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Abstra
t

A 
onje
ture of Alspa
h and Rosenfeld states that the prism G2K

2

over any 3-
onne
ted 
ubi
 graphG has a de
omposition into two Hamilton


y
les. Using a method based on 
olored diagrams, we show this 
onje
ture

to hold for 3-
onne
ted planar bipartite 
ubi
 graphs and for one other 
lass

of planar 
ubi
 graphs known as `kleetope duals'. We also give a new proof

of the fa
t that G2K

2

is hamiltonian for any 3-
onne
ted 
ubi
 graph G.

1 Introdu
tion

The prism over a graph G, denoted by G2K

2

, is obtained by taking two 
opies

of G and joining the two 
lones of ea
h vertex by an edge. The motivation for

studying Hamilton 
y
les in prisms over 
ubi
 3-
onne
ted graphs goes ba
k to

the (still open) 
onje
ture of Barnette that all simple 4-polytopes are hamiltonian.

Initally, Rosenfeld and Barnette [7℄ proved that the prism over simple 3-polytopes

(whi
h are the 1-skeleton of some simple 4-polytopes) are hamiltonian if the 4-


olor 
onje
ture is true (at that time it was still a 
onje
ture). Later, this result

was extended by various authors using te
hniques that avoided use of the 4-
olor

theorem. Finally, in 1993 Paulraja [6℄ proved the most general possible result:
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Theorem 1.1 The prism over any 3-
onne
ted 
ubi
 graph is hamiltonian.

A simple proof of this result, whi
h lends itself to estimating the 
omplexity

of 
onstru
ting the Hamilton 
y
le in the prism, is in
luded in Se
tion 3 of the

present paper.

Alspa
h and Rosenfeld [1℄ 
onje
tured that the prism over any 3-
onne
ted


ubi
 graph a
tually admits a hamiltonian de
omposition, and they proved the


onje
ture for some in�nite families of graphs. We shall show that the 
onje
ture

holds for two 
lasses of graphs.

A kleetope is any planar triangulation whi
h 
an be obtained from the 
om-

plete graph K

4

by repeatedly adding a vertex and joining it to the 3 verti
es of

a fa
e. We prove the following theorem in Se
tion 8.

Theorem 1.2 The prism over the dual of any kleetope admits a hamiltonian

de
omposition.

We remark that by [4℄, kleetopes are pre
isely the planar graphs with a unique

4-
oloring of the verti
es.

Using a 
hara
terization of 3-
onne
ted bipartite 
ubi
 planar graphs due to

Batagelj [2℄, we obtain the following result.

Theorem 1.3 The prism over any 3-
onne
ted bipartite planar 
ubi
 graph ad-

mits a hamiltonian de
omposition.

In Se
tion 4, we shall see that the 
onne
tivity requirement in Alspa
h and

Rosenfeld's 
onje
ture 
annot be relaxed sin
e there are 2-
onne
ted planar 
ubi


graphs whose prisms have no hamiltonian de
omposition. In fa
t, one 
an make

the examples bipartite, thereby showing that 3-
onne
tivity is also essential in

Theorem 1.3.

2 Notation

Let G be a graph. We generally write V (G) for the set of verti
es and E(G) for

the set of edges of G. Only simple graphs are 
onsidered. We refer the reader to

[3℄ for any graph-theoreti
 
on
epts we use without de�nition.

The prism over G was de�ned in the Introdu
tion; note that it 
an be viewed

as the Cartesian (or box) produ
t G2K

2

of G with K

2

as well. We identify G

with one of its 
opies in G2K

2

, and write v

�

for the 
lone of a vertex v 2 V (G)

in the other 
opy of G.

If w = v

�

, we set w

�

= v; in other words, (v

�

)

�

= v.

This notation is extended, in the obvious way, to edges, sets of verti
es,

and sets of edges in G2K

2

. For instan
e, if F � E(G2K

2

), then F

�

=

f u

�

v

�

j uv 2 F g.
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3 The hamiltoni
ity of prisms

We shall now present a simpli�ed proof of Theorem 1.1. The original proof

appears in [6℄.

We begin with the following lemma.

Lemma 3.1 A 3-
onne
ted 
ubi
 graph 
ontains a 2-
onne
ted bipartite spanning

subgraph.

Proof. Let H be a maximal 2-
onne
ted, bipartite subgraph of G. If H does

not span G, there is a vertex g 2 V (G)�V (H). Assume further that the verti
es

of H are properly 
olored in bla
k and white. Sin
e G is 3-
onne
ted, it 
ontains

3 vertex-disjoint paths P

1

; P

2

; P

3

, ea
h 
onne
ting g to a vertex in H. Let h

i

be the �rst verti
es of H on ea
h of the paths. Without loss of generality, we

may assume that h

1

and h

2

are 
olored white. Then the lengths of P

1

and P

2

have distin
t parities, for otherwise P

1

, P

2


an be added to H, 
ontradi
ting its

maximality. If h

3

is also 
olored white, then among the 3 paths there are two

with the same parity, and we 
an add these two paths to H, obtaining a larger

spanning 2-
onne
ted bipartite subgraph. Hen
e h

3

is 
olored bla
k. Sin
e the

lengths of P

1

and P

2

have distin
t parities, one of these lengths will have distin
t

parity from the length of the path P

3

, we 
an add these two paths to H and again

in
rease the size of H. Hen
e if H is maximal it must be a spanning subgraph.

