H has no isolated verties, then

G� (G�H) = H, and in any ase, E(G�H) = E(G)� E(H).

Observe also that the edge sets of F jH and F j(G � H) form a partition of

E(F ). It follows that the set of terminals of G�H oinides with T

F

(H).

There is a naturally de�ned perfet mathing M

F

(H) in the omplete graph

on the vertex set T

F

(H): sine all degrees in F jH are at most 2, F jH is a disjoint

union of paths and yles (and isolated verties), and the endverties of the paths

are preisely the terminals. We shall math two terminals by an edge in M

F

(H)

if they are distint endverties of the same path. (Mathings like M

F

(H) will

be simply referred to as mathings on T

F

(H), without expliitly mentioning the

omplete graph they are ontained in. Suh mathings are never assumed to exist

in G or H.)

Applying the same proedure to the 2-fator F , we obtain another mathing

on T

F

(H), namelyM

F

(H). The following simple observation will often be useful.

Proposition 6.1 For any subgraph H of G, the fator F is a Hamilton yle if

and only if

(a) M

F

(H) [M

F

(G�H) is the edge set of a yle on T

F

(H), and

(b) neither F jH nor F j(G�H) ontain yles. 2

Two perfet mathingsM

1

,M

2

on the same vertex set will be alled ompatible

if, as in (a) above, their union is a single yle.

7 Loal modi�ations

In this setion, we develop tools allowing us to alter a given oloring after a

loal modi�ation of the underlying graph while preserving the existene of a

hamiltonian deomposition of the prism.

Let G, G

0

be ubi graphs with admissible olorings induing 2-fators F and

F

0

in the prisms over G and G

0

, respetively. Let H � G and H

0

� G

0

be

subgraphs suh that G�H equals G

0

�H

0

as a olored graph. This is the setting

for all the assertions of the present setion.

Proposition 7.1 The restritions F

0

j(G

0

� H

0

) and F j(G � H) are equal. In

partiular, T

F

0

(G

0

�H

0

) = T

F

(G�H) and M

F

0

(G

0

�H

0

) =M

F

(G�H).

Proof. By de�nition, an edge e belongs to E(F j(G�H)) if and only if e 2 E(F ),

e 2 E(G�H) and e 6= xx

�

for all x 2 V (G�H) of even degree in G�H. But

sine G�H = G

0

�H

0

, the edge sets and vertex degrees in these graphs are the

same. The fat that the olorings of these graphs are idential implies that an

edge of G�H is in E(F ) i� it is in E(F

0

). The rest of the proposition is trivial.

2

9



Proposition 7.2 Assume that F is a Hamilton yle. If F

0

jH

0

ontains no yles

and M

F

0

(H

0

) is ompatible with M

F

(G�H), then F

0

is a Hamilton yle.

Proof. If F is a Hamilton yle, then Propositions 6.1 and 7.1 imply that

F

0

j(G

0

�H

0

) ontains no yles and thatM

F

0

(H

0

) is ompatible withM

F

0

(G

0

�H

0

).

Sine we are assuming that F

0

jH

0

ontains no yles, it follows from Proposi-

tion 6.1 that F

0

is a Hamilton yle. 2

In most situations we shall deal with,M

F

0

(H

0

) happens to be equal toM

F

(H),

so by Proposition 6.1, it is automatially ompatible with M

F

(G�H).

Corollary 7.3 If F is a Hamilton yle, F

0

jH

0

ontains no yles, andM

F

(H) =

M

F

0

(H

0

), then F

0

is a Hamilton yle. 2

Turning to hamiltonian deompositions, we have to ensure that F is also a

Hamilton yle. For this, Proposition 7.2 an be used twie:

Corollary 7.4 Assume that F and F are both Hamilton yles. If

(a) F

0

jH

0

and F

0

jH

0

ontain no yles, and

(b) M

F

(H) =M

F

0

(H

0

) and M

F

(H) =M

F

0

(H

0

),

then F

0

[ F

0

is a hamiltonian deomposition of G

0

2K

2

. 2

8 Kleetope duals

From the de�nition of kleetopes in the introdution, it is easy to see that their

duals are preisely the graphs whih an be obtained from the omplete graph K

4

by repeated triangle inations as shown in Fig. 5. We now show that the prisms

over all kleetope duals possess a hamiltonian deomposition (Theorem 1.2).

v

Figure 5: The triangle ination at a vertex v.

Let G be a ubi graph with an edge-oloring that indues a hamiltonian

deomposition of the prism over G (the Hamilton yle orresponding to the

oloring will be denoted by F ), and let G

0

arise from G by a triangle ination at

v. Assume that v is a BYG vertex.

10



Denoting the new added triangle by T , we identify E(G

0

)�E(T ) with E(G)

in the obvious way, and use the olor of any edge of G to olor the orresponding

edge of G

0

. It remains to olor T .

