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Abstract

The hamiltonian index of a graph G is the smallest integer k such that the k-th
iterated line graph of G is hamiltonian. We first show that, with one exceptional
case, adding an edge to a graph cannot increase its hamiltonian index. We use this
result to prove that neither the contraction of an AG(F )-contractible subgraph F

of a graph G nor the closure operation performed on G (if G is claw-free) affects
the value of the hamiltonian index of a graph G.
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1 Introduction

In this paper, we consider only finite undirected loopless graphs G = (V (G), E(G)).
However, except for Section 4, we admit G to have multiple edges. We generally follow the
most common graph-theoretical notation and terminology and for concepts and notations
not defined here we refer the reader to [1].

A dominating closed trail (abbreviated DCT) in a graph G is a closed trail (or, equiv-
alently, an eulerian subgraph) T in G such that every edge of G has at least one vertex
on T . The following result by Harary and Nash-Williams relates the existence of a DCT
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in a graph G and the existence of a hamiltonian cycle in its line graph L(G). Here the
line graph of a graph G, denoted by L(G), is the graph with vertex set E(G) and with
two vertices adjacent in L(G) if and only if the corresponding edges of G have a vertex
in common.

Theorem A [5]. Let G be a graph with at least three edges. Then L(G) is hamiltonian

if and only if G has a DCT.

If P = x1, . . . , xk is a path in a graph G and S, T ⊂ G are subgraphs of G, then we
say that P is an (S, T )-path if x1 ∈ V (S) and xk ∈ V (T ). The distance of two subgraphs
S, T ⊂ G (denoted distG(S, T )) is the minimum length of an (S, T )-path. For any integer
i ≥ 0 set Vi(G) = {v ∈ V (G) : dG(v) = i} (here dG(v) denotes the degree of a vertex v in
G) and W (G) = V (G) \ V2(G). A branch in G is a nontrivial path with endvertices in
W (G) and with internal vertices, if any, of degree 2 in G (and thus not in W (G)). If a
branch has length 1, then it has no internal vertex. Let B(G) denote the set of branches
of G, and let B1(G) be the subset of B(G) in which every branch has an end in V1(G).
For any subgraph H of G let BH(G) be the set of those branches of G which have all
edges in H.

If G is a graph and k ≥ 2 an integer, then EUk(G) denotes the set of all subgraphs H
of G that satisfy the following conditions:

(I) dH(x) ≡ 0 (mod 2) for every x ∈ V (H);

(II) V0(H) ⊆
∆(G)
⋃

i=3
Vi(G) ⊆ V (H);

(III) distG(H1, H − H1) ≤ k − 1 for every subgraph H1 of H;
(IV) |E(b)| ≤ k + 1 for every branch b ∈ B(G) \ BH(G);
(V) |E(b)| ≤ k for every branch b ∈ B1(G).

The following theorem, which can be considered as an analogue of Theorem A for
the k-th iterated line graph Lk(G) of a graph G, shows the importance of subgraphs
from EUk(G). Here Lk(G) is defined recursively by L0(G) = G,L1(G) = L(G) and
Lk(G) = L(Lk−1(G)).

Theorem B [13]. Let G be a connected graph with at least three edges and let k ≥ 2
be an integer. Then Lk(G) is hamiltonian if and only if EUk(G) 6= ∅.

The hamiltonian index of a graph G, denoted by h(G), is the smallest integer k such
that the k-th iterated line graph Lk(G) of G is hamiltonian. Thus, Theorem B equivalently
says that for an integer k ≥ 2 and for any graph G, h(G) ≤ k if and only if EUk(G) 6= ∅.

If F is a subgraph of a graph G, then a vertex x is said to be a vertex of attachment

of F in G if x ∈ V (F ) and x has a neighbor in V (G) \ V (F ). The set of all vertices of
attachment of a subgraph F in G is denoted by AG(F ).

For a subgraph F of G, G|F denotes the graph obtained from G by identifying the
vertices of F as a (new) vertex vF , and by replacing the created loops by pendant edges
(i.e. edges with one vertex of degree 1) attached to vF . We say that the graph G|F is
obtained from G by contracting the subgraph F (observe that |E(G)| = |E(G|F )|).