2

A 
a
tus is a 
onne
ted graph C su
h that any two 
y
les in C are vertex-

disjoint, every vertex of degree at least 3 lies on a 
y
le, and C has at least two

verti
es. The 
y
les of C are 
alled its leaves. A 
a
tus is even if all of its leaves

are 
y
les of even length. See Fig. 1 for an example of an even 
a
tus.

Figure 1: An even 
a
tus.

Lemma 3.2 Any 2-
onne
ted graph H of maximum degree �(H) � 3 has a

spanning subgraph C su
h that C is a 
a
tus (not ne
essarily even) and its leaves


ontain all verti
es v with deg

H

(v) = 3.
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Proof. The proof pro
eeds by indu
tion on the number of verti
es of H. The

lemma is trivially true for graphs H of order at most 4.

If H is 
ubi
, then sin
e it is 2-
onne
ted, it 
ontains a 1-fa
tor F by the

Petersen theorem. The 
omplement

�

F of F is a 2-fa
tor. If we 
ontra
t, in H,

ea
h 
omponent of

�

F to a single vertex, we obtain a 
onne
ted graph H

0

. Adding

the edge set of any spanning tree of H

0

to

�

F (with the obvious identi�
ations),

we get a spanning 
a
tus of H.

Thus, we may assume that H 
ontains verti
es of degree 2. Let h be su
h a

vertex and let a; b be its two neighbors.

If ab 2 E(H), then 2-
onne
tedness (and the fa
t that H has more than 4

verti
es) implies that a; b ea
h have one additional neighbor a

0

; b

0

(respe
tively),

where a

0

6= b

0

. We now shrink the triangle ahb to a single vertex 
 of degree 2 as

in Fig. 2.

aa

0

b

b

0

b

0

a

0




h

Figure 2: The 
ontra
tion of a triangle.

The new graph 
learly remains 2-
onne
ted. By the indu
tion hypothesis, it


ontains a spanning 
a
tus C. If the path a

0


b

0

is part of a leaf, we modify it to

the path a

0

ahbb

0

(and get a spanning 
a
tus in G). If a

0


b

0

is not part of a leaf,

then without loss of generality we may assume that a

0


 is 
ontained in E(C). We


an now modify C by removing 
, adding the triangle ahb and the edge aa

0

; if

b

0


 2 E(C), we also add bb

0

. In either 
ase, the resulting 
a
tus has the required

properties (note that the triangle is a leaf).

If ab 62 E(H), we remove the vertex h and add the edge ab. Again, by the

indu
tion hypothesis, the resulting graph 
ontains a spanning 
a
tus C. We note

that the degrees of a or b have not 
hanged in this graph. If ab 2 E(C), we just

repla
e it by the path ahb. Assume ab =2 E(C). If one of the verti
es, say a, has

degree 3 (in H), then by the indu
tion hypothesis it is 
ontained in a leaf and we

may extend C by adding the edge ah. If both a and b have degree 2, then sin
e

ab =2 E(C), a has degree 1 in C. Again, we 
an add the edge ah to C. In either


ase we obtain the desired spanning 
a
tus. 2

The relevan
e of even 
a
ti to Hamilton 
y
les is shown by the following simple

lemma.

Lemma 3.3 The prism over any even 
a
tus C with �(C) � 3 is hamiltonian.
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Proof. We prove, by indu
tion on the number of verti
es of C, that C2K

2

has

a Hamilton 
y
le F su
h that:

F 
ontains the edge xx

�

for ea
h degree 2 vertex x belonging to a leaf of C.

(1)

The assertion is trivial if jV (C)j = 2. We may also assume that C is not a


y
le. Let T be the tree obtained by 
ontra
ting ea
h 
y
le Q of C to a vertex

v

Q

and dis
arding loops. Sin
e T 
ontains at least two verti
es, we may 
hoose a

vertex t of degree 1 in T .

Assume �rst that t 2 V (C), i.e. t is of degree one in C and does not lie on a

leaf. Let u be the unique neighbor of t in C. If u belongs to a leaf of the 
a
tus

C � t, then by indu
tion (using (1) and the bound on the maximum degree),

(C � t)2K

2

has a Hamilton 
y
le 
ontaining the edge uu

�

. But if u does not

belong to a leaf of C � t, then its degree in C � t is 1, and so any Hamilton 
y
le

of (C � t)2K

2

must 
ontain uu

�

. In either 
ase, we 
an repla
e the edge uu

�

by

the path utt

�

u

�

, obtaining a Hamilton 
y
le in C2K

2

, moreover one for whi
h

(1) holds.

It remains to 
onsider the 
ase where t = v

Q


orresponds to a 
y
le Q of C.

