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Abstract

We show that if G is a 4-connected claw-free graph in which every
induced hourglass subgraph S contains two non-adjacent vertices with a
common neighbor outside S, then G is hamiltonian. This extends the fact
that 4-connected claw-free, hourglass-free graphs are hamiltonian, thus
proving a broader special case of a conjecture by Matthews and Sumner.

1 Introduction

A well-known conjecture of Matthews and Sumner (see [7]) states that all 4-
connected claw-free graphs are hamiltonian. (A graph is claw-free if it contains no
claw, that is, no induced K5 3.) While the conjecture is still wide open, it has been
proved in various special cases. One such result concerns induced hourglasses, i.e.,
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induced subgraphs isomorphic to the graph in Fig. 1a: if a 4-connected claw-free
graph is hourglass-free (contains no induced hourglass), then it is hamiltonian.
This was observed independently by several authors; see, e.g., [1].
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Figure 1: (a) An hourglass. (b) A common neighbor as in the hourglass property.

In the present paper, we generalize this result to graphs which may contain
some induced hourglasses. A graph G has the hourglass property if in every

induced hourglass S, there are two non-adjacent vertices which have a common
neighbor in G — V(S) (see Fig. 1b). We prove:

Theorem 1 FEvery 4-connected claw-free graph with the hourglass property is
hamiltonian.

2 Notation

Let us fix some notation. The induced subgraph G’ of a graph G on vertices
V(G') ={ai1,a,... a5} is denoted by (aias...ax),. The order of the vertices
has a special meaning whenever we speak of an induced hourglass: (abede), is
an hourglass centered at a and containing edges bc and de (such as the one in
Fig. 1). We use a similar convention for claws: by saying that (abcd), is a claw,
we always mean that a is the center.

The neighborhood of a vertex v in G is denoted by Ng(v). (Note that v ¢
Ne(v).) With a slight abuse of notation, we also write Ng(v) for the induced
subgraph (N¢(v)),. The vertex v is locally connected if Ng(v) is connected.
Otherwise, v is locally disconnected.

3  Stability

We need the concept of the claw-free closure as defined in [9]. Let G be a claw-
free graph. If x is a locally connected vertex of GG, then the local completion at
x is the operation of adding all possible edges between vertices in Ng(x). The
resulting graph, denoted by G, is easily shown to be claw-free again. Iterating
local completions, we finally arrive at a graph in which all locally connected
vertices have complete neighborhoods. This graph does not depend on the order
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of local completions (which is not quite obvious); it is called the closure of G and
denoted by cl(G).

Theorem 2 (Ryjacek [9]) For a claw-free graph G,

(1) the (well-defined) closure cl(G) of G is the line graph of some triangle-free
graph,

(11) the closure is idempotent, i.e. cl(cl(G)) = cl(G),
(iii) G is hamiltonian if and only if cl(G) is hamiltonian.
The following proposition will enable us to restrict our attention to line graphs.

Proposition 3 Let G be a claw-free graph having the hourglass property. Then
its closure cl(G) has the hourglass property, too.

The proof of Proposition 3 is given below. First note that a local completion of
an hourglass-free graph GG may contain induced hourglasses. However, as shown
in [2], all such hourglasses are destroyed by subsequent local completions, so the
closure ¢l(G) is hourglass-free. This motivates the following definition.

An induced hourglass in G is permanent if its vertex set induces an hourglass
in cl(G). The graph G has the permanent hourglass property if for every per-
manent induced hourglass S C G, some two non-adjacent vertices of S have a
common neighbor in G — V(S). Thus the permanent hourglass property is just
the hourglass property restricted to permanent hourglasses. We shall need two
lemmas about the closure.

Lemma 4 Let v be a vertex of a claw-free graph G. If u is any internal vertex
of an induced path in Ng(v), then Nygy(u) is complete.

Proof. Follows easily from the observations that v must be a locally connected
vertex in (¢, and that local completions cannot make any locally connected vertex
locally disconnected. O

Lemma 5 An induced hourglass H = (ab1b26102>G i a claw-free graph G s
permanent if and only if Ny (a) contains no byc;-path.

Proof. Assume that H is permanent. If Ny)(a) contains a b;c;-path, then the
edges b1by and c;c; are in the same component of N q) (a). Since each component
of Neye)(a) is clearly a complete subgraph, H cannot be an induced hourglass.

For the converse, note that an edge joining b; and c¢; is a particular example
of a b;c;-path. If there are no such edges, then H is an induced subgraph of ¢l/(G)
and is therefore permanent. O



Proposition 6 If a claw-free graph G has the permanent hourglass property,
then so does its local completion G', at any locally connected vertex x.

Proof. Suppose that H = (ab1b20102>% is a permanent hourglass in G’
such that no b; has a common neighbor with any ¢; except a. Trivially, H~ =
(abibycicy), cannot be an induced hourglass, for it would be permanent and the
above common neighbor would have to exist.

