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1 IntroductionA well-known observation due to Chartrand and Pippert [2] says that a connected,locally k-connected graph is k+1-connected. If we take into account the lengthsof the paths involved in the de�nition of connectivity, we may ask, for instance,the following: Is there a function f(d) such that in any locally k-connected graphG of diameter d, any two vertices can be joined by k + 1 vertex-disjoint paths oflength at most f(d)?We discuss several related questions, usually trying to �nd disjoint paths thatare (in some sense) as short as possible, as in the following theorems (proved inSection 3). The relevant de�nitions are reviewed in the following section. Theproofs of our results, together with some sharpness examples, are given in Sections3, 4 and 5.Theorem 1 Let G be a connected, locally k-edge-connected graph, and x; y 2V (G) with dist (x; y) = d. Then there are k+1 edge-disjoint xy-paths P 0; : : : ; P ksuch that jE(P 0)j = d and jE(P i)j � 2d for 1 � i � k:�Institute of Systems Science, Academy of Mathematics and Systems Science, ChineseAcadmy of Sciences, Beijing 100080, P.R. ChinayDepartment of Mathematics, Univesity of West Bohemia, Univerzitn�� 8, 306 14 Plze�n,Czech Republic, e-mail: cadar, kaisert, ryjacek@kma.zcu.cz. This research was partlydone on a visit to the Institute of Systems Science of Academia Sinica (Beijing, China) underthe project ME 418 of the Czech Ministery of Education. These authors are partly supportedby the project LN00A056 of the Czech Ministery of Education.1



Theorem 2 Let G be a connected, locally k-vertex-connected graph, and x; y 2V (G) with dist (x; y) = d. Then there are k+1 edge-disjoint xy-paths P 0; : : : ; P ksuch that jE(P 0)j = d and 32d� 1 � jE(P i)j � 2d for 1 � i � k:Theorem 3 Let G be a connected, locally k-vertex-connected graph, and x; y 2V (G) with dist (x; y) = d. Then there are k+1 edge-disjoint xy-paths P 0; : : : ; P ksuch that jE(P 0)j = d; 32d� 1 � jE(P i)j � 2d andjjE(P i)j � jE(P j)jj � 2 for 1 � i; j � k; i 6= j:Theorem 4 Let G be a connected, locally k-vertex-connected graph, and x; y 2V (G) with dist (x; y) = d. Then there are k+1 edge-disjoint xy-paths P 0; : : : ; P ksuch that54d� 1 � jE(P i)j � 2d for i = 0; 1 and 32d� 1 � jE(P i)j � 2d for i = 2; : : : ; k:The following result says that in a connected locally k-connected graph, onecan �nd, between given two vertices, k vertex-disjoint paths, one of which is adistance path. There are examples to show that little can be said about thelengths of the other paths.Theorem 5 Let G be a locally k-connected graph, and let x; y 2 V (G) withdist (x; y) = d, where 0 < d < 1. Then there are k vertex-disjoint xy-pathsP 0; : : : ; P k�1 such that jE(P 0)j = d.It seems natural in this setting to introduce the following graph parameters.De�nition 6 Let G be a graph and k � 1 an integer. The k-diameter of G,diamk(G), is the smallest r such that any two vertices of G can be joined by kvertex-disjoint paths of length at most r. If there is no such r, we set diamk(G) =1. Note that the 1-diameter coincides with the ordinary diameter.The local k-diameter of G, diamkL(G), is the maximum k-diameter taken overall neighborhoods hN(v)i, v 2 V (G). The local diameter is de�ned to be thelocal 1-diameter.In Section 5, we prove the following bound on the k + 1-diameter in terms ofthe usual diameter and the local k-diameter. It extends the result of Chartrandand Pippert mentioned in the beginning of this section.Theorem 7 For any graph G with diamkL(G) � 2 and any integer k � 1,diamk+1(G) � k2 diam(G)�diamkL(G)� 1�:2