The fa
t that t has degree one in T implies that only one vertex w 2 V (Q) has

degree 3 in C. Let C

0

be obtained by removing all the verti
es of Q, ex
ept for

w, from C. By indu
tion, C

0

2K

2

has a Hamilton 
y
le F

0

satisfying (1), whi
h

must ne
essarily 
ontain ww

�

as the degree of w in C

0

is one. The 
y
le F

0

is

easily modi�ed to a Hamilton 
y
le of C that uses all the edges between Q and

Q

�

ex
ept for ww

�

, and agrees with F

0

outside Q. Thus, (1) is preserved. The

proof is 
omplete. 2

We are now in a position to prove the main result of this se
tion.

Proof of Theorem 1.1. We �rst show that G 
ontains a spanning even 
a
tus.

By Lemma 3.1, G 
ontains a spanning 2-
onne
ted bipartite subgraph H with

�(H) � 3. By Lemma 3.2, H 
ontains a spanning 
a
tus C. Sin
e H is bipartite,

C is even. Finally, Lemma 3.3 implies that C2K

2

(and hen
e G2K

2

) 
ontains a

Hamilton 
y
le. 2

Remark 3.4 It is easy to see that the 
omplexity of 
onstru
ting a Hamilton


y
le in H2K

2

is dominated by the 
omplexity of �nding a 1-fa
tor in the 
ubi


graph H.

4 Non-3-
onne
ted graphs

As mentioned in the Introdu
tion, prisms over 2-
onne
ted 
ubi
 planar graphs

do not ne
essarily possess a hamiltonian de
omposition. The following 
lass

of examples was found by W. M
Cuaig [5℄. Join two verti
es u and v by three

5



internally disjoint paths of at least 3 edges ea
h, and repla
e every degree 2 vertex

by a `diamond' (K

4

minus an edge) so as to obtain a 
ubi
 graph G (shown in

Fig. 3). It is easy to see that G is 2-
onne
ted and planar, and we shall show

that G2K

2

has no hamiltonian de
omposition.

Suppose that G2K

2


an be de
omposed into Hamilton 
y
les C

1

; C

2

. One of

the 
y
les (say, C

1

) does not 
ontain the edge uu

�

. Sin
e both u and u

�

are of

degree two in C

1

, there is an edge of G adja
ent to u (say, e

1

as shown in Fig. 3)

su
h that both e

1

and e

1

�

are 
ontained in C

1

.

e

3

e

1

e

2

u

v

Figure 3: Cubi
, 2-
onne
ted planar graphs whose prisms do not admit hamilto-

nian de
ompositions.

Consider now the edges e

2

and e

3

as in Fig. 3. Sin
e f e

1

; e

1

�

; e

2

; e

2

�

g is an

edge 
ut in G2K

2

, it must be interse
ted by both C

1

and C

2

. It follows that

both e

2

and e

2

�

are 
ontained in C

2

. By the same token, e

3

and e

3

�

are 
ontained

in C

2

. But then C

2


ontains all of the edge 
ut f e

2

; e

2

�

; e

3

; e

3

�

g, whi
h means

that C

1


annot be a Hamilton 
y
le, a 
ontradi
tion.

Observe also that it is easy to modify this example to obtain a bipartite 
ubi


planar 2-
onne
ted graph (simply repla
ing ea
h diamond by the 3-
ube minus an

edge). This shows that the assumption of 3-
onne
tivity in Theorem 1.3 
annot

be removed.

5 Colorings and 2-fa
tors

Let G be a 
ubi
 graph and let F be a 2-fa
tor of the prism G2K

2

. The fa
tor

F indu
es a 
oloring of the edges of G in 4 
olors by the following rule.

We 
olor an edge e 2 E(G) (with respe
t to F ) blue if e 2 E(F ) and e

�

62

E(F ); yellow if e 62 E(F ) and e

�

2 E(F ); and green if e; e

�

2 E(F ). The

remaining edges ofG will be 
olored red. (The green 
olor was 
hosen to represent

`both blue and yellow'. Admittedly, using bla
k in pla
e of red might be more in

the spirit of this analogy.)

Note that this 
oloring need not be a proper edge-
oloring of G. However,

only 4 
ombinations of 
olors 
an appear at any given vertex. We abbreviate

6




olors by the initial letter (e.g. blue is B) and de�ne the type of a vertex to be

the unordered 
olle
tion of 
olors of the adja
ent edges. Then it is easy to see

that

any vertex of G is of type BYG, BYR, GGR or RRG. (2)

Indeed, 
onsider a vertex v 2 V (G) and distinguish two 
ases. Firstly, if

vv

�

2 E(F ), denote the edge in E(G)\E(F ) by e. In 
ase e

�

2 E(F ), the vertex

v is RRG, otherwise v is BYR. Se
ondly, if vv

�

=2 E(F ), denote the two edges in

E(G) \ E(F ) by e

1

and e

2

. The vertex v is GGR or BYG a

ording to whether

both of e

1

�

and e

2

�

are 
ontained in E(F ) or they are not.

Note the e�e
t of passing to the 
omplement F of F : the 
oloring indu
ed by

F has blue inter
hanged with yellow, and green with red.

