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1 Introduction

A well-known observation due to Chartrand and Pippert [2] says that a connected,
locally k-connected graph is k + 1-connected. If we take into account the lengths
of the paths involved in the definition of connectivity, we may ask, for instance,
the following: Is there a function f(d) such that in any locally k-connected graph
G of diameter d, any two vertices can be joined by k + 1 vertex-disjoint paths of
length at most f(d)?

We discuss several related questions, usually trying to find disjoint paths that
are (in some sense) as short as possible, as in the following theorems (proved in
Section 3). The relevant definitions are reviewed in the following section. The

proofs of our results, together with some sharpness examples, are given in Sections
3, 4 and 5.

Theorem 1 Let G be a connected, locally k-edge-connected graph, and x,y €
V(Q) with dist(x,y) = d. Then there are k+1 edge-disjoint zy-paths P°, ..., Pk
such that

|E(P%)| =d and |E(P")| < 2d for 1 <i < k.
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Theorem 2 Let G be a connected, locally k-vertex-connected graph, and x,y €
V(Q) with dist(x,y) = d. Then there are k+1 edge-disjoint xy-paths P°, ..., Pk
such that

B(PY)| = d and gd— | < [B(PY)| < 2d for1<i <k

Theorem 3 Let G be a connected, locally k-vertex-connected graph, and x,y €
V(Q) with dist(x,y) = d. Then there are k+1 edge-disjoint zy-paths P°, ... Pk

such that 5
|[E(P")| =d, 5d—1< |E(P")| < 2d and

|E(PY)| — |BE(P)|| <2 for1<i,j <k, i#j.

Theorem 4 Let G be a connected, locally k-vertex-connected graph, and x,y €
V(GQ) with dist(x,y) = d. Then there are k+1 edge-disjoint zy-paths P°, ..., Pk
such that

Y ’ 3 .
Zd—1§|E(Pl)|§2df0ri:O,1 andid—lg |E(P")| <2d fori=2,...,k.

The following result says that in a connected locally k-connected graph, one
can find, between given two vertices, k vertex-disjoint paths, one of which is a
distance path. There are examples to show that little can be said about the
lengths of the other paths.

Theorem 5 Let G be a locally k-connected graph, and let x,y € V(G) with
dist (z,y) = d, where 0 < d < oo. Then there are k vertex-disjoint xy-paths
PO ..., P*! such that |E(P°)| = d.

It seems natural in this setting to introduce the following graph parameters.

Definition 6 Let G be a graph and £ > 1 an integer. The k-diameter of G,
diamk(G), is the smallest r such that any two vertices of G can be joined by k
vertex-disjoint paths of length at most r. If there is no such r, we set diam”*(G) =
oo. Note that the 1-diameter coincides with the ordinary diameter.

The local k-diameter of G, diam® (G), is the maximum k-diameter taken over
all neighborhoods (N(v)), v € V(G). The local diameter is defined to be the
local 1-diameter.

In Section 5, we prove the following bound on the k£ + 1-diameter in terms of
the usual diameter and the local k-diameter. It extends the result of Chartrand
and Pippert mentioned in the beginning of this section.

Theorem 7 For any graph G with diam® (G) > 2 and any integer k > 1,

diam* (@) < k* diam(G) (diam’Z(G) - 1).



We remark that the existence of k disjoint paths of bounded length has been
studied, from a different perspective, by Lovasz et al. [4]. They proved the
following Menger-type theorem:

Theorem 8 Let x,y be vertices of a graph G. If there are at most k pairwise
vertex-disjoint xy-paths of length at most €, then there is a set X C V' (z,y ¢ X)
of size at most kl/2 such that G — X has no xy-path of length at most (.

An even stronger result of this type holds if we replace ‘paths of length < ¢’
by ‘shortest paths’. Consult [3] for the details.

2 Definitions

The purpose of this section is to fix terminology and notation in cases where
ambiguity might arise. For a background in graph theory, we refer the reader e.g.
to [1].

All the graphs we consider are without loops and multiple edges. Let G =
(V,E) be a graph. The neighborhood of a vertex v € V is defined as N(x) =
{ylzy e E}. For X €V, we set N(X) =,y N(z). If H is a subgraph of G,
we write N(H) for the neighborhood of its vertex set.

The induced subgraph of G on a set X C V is denoted by (XX).

G is locally k-connected if the neighborhood of every vertex is k-connected.
Locally k-edge-connected graphs are defined in an analogous way.

