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Abstract

We show that if G is a 4-connected claw-free graph in which every

induced hourglass subgraph S contains two non-adjacent vertices with a

common neighbor outside S, then G is hamiltonian. This extends the fact

that 4-connected claw-free, hourglass-free graphs are hamiltonian, thus

proving a broader special case of a conjecture by Matthews and Sumner.

1 Introduction

A well-known conjecture of Matthews and Sumner (see [7]) states that all 4-

connected claw-free graphs are hamiltonian. (A graph is claw-free if it contains no

claw, that is, no induced K

1;3

.) While the conjecture is still wide open, it has been

proved in various special cases. One such result concerns induced hourglasses, i.e.,
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induced subgraphs isomorphic to the graph in Fig. 1a: if a 4-connected claw-free

graph is hourglass-free (contains no induced hourglass), then it is hamiltonian.

This was observed independently by several authors; see, e.g., [1].
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Figure 1: (a) An hourglass. (b) A common neighbor as in the hourglass property.

In the present paper, we generalize this result to graphs which may contain

some induced hourglasses. A graph G has the hourglass property if in every

induced hourglass S, there are two non-adjacent vertices which have a common

neighbor in G� V (S) (see Fig. 1b). We prove:

Theorem 1 Every 4-connected claw-free graph with the hourglass property is

hamiltonian.

2 Notation

Let us �x some notation. The induced subgraph G

0

of a graph G on vertices

V (G

0

) = f a

1

; a

2

; : : : ; a

k

g is denoted by ha

1

a

2

: : : a

k

i

G

. The order of the vertices

has a special meaning whenever we speak of an induced hourglass: habcdei

G

is

an hourglass centered at a and containing edges bc and de (such as the one in

Fig. 1). We use a similar convention for claws: by saying that habcdi

G

is a claw,

we always mean that a is the center.

The neighborhood of a vertex v in G is denoted by N

G

(v). (Note that v =2

N

G

(v).) With a slight abuse of notation, we also write N

G

(v) for the induced

subgraph hN

G

(v)i

G

. The vertex v is locally connected if N

G

(v) is connected.

Otherwise, v is locally disconnected.

3 Stability

We need the concept of the claw-free closure as de�ned in [9]. Let G be a claw-

free graph. If x is a locally connected vertex of G, then the local completion at

x is the operation of adding all possible edges between vertices in N

G

(x). The

resulting graph, denoted by G

0

x

, is easily shown to be claw-free again. Iterating

local completions, we �nally arrive at a graph in which all locally connected

vertices have complete neighborhoods. This graph does not depend on the order
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of local completions (which is not quite obvious); it is called the closure of G and

denoted by cl(G).

Theorem 2 (Ryj�a�cek [9]) For a claw-free graph G,

(i) the (well-de�ned) closure cl(G) of G is the line graph of some triangle-free

graph,

(ii) the closure is idempotent, i.e. cl(cl(G)) = cl(G),

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

The following proposition will enable us to restrict our attention to line graphs.

Proposition 3 Let G be a claw-free graph having the hourglass property. Then

its closure cl(G) has the hourglass property, too.

The proof of Proposition 3 is given below. First note that a local completion of

an hourglass-free graph G may contain induced hourglasses. However, as shown

in [2], all such hourglasses are destroyed by subsequent local completions, so the

closure cl(G) is hourglass-free. This motivates the following de�nition.

An induced hourglass in G is permanent if its vertex set induces an hourglass

in cl(G). The graph G has the permanent hourglass property if for every per-

manent induced hourglass S � G, some two non-adjacent vertices of S have a

common neighbor in G � V (S). Thus the permanent hourglass property is just

the hourglass property restricted to permanent hourglasses. We shall need two

lemmas about the closure.

Lemma 4 Let v be a vertex of a claw-free graph G. If u is any internal vertex

of an induced path in N

G

(v), then N

cl(G)

(u) is complete.

Proof. Follows easily from the observations that u must be a locally connected

vertex in G, and that local completions cannot make any locally connected vertex

locally disconnected. 2

Lemma 5 An induced hourglass H = hab

1

b

2

c

1

c

2

i

G

in a claw-free graph G is

permanent if and only if N

cl(G)

(a) contains no b

i

c

j

-path.