The above 
orresponden
e 
an be reversed. That is, any edge-
oloring of G

with property (2) determines a 2-fa
tor in the prism, whi
h 
an be obtained as

follows. If x; y 2 V (G), then the edges of F will in
lude:

� xy if it is 
olored blue or green,

� x

�

y

�

if xy is 
olored yellow or green,

� xx

�

if x is of type BYR or RRG.

It is straightforward to 
he
k, for the 4 possible types of x, that x and x

�

are

of degree two in F . Thus F is a 2-fa
tor. Moreover, we have obtained a bije
tion

between 2-fa
tors of G2K

2

and edge-
olorings of G satisfying (2). We shall 
all

any su
h 
oloring admissible.

A more dynami
 view of the above 
orresponden
e may be helpful. Starting

with an admissible 
oloring, we 
an tra
e the asso
iated 2-fa
tor as follows. Imag-

ine a robot with two possible states (labeled blue and yellow) walking through

G. The green edges of G are taken to be 
olored both yellow and blue, while

the red edges have none of these 
olors. To ea
h of the two states, we asso
iate

one of the two 
opies of G in G2K

2

and refer to them as the blue 
opy and the

yellow 
opy. If an edge is used during the walk in a parti
ular state, we in
lude

its 
lone from the 
orresponding 
opy in the 2-fa
tor.

The walk begins by 
hoosing a blue edge arbitrarily and traversing it to one

of its endverti
es in the blue state. At ea
h vertex, the robot determines the edge

to take next, after a possible 
hange of state. Let us say that it has arrived to a

vertex v along an edge e in the blue state. If there is a blue edge e

0

6= e adja
ent

to v, then the walk will 
ontinue on e

0

. If not, the state will 
hange to yellow

(whi
h 
orresponds to in
luding the verti
al edge vv

�

in the 2-fa
tor) and a yellow

edge e

0

6= e will be 
hosen. If there is none, then it must be that e is a green edge

whi
h is adja
ent to 2 red edges at v, and the robot will return along e. On
e

it visits a vertex in the same state for the se
ond time, a new starting vertex is


hosen among those whi
h have not been visited in both states, and the pro
ess

7



is repeated (possibly starting in the yellow state). If there are no su
h verti
es,

we have a 
olle
tion of 
losed walks whi
h represents the asso
iated 2-fa
tor.

For an example, 
onsider the 
oloring of the 3-
ube given in Fig. 4. The �gure

also shows the 
onvention used to represent 
olored edges. Starting at x in the

blue state, we 
ontinue in the same state to w, z and y, where we are for
ed to

swit
h to yellow and go on to y

0

, where we swit
h ba
k to blue, et
. The whole

walk is xwzy=y

0

=x

0

w

0

z

0

=zww

0

x

0

x=, where the slashes indi
ate a 
hange of state.

In fa
t, one 
an see that ea
h vertex was visited pre
isely on
e in ea
h state.

Thus the 2-fa
tor in the prism 
orresponding to this walk is 
onne
ted, hen
e a

Hamilton 
y
le in the prism.

w

x y

z

w

0

x

0

y

0

z

0

blue

yellow

green

red

Figure 4: A 
oloring of the 3-
ube indu
ing a Hamilton 
y
le in the prism.

In some of the subsequent se
tions, we shall be interested in 
olorings whose

asso
iated 2-fa
tors, as well as their 
omplements, are Hamilton 
y
les | in other

words, 
olorings whi
h indu
e a hamiltonian de
omposition of G2K

2

.

6 Mat
hings

We shall now des
ribe how a 2-fa
tor in the prism over a graph G indu
es a

mat
hing on a set of verti
es of any subgraph H of G. The idea is simple, and if

the des
ription seems to be a bit te
hni
al, it is be
ause in Se
tion 10, we shall

need a fairly rigorous treatment of this 
orresponden
e.

Let G be a 
ubi
 graph and F a 2-fa
tor in the prism over G. For any subgraph

H of G, let F jH be the restri
tion of F to V (H2K

2

) minus all edges xx

�

, where

x is a vertex of H whose degree (in H) is even.

The set of terminals of H (with respe
t to F ), T

F

(H) � V (H2K

2

), 
onsists

of all verti
es of H2K

2

whose degree in F jH is 1. Note that some terminals may


orrespond to verti
es of H with degree larger than 1 (that is, 2), and, on the

other hand, there need not be any 
orresponding terminal for a vertex of degree

1 in H.

8



Let G� H be the graph arising from G by removing all verti
es of degree 3

in H, along with all edges of H. Note that if H has no isolated verti
es, then

G� (G�H) = H, and in any 
ase, E(G�H) = E(G)� E(H).

Observe also that the edge sets of F jH and F j(G � H) form a partition of

E(F ). It follows that the set of terminals of G�H 
oin
ides with T

F

(H).

There is a naturally de�ned perfe
t mat
hing M

F

(H) in the 
omplete graph

on the vertex set T

F

(H): sin
e all degrees in F jH are at most 2, F jH is a disjoint

union of paths and 
y
les (and isolated verti
es), and the endverti
es of the paths

are pre
isely the terminals. We shall mat
h two terminals by an edge in M

F

(H)

if they are distin
t endverti
es of the same path. (Mat
hings like M

F

(H) will

be simply referred to as mat
hings on T

F

(H), without expli
itly mentioning the


omplete graph they are 
ontained in. Su
h mat
hings are never assumed to exist

in G or H.)