We use the following notation for paths. If P is a path in G passing through
vertices x and y, then we let Py stand for the portion of P which has x and y
as endpoints. If () is another path passing through y and z, then zPyQz is the
walk arising from the concatenation of x Py and y(@)z. This definition can easily
be extended to the situation involving more than 2 paths.

The distance of vertices x,y of G is denoted by dist (z,y). The length of a
path is the number of edges it contains. If dist (x,y) = d, then any xy-path of
length d is called a distance xy-path or a shortest xy-path.

A basic result concerning higher connectivity is the theorem of Menger [5]
which says that there are k pairwise disjoint zy-paths in G if and only if the
removal of no k — 1 vertices from G disconnects x from y. In particular, if G is
k-connected, then there are k pairwise disjoint zy-paths for any =,y € V. We
shall occasionally use the following easy consequence of this theorem:

Theorem 9 IfG is k-connected, then for anyx € V andY ={yy,...,ys } CV,
there are k vertex-disjoint xy;-paths in G (i =1,...,k).

A similar theorem holds for the edge-connectivity version where G is assumed
k-edge-connected and the resulting paths are edge-disjoint.



3 Edge-disjoint paths

Proof of Theorem 1. Fix a shortest zy-path P° = zz; ...24, where 2y = x
and yq = .

We shall prove the stronger assertion that the paths P, ..., P¥ can be chosen
to satisfy

(1) V(P") c V(P°) UN(P% foralli=1,...,k,
(2) the predecessors of y on P’ and on P° are adjacent.

in addition to the properties specified in the theorem.

The proof is by induction on the length d of the distance path.

Since (N(xy)) is k-edge-connected, there are k edge-disjoint xgzy-paths
Pl ..., PFin (N(x)). Let y} be the successor of zy on P} and y! the prede-
cessor of w3 on P} (not excluding the possibility y = ). Since V(P}) C N(x),
we have y} € N(x9) N N(z) and y¢ € N(z1) N N(zg) for i =1,..., k. Since all
the P/ are edge-disjoint, we have i # ) and yi # y! for distinct 7, j between 1

and k. Thus we can set, foralli =1,...,k,
Pf = l“oyél"l;
pi - L woymyizve iy # i,
2 = i if i = o
LoY1T1 Yo = Yr-

It is easy to see that fixing 7 = 1 or j = 2, the paths PJ?' (1t =1,...,k) are
edge-disjoint, satisfy (1) and (2), and their length is at most 2j. Note that since
the P} are disjoint, the vertices y} are distinct as 7 ranges over 1,..., k.

For the induction step, let 3 < j < d — 1 and assume we have already con-
structed edge-disjoint paths le, ce Pf of length at most 2j, satisfying (1) and
(2). Denoting the predepessor of z; on P} by y;_,, the disjointness of the paths
again implies that the y;_, are distinct. By our assumptions, (N(x;)) is k-edge-
connected, and 50 Theorem 9 implies that there are £ edge-disjoint paths P in
(N(z;)) joining y;_, to xjy fori=1,... k. '

Let y; be the prgdecessor of zjyy on P}, i =1,...,k Then y; € N(z;) N
N(zjy1) and yit # y? for 1 < iy <y <k (since the paths P} are edge-disjoint).
Now fort=1,...,k, set

i e
pi xOPj.ijj-l-l. if Yi—1 = Y5
gt woPjwj_yiej,  otherwise.

The paths P}, satisfy (1) and (2), they are edge-disjoint, and clearly |E(P}, )| <
B(P) +2 2 20+ 1), o

For j = d, we get the required paths P*' =P}, i =1,... k.

o



In fact we have shown in the proof of Theorem 1 that a pair of paths P* and
P (for some fixed ¢ = 1,...,k) can be constructed as a sequence of two figures
A, B depicted in Fig. 1. In such a drawing the path P° forms the bottom contour
whereas the path P! the upper one.

A A

Figure 1: Four basic structures from the proof of Theorems 1, 2, 3 and 4.

Proof of Theorem 2. We consider a pair of paths P* and P° for some fixed
t=1,..., k. We will speak here about a sequence of figures A and B.

Our aim is to use some modifications of such a sequence (i.e. of paths P*
constructed in the proof of Theorem 1) in order to get a lower bound for the
length of paths P (i =1,...,k).