If G is a graph, X ⊂ V (G) and A is a partition of X into subsets, then E(A) denotes
the set of all edges a1a2 (not necessarily in E(G)) such that a1, a2 are in the same
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element of A, and GA denotes the graph with vertex set V (GA) = V (G) and edge set
E(GA) = E(G) ∪ E(A). Note that E(G) and E(A) are considered to be disjoint, i.e., if
e1 = a1a2 ∈ E(G) and e2 = a1a2 ∈ E(A), then e1, e2 are parallel edges in GA.

Let F be a graph and let A ⊂ V (F ). Following [11], we say that the graph F is
A-contractible, if for every even subset X ⊂ A and for every partition A of X into two-
element subsets the graph FA has a DCT containing all vertices of A and all edges of
E(A). Note that this definition comprises the case where X is empty and FA = F . Also,
if F is A-contractible, then F is A′-contractible for any A′ ⊂ A (since every subset X of
A′ is a subset of A).

Set dT (G) = max{ |S| : S ⊂ E(G) and there is a closed trail T ⊂ G such that every
edge e ∈ S has at least one vertex on T}. The following result was proved in [11].

Theorem C [11]. Let F be a connected graph and let A ⊂ V (F ). Then F is A-

contractible if and only if

dT (G) = dT (G|F )

for every graph G such that F ⊂ G and AG(F ) = A.

For dT (G) = |E(G)| we get the following immediate corollary.

Corollary D [11]. Let G be a graph and let F ⊂ G be an AG(F )-contractible subgraph

of G. Then G has a DCT if and only if G|F has a DCT.

Note that G|F may contain multiple edges even if G is a simple graph. However, it is
easy to observe that a multiple edge is a contractible subgraph and hence, by a series of
subsequent contractions, it is always possible to reduce G|F to a certain simple graph G′

with dT (G′) = dT (G|F ) = dT (G).

We say that a graph G is claw-free if G is a simple graph that does not contain a copy
of the claw as an induced subgraph. It is well-known that every line graph is claw-free.

Let G be a claw-free graph. A vertex x ∈ V (G) is locally connected if G[N(x)] is a
connected graph. For x ∈ V (G), the graph G′

x with vertex set V (G′
x) = V (G) and edge

set E(G′
x) = E(G) ∪ {yz| y, z ∈ N(x)} is called the local completion of G at x. It was

shown in [9] that the local completion of a claw-free graph G at x is again claw-free, and if
x is a locally connected vertex, then c(G′

x) = c(G), where c(G) denotes the circumference
of G, i.e. the length of a longest cycle in G.

The following concept was introduced in [9]. Let G be a claw-free graph and let cl(G)
be a graph obtained from G by recursively performing the local completion operation
at locally connected vertices with noncomplete neighborhood, as long as this is possible.
The graph cl(G) is called the closure of the graph G. The following theorem summarizes
basic properties of the closure operation.

Theorem E [9]. Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined,

(ii) c(cl(G)) = c(G),
(iii) cl(G) is the line graph of a triangle-free graph.
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Theorem E has the following immediate consequence.

Corollary F [9]. Let G be a claw-free graph. Then G is hamiltonian if and only if

cl(G) is hamiltonian.

If C is a class of graphs, Γ is a graph operation on C and P is a graph property, then P
is said to be stable under Γ if, for any G ∈ C, G has P if and only if Γ(G) has P . Similarly,
a graph invariant π is said to be stable under Γ if for any G ∈ C we have π(G) = π(Γ(G)).
In this terminology, Theorem C and Corollary D say that dT (G) and the existence of a
DCT are stable under the operation of contraction of an AG(F )-contractible subgraph
F , and Theorem E and Corollary F say that the circumference and hamiltonicity are
stable under the closure operation on claw-free graphs. Stability of some further graph
properties and invariants under the closure operation was studied e.g. in [2], [10], [6] or
[8] (see also the survey paper [3]).

The main results of this paper, Theorems 7 and 10, show that the hamiltonian index
is stable under the operation of contraction of an AG(F )-contractible subgraph F and
under the closure operation on claw-free graphs.

2 The hamiltonian index of a subgraph

Our first result shows that, with one exceptional case, adding an edge to a graph cannot
increase its hamiltonian index.

Theorem 1. Let G be a connected graph with at least three edges that is not a path.

Then for any two vertices a, b ∈ V (G) with dG(a) + dG(b) ≥ 3, either h(G) = 1 and

h(G + ab) = 2 or h(G) ≥ h(G + ab). Moreover, if distG(a, b) = 2, then

h(G) ≥ h(G + ab).