Applying the same pro
edure to the 2-fa
tor F , we obtain another mat
hing

on T

F

(H), namelyM

F

(H). The following simple observation will often be useful.

Proposition 6.1 For any subgraph H of G, the fa
tor F is a Hamilton 
y
le if

and only if

(a) M

F

(H) [M

F

(G�H) is the edge set of a 
y
le on T

F

(H), and

(b) neither F jH nor F j(G�H) 
ontain 
y
les. 2

Two perfe
t mat
hingsM

1

,M

2

on the same vertex set will be 
alled 
ompatible

if, as in (a) above, their union is a single 
y
le.

7 Lo
al modi�
ations

In this se
tion, we develop tools allowing us to alter a given 
oloring after a

lo
al modi�
ation of the underlying graph while preserving the existen
e of a

hamiltonian de
omposition of the prism.

Let G, G

0

be 
ubi
 graphs with admissible 
olorings indu
ing 2-fa
tors F and

F

0

in the prisms over G and G

0

, respe
tively. Let H � G and H

0

� G

0

be

subgraphs su
h that G�H equals G

0

�H

0

as a 
olored graph. This is the setting

for all the assertions of the present se
tion.

Proposition 7.1 The restri
tions F

0

j(G

0

� H

0

) and F j(G � H) are equal. In

parti
ular, T

F

0

(G

0

�H

0

) = T

F

(G�H) and M

F

0

(G

0

�H

0

) =M

F

(G�H).

Proof. By de�nition, an edge e belongs to E(F j(G�H)) if and only if e 2 E(F ),

e 2 E(G�H) and e 6= xx

�

for all x 2 V (G�H) of even degree in G�H. But

sin
e G�H = G

0

�H

0

, the edge sets and vertex degrees in these graphs are the

same. The fa
t that the 
olorings of these graphs are identi
al implies that an

edge of G�H is in E(F ) i� it is in E(F

0

). The rest of the proposition is trivial.

2
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Proposition 7.2 Assume that F is a Hamilton 
y
le. If F

0

jH

0


ontains no 
y
les

and M

F

0

(H

0

) is 
ompatible with M

F

(G�H), then F

0

is a Hamilton 
y
le.

Proof. If F is a Hamilton 
y
le, then Propositions 6.1 and 7.1 imply that

F

0

j(G

0

�H

0

) 
ontains no 
y
les and thatM

F

0

(H

0

) is 
ompatible withM

F

0

(G

0

�H

0

).

Sin
e we are assuming that F

0

jH

0


ontains no 
y
les, it follows from Proposi-

tion 6.1 that F

0

is a Hamilton 
y
le. 2

In most situations we shall deal with,M

F

0

(H

0

) happens to be equal toM

F

(H),

so by Proposition 6.1, it is automati
ally 
ompatible with M

F

(G�H).

Corollary 7.3 If F is a Hamilton 
y
le, F

0

jH

0


ontains no 
y
les, andM

F

(H) =

M

F

0

(H

0

), then F

0

is a Hamilton 
y
le. 2

Turning to hamiltonian de
ompositions, we have to ensure that F is also a

Hamilton 
y
le. For this, Proposition 7.2 
an be used twi
e:

Corollary 7.4 Assume that F and F are both Hamilton 
y
les. If

(a) F

0

jH

0

and F

0

jH

0


ontain no 
y
les, and

(b) M

F

(H) =M

F

0

(H

0

) and M

F

(H) =M

F

0

(H

0

),

then F

0

[ F

0

is a hamiltonian de
omposition of G

0

2K

2

. 2

8 Kleetope duals

From the de�nition of kleetopes in the introdu
tion, it is easy to see that their

duals are pre
isely the graphs whi
h 
an be obtained from the 
omplete graph K

4

by repeated triangle in
ations as shown in Fig. 5. We now show that the prisms

over all kleetope duals possess a hamiltonian de
omposition (Theorem 1.2).

v

Figure 5: The triangle in
ation at a vertex v.

Let G be a 
ubi
 graph with an edge-
oloring that indu
es a hamiltonian

de
omposition of the prism over G (the Hamilton 
y
le 
orresponding to the


oloring will be denoted by F ), and let G

0

arise from G by a triangle in
ation at

v. Assume that v is a BYG vertex.

10



Denoting the new added triangle by T , we identify E(G

0

)�E(T ) with E(G)

in the obvious way, and use the 
olor of any edge of G to 
olor the 
orresponding

edge of G

0

. It remains to 
olor T .

Here and in the following se
tions, ifX � V , we write A

G

(X) for the subgraph

of G formed by the edges with at least one end in X, together with all their

endverti
es. For v 2 V (G), A

G

(v) stands for A

G

(f v g).