Proof. Assume that H is permanent. If N

cl(G)

(a) contains a b

i

c

j

-path, then the

edges b

1

b

2

and c

1

c

2

are in the same component of N

cl(G)

(a). Since each component

of N

cl(G)

(a) is clearly a complete subgraph, H cannot be an induced hourglass.

For the converse, note that an edge joining b

i

and c

j

is a particular example

of a b

i

c

j

-path. If there are no such edges, then H is an induced subgraph of cl(G)

and is therefore permanent. 2
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Proposition 6 If a claw-free graph G has the permanent hourglass property,

then so does its local completion G

0

x

at any locally connected vertex x.

Proof. Suppose that H = hab

1

b

2

c

1

c

2

i

G

0

x

is a permanent hourglass in G

0

x

such that no b

i

has a common neighbor with any c

j

except a. Trivially, H

�

=

hab

1

b

2

c

1

c

2

i

G

cannot be an induced hourglass, for it would be permanent and the

above common neighbor would have to exist.

Thus, some edges of H are missing in H

�

. At least one edge adjacent to a

must be missing. To see this, note that if b

1

b

2

=2 E(H

�

) and H

�

contains all the

edges adjacent to a, then hab

1

b

2

c

1

i

G

is a claw. By symmetry, we may henceforth

assume that ab

1

=2 E(H

�

). Since the local completion at x in G adds the edge

ab

1

, we have xa; xb

1

2 E(G). Since b

1

is non-adjacent in G

0

x

to c

i

(for i = 1; 2),

and ac

i

2 E(G

0

x

), we can conclude that ac

i

2 E(G). The same argument proves

that c

1

c

2

2 E(G).

Choose a shortest ab

1

-path P in N

G

(x) and let p be the neighbor of a on

P . (Refer to Fig. 2 for an illustration.) We claim that J = haxpc

1

c

2

i

G

is an

hourglass. If not, then either xc

i

or pc

i

is an edge for some i. In either case,

we get a b

1

c

i

-path in N

G

0

x

(a) and hence in N

cl(G)

(a); these paths are b

1

xc

i

and

b

1

xpc

i

, respectively. By Lemma 5,H is not permanent. This contradiction implies

that J is an hourglass. In fact, J is a permanent hourglass: if a subsequent local

completion destroys J , the added edge (xc

i

or pc

i

) creates a b

1

c

i

-path in N

cl(G)

(a).

x

a

b

1

b

2

c

1

c

2

p

d

P

Figure 2: An illustration to the proof of Proposition 6. `Guaranteed' edges of G

are shown black, those of G

0

x

grey, the hourglass J bold.

By the permanent hourglass property of G, either x or v has a common

neighbor d with some c

i

. If d is a common neighbor of x and c

i

, then b

1

d 2 E(G

0

x

)

and d is a common neighbor of b

1

and c

i

in H, a contradiction.

Hence we may assume that d is a common neighbor of p and c

i

in G. By

Lemma 4, N

cl(G)

(p) is complete, and thus ad is an edge in cl(G). But then

b

1

xpdc

i

is a path in N

cl(G)

(a), so H is not permanent by Lemma 5. This �nishes

the proof. 2
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Proof of Proposition 3. If G has the hourglass property, then in particular,

it has the permanent hourglass property. By Proposition 6 (used once for each

local completion), so does cl(G). However, as cl(cl(G)) = cl(G), all induced

hourglasses in cl(G) are permanent, so cl(G) in fact has the hourglass property

as required. 2

4 Collapsible graphs

We utilize the concept of a collapsible graph, introduced by Catlin [3] (see also

[4]). A graph G is collapsible if for any subset X � V (G) of even size, one can

�nd a connected spanning subgraph H � G such that the set of vertices v with

odd degree d

H

(v) is precisely X. If H is any subgraph of G, then the graph G=H

is obtained by contracting H to a single vertex, discarding any loops but keeping

all multiple edges.

Theorem 7 (Catlin [3]) Let H be a collapsible subgraph of G. Then G has a

spanning closed trail if and only if G=H does.

A large supply of collapsible graphs is provided by the following theorem.

Theorem 8 (Catlin [3]) Any 4-edge-connected graph is collapsible.

A di�erent class of collapsible graphs is obtained from the following remark-

able result of Lai [6] (conjectured by P. Catlin as a strengthening of a conjecture

due to Paulraja [8]).