Proof. Let G′ = G + ab. We distinguish the following cases.

Case 1: h(G′) = 0. Then h(G) ≥ 0 = h(G′).

Case 2: h(G′) = 1. Then G′ is not hamiltonian, implying that G is also not hamiltonian.
Hence h(G) ≥ 1 = h(G′).

Case 3: h(G′) ≥ 2.
If h(G) = 0, then G is hamiltonian and since V (G) = V (G′), we have h(G′) = 0, a

contradiction.
Next, suppose h(G) = 1. Then, by Theorem A, G has a DCT T . Since h(G′) ≥ 2, T

is not a DCT of G′. Hence neither a nor b are in V (T ), and necessarily all neighbors of
a and all neighbors of b are on T. This implies that any hamiltonian cycle in L(G) is a
DCT in L(G′), implying that h(G′) ≤ 2. Since, by the assumption, h(G′) ≥ 2, we have
h(G) = 1 and h(G′) = 2.

Now, for a, b ∈ V (G) with distG(a, b) = 2, neither a nor b are in V (T ) and hence there
is a vertex cab in NG(a) ∩ NG(b) with cab ∈ V (T ). Let T ′ be a closed trail in G′ obtained
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from T by adding the cycle cababcab. Then T ′ is a DCT in G′, implying h(G′) ≤ 1, a
contradiction.

Hence we can suppose that h(G) ≥ 2 and dG(a) + dG(b) ≥ 3. By Theorem B, there is
a subgraph H ∈ EUh(G)(G). Let H ′ be the subgraph of G′ with vertex set

V (H ′) = V (H) ∪ {v ∈ {a, b} : dG′(v) ≥ 3}

and edge set
E(H ′) = E(H).

We will show that H ′ ∈ EUh(G)(G
′), i.e., H ′ satisfies the conditions (I) – (V) of the

definition of EUh(G)(G
′) for the graph G′ and k = h(G). Obviously, H ′ satisfies conditions

(I) and (II).

If one of a, b has degree 1 in G, say, dG(a) = 1, then dG(b) ≥ 2 since dG(a) + dG(b) ≥
3. The branch P of B1(G), which contains a, will become a new branch P ′ = Pb in
B(G′) \ (BH′(G′) ∪ B1(G

′)) of length |E(P )| + 1 ≤ h(G) + 1. The other branches of
B(G′) \ BH′(G) are the same as those of B(G) \ BH(G) except when dG(b) = 2 and b
is not in V (H); in this exceptional case, the branch containing b turns into two shorter
branches in B(G′) \ BH′(G′). This shows that H ′ satisfies (IV) and (V). If both a and b
have degree at least 2 in G, then the branches in B(G′)\BH′(G′) are the same as those in
B(G) \BH(G) except when a or b (or both) have degree exactly 2 in G and they are not
in V (H); in this exceptional case, the branches in B(G′) \ BH′(G′) will be shorter than
those in B(G) \ BH(G). This shows that H ′ satisfies (IV) and (V).

It remains to show that H ′ satisfies (III). Suppose there is a subgraph H ′
1 of H ′

such that distG′(H ′
1, H

′ − H ′
1) ≥ h(G) ≥ 2. It is easy to see that V (H ′

1) ∩ V (H) and
V (H ′ − H ′

1) ∩ V (H) cannot be both empty. Suppose first that V (H ′
1) ∩ V (H) = ∅ and

V (H ′ − H ′
1) ∩ V (H) 6= ∅ (note that the case that V (H ′

1) ∩ V (H) 6= ∅ and V (H ′ −
H ′

1) ∩ V (H) = ∅ is symmetric). Then V (H ′
1) ⊆ {a, b}. Let x be a vertex of H ′

1. Since
V (H ′

1) ∩ V (H) = ∅, dG(x) ≤ 2 due to (II). But by the definition of H ′, dG′(x) ≥ 3, hence
dG(x) = 2 and x belongs to a branch in B(G) \ BH(G). Since H satisfies (IV) and (V),
distG({x}, H) ≤ h(G) − 1. Now, every shortest path from V (H ′

1) to H in G is also an
(H ′

1, H
′−H ′

1)-path in G′ which implies distG′(H ′
1, H

′−H ′
1) ≤ distG({x}, H) ≤ h(G)−1, a

contradiction. This implies that H ′
1 has exactly one vertex, say, V (H ′

1) = {a}. Similarly,
distG({a}, H) ≤ h(G) − 1 and any shortest ({a}, H)-path in G is an (H ′