We remark that the existence of k disjoint paths of bounded length has beenstudied, from a di�erent perspective, by Lov�asz et al. [4]. They proved thefollowing Menger-type theorem:Theorem 8 Let x; y be vertices of a graph G. If there are at most k pairwisevertex-disjoint xy-paths of length at most `, then there is a set X � V (x; y =2 X)of size at most k`=2 such that G�X has no xy-path of length at most `.An even stronger result of this type holds if we replace `paths of length � `'by `shortest paths'. Consult [3] for the details.2 De�nitionsThe purpose of this section is to �x terminology and notation in cases whereambiguity might arise. For a background in graph theory, we refer the reader e.g.to [1].All the graphs we consider are without loops and multiple edges. Let G =(V;E) be a graph. The neighborhood of a vertex v 2 V is de�ned as N(x) =f y j xy 2 E g. For X � V , we set N(X) = Sx2X N(x). If H is a subgraph of G,we write N(H) for the neighborhood of its vertex set.The induced subgraph of G on a set X � V is denoted by hXi.G is locally k-connected if the neighborhood of every vertex is k-connected.Locally k-edge-connected graphs are de�ned in an analogous way.We use the following notation for paths. If P is a path in G passing throughvertices x and y, then we let xPy stand for the portion of P which has x and yas endpoints. If Q is another path passing through y and z, then xPyQz is thewalk arising from the concatenation of xPy and yQz. This de�nition can easilybe extended to the situation involving more than 2 paths.The distance of vertices x; y of G is denoted by dist (x; y). The length of apath is the number of edges it contains. If dist (x; y) = d, then any xy-path oflength d is called a distance xy-path or a shortest xy-path.A basic result concerning higher connectivity is the theorem of Menger [5]which says that there are k pairwise disjoint xy-paths in G if and only if theremoval of no k � 1 vertices from G disconnects x from y. In particular, if G isk-connected, then there are k pairwise disjoint xy-paths for any x; y 2 V . Weshall occasionally use the following easy consequence of this theorem:Theorem 9 If G is k-connected, then for any x 2 V and Y = f y1; : : : ; yk g � V ,there are k vertex-disjoint xyi-paths in G (i = 1; : : : ; k).A similar theorem holds for the edge-connectivity version where G is assumedk-edge-connected and the resulting paths are edge-disjoint.3



3 Edge-disjoint pathsProof of Theorem 1. Fix a shortest xy-path P 0 = x0x1 : : : xd, where x0 = xand yd = y.We shall prove the stronger assertion that the paths P 1; : : : ; P k can be chosento satisfy(1) V (P i) � V (P 0) [N(P 0) for all i=1,. . . , k;(2) the predecessors of y on P i and on P 0 are adjacent.in addition to the properties speci�ed in the theorem.The proof is by induction on the length d of the distance path.Since hN(x1)i is k-edge-connected, there are k edge-disjoint x0x2-paths�P 11 ; : : : ; �P k1 in hN(x1)i. Let yi0 be the successor of x0 on �P i1 and yi1 the prede-cessor of x2 on �P i1 (not excluding the possibility yi0 = yi1). Since V ( �P i1) � N(x1),we have yi0 2 N(x0) \ N(x1) and yi1 2 N(x1) \ N(x2) for i = 1; : : : ; k. Since allthe �P i1 are edge-disjoint, we have yi0 6= yj0 and yi1 6= yj1 for distinct i; j between 1and k. Thus we can set, for all i = 1; : : : ; k,P i1 = x0yi0x1;P i2 = � x0yi0x1yi1x2 if yi0 6= yi1;x0yi1x1 if yi0 = yi1:It is easy to see that �xing j = 1 or j = 2, the paths P ij (i = 1; : : : ; k) areedge-disjoint, satisfy (1) and (2), and their length is at most 2j. Note that sincethe P ij are disjoint, the vertices yij are distinct as i ranges over 1; : : : ; k.For the induction step, let 3 � j � d � 1 and assume we have already con-structed edge-disjoint paths P 1j ; : : : ; P kj of length at most 2j, satisfying (1) and(2). Denoting the predecessor of xj on P ij by yij�1, the disjointness of the pathsagain implies that the yij�1 are distinct. By our assumptions, hN(xj)i is k-edge-connected, and so Theorem 9 implies that there are k edge-disjoint paths �P ij inhN(xj)i joining yij�1 to xj+1 for i = 1; : : : ; k.Let yij be the predecessor of xj+1 on �P ij , i = 1; : : : ; k. Then yij 2 N(xj) \N(xj+1) and yi1j 6= yi2j for 1 � i1 < i2 � k (since the paths �P ij are edge-disjoint).Now for i = 1; : : : ; k, setP ij+1 = � x0P ijyijxj+1 if yij�1 = yij;x0P ijxj�1yijxj+1 otherwise:The paths P ij+1 satisfy (1) and (2), they are edge-disjoint, and clearly jE(P ij+1)j �jE(P ij )j+ 2 � 2(j + 1).For j = d, we get the required paths P i = P id, i = 1; : : : ; k.2 4