We make use of the following
Claim. Suppose we have a sequence of figures A and B. Then a subsequence AA
can be replaced by AC (see Fig. 1).

Proof. Consider two neighboring figures A as in Fig. 2.

Figure 2: Illustration to the proof of Theorem 2.

Let  be a common vertex of two A’s. Since x is a locally k-vertex-connected
there is a path @ in (N(z)) joining vertices a and e. We will consider now the
same path used in the proof of Theorem 1, i.e. b is the predeccessor of e. This
choice of such a path @Q for every path P (i =1,..., k) ensure that the resulting
modified paths will be still edge-disjoint.

Note that since P? is a distance path we have ae, ab, bd, cx, fr & E(G)).

Denote the successor of a on @ by a' and the predeccesor of b by O (the
orientation of @ is taken from a to e).

If ' =d, then V' # o and ({z,V',b,e, f}) induces the figure C. Assume now
a' # d. Then possibly b’ = a' but ({z,V,b,e, f}) induces also the figure C. O

Note that modifications of paths introduced in Claim do not change the valid-
ity of the upper bound from the Theorem 1. Application of Claim to the sequence
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AA ... A gives the sequence AC...C. (Note that it is also possible, if needed, to
construct in some circumstances sequences containing figure D but we will not
use this fact.)

The important fact is that it is possible to get the new modified paths P*
edge disjoint since now G is locally k-vertex-connected.

At first we modify the sequences (for every i = 1,...,k) from the proof of
Theorem 1 replacing subsequences AA...A with help of Claim by AC...C.
Recall that these resulting paths will be edge-disjoint.

The proof of the lower bound for the length of paths P’ is now by induction on
the length of the modified sequence (number of letters in the sequence). Firstly,
for all figures A, B, C' the lower bound holds.

Assume now that the lower bound holds for (modified) sequences of all lengths
between 1 and some n. Consider a sequence S,;q of length n + 1. If the last
element is B, then |E(P!,,)| = |E(P!)|+2 > 2(d+ 1) — 1 obviously holds (P}
denotes the subpath of P’ created by the sequence S,). Similarly for the last
element being C.

Thus let the last element be A. The previous element must be now B, i.e. we
have a sequence S,,_1BA.

If S,,_1 is empty, then it is not difficult to check the validity of the lower bound
for BA.

Suppose that S, ; does not contain B. By Claim S, _; is a sequence
ACCC'...C. Simple counting (for the whole sequence S,,_1 BA) gives the lower
bound.

It remains to deal with the case in which S,,_; contains at least one B. Take
the last such B in S,,_;. We have now the sequence S,BS,C'A (for some 0 <
p,g < n—1). Also here S, is the sequence ACCC...C. For S, holds the
induction hypothesis and counting the edges in the rest of the sequences gives
the lower bound. O

Proof of Theorem 3. We consider the paths P!,..., P* constructed in the
proof of Theorem 2.

By a common point of two paths P* and P/ we mean a vertex in V(P*) N
V(P))NV(P°). Two common points of paths P* and P are neighboring, if there
is no other common point on P° between them.

Firstly we introduce one useful claim. Its proof is obvious.

Claim. Let ¢, and ¢, be two neighboring common points of two paths P* and P7.
Then their subpaths ¢; P'cy; and ¢, Pic, are of equal length or have the following
form (up to symmetry): BB and A; BACC...CB (C can appear here also
zero times) and ACCC'...C or BCCC...CB (C can appear zero times) and
cooc...c.

The proof of the theorem is now by induction on the length of the distance paths.
If d = 1 then all paths P’ are of the same length. Assume that the Theorem
holds for all lengths between 1 and some d.
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Let P" and P7 be two paths such that |E(PY)|—|E(P7)| > 2. Let ¢ be the last
common point of P’ and P7 on P° and let P' = PjcPj and P? = P{cPj. Assume
|Pi| = |Pj|. Then obviously by the induction hypothesis (applied to P} and P/)
|E(P")|—|E(P7)| < 2, a contradiction. Then we have by the previous claim (and
up to symmetry) the following cases: Py = BB, P; = A or P; = BACC...CB,
Pj =ACCC...C or P =BCCC...CB, PJ =CCCC...C. In all these cases
we can if necessary exchange P} and P/. Since always ||E(P})| — |E(P])|| < 2
the new resulting paths satisfy the statement of the theorem. O
Proof of Theorem 4. The main idea here is to ‘lend’ the path P° some
longer intervals of a path P‘. Obviously, the worst case is, when all paths P*
(1t = 1,...,k) are vertex-disjoint and consist of A and C, i.e. they are of the
form ACCC'...C. In this case take one of them, say P!, and modify P° to
ICICIC ... and P! to AICICIC .... By I we mean a subpath of P° of length
2. Counting gives then the lower bound 2d — 1 for P” and P'. O

Note that for £ = 1 the lower bounds given in Theorem 4 are sharp. See
Fig. 3.