Here and in the following setions, ifX � V , we write A

G

(X) for the subgraph

of G formed by the edges with at least one end in X, together with all their

endverties. For v 2 V (G), A

G

(v) stands for A

G

(f v g).

Let H = A

G

(v) and H

0

= A

G

0

(V (T )), and use the oloring of Fig. 7 to olor

H

0

. The oloring orresponds to a 2-fator F

0

in G

0

2K

2

. Although M

F

(H) and

M

�

F

(H) annot be expliitly determined from the type of v alone, it is not hard

to hek that Corollary 7.4 applies, ensuring that the new oloring indues a

hamiltonian deomposition of G

0

2K

2

.

Figure 6: A oloring of K

4

.

The ase of v being a BYR vertex is similar. In the remaining two ases,

however, it is not lear how to olor H

0

. Nevertheless, this ase will never our:

all verties in the oloring for K

4

in Fig. 6 are BYG or BYR, and this is preserved

by eah triangle ination. This proves Theorem 1.2.

Figure 7: A oloring for the triangle ination.

9 Bipartite planar graphs

The objetive of this and the following setions is to show that the prism over

any 3-onneted ubi planar bipartite graph has a hamiltonian deomposition

(Theorem 1.3).

Batagelj [2℄ proved that all 3-onneted ubi bipartite planar graphs an be

obtained from the ube by a suession of the two operations depited in Fig. 8:

the diamond ination of any vertex, and the A

1

subdivision. The latter operation,

11



applied to a pair of non-adjaent edges uv; wz, adds 2 new verties to eah of

uv; wz, and also adds 2 independent edges on these 4 verties. (The operations

an be hosen suh that all the intermediate graphs are planar bipartite, but this

is not important for our needs.)

u

w

v

z

u

w

v

z

Figure 8: Transformations generating the 3-onneted bipartite planar ubi

graphs: (a) diamond ination, (b) A

1

subdivision.

A hamiltonian deomposition for the prism over the 3-ube is given by the ol-

oring in Fig 4. In the following, we shall prove that hamiltonian-deomposeability

of the prism is preserved by diamond inations and A

1

subdivisions.

We onsider the diamond ination �rst. Let a graph G have a hamiltonian-

deomposeable prism, and letG

0

arise fromG by the diamond ination of a vertex

v 2 V (G).

Let H = A

G

(v) and H

0

= A

G

0

(X), where X is the set of the 7 new added

verties in G

0

. There are essentially two ases to distinguish: v is either a BYG

vertex or a GGR vertex (the other possibilities are overed by symmetry). In

both of these ases, it is easy to extend the existing oloring to the diamond.

Expliitly, the olorings in Fig. 9 show how to olor H

0

, keeping the old oloring

on the rest of G

0

, so that the hypotheses of Corollary 7.4 are satis�ed. The hek

is straightforward.

Figure 9: Colorings for the diamond ination.

Most ases of the A

1

subdivision are no harder. Assume we subdivide edges

uv and wz in G to obtain G

0

. (No restritions are plaed on uv and wz exept

12



that they are independent.) Let H be the subgraph of G formed by uv, wz and

their endverties. Let H

0

= A

G

0

(V (T )), where T is the 4-yle on the new added

verties.

There are, up to symmetry, �ve possible ombinations of olors of uv and wz.

Four of them are overed by the olorings of H

0

in Fig. 10. (The oloring of the

rest of G

0

is as in G.) Corollary 7.4 implies that these olorings orrespond to

hamiltonian deompositions. Note that in these ases, eah outward edge of H

0

is given the same olor as the edge of G whih gave rise to it by subdivision.

In the �fth (and last) ase, both uv and wz are olored green. We annot

hope to �nd a suitable oloring of H

0

with all the outward edges olored green,

for the green edges would separate the 4-yle in H

0

from the rest of G

0

, and the

omplement of the assoiated 2-fator would neessarily be disonneted. Thus

we annot get a hamiltonian deomposition in this manner. We disuss the A

1

subdivision of two green edges in the following setion.

Figure 10: Colorings for the easy ases of A

1

subdivision.

10 The green-green ase

In this setion, we show that the A

1

subdivision preserves the existene of a

hamiltonian deomposition of the prism in the last remaining ase: when both

edges being subdivided are green (or both red) in the oloring indued by the

original hamiltonian deomposition.

LetG be a ubi graph and letG

0

be the result of the A

1

subdivision performed

on edges uv; wz 2 E(G). Assume that G2K

2

has a Hamilton yle F whose

omplement F is also hamiltonian, and onsider the orresponding oloring of

G. It is suÆient to disuss the ase where uv and wz are olored green: if they

are both red, we may interhange the red and green olors. All the other olor

ombinations have been dealt with in the preeding setion.