In fact we have shown in the proof of Theorem 1 that a pair of paths P i andP 0 (for some �xed i = 1; : : : ; k) can be constructed as a sequence of two �guresA, B depicted in Fig. 1. In such a drawing the path P 0 forms the bottom contourwhereas the path P i the upper one.
A B C DFigure 1: Four basic structures from the proof of Theorems 1, 2, 3 and 4.Proof of Theorem 2. We consider a pair of paths P i and P 0 for some �xedi = 1; : : : ; k. We will speak here about a sequence of �gures A and B.Our aim is to use some modi�cations of such a sequence (i.e. of paths P iconstructed in the proof of Theorem 1) in order to get a lower bound for thelength of paths P i (i = 1; : : : ; k).We make use of the followingClaim. Suppose we have a sequence of �gures A and B. Then a subsequence AAcan be replaced by AC (see Fig. 1).Proof. Consider two neighboring �gures A as in Fig. 2.a bc d x e fFigure 2: Illustration to the proof of Theorem 2.Let x be a common vertex of two A's. Since x is a locally k-vertex-connectedthere is a path Q in hN(x)i joining vertices a and e. We will consider now thesame path used in the proof of Theorem 1, i.e. b is the predeccessor of e. Thischoice of such a path Q for every path P i (i = 1; : : : ; k) ensure that the resultingmodi�ed paths will be still edge-disjoint.Note that since P 0 is a distance path we have ae; ab; bd; cx; fx 62 E(G)).Denote the successor of a on Q by a0 and the predeccesor of b by b0 (theorientation of Q is taken from a to e).If a0 = d, then b0 6= a0 and hfx; b0; b; e; fgi induces the �gure C. Assume nowa0 6= d. Then possibly b0 = a0 but hfx; b0; b; e; fgi induces also the �gure C. 2Note that modi�cations of paths introduced in Claim do not change the valid-ity of the upper bound from the Theorem 1. Application of Claim to the sequence5