1, H
′ − H ′

1)-path
in G′, implying that distG′(H ′

1, H
′ − H ′

1) ≤ distG({a}, H) ≤ h(G) − 1, a contradiction.
Finally, suppose that both V (H ′

1) ∩ V (H) and V (H ′ − H ′
1) ∩ V (H) are nonempty, and

set H1 = H ′
1 ∩ H. Analogously as above, any shortest (H1, H − H1)-path in G is also an

(H ′
1, H

′ − H ′
1)-path in G′. Hence distG′(H ′

1, H
′ − H ′

1) ≤ distG(H1, H − H1) ≤ h(G) − 1,
a contradiction. This shows that H ′ satisfies (III). Thus H ′ ∈ EUh(G)(G

′), implying
h(G′) ≤ h(G).

If distG(a, b) = 2 and dG(a) + dG(b) = 2, then both a and b are on branches of length
1 which are all in B1(G). It is obvious that h(G) = 1 implies h(G′) = 1. If h(G) ≥ 2,
then every member of EUh(G)(G) is also a member of EUh(G)(G

′), thus h(G′) ≤ h(G).

Example 2. We construct an infinite family of graphs showing that the assumption
dG(a)+dG(b) ≥ 3 in Theorem 1 cannot be relaxed. Let C be a cycle of length |E(C)| ≥ 6
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and let x, y be two vertices on C with maximum distC(x, y). Take two disjoint paths P1, P2

with endvertices x′, a and y′, b, respectively. Let G be the graph obtained from C and
P1, P2 by identifying x′, x and y′, y respectively (for |E(C)| = 6 see Figure 1(a)). It is easy
to see that P1 and P2 are two branches in B1(G). If |E(P1)|, |E(P2)| ≤ (|E(C)|−2)/4, then
h(G) = max{|E(P1)|, |E(P2)|} (see [12] and [13]) and h(G + ab) = |E(P1)| + |E(P2)| =
h(G) + min{|E(P1)|, |E(P2)|} > h(G) (see [12] and [14]).
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Figure 1

Remark 3. In fact, using the method of the proof of Theorem 1 (with just a slight
modification of the proof of (IV) and (V)), it would be possible to show that without the
assumption dG(a) + dG(b) ≥ 3 one can still prove that 2h(G) ≥ h(G + ab). The graph G
from Example 2 with |E(P1)| = |E(P2)| ≤ (|E(C)| − 2)/4 gives 2h(G) = h(G + ab) (see
[14]), which shows that this inequality is sharp.

Using a similar modification of the proof of Theorem 1, it would also be possible to
prove that 2h(G) ≥ h(G′) if G is a spanning subgraph of G′. Details are left to the reader.

Example 4. Without the condition distG(a, b) = 2, we can construct a graph G such
that h(G) = 1 and h(G + ab) = 2 even if dG(a) + dG(b) ≥ 3 is required. Let t, s ≥ 3 be
integers, let C = u1u2 · · ·ut · · ·u2t · · ·ustu1 be a cycle of length st and let a and b be two
distinct vertices that are not on C. The graph G is obtained from C and a, b by adding s
new edges between a, b and ut, u2t, · · ·ust such that each of a, b is incident to at least one
and each of ut, u2t, · · · , ust is incident to exactly one of the new edges (for t = 3, s = 6
and one of the possible choices of the new edges see Figure 1(b)). By the construction,
dG(a)+dG(b) = s ≥ 3. It is easy to see (by Theorem A) that h(G) = 1 and h(G+ab) = 2.

The following corollary is easily obtained from Theorem 1.

Corollary 5. Let G be a connected graph with at least three edges that is not a path

and let G′ be a graph obtained from G by recursively adding the edges whose ends a
and b satisfy the assumptions of the first part of Theorem 1. Then either h(G) = 1 and

h(G′) = 2, or h(G) ≥ h(G′).
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3 The hamiltonian index is stable under contraction

We begin this section with the following easy observation which will be used in our proof.

Lemma 6. Let G be a graph with h(G) ≥ 2. For any H ∈ EUh(G)(G) and any subgraph

H1 of H, if the distance between H1 and H − H1 is at least 2, then the shortest path of

G between H1 and H − H1 is a branch of G, whose ends are not adjacent in G.

Proof. The lemma follows easily from the condition (II) of the definition of EUh(G)(G).