Set X = f u; v; w; z g � V (G) and let T = T

F

(H) be the set of terminals,

as de�ned in Setion 6. The assumption that uv and wz are green means that

f uv; u

�

v

�

; wz; w

�

z

�

g � E(F ). We let X

0

= f u

0

; v

0

; w

0

; z

0

g � V (G

0

) be the four

verties that were added to G in the onstrution of G

0

, where for eah x 2 X,

x

0

is adjaent to x in G

0

. Let H

0

be the subgraph of G

0

on X [X

0

formed by all

13



edges with at least one endvertex in X

0

. We shall denote the vertex set of H2K

2

by X

+

.

As we shall see, the only really interesting ase is when no vertex from X is

RRG (i.e. adjaent to two red edges in G). Let us treat the opposite ase �rst.

Case I: some verties from X are RRG. Note that u and v annot be RRG

at the same time. Otherwise, the edge uv would be separated from the rest of

the graph by a ut onsisting of red edges, ontraditing the fat that F is a

Hamilton yle. The same applies to w and z.

Thus, there are (up to symmetry) only 3 possible plaements of RRG verties:

(a) z is the only RRG vertex, (b) v and z are RRG, or () u and z are RRG.

Assume that z is the only RRG vertex. It is easy to see that in this ase,

T

F

(H) equals f u; v; w; u

�

; v

�

; w

�

g, and M

F

(H), M

F

(H) are as given in Fig. 11.

We olor H

0

as in Fig. 12a, and use the oloring of G in the rest of G

0

. This

gives an admissible oloring; let F

0

be the orresponding 2-fator. Looking at Fig.

12b, one an hek diretly that F

0

jH

0

and F

0

jH

0

ontain no yles, M

F

0

(H

0

) =

M

F

(H), and M

F

0

(H

0

) = M

F

(H). By Proposition 7.4, the oloring of G

0

indues

a hamiltonian deomposition.

M

F

(H)

v

�

v

w

u

u

�

w

�

w

�

M

F

(H)

u

u

�

v

v

�

w

Figure 11: The mathings indued by F and F if z is the only RRG vertex.

u

zw

v

u

w

v

z

u

�

w

�

v

�

z

�

(a) (b)

Figure 12: (a) a oloring of H

0

, (b) the restrition F

0

jH

0

if z is the only RRG

vertex.

Next, assume that there are two RRG verties v and z. The set of terminals

of H is then f u; w; u

�

; w

�

g. M

F

(H) mathes u to u

�

and w to w

�

, and so does

M

F

(H). As before, one an hek that the oloring of H

0

given in Fig. 12a

extends the hamiltonian deomposition.
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The same oloring works in the third subase also, namely when u and z are

the RRG verties.

Case II: no vertex from X is RRG. With this assumption, one an see that

the set of terminals of H is X

+

, and M

F

(H), M

F

(H) are as in Fig. 13. The

diÆulty with this ase is that it is the only one where Corollary 7.4 annot be

applied, as there is no oloring of H

0

whih would have the assoiated mathings

on X

+

idential to M

F

(H) and M

F

(H). Instead, we prove that for at least one

out of a ertain set of olorings of H

0

, M

F

0

(H

0

) is ompatible with M

F

(G�H),

whih makes Proposition 7.2 appliable.

v

u

M

F

(H)

M

F

(H)

w

�

z

�

w

�

w

u

�

u

v

�

z

u

�

w

z

�

v

v

�

z

Figure 13: The mathings M

F

(H) and M

F

(H) in Case II.

Identify X

+

with the set of verties of the ombinatorial 3-ube Z

3

2

(viewed as

a vetor spae over GF (2)) as follows. Make u; v; w and z orrespond to vetors

(001); (011); (101) and (111), respetively; for eah x 2 X, make x

�

orrespond

to (001) plus the vetor for x. See Fig. 14 in whih a vetor is represented by a

point with the orresponding oordinates in the 3-spae. Note that the ube is

not neessarily a subgraph of the prism of G or G

0

.

(100)

(001)

(010)

w

z

�

v

w

�

u

z

u

�

v

�

Figure 14: The 3-ube and the oordinate system used to draw it. The point

representing u

�

is at the origin (000).

Let � = (010). Sine the mathing O = M

F

(G � H) is ompatible with

M

F

(H), we get that

if f x; y g is in O, then f x+ �; y + � g is not, (3)
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and in fat this haraterizes the perfet mathings ompatible withM

F

(H). We

all any mathing satisfying (3) asymmetri.

Unless otherwise spei�ed, all mathings onsidered in this setion are perfet

mathings on X

+

.