Let H = A

G

(v) and H

0

= A

G

0

(V (T )), and use the 
oloring of Fig. 7 to 
olor

H

0

. The 
oloring 
orresponds to a 2-fa
tor F

0

in G

0

2K

2

. Although M

F

(H) and

M

�

F

(H) 
annot be expli
itly determined from the type of v alone, it is not hard

to 
he
k that Corollary 7.4 applies, ensuring that the new 
oloring indu
es a

hamiltonian de
omposition of G

0

2K

2

.

Figure 6: A 
oloring of K

4

.

The 
ase of v being a BYR vertex is similar. In the remaining two 
ases,

however, it is not 
lear how to 
olor H

0

. Nevertheless, this 
ase will never o

ur:

all verti
es in the 
oloring for K

4

in Fig. 6 are BYG or BYR, and this is preserved

by ea
h triangle in
ation. This proves Theorem 1.2.

Figure 7: A 
oloring for the triangle in
ation.

9 Bipartite planar graphs

The obje
tive of this and the following se
tions is to show that the prism over

any 3-
onne
ted 
ubi
 planar bipartite graph has a hamiltonian de
omposition

(Theorem 1.3).

Batagelj [2℄ proved that all 3-
onne
ted 
ubi
 bipartite planar graphs 
an be

obtained from the 
ube by a su

ession of the two operations depi
ted in Fig. 8:

the diamond in
ation of any vertex, and the A

1

subdivision. The latter operation,

11



applied to a pair of non-adja
ent edges uv; wz, adds 2 new verti
es to ea
h of

uv; wz, and also adds 2 independent edges on these 4 verti
es. (The operations


an be 
hosen su
h that all the intermediate graphs are planar bipartite, but this

is not important for our needs.)

u

w

v

z

u

w

v

z

Figure 8: Transformations generating the 3-
onne
ted bipartite planar 
ubi


graphs: (a) diamond in
ation, (b) A

1

subdivision.

A hamiltonian de
omposition for the prism over the 3-
ube is given by the 
ol-

oring in Fig 4. In the following, we shall prove that hamiltonian-de
omposeability

of the prism is preserved by diamond in
ations and A

1

subdivisions.

We 
onsider the diamond in
ation �rst. Let a graph G have a hamiltonian-

de
omposeable prism, and letG

0

arise fromG by the diamond in
ation of a vertex

v 2 V (G).

Let H = A

G

(v) and H

0

= A

G

0

(X), where X is the set of the 7 new added

verti
es in G

0

. There are essentially two 
ases to distinguish: v is either a BYG

vertex or a GGR vertex (the other possibilities are 
overed by symmetry). In

both of these 
ases, it is easy to extend the existing 
oloring to the diamond.

Expli
itly, the 
olorings in Fig. 9 show how to 
olor H

0

, keeping the old 
oloring

on the rest of G

0

, so that the hypotheses of Corollary 7.4 are satis�ed. The 
he
k

is straightforward.

Figure 9: Colorings for the diamond in
ation.

Most 
ases of the A

1

subdivision are no harder. Assume we subdivide edges

uv and wz in G to obtain G

0

. (No restri
tions are pla
ed on uv and wz ex
ept

12



that they are independent.) Let H be the subgraph of G formed by uv, wz and

their endverti
es. Let H

0

= A

G

0

(V (T )), where T is the 4-
y
le on the new added

verti
es.

There are, up to symmetry, �ve possible 
ombinations of 
olors of uv and wz.

Four of them are 
overed by the 
olorings of H

0

in Fig. 10. (The 
oloring of the

rest of G

0

is as in G.) Corollary 7.4 implies that these 
olorings 
orrespond to

hamiltonian de
ompositions. Note that in these 
ases, ea
h outward edge of H

0

is given the same 
olor as the edge of G whi
h gave rise to it by subdivision.

In the �fth (and last) 
ase, both uv and wz are 
olored green. We 
annot

hope to �nd a suitable 
oloring of H

0

with all the outward edges 
olored green,

for the green edges would separate the 4-
y
le in H

0

from the rest of G

0

, and the


omplement of the asso
iated 2-fa
tor would ne
essarily be dis
onne
ted. Thus

we 
annot get a hamiltonian de
omposition in this manner. We dis
uss the A

1

subdivision of two green edges in the following se
tion.

Figure 10: Colorings for the easy 
ases of A

1

subdivision.

10 The green-green 
ase

In this se
tion, we show that the A

1

subdivision preserves the existen
e of a

hamiltonian de
omposition of the prism in the last remaining 
ase: when both

edges being subdivided are green (or both red) in the 
oloring indu
ed by the

original hamiltonian de
omposition.

LetG be a 
ubi
 graph and letG

0

be the result of the A

1

subdivision performed

on edges uv; wz 2 E(G). Assume that G2K

2

has a Hamilton 
y
le F whose


omplement F is also hamiltonian, and 
onsider the 
orresponding 
oloring of

G. It is suÆ
ient to dis
uss the 
ase where uv and wz are 
olored green: if they

are both red, we may inter
hange the red and green 
olors. All the other 
olor


ombinations have been dealt with in the pre
eding se
tion.