We will also need the following well-known result.

Theorem G [7]. A connected graph is eulerian if and only if each minimum edge cut

contains an even number of edges.

If G is a hamiltonian graph (i.e. h(G) = 0) and F ⊂ G is a nontrivial subgraph of G,
then G|F cannot be hamiltonian (since it has connectivity 1), and it is easy to observe
that any hamiltonian cycle in G turns into a DCT in G|F . Hence h(G) = 0 implies
h(G|F ) = 1 for any nontrivial subgraph F ⊂ G. However, the following theorem shows
that for h(G) ≥ 1, i.e. for nonhamiltonian graphs, the hamiltonian index is stable under
contraction of a contractible subgraph.

Theorem 7. Let G be a nonhamiltonian graph other than a path and F be an AG(F )-
contractible subgraph of G. Then h(G) = h(G|F ).

Proof. Let G′ = G|F . By Theorem A and Corollary D, h(G) ≤ 1 if and only if
h(G′) ≤ 1. Equivalently, h(G) ≥ 2 if and only if h(G′) ≥ 2. It is sufficient to consider the
case h(G) ≥ 2. We first prove that h(G′) ≤ h(G). By Theorem B and h(G) ≥ 2, we can
take a subgraph H in EUh(G)(G). Let H ′ be the graph obtained from H|F by deleting
the new pendant edges. We shall prove that H ′ is in EUh(G)(G

′), i.e., that H ′ satisfies
the conditions of the definition of EUh(G)(G

′) for the graph G′ and k = h(G). It is easy
to see that H ′ satisfies the conditions (I) and (II) due to Theorem G.

The following claim is immediate from the definitions of AG(F ) and A-contractible
graph.

Claim 1. Every vertex in AG(F ) has degree at least 3 in G.

Now Claim 1 and Lemma 6 easily imply that H ′ satisfies also the other conditions in
the definition of EUh(G)(G

′), and hence h(G′) ≤ h(G).
We will prove that h(G) ≤ h(G′). Since h(G′) ≥ 2, by Theorem B, we can take a

subgraph H ′ in EUh(G′)(G
′). Obviously, every edge of H ′ can be considered as an edge of

G. Set Vb(H
′) = {x ∈ F : x is an endvertex of a branch of BH′(G)} and let r(x) denote

the number of branches of BH′(G) which have x as an endvertex. Set V j
b = {x ∈ Vb(H

′) :
r(x) ≡ j (mod 2)}. Since H ′ satisfies (I),

∑

x∈V 1

b

r(x)+
∑

x∈V 2

b

r(x) =
∑

x∈Vb
r(x) = dH′(vF )

is even. But
∑

x∈V 2

b

r(x) is even, hence
∑

x∈V 1

b

r(x) is also even, which implies that |V 1
b |

is even. Let X = V 1
b and take one partition A of X into two-element subsets. Since F

7



is AG(F )-contractible, FA has a DCT T containing all vertices of AG(F ) and all edges of
E(A). Now we let H be the graph with vertex set

V (H) = V (H ′) ∪ (
∆(G)
⋃

i=3

Vi(G)) ∪ V (T )

and edge set
E(H) = E(H ′) ∪ (E(T ) \ E(A)).

We prove that H ∈ EUh(G′)(G). Obviously, H satisfies the conditions (I) and (II) in the
definition of EUh(G′)(G). Since T is a DCT which contains all vertices of AG(F ) and all
edges of E(A), by Claim 1, H satisfies (IV) and (V). By Lemma 6, H satisfies (III). Hence
H ∈ EUh(G′)(G), implying h(G) ≤ h(G′). This completes the proof of Theorem 7.

Remark 8. Catlin [4] introduced a reduction technique based on the concept of a
collapsible graph. It was shown in [11] that every collapsible graph F is V (F )-contractible.
Thus, Theorem 7 implies that the hamiltonian index is stable under contraction of a
collapsible subgraph.

4 The hamiltonian index of a claw-free graph is sta-

ble under the closure

In this section we assume all graphs to be simple (i.e., without multiple edges).

Lemma 9. Let G be a connected claw-free graph with at least three edges which is

not a path. Then

(i) h(G) = 0 if and only if h(cl(G)) = 0;
(ii) h(G) = 1 if and only if h(cl(G)) = 1.