Theorem 9 (Lai [6]) Let G be a 2-connected graph with minimum degree �(G) �

3. If every edge of G is contained in a cycle of length at most 4, then G is col-

lapsible.

5 Line graphs

By Section 3, we may restrict our attention to the class of line graphs of triangle-

free graphs. This o�ers us the advantage of passing to the preimage G of the line

graph L(G). We �rst need to interpret the hourglass condition in this setting.

An I-tree in G is any subgraph of G isomorphic to the (unique) tree J on 6

vertices, 2 of which have degree 3 in J . (Note that the tree is shaped like the

letter I, see Fig. 3.) To describe an I-tree, we only give its edges, listing the edge

joining the degree 3 vertices as the �rst one. A graph G has the I-tree property

if in any I-tree J � G, there are two vertices of distance 3 in J that are adjacent

in G.
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Figure 3: An I-tree (black) for which the I-tree property is satis�ed.

Lemma 10 A triangle-free graph G has the I-tree property if and only if its line

graph L(G) has the hourglass property.

Proof. To prove the `if' part, let L(G) have the hourglass property and let

J = f xy; xx

1

; xx

2

; yy

1

; yy

2

g be an I-tree in G. The edges of J constitute an

induced hourglass in L(G), and so there is an edge e 6= xy adjacent to, say, both

xx

1

and yy

1

. Since G is triangle-free, e =2 f xy

1

; yx

1

g, and so e = x

1

y

1

. Since

J was arbitrary, we have established the I-tree property for G. The `only if'

implication is even more straightforward. 2

The characterization of the preimages of hamiltonian line graphs is well-

known. Recall that a closed trail T in a graph G is dominating if G � V (T )

is an edgeless graph.

Theorem 11 (Harary{Nash-Williams [5]) The line graph L(G) of a graph

G is hamiltonian if and only if G has a dominating closed trail.

A graph is essentially k-edge-connected if every edge cut of size less than k is

trivial (no more than one component contains any edges). It is easy to see that G

is essentially k-edge-connected if and only if its line graph L(G) is k-connected.

We shall derive Theorem 1 directly from the following proposition. One de�-

nition: to suppress a degree 2 vertex means to contract one of the edges incident

with it (discarding the loop).

Proposition 12 Any essentially 4-edge-connected, triangle-free graph with the

I-tree property has a dominating closed trail.

Proof. Let G be a graph with the stated properties. Let A be the set of vertices

of degree 1 in G. The graph G� A has no degree one vertices, for otherwise we

could �nd an essential 1-cut in G. Similarly, every vertex of degree 2 in G � A

has degree 2 in G.

Let B

�

� V (G � A) be the set of vertices of degree 2 contained in some

4-cycle, and denote the set of all other degree 2 vertices of G � A by B. (The

proof is illustrated in Fig. 4.) De�ne G

�

to be the graph obtained from G�A by

suppressing all vertices in B

�

. We aim to show that each component of G

�

� B

is collapsible.
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�

�

�

�

Figure 4: The structure of the graph G. Vertices in A are represented by grey

dots, those in B by black ones, and those in B

�

by �. The ovals correspond to

the components of G

�

�B.

Thus let C be a component of G

�

� B. If C is trivial (i.e. it consists of a

single vertex), there is nothing to prove. We thus assume that C contains at least

two vertices. It is our aim to verify the hypotheses of Theorem 9 for C.

We claim that the minimum degree in C is at least 3. Suppose, to the contrary,

that v 2 V (C) is a vertex of degree less than 3. Clearly d

G�A

(v) � 3 for otherwise

it would have been either deleted or suppressed. Hence v has a neighbor w

1

2 B

in the graph G� A. We claim that in fact, it has at least two neighbors in B

�

.

If not, then the edges of C incident with v, together with the edge e 2 E(G�A)

incident with w

1

but not with v, constitute an essential cut in G of size at most

3. This is impossible, so v has another neighbor w

2

2 B.

By our assumption that C is non-trivial, v is adjacent to a vertex z 2 V (C).

Similarly as for v, we have d

G�A

(z) � 3, so we may choose two neighbors y

1

; y

2

2

V (G�A) of z. Since G contains no triangles, w

i

=2 f y

1

; y

2

g for i = 1; 2. Thus the

edge set f vz; vw

1

; vw

2

; zy

1

; zy

2

g induces an I-tree. By the I-tree property, there

is an edge between some w

i

and some y

j

, which yields a 4-cycle vzy

j

w

i

containing

w

i

, again a contradiction. We have shown that �(C) � 3. The same argument

shows that every edge of C is contained in a 4-cycle of C.