Thus, some edges of H are missing in H~. At least one edge adjacent to a
must be missing. To see this, note that if bjby ¢ E(H~) and H~ contains all the
edges adjacent to a, then (abibsc1) is a claw. By symmetry, we may henceforth
assume that ab; ¢ E(H ). Since the local completion at z in G' adds the edge
aby, we have za,zb, € E(G). Since b; is non-adjacent in G’ to ¢; (for i = 1,2),
and ac; € E(G), we can conclude that ac; € E(G). The same argument proves
that ¢;co € E(G).

Choose a shortest abj-path P in Ng(z) and let p be the neighbor of a on
P. (Refer to Fig. 2 for an illustration.) We claim that J = (azpcics), is an
hourglass. If not, then either xc; or pc; is an edge for some ¢. In either case,
we get a bici-path in N¢r (a) and hence in Ny (a); these paths are byzc; and
bixpc;, respectively. By Lemma 5, H is not permanent. This contradiction implies
that J is an hourglass. In fact, J is a permanent hourglass: if a subsequent local
completion destroys J, the added edge (xc; or pe;) creates a by¢;-path in Ny (a).
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Figure 2: An illustration to the proof of Proposition 6. ‘Guaranteed’ edges of G
are shown black, those of G/, grey, the hourglass J bold.

By the permanent hourglass property of G, either x or v has a common
neighbor d with some ¢;. If d is a common neighbor of = and ¢;, then b1d € E(G.,)
and d is a common neighbor of b; and ¢; in H, a contradiction.

Hence we may assume that d is a common neighbor of p and ¢; in G. By
Lemma 4, Ny)(p) is complete, and thus ad is an edge in c/(G). But then
bizpdc; is a path in Ny (a), so H is not permanent by Lemma 5. This finishes
the proof. O



Proof of Proposition 3. If G has the hourglass property, then in particular,
it has the permanent hourglass property. By Proposition 6 (used once for each
local completion), so does c¢l(G). However, as cl(cl(G)) = ¢l(G), all induced
hourglasses in ¢l(G) are permanent, so ¢/(G) in fact has the hourglass property
as required. 0O

4 Collapsible graphs

We utilize the concept of a collapsible graph, introduced by Catlin [3] (see also
[4]). A graph G is collapsible if for any subset X C V(G) of even size, one can
find a connected spanning subgraph A C G such that the set of vertices v with
odd degree dy (v) is precisely X. If H is any subgraph of G, then the graph G/H
is obtained by contracting H to a single vertex, discarding any loops but keeping
all multiple edges.

Theorem 7 (Catlin [3]) Let H be a collapsible subgraph of G. Then G has a
spanning closed trail if and only if G/H does.

A large supply of collapsible graphs is provided by the following theorem.
Theorem 8 (Catlin [3]) Any 4-edge-connected graph is collapsible.

A different class of collapsible graphs is obtained from the following remark-
able result of Lai [6] (conjectured by P. Catlin as a strengthening of a conjecture
due to Paulraja [8]).

Theorem 9 (Lai [6]) Let G be a 2-connected graph with minimum degree 6(G) >
3. If every edge of G is contained in a cycle of length at most 4, then G 1is col-
lapsible.

5 Line graphs

By Section 3, we may restrict our attention to the class of line graphs of triangle-
free graphs. This offers us the advantage of passing to the preimage G of the line
graph L(G). We first need to interpret the hourglass condition in this setting.

An I-tree in G is any subgraph of G isomorphic to the (unique) tree J on 6
vertices, 2 of which have degree 3 in J. (Note that the tree is shaped like the
letter I, see Fig. 3.) To describe an I-tree, we only give its edges, listing the edge
joining the degree 3 vertices as the first one. A graph G has the I-tree property
if in any I-tree J C G, there are two vertices of distance 3 in J that are adjacent
in G.



Figure 3: An I-tree (black) for which the I-tree property is satisfied.

Lemma 10 A triangle-free graph G has the I-tree property if and only if its line
graph L(G) has the hourglass property.

Proof. To prove the ‘if’ part, let L(G) have the hourglass property and let
J = {zy,xx1, 239, yy1,yy2 } be an I-tree in G. The edges of J constitute an
induced hourglass in L(G), and so there is an edge e # zy adjacent to, say, both
zxy and yy;. Since G is triangle-free, e ¢ {xy;,yr; }, and so e = z1y;. Since
J was arbitrary, we have established the I-tree property for G. The ‘only if’
implication is even more straightforward. O

The characterization of the preimages of hamiltonian line graphs is well-
known. Recall that a closed trail 7" in a graph G is dominating if G — V(T')
is an edgeless graph.

Theorem 11 (Harary—Nash-Williams [5]) The line graph L(G) of a graph
G 1s hamiltonian if and only if G has a dominating closed trail.

A graph is essentially k-edge-connected if every edge cut of size less than k is
trivial (no more than one component contains any edges). It is easy to see that G
is essentially k-edge-connected if and only if its line graph L(G) is k-connected.