For x 2 X

+

, set jx j to be the salar produt x �x modulo 2. This orresponds

to a linear form on Z

3

2

. By an edge on Z

3

2

, we simply mean any pair of distint

verties. The diretion of an edge xy is the vetor y�x = x+y. We all the edge

odd if jx + y j = 1 and even otherwise. A � -edge is an edge of type f x; x+ � g;

that is, an edge parallel to the y axis in Fig. 14. Note that an asymmetri

mathing annot ontain any � -edge.

We all a (perfet) mathing on X

+

speial if it onsists of odd edges with

pairwise distint diretions. It is easy to see that any pair of odd edges on X

+

with distint diretions an be ompleted to a unique speial mathing. It follows

that there are exatly 8 speial mathings.

Observe that if we extend the oloring of G to G

0

by oloringH

0

as in Fig. 12a,

then M

F

0

(H

0

) is speial and F

0

jH

0

ontains no yles. (See Fig. 15.) Both of

these assertions remain true if we interhange (in H

0

) the olors of the red edge

and any green edge, and/or interhange all the blue and yellow olors. There are

8 ways to make these hanges, and in fat they yield all the speial mathings.

w

z

�

z

v

v

�

w

�

u

�

u

(b)

u

w

v

z

u

�

w

�

v

�

z

�

(a)

Figure 15: F

0

jH

0

and M

F

0

(H

0

) (shown in the ube) for the diagram of Fig. 12a

in Case II.

We do not have to worry about M

F

0

(H

0

): for all of the above olorings, it

equals M

F

(H) as shown in Fig. 13, and obviously indues no yles in F

0

jH

0

.

Roughly speaking, this is beause these olorings of H

0

only inlude 1 red edge;

F

0

is just like F , exept that it enters H

0

2K

2

through this edge, traverses it and

exits through the red edge again.

In view of Proposition 7.2, our only onern is to �nd, for a given asymmetri

mathing O, a ompatible speial mathing. To get one, it is suÆient to �nd

a partial mathing S onsisting of 3 odd edges with distint diretions, in suh

a way that there is an indued path in (X

+

; S [ O), onsisting of 3 S-edges

alternating with 2 O-edges. (Here, an S-edge is simply an edge from S.) Indeed,

sine the path is indued, its endverties are not onneted by an O-edge, so the
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remaining 2 O-edges extend the path to an alternating path of length 7, and it

is easy to see that we may add the edge onneting its endverties to S. This

observation will be useful in the proof of the following proposition.

Proposition 10.1 For any asymmetri mathing O on X

+

, there is a ompatible

speial mathing.

Proof. Any � -edge is adjaent to exatly 2 edges from O. Assume �rst that

there is a � -edge, say f a; a+ � g, suh that both of the adjaent edges from O

are of the same parity.

Sine O does not inlude any � -edge, we may put f a; a+ � g in S. Let

f a; x g; f a+ �; y g be the adjaent O-edges. We may assume that j y j = j a j,

using a + � instead of a if neessary.

Clearly x; y =2 f a; a+ � g, x 6= y, and by (3), x 6= y + � .

Set

�(x) = a+ x + y + �;

�(y) = a+ x + y:

De�ne the two remaining edges of S by joining x to �(x) and y to �(y). First,

it is easy to hek algebraially that �(x); �(y) do not fall in f x; y; a; a+ � g. For

instane, if �(x) = y, then x = a + � , whih we know to be false. The other

inequalities are no harder.

Seond, �(x) and �(y) form a � -edge, whih annot appear in O. It follows

that (�(x); x; a; a+ �; y; �(y)) is an indued alternating path in S [O.

Finally, note that f x; �(x) g and f y; �(y)g are odd edges whose diretions

are distint and both di�erent from � . Thus we are free to add them to S. This

�nishes the �rst ase.

For the seond ase, assume that all � -edges are adjaent to one odd and one

even edge of O. Take the � -edge f (000); � g; let a be the end-vertex adjaent to

an even O-edge ax and let y be the end-point of the (odd) edge adjaent to a+ � .

Clearly jx j = j y j = j a j.

Set

�(x) = a+ x + y + �;

�(y) = x + �:

As before, it is straightforward to hek that the sequene (�(x); x; a; a +

�; y; �(y)) de�nes an alternating path, the edges f x; �(x) g and f y; �(y)g are

odd, and their diretions are distint and di�erent from � .

We need to show, however, that O does not join �(x) to �(y). Sine

j�(x) + �(y) j = j a+ y j = 0;
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f�(x); �(y)g is an even edge. If it were ontained in O, then the � -edge

f x; x+ � g = f x; �(y)g would be adjaent to two even O-edges, ontrary to

our assumption. Hene we may omplete S as neessary. 2

Using Proposition 7.2, we an easily �nish the argument for the green-green

ase, thus establishing Theorem 1.3.
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