AA : : : A gives the sequence AC : : : C. (Note that it is also possible, if needed, toconstruct in some circumstances sequences containing �gure D but we will notuse this fact.)The important fact is that it is possible to get the new modi�ed paths P iedge disjoint since now G is locally k-vertex-connected.At �rst we modify the sequences (for every i = 1; : : : ; k) from the proof ofTheorem 1 replacing subsequences AA : : :A with help of Claim by AC : : : C.Recall that these resulting paths will be edge-disjoint.The proof of the lower bound for the length of paths P i is now by induction onthe length of the modi�ed sequence (number of letters in the sequence). Firstly,for all �gures A, B, C the lower bound holds.Assume now that the lower bound holds for (modi�ed) sequences of all lengthsbetween 1 and some n. Consider a sequence Sn+1 of length n + 1. If the lastelement is B, then jE(P in+1)j = jE(P in)j + 2 � 32(d + 1)� 1 obviously holds (P indenotes the subpath of P i created by the sequence Sn). Similarly for the lastelement being C.Thus let the last element be A. The previous element must be now B, i.e. wehave a sequence Sn�1BA.If Sn�1 is empty, then it is not di�cult to check the validity of the lower boundfor BA.Suppose that Sn�1 does not contain B. By Claim Sn�1 is a sequenceACCC : : : C. Simple counting (for the whole sequence Sn�1BA) gives the lowerbound.It remains to deal with the case in which Sn�1 contains at least one B. Takethe last such B in Sn�1. We have now the sequence SpBSqCA (for some 0 �p; q � n � 1). Also here Sq is the sequence ACCC : : : C. For Sp holds theinduction hypothesis and counting the edges in the rest of the sequences givesthe lower bound. 2Proof of Theorem 3. We consider the paths P 1; : : : ; P k constructed in theproof of Theorem 2.By a common point of two paths P i and P j we mean a vertex in V (P i) \V (P j)\V (P 0). Two common points of paths P i and P j are neighboring, if thereis no other common point on P 0 between them.Firstly we introduce one useful claim. Its proof is obvious.Claim. Let c1 and c2 be two neighboring common points of two paths P i and P j.Then their subpaths c1P ic2 and c1P ic2 are of equal length or have the followingform (up to symmetry): BB and A; BACC : : : CB (C can appear here alsozero times) and ACCC : : : C or BCCC : : : CB (C can appear zero times) andCCCC : : : C.The proof of the theorem is now by induction on the length of the distance paths.If d = 1 then all paths P i are of the same length. Assume that the Theoremholds for all lengths between 1 and some d.6



Let P i and P j be two paths such that jE(P i)j�jE(P j)j > 2. Let c be the lastcommon point of P i and P j on P 0 and let P i = P i1cP i2 and P j = P j1 cP j2 . AssumejP i2j = jP j2 j. Then obviously by the induction hypothesis (applied to P i1 and P j1 )jE(P i)j� jE(P j)j � 2, a contradiction. Then we have by the previous claim (andup to symmetry) the following cases: P i2 = BB, P j2 = A or P i2 = BACC : : : CB,P j2 = ACCC : : : C or P i2 = BCCC : : : CB, P j2 = CCCC : : : C. In all these caseswe can if necessary exchange P i1 and P j1 . Since always jjE(P i2)j � jE(P j2 )jj � 2the new resulting paths satisfy the statement of the theorem. 2Proof of Theorem 4. The main idea here is to `lend' the path P 0 somelonger intervals of a path P i. Obviously, the worst case is, when all paths P i(i = 1; : : : ; k) are vertex-disjoint and consist of A and C, i.e. they are of theform ACCC : : : C. In this case take one of them, say P 1, and modify P 0 toICICIC : : : and P 1 to AICICIC : : :. By I we mean a subpath of P 0 of length2. Counting gives then the lower bound 54d� 1 for P 0 and P 1. 2Note that for k = 1 the lower bounds given in Theorem 4 are sharp. SeeFig. 3.
Figure 3: Sharpness example to Theorems 2 and 4.

4 Vertex-disjoint paths, one of them shortestWe now prove Theorem 5 which says that local k-connectivity guarantees theexistence of k vertex-disjoint xy-paths, one of which is a shortest xy-path. Notethe di�erence in comparison to Theorem 1 where there are k + 1 edge-disjointpaths.We actually prove the stronger statement that the paths can be chosen suchthat in addition, V (P i) � N�V (P 0)� f y g� (1)for all i � 1.We proceed by induction on d = dist (x; y). If d = 1, then y must have aneighbor x0 6= x (unless k = 1, in which case the assertion is trivial). There arek vertex-disjoint xx0-paths T 1; : : : ; T k in hN(y)i. Letting zi be the neighbor ofx on T i, we can de�ne P i = xziy (for 1 � i � k) and P 0 = xy. Thus, in thiscase, we get k+1 paths with the required properties, which is even more than isnecessary. 7