We shall derive Theorem 1 directly from the following proposition. One defi-
nition: to suppress a degree 2 vertex means to contract one of the edges incident
with it (discarding the loop).

Proposition 12 Any essentially 4-edge-connected, triangle-free graph with the
I-tree property has a dominating closed trail.

Proof. Let G be a graph with the stated properties. Let A be the set of vertices
of degree 1 in GG. The graph G — A has no degree one vertices, for otherwise we
could find an essential 1-cut in G. Similarly, every vertex of degree 2 in G — A
has degree 2 in G.

Let B, C V(G — A) be the set of vertices of degree 2 contained in some
4-cycle, and denote the set of all other degree 2 vertices of G — A by B. (The
proof is illustrated in Fig. 4.) Define G, to be the graph obtained from G — A by
suppressing all vertices in B,. We aim to show that each component of G, — B
is collapsible.



Figure 4: The structure of the graph G. Vertices in A are represented by grey
dots, those in B by black ones, and those in B, by ¢. The ovals correspond to
the components of G, — B.

Thus let C' be a component of G, — B. If C is trivial (i.e. it consists of a
single vertex), there is nothing to prove. We thus assume that C' contains at least
two vertices. It is our aim to verify the hypotheses of Theorem 9 for C.

We claim that the minimum degree in C'is at least 3. Suppose, to the contrary,
that v € V(C) is a vertex of degree less than 3. Clearly dg_a(v) > 3 for otherwise
it would have been either deleted or suppressed. Hence v has a neighbor w, € B
in the graph G — A. We claim that in fact, it has at least two neighbors in B™.
If not, then the edges of C' incident with v, together with the edge e € F(G — A)
incident with w; but not with v, constitute an essential cut in G of size at most
3. This is impossible, so v has another neighbor wy € B.

By our assumption that C' is non-trivial, v is adjacent to a vertex z € V(C).
Similarly as for v, we have dg_4(z) > 3, so we may choose two neighbors yi, yo €
V(G —A) of z. Since G contains no triangles, w; ¢ { y1,y2 } for i = 1,2. Thus the
edge set { vz, vwy, vwy, 2y1, 2y, } induces an I-tree. By the I-tree property, there
is an edge between some w; and some y;, which yields a 4-cycle vzy;w; containing
w;, again a contradiction. We have shown that 6(C') > 3. The same argument
shows that every edge of C'is contained in a 4-cycle of C'.

Finally, we need to show that C'is 2-connected. To begin with, C' cannot be
just a single edge, since §(C') > 3. Assume thus that u is a cut-vertex of C', and
choose its neighbors uy, uy in different components of C' — u. Since 6(C) > 3, u
has a third neighbor uz. Similarly, u; has at least two neighbors a, b besides u.
If us ¢ {a,b}, we may consider the I-tree with edges { wuy,uja, u1b, uus, uus }.
Since an edge between uy and either of a or b is ruled out (u is a cut-vertex), we



must have an edge between uz and a or b. To sum up, us is adjacent either to u,;
or to one of its neighbors other than u. A symmetric argument shows the same
for uy in place of u;. But then us shows that w is not a cut-vertex.

We have proved that every non-trivial component C' of G, — B satisfies the
requirements of Theorem 9 and is therefore collapsible. Let H be the graph
obtained from G, by suppressing all vertices in B. Consider all non-trivial com-
ponents C' of G,— B as subgraphs of H, contract them and suppress all vertices in
B. Each vertex of the resulting graph H' corresponds to a component of G' — B,
each edge of H' corresponds to a vertex in B. It is easy to see that H' is 4-edge-
connected, for every edge cut in H' gives rise to an essential edge cut in GG of the
same size. By Theorem 8, H' has a spanning closed trail, and hence Theorem 7
implies that H has a spanning closed trail 7. It is routine to check that the
corresponding closed trail in G dominates every edge adjacent to a vertex in A,

B or B,, and hence it is a dominating closed trail in G. The proof is complete.
O

We now prove our main theorem.

Proof of Theorem 1. Let H be a 4-connected claw-free graph satisfying the
hourglass condition. By Proposition 3 and Theorem 2, we may assume that H is
a line graph, say H = L(G), where G is essentially 4-connected and triangle-free.
By Lemma 10, G has the I-tree property. By Proposition 12, G has a dominating
closed trail, and hence, by Theorem 11, H is hamiltonian. O

Remark 13 The assumption of Theorem 1 that G is 4-connected cannot be
relaxed to include 3-connected graphs, even with a lower bound on the minimum
degree. This is demonstrated by the following example. Let k& be an integer.
Subdivide each edge of the Petersen graph by one vertex, attach k£ pendant edges
to each vertex of degree 3, and denote the line graph of the resulting graph by H.
Then H is 3-connected with minimum degree §(H) = k + 2. Since H contains
no induced hourglass, it trivially has the hourglass property. It is, however,
non-hamiltonian.
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