Set X = f u; v; w; z g � V (G) and let T = T

F

(H) be the set of terminals,

as de�ned in Se
tion 6. The assumption that uv and wz are green means that

f uv; u

�

v

�

; wz; w

�

z

�

g � E(F ). We let X

0

= f u

0

; v

0

; w

0

; z

0

g � V (G

0

) be the four

verti
es that were added to G in the 
onstru
tion of G

0

, where for ea
h x 2 X,

x

0

is adja
ent to x in G

0

. Let H

0

be the subgraph of G

0

on X [X

0

formed by all

13



edges with at least one endvertex in X

0

. We shall denote the vertex set of H2K

2

by X

+

.

As we shall see, the only really interesting 
ase is when no vertex from X is

RRG (i.e. adja
ent to two red edges in G). Let us treat the opposite 
ase �rst.

Case I: some verti
es from X are RRG. Note that u and v 
annot be RRG

at the same time. Otherwise, the edge uv would be separated from the rest of

the graph by a 
ut 
onsisting of red edges, 
ontradi
ting the fa
t that F is a

Hamilton 
y
le. The same applies to w and z.

Thus, there are (up to symmetry) only 3 possible pla
ements of RRG verti
es:

(a) z is the only RRG vertex, (b) v and z are RRG, or (
) u and z are RRG.

Assume that z is the only RRG vertex. It is easy to see that in this 
ase,

T

F

(H) equals f u; v; w; u

�

; v

�

; w

�

g, and M

F

(H), M

F

(H) are as given in Fig. 11.

We 
olor H

0

as in Fig. 12a, and use the 
oloring of G in the rest of G

0

. This

gives an admissible 
oloring; let F

0

be the 
orresponding 2-fa
tor. Looking at Fig.

12b, one 
an 
he
k dire
tly that F

0

jH

0

and F

0

jH

0


ontain no 
y
les, M

F

0

(H

0

) =

M

F

(H), and M

F

0

(H

0

) = M

F

(H). By Proposition 7.4, the 
oloring of G

0

indu
es

a hamiltonian de
omposition.

M

F

(H)

v

�

v

w

u

u

�

w

�

w

�

M

F

(H)

u

u

�

v

v

�

w

Figure 11: The mat
hings indu
ed by F and F if z is the only RRG vertex.

u

zw

v

u

w

v

z

u

�

w

�

v

�

z

�

(a) (b)

Figure 12: (a) a 
oloring of H

0

, (b) the restri
tion F

0

jH

0

if z is the only RRG

vertex.

Next, assume that there are two RRG verti
es v and z. The set of terminals

of H is then f u; w; u

�

; w

�

g. M

F

(H) mat
hes u to u

�

and w to w

�

, and so does

M

F

(H). As before, one 
an 
he
k that the 
oloring of H

0

given in Fig. 12a

extends the hamiltonian de
omposition.
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The same 
oloring works in the third sub
ase also, namely when u and z are

the RRG verti
es.

Case II: no vertex from X is RRG. With this assumption, one 
an see that

the set of terminals of H is X

+

, and M

F

(H), M

F

(H) are as in Fig. 13. The

diÆ
ulty with this 
ase is that it is the only one where Corollary 7.4 
annot be

applied, as there is no 
oloring of H

0

whi
h would have the asso
iated mat
hings

on X

+

identi
al to M

F

(H) and M

F

(H). Instead, we prove that for at least one

out of a 
ertain set of 
olorings of H

0

, M

F

0

(H

0

) is 
ompatible with M

F

(G�H),

whi
h makes Proposition 7.2 appli
able.

v

u

M

F

(H)

M

F

(H)

w

�

z

�

w

�

w

u

�

u

v

�

z

u

�

w

z

�

v

v

�

z

Figure 13: The mat
hings M

F

(H) and M

F

(H) in Case II.

Identify X

+

with the set of verti
es of the 
ombinatorial 3-
ube Z

3

2

(viewed as

a ve
tor spa
e over GF (2)) as follows. Make u; v; w and z 
orrespond to ve
tors

(001); (011); (101) and (111), respe
tively; for ea
h x 2 X, make x

�


orrespond

to (001) plus the ve
tor for x. See Fig. 14 in whi
h a ve
tor is represented by a

point with the 
orresponding 
oordinates in the 3-spa
e. Note that the 
ube is

not ne
essarily a subgraph of the prism of G or G

0

.

(100)

(001)

(010)

w

z

�

v

w

�

u

z

u

�

v

�

Figure 14: The 3-
ube and the 
oordinate system used to draw it. The point

representing u

�

is at the origin (000).

Let � = (010). Sin
e the mat
hing O = M

F

(G � H) is 
ompatible with

M

F

(H), we get that

if f x; y g is in O, then f x+ �; y + � g is not, (3)
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and in fa
t this 
hara
terizes the perfe
t mat
hings 
ompatible withM

F

(H). We


all any mat
hing satisfying (3) asymmetri
.

Unless otherwise spe
i�ed, all mat
hings 
onsidered in this se
tion are perfe
t

mat
hings on X

+

.

For x 2 X

+

, set jx j to be the s
alar produ
t x �x modulo 2. This 
orresponds

to a linear form on Z

3

2

. By an edge on Z

3

2

, we simply mean any pair of distin
t

verti
es. The dire
tion of an edge xy is the ve
tor y�x = x+y. We 
all the edge

odd if jx + y j = 1 and even otherwise. A � -edge is an edge of type f x; x+ � g;

that is, an edge parallel to the y axis in Fig. 14. Note that an asymmetri


mat
hing 
annot 
ontain any � -edge.