Proof. By Corollary F, it is sufficient to prove that h(G) ≤ 1 if and only if h(cl(G)) ≤ 1.
Since V (cl(G)) = V (G), using Theorem 1 we obtain h(cl(G)) ≤ h(G). Hence h(G) ≤ 1
implies h(cl(G)) ≤ 1.

Conversely, suppose that h(cl(G)) ≤ 1, i.e., by Theorem A, cl(G) has a DCT. We prove
that G also has a DCT. It is sufficient to prove that if there is a DCT in G′ = G + xy for
any pair of vertices x and y with xy 6∈ E(G) such that they have a common neighbor cxy

in G which is a locally connected vertex of G, then there is also a DCT in G. Let P be
a shortest (x, y)-path in G[NG(cxy)]. Since G is claw-free and P is chordless, |E(P )| ≤ 3.
Since xy /∈ E(G), 2 ≤ |E(P )| ≤ 3. Let F = G[V (P ) ∪ {cxy}] and F ′ = G′[V (P ) ∪ {cxy}].
Then F is isomorphic to the graph F1 or F2 and F ′ is isomorphic to the graph F3 or F4

of Figure 2.
It is easy to verify that each of the graphs Fi is V (Fi)-contractible, i = 1, 2, 3, 4. Let

e be one of the pendant edges of G′ adjacent to the vertex vF ′ . Since G|F ≃ G′|F ′ − e
and clearly G′|F ′ has a DCT if and only if G′|F ′ − e has a DCT, by Corollary D, G′ has
a DCT if and only if G has a DCT. Hence the lemma follows.

8
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Figure 2

The following result, which is the main result of this section, shows that the hamilto-
nian index is stable under the closure operation in claw-free graphs.

Theorem 10. Let G be a connected claw-free graph with at least three edges which

is not a path. Then

h(G) = h(cl(G)).

Proof. By Lemma 9, we only need to prove the case when h(G) ≥ 2. Since G ⊆
cl(G) and V (G) = V (cl(G)), we have h(G) ≥ h(cl(G)) by the definition of cl(G) and by
Theorem 1. For the reverse inequality, it is sufficient to prove that h(G) ≤ h(G + xy) for
any pair of vertices x and y with xy 6∈ E(G) such that they have a common neighbor in
G which is a locally connected vertex of G.

Let G′ = G + xy and let u be a locally connected common neighbor of x and y.
Then there is an (x, y)-path P in G[N(u)] such that |E(P )| ≥ 2. The following claim is
immediate.

Claim 1. The internal vertices of P have degree at least 3 in G.

By Lemma 9 and since h(G) ≥ 2, we have h(cl(G)) ≥ 2. Thus, by the definition of
cl(G) and by Theorem 1, h(G′) ≥ h(cl(G)) ≥ 2. By Theorem B, EUh(G′)(G

′) 6= ∅. Taking
an H ∈ EUh(G′)(G

′), we construct a subgraph H ′ of G as follows:

V (H ′) = V (H) \ {v ∈ {x, y} : dG(v) = 2 and dH(v) = 0},

E(H ′) =

{

E(H) if xy 6∈ E(H),
(E(H)∆E(P )) \ {xy} if xy ∈ E(H),

where E(H)∆(E(P ) denotes the symmetric difference (E(H) \ E(P )) ∪ (E(P ) \ E(H)).
We show that H ′ ∈ EUh(G′)(G), i.e., H ′ satisfies the conditions of the definition of

EUh(G′)(G) for the graph G and k = h(G′). Obviously, H ′ satisfies conditions (I) and (II).
By the definition of G+xy and Claim 1, all branches of length at least 2 in G are the same
as in G′ except the case when x or y (or both) have degree 2 in G; in this exceptional case,
each of x, y is on a branch in B(G) \B1(G) with adjacent endvertices and length exactly
2. Hence by Claim 1 and Lemma 6, H ′ satisfies the other conditions of the definition
of EUh(G′)(G), implying H ′ ∈ EUh(G′)(G). By Theorem B, h(G) ≤ h(G′), which proves
Theorem 10.

Remark 11. It was shown in [11] that the operation of contraction of an AH(F )-
contractible subgraph of a graph H can be equivalently reformulated as a closure operation
performed on its line graph G = L(H). Combined with the closure concept for claw-free

9



graphs this yields a powerful closure operation on claw-free graphs, called the C-closure

(for details we refer the reader to [11]). Theorems 7 and 10 then immediately imply that
the hamiltonian index of a claw-free graph is also stable under the C-closure operation.
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