Finally, we need to show that C is 2-connected. To begin with, C cannot be

just a single edge, since �(C) � 3. Assume thus that u is a cut-vertex of C, and

choose its neighbors u

1

; u

2

in di�erent components of C � u. Since �(C) � 3, u

has a third neighbor u

3

. Similarly, u

1

has at least two neighbors a; b besides u.

If u

3

=2 f a; b g, we may consider the I-tree with edges f uu

1

; u

1

a; u

1

b; uu

2

; uu

3

g.

Since an edge between u

2

and either of a or b is ruled out (u is a cut-vertex), we
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must have an edge between u

3

and a or b. To sum up, u

3

is adjacent either to u

1

or to one of its neighbors other than u. A symmetric argument shows the same

for u

2

in place of u

1

. But then u

3

shows that u is not a cut-vertex.

We have proved that every non-trivial component C of G

�

� B satis�es the

requirements of Theorem 9 and is therefore collapsible. Let H be the graph

obtained from G

�

by suppressing all vertices in B. Consider all non-trivial com-

ponents C of G

�

�B as subgraphs of H, contract them and suppress all vertices in

B. Each vertex of the resulting graph H

0

corresponds to a component of G

0

�B,

each edge of H

0

corresponds to a vertex in B. It is easy to see that H

0

is 4-edge-

connected, for every edge cut in H

0

gives rise to an essential edge cut in G of the

same size. By Theorem 8, H

0

has a spanning closed trail, and hence Theorem 7

implies that H has a spanning closed trail T . It is routine to check that the

corresponding closed trail in G dominates every edge adjacent to a vertex in A,

B or B

�

, and hence it is a dominating closed trail in G. The proof is complete.

2

We now prove our main theorem.

Proof of Theorem 1. Let H be a 4-connected claw-free graph satisfying the

hourglass condition. By Proposition 3 and Theorem 2, we may assume that H is

a line graph, say H = L(G), where G is essentially 4-connected and triangle-free.

By Lemma 10, G has the I-tree property. By Proposition 12, G has a dominating

closed trail, and hence, by Theorem 11, H is hamiltonian. 2

Remark 13 The assumption of Theorem 1 that G is 4-connected cannot be

relaxed to include 3-connected graphs, even with a lower bound on the minimum

degree. This is demonstrated by the following example. Let k be an integer.

Subdivide each edge of the Petersen graph by one vertex, attach k pendant edges

to each vertex of degree 3, and denote the line graph of the resulting graph by H.

Then H is 3-connected with minimum degree �(H) = k + 2. Since H contains

no induced hourglass, it trivially has the hourglass property. It is, however,

non-hamiltonian.

References

[1] H. J. Broersma, M. Kriesell and Z. Ryj�a�cek, \On factors of 4-connected claw-

free graphs", J. Graph Theory 37 (2) (2001) 125{136.

[2] J. Brousek, Z. Ryj�a�cek and I. Schiermeyer, \Forbidden subgraphs, stability

and hamiltonicity", Discrete Math. 197/198 (1999) 29{50.

[3] P. Catlin, \A reduction method to �nd spanning eulerian subgraphs", J.

Graph Theory 12 (1) (1988) 29{45.

8



[4] P. Catlin, \Supereulerian graphs: a survey", J. Graph Theory 16 (2) (1992)

177{196.

[5] F. Harary and C. St. J. A. Nash-Williams, \On eulerian and hamiltonian

graphs and line graphs", Can. Math. Bull. 8 (1965) 701{710.

[6] H. J. Lai, \Graphs whose edges are in small cycles", Discrete Math. 94 (1)

(1991) 11{22.

[7] M. M. Matthews and D. P. Sumner, \Hamiltonian results in K

1;3

-free graphs",

J. Graph Theory 8 (1984) 139{146.

[8] P. Paulraja, \Research problem", Discrete Math. 64 (1987) 109.

[9] Z. Ryj�a�cek, \On a closure concept in claw-free graphs", J. Comb. Theory Ser.

B 70 (2) (1997) 217{224.

9