We 
all a (perfe
t) mat
hing on X

+

spe
ial if it 
onsists of odd edges with

pairwise distin
t dire
tions. It is easy to see that any pair of odd edges on X

+

with distin
t dire
tions 
an be 
ompleted to a unique spe
ial mat
hing. It follows

that there are exa
tly 8 spe
ial mat
hings.

Observe that if we extend the 
oloring of G to G

0

by 
oloringH

0

as in Fig. 12a,

then M

F

0

(H

0

) is spe
ial and F

0

jH

0


ontains no 
y
les. (See Fig. 15.) Both of

these assertions remain true if we inter
hange (in H

0

) the 
olors of the red edge

and any green edge, and/or inter
hange all the blue and yellow 
olors. There are

8 ways to make these 
hanges, and in fa
t they yield all the spe
ial mat
hings.

w

z

�

z

v

v

�

w

�

u

�

u

(b)

u

w

v

z

u

�

w

�

v

�

z

�

(a)

Figure 15: F

0

jH

0

and M

F

0

(H

0

) (shown in the 
ube) for the diagram of Fig. 12a

in Case II.

We do not have to worry about M

F

0

(H

0

): for all of the above 
olorings, it

equals M

F

(H) as shown in Fig. 13, and obviously indu
es no 
y
les in F

0

jH

0

.

Roughly speaking, this is be
ause these 
olorings of H

0

only in
lude 1 red edge;

F

0

is just like F , ex
ept that it enters H

0

2K

2

through this edge, traverses it and

exits through the red edge again.

In view of Proposition 7.2, our only 
on
ern is to �nd, for a given asymmetri


mat
hing O, a 
ompatible spe
ial mat
hing. To get one, it is suÆ
ient to �nd

a partial mat
hing S 
onsisting of 3 odd edges with distin
t dire
tions, in su
h

a way that there is an indu
ed path in (X

+

; S [ O), 
onsisting of 3 S-edges

alternating with 2 O-edges. (Here, an S-edge is simply an edge from S.) Indeed,

sin
e the path is indu
ed, its endverti
es are not 
onne
ted by an O-edge, so the
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remaining 2 O-edges extend the path to an alternating path of length 7, and it

is easy to see that we may add the edge 
onne
ting its endverti
es to S. This

observation will be useful in the proof of the following proposition.

Proposition 10.1 For any asymmetri
 mat
hing O on X

+

, there is a 
ompatible

spe
ial mat
hing.

Proof. Any � -edge is adja
ent to exa
tly 2 edges from O. Assume �rst that

there is a � -edge, say f a; a+ � g, su
h that both of the adja
ent edges from O

are of the same parity.

Sin
e O does not in
lude any � -edge, we may put f a; a+ � g in S. Let

f a; x g; f a+ �; y g be the adja
ent O-edges. We may assume that j y j = j a j,

using a + � instead of a if ne
essary.

Clearly x; y =2 f a; a+ � g, x 6= y, and by (3), x 6= y + � .

Set

�(x) = a+ x + y + �;

�(y) = a+ x + y:

De�ne the two remaining edges of S by joining x to �(x) and y to �(y). First,

it is easy to 
he
k algebrai
ally that �(x); �(y) do not fall in f x; y; a; a+ � g. For

instan
e, if �(x) = y, then x = a + � , whi
h we know to be false. The other

inequalities are no harder.

Se
ond, �(x) and �(y) form a � -edge, whi
h 
annot appear in O. It follows

that (�(x); x; a; a+ �; y; �(y)) is an indu
ed alternating path in S [O.

Finally, note that f x; �(x) g and f y; �(y)g are odd edges whose dire
tions

are distin
t and both di�erent from � . Thus we are free to add them to S. This

�nishes the �rst 
ase.

For the se
ond 
ase, assume that all � -edges are adja
ent to one odd and one

even edge of O. Take the � -edge f (000); � g; let a be the end-vertex adja
ent to

an even O-edge ax and let y be the end-point of the (odd) edge adja
ent to a+ � .

Clearly jx j = j y j = j a j.

Set

�(x) = a+ x + y + �;

�(y) = x + �:

As before, it is straightforward to 
he
k that the sequen
e (�(x); x; a; a +

�; y; �(y)) de�nes an alternating path, the edges f x; �(x) g and f y; �(y)g are

odd, and their dire
tions are distin
t and di�erent from � .

We need to show, however, that O does not join �(x) to �(y). Sin
e

j�(x) + �(y) j = j a+ y j = 0;
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f�(x); �(y)g is an even edge. If it were 
ontained in O, then the � -edge

f x; x+ � g = f x; �(y)g would be adja
ent to two even O-edges, 
ontrary to

our assumption. Hen
e we may 
omplete S as ne
essary. 2

Using Proposition 7.2, we 
an easily �nish the argument for the green-green


ase, thus establishing Theorem 1.3.
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