Figure 3: Sharpness example to Theorems 2 and 4.

4 Vertex-disjoint paths, one of them shortest

We now prove Theorem 5 which says that local k-connectivity guarantees the
existence of k vertex-disjoint xy-paths, one of which is a shortest xy-path. Note
the difference in comparison to Theorem 1 where there are k£ + 1 edge-disjoint
paths.

We actually prove the stronger statement that the paths can be chosen such
that in addition,

V(P < N(V(P) - {y}) (1)

for all © > 1.

We proceed by induction on d = dist (z,y). If d = 1, then y must have a
neighbor 2/ # x (unless & = 1, in which case the assertion is trivial). There are
k vertex-disjoint za’-paths T, ..., 7% in (N(y)). Letting 2* be the neighbor of
x on T%, we can define P* = zz2'y (for 1 < i < k) and P° = zy. Thus, in this
case, we get k£ + 1 paths with the required properties, which is even more than is
necessary.



For the induction step, assume that the assertion is true for all pairs of vertices
at distance d' < d. Let ' be the neighbor of y on any distance path from x to y.
Since dist (x,y") = d—1, we can find (by the induction hypothesis) vertex-disjoint
xy'-paths Q°, ..., Q%! satisfying (1) and such that |F(Q°)| = d — 1. We may
assume them to be chordless.

Note that Q° does not pass through y as dist (z,y) = d, and by (1), y does
not lie on the other paths @)? for the same reason.

Denote the predecessor of 3" on Q° (0 < i < k — 1) by y*. By Theorem 9,
there are k vertex-disjoint paths P? joining y* to y (0 < i < k — 1) in (N(¢/)).
Define P° to be 2Q%'y and set, for 1 <i < k — 1,

We claim that PP, ..., P*~! are vertex-disjoint paths. To see this, observe that
V(QY) N V(PY) is empty if i # j, and equals {5} if i = j. Indeed, the P’
are paths in (N(y')), so that any other intersection would imply a chord in the
xy'-path ¢, which is however assumed chordless.

Furthermore, the length of P° is d and condition (1) is clearly satisfied. This
concludes the proof.

Example 10 The following example shows that in general, we cannot expect to
find, under the hypotheses of Theorem 5, k + 1 vertex-disjoint zy-paths, one of
which is of length at most «d (where « is any fixed constant).

Fix integers k£ and ¢. Take a path P, of length ¢ on vertices vg,...,v, and a
complete graph Kj; on vertices wy, ..., wg. Let H be the composition P,[Kj]
in which V(FP) x {wp } is contracted to a vertex w, and {wvy } x {wy,...,w }
is contracted to a vertex v. (Multiple edges and loops are suppressed.) Take
another copy H' of H (denoting a copy of v € V(H) by v') and form a graph G
by identifying, in the disjoint union H U H', w with (vs, wy)’, w'" with (v, wy),
and (vg, w;) with (v, w;)" for i > 2. (See Fig. 4 for an illustration with £ = 2 and
¢=3.)

The vertices x = v and y = v’ are at distance 3, but it is easy to see that the
length of the shortest of any k41 vertex-disjoint zy-paths can be made arbitrarily
large by choosing large ¢.

Also note that the same example (with ¢ large) shows that in Theorem 5, we
cannot upper-bound the lengths of the paths P, ..., P* ! if the length of P° is
(a constant times) d.

5 The k-diameter

The k-diameter and local k-diameter (K > 1) were defined in the Introduction.
In this section, we prove Theorem 7. We begin with an easy observation on the
diameter, which implies an upper bound on the local diameter of K ,-free graphs
(that is, graphs containing no induced copy of the complete bipartite graph K ).
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Figure 4: A sharpness example for Theorem 5.

Observation 11 For any graph G,
diam(G) < 2a(G),
where a(Q) is the independence number of G.