For the induction step, assume that the assertion is true for all pairs of verticesat distance d0 < d. Let y0 be the neighbor of y on any distance path from x to y.Since dist (x; y0) = d�1, we can �nd (by the induction hypothesis) vertex-disjointxy0-paths Q0; : : : ; Qk�1 satisfying (1) and such that jE(Q0)j = d � 1. We mayassume them to be chordless.Note that Q0 does not pass through y as dist (x; y) = d, and by (1), y doesnot lie on the other paths Qi for the same reason.Denote the predecessor of y0 on Qi (0 � i � k � 1) by yi. By Theorem 9,there are k vertex-disjoint paths �P i joining yi to y (0 � i � k � 1) in hN(y0)i.De�ne P 0 to be xQ0y0y and set, for 1 � i � k � 1,P i = xQiyi �P iy:We claim that P 0; : : : ; P k�1 are vertex-disjoint paths. To see this, observe thatV (Qi) \ V ( �P j) is empty if i 6= j, and equals f yi g if i = j. Indeed, the �P jare paths in hN(y0)i, so that any other intersection would imply a chord in thexy0-path Qi, which is however assumed chordless.Furthermore, the length of P 0 is d and condition (1) is clearly satis�ed. Thisconcludes the proof.Example 10 The following example shows that in general, we cannot expect to�nd, under the hypotheses of Theorem 5, k + 1 vertex-disjoint xy-paths, one ofwhich is of length at most �d (where � is any �xed constant).Fix integers k and `. Take a path P` of length ` on vertices v0; : : : ; v` and acomplete graph Kk+1 on vertices w0; : : : ; wk. Let H be the composition P`[Kk]in which V (P`) � fw0 g is contracted to a vertex w, and f v0 g � fw1; : : : ; wk gis contracted to a vertex v. (Multiple edges and loops are suppressed.) Takeanother copy H 0 of H (denoting a copy of v 2 V (H) by v0) and form a graph Gby identifying, in the disjoint union H [ H 0, w with (v`; w1)0, w0 with (v`; w1),and (v`; wi) with (v`; wi)0 for i � 2. (See Fig. 4 for an illustration with k = 2 and` = 3.)The vertices x = v and y = v0 are at distance 3, but it is easy to see that thelength of the shortest of any k+1 vertex-disjoint xy-paths can be made arbitrarilylarge by choosing large `.Also note that the same example (with ` large) shows that in Theorem 5, wecannot upper-bound the lengths of the paths P 1; : : : ; P k�1 if the length of P 0 is(a constant times) d.5 The k-diameterThe k-diameter and local k-diameter (k � 1) were de�ned in the Introduction.In this section, we prove Theorem 7. We begin with an easy observation on thediameter, which implies an upper bound on the local diameter of K1;r-free graphs(that is, graphs containing no induced copy of the complete bipartite graph K1;r).8



w0wv v0
Figure 4: A sharpness example for Theorem 5.Observation 11 For any graph G,diam(G) < 2�(G);where �(G) is the independence number of G.Proof. Let P = x0x1 : : : xd be a path in G of length d = diam(G) joiningvertices x0; xd whose distance is exactly d. Then the set A = f x2i j 0 � i � d=2 gmust be independent, for otherwise we could join x0 to xd by a shorter path.Since jAj � (d+ 1)=2, the claim follows. 2Corollary 12 Let r � 2. If G does not contain K1;r as an induced subgraph,then diamL(G) � 2r � 3. 2It is easy to see that diamk+1(G) � diamk(G) for any k and G. Thusdiamk(G) � diam(G). In the opposite direction, the following theorem boundsthe k + 1-diameter of G in terms of its diameter and local k-diameter.For the proof of Theorem 7, we shall need the following lemma.Lemma 13 Let G be a graph with diamk(G) � d and let S = f x1; : : : ; xk g be aset of vertices of G. Then for any vertex z =2 S, there are k vertex-disjoint pathsP1; : : : ; Pk such that each Pi is an zxi-path of length at most k2d.Proof. Since diamk(G) � d, we have, for any xi 2 S, k vertex-disjoint zxi-pathsQij (1 � j � k) of length at most d each. Let H be the subgraph of G withvertices Ski;j=1 V (Qij) and edges Ski;j=1E(Qij). Let H 0 be the graph obtainedfrom H by adding a new vertex w, together with edges wxi (1 � i � k). H 0 is9



k-vertex-connected between z and w. Indeed, no set Y of k � 1 vertices of H 0can separate z from w as Y must miss at least one vertex xi 2 S, and there arek disjoint paths joining xi to z in H 0. Thus by Menger's theorem, there are kvertex-disjoint wz-paths P 01; : : : ; P 0k in H 0. Restricting to H, these give us thezxi-paths Pi as desired. Since jE(H)j � k2d, no Pi can have more edges thanthis. 2Proof of Theorem 7. Let two vertices x; y at distance d be given. We claimthat there are k + 1 vertex-disjoint xy-paths of length at most k2d � diamkL(G).The proof is by induction on d. We may assume that diamkL(G) is �nite, i.e. thatG is locally k-connected.If d = 1 then we can �nd k vertex-disjoint xy-paths of length 2 just as in thebeginning of the proof of Theorem 5; together with the path of length 1, theyhave the desired properties. (Note the assumption that diamkL(G) � 2.)For the inductive step, let y0 be the neighbor of y on any distance path fromx to y. We may apply induction to x and y0 since dist (x; y) = d � 1. Thisyields xy0-paths Q0; : : : ; Qk as in the claim. We assume them (as we may) to bechordless. Denote by yi (0 � i � k) the predecessor of y0 on Qi. Use Lemma 13on hN(y0)i, setting S = f y1; : : : ; yk g and z = y. We get k vertex-disjoint yiy-paths �P i (1 � i � k) of length at most k2 �diamk(hN(y0)i) � k2 �diamkL(G). SinceP 0 is chordless, the �P i cannot intersect it in any vertex except y and possibly y0.For any �P i not passing through y0, we set P i = xQiyi �P iy. If some one of thepaths, say �P s, contains y0, then we let P s = xQsys �P sy0y0y and P 0 = xQ0y0 �P sy.Otherwise, we set P 0 = xQ0y0y. The lack of chords in the paths Qi implies thatwe obtain vertex-disjoint paths by this construction. The lengths of the pathsare clearly as desired, and so the proof is complete. 2Corollary 14 Let G be a connected, locally k-connected K1;r-free graph, wherek � 1 and r � 3. If diam(G) = d, thendiamk+1(G) � 2k2d(r � 2):Example 15 Theorem 7 is probably not sharp, especially if k is not �xed.However, we shall give an example of a graph G with diam(G) � d + 1,diamkL(G) � ` + 2, and diamk+1L (G) > d � `, where d and ` are any given in-tegers. Take the Cartesian product H = Pd` 
 Kk+1 of a path on d � ` + 1vertices f v0; : : : ; vd` g with the complete graph on vertices fw0; : : : ; wk g. For0 � i � d� 1, let Si � V (H) be de�ned asSi = f vi`+1; vi`+2; : : : ; vi`+`�1 g � fw0 g:To form G, �rst contract each Si to a vertex si, suppressing multiple edges andloops, and then remove all vertices (vi`; w0) where 0 < i < d. (See Fig. 5 for anillustration with d = 3; ` = 3 and k = 2.) It is straightforward to check that Ghas the required properties (to see that diamk+1(G) > d`, consider disjoint pathsbetween the vertices (v0; w0) and (vd`; w0).)10



s3s2s1(v0; w0) (v9; w0)Figure 5: An example for Theorem 7.References[1] J.A. Bondy and U.S.R. Murty: Graph Theory with Applications. Macmillan,London, 1976.[2] G. Chartrand and R.E. Pippert: Locally connected graphs. �Casopis prop�estov�an�� matematiky, 99 (1974), 158{163.[3] A. Frank: Connectivity and network ows. Handbook of Combinatorics(R.L. Graham et al. eds.), Elsevier, Amsterdam, 1995, pp. 111{177.[4] L. Lov�asz, V. Neumann-Lara and M.D. Plummer: Mengerian theorems forpaths of bounded length, Period Math. Hungar. 9 (1978), 269{276.[5] K. Menger: Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96{115.
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