Proof. Let P = zyxy...24 be a path in G of length d = diam(G) joining
vertices g, 4 whose distance is exactly d. Then the set A = {xq; |0 < i < d/2}
must be independent, for otherwise we could join zy to x4 by a shorter path.
Since |A| > (d + 1)/2, the claim follows. O

Corollary 12 Let r > 2. If G does not contain K, as an induced subgraph,
then diam;(G) <2r —3. O

It is easy to see that diam"™ (@) > diam"(G) for any k and G. Thus
diam”®(@) > diam(G). In the opposite direction, the following theorem bounds
the k + 1-diameter of GG in terms of its diameter and local k-diameter.

For the proof of Theorem 7, we shall need the following lemma.

Lemma 13 Let G be a graph with diam®(G) < d and let S = {xy,..., 2} be a
set of vertices of G. Then for any vertex z ¢ S, there are k vertexz-disjoint paths
Py, ..., P, such that each P; is an zx;-path of length at most k*d.

Proof. Since diam®(G) < d, we have, for any z; € S, k vertex-disjoint zz;-paths
Qij (1 < j < k) of length at most d each. Let H be the subgraph of G' with
vertices Uf,j:l V(Qi;) and edges Uf,jﬂE(Qij)- Let H' be the graph obtained
from H by adding a new vertex w, together with edges wz; (1 <i < k). H'is
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k-vertex-connected between z and w. Indeed, no set Y of k — 1 vertices of H'
can separate z from w as Y must miss at least one vertex x; € S, and there are
k disjoint paths joining x; to z in H'. Thus by Menger’s theorem, there are k
vertex-disjoint wz-paths P[,..., P} in H'. Restricting to H, these give us the
zxi-paths P; as desired. Since |E(H)| < k?d, no P; can have more edges than
this. O

Proof of Theorem 7. Let two vertices x,y at distance d be given. We claim
that there are k + 1 vertex-disjoint xy-paths of length at most k%d - diam% (G).
The proof is by induction on d. We may assume that diam? (G) is finite, i.e. that
G is locally k-connected.

If d =1 then we can find k vertex-disjoint zy-paths of length 2 just as in the
beginning of the proof of Theorem 5; together with the path of length 1, they
have the desired properties. (Note the assumption that diam? (G) > 2.)

For the inductive step, let 3’ be the neighbor of y on any distance path from
x to y. We may apply induction to x and y' since dist (z,y) = d — 1. This
yvields zy/-paths Q°, ..., Q" as in the claim. We assume them (as we may) to be
chordless. Denote by y* (0 < i < k) the predecessor of ¢’ on @*. Use Lemma 13
on (N(y"), setting S = {y',...,4*} and z = y. We get k vertex-disjoint y'y-
paths P’ (1 < i < k) of length at most k?-diam®*((N(y))) < k?-diam® (G). Since
PV is chordless, the P! cannot intersect it in any vertex except y and possibly 3/°.
For any P! not passing through 3°, we set P’ = xQ'y‘P'y. If some one of the
paths, say P?, contains y°, then we let P* = 2Q°y*P*y’y'y and P° = Q%" P*y.
Otherwise, we set P° = #Q%'y. The lack of chords in the paths Q¢ implies that
we obtain vertex-disjoint paths by this construction. The lengths of the paths
are clearly as desired, and so the proof is complete. O

Corollary 14 Let G be a connected, locally k-connected K, ,-free graph, where
k> 1 and r > 3. If diam(G) = d, then

diam* ™ (G) < 2k2%d(r — 2).

Example 15 Theorem 7 is probably not sharp, especially if k£ is not fixed.
However, we shall give an example of a graph G with diam(G) < d + 1,
diam5 (G) < ¢ + 2, and diamf* (@) > d - ¢, where d and ¢ are any given in-
tegers. Take the Cartesian product H = Py ® Kj,., of a path on d - ¢ + 1
vertices { vg,...,vq } with the complete graph on vertices {wy,...,wy}. For
0<i<d-—1,letS; C V(H) be defined as

Si = { Viet1, Vier2,s - -, Viepo—1 X {wo }.

To form G, first contract each S; to a vertex s;, suppressing multiple edges and
loops, and then remove all vertices (v, wy) where 0 < i < d. (See Fig. 5 for an
illustration with d = 3,¢ = 3 and k = 2.) It is straightforward to check that G
has the required properties (to see that diam*™(G) > d¢, consider disjoint paths
between the vertices (vo, wp) and (vge, wp).)
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Figure 5: An example for Theorem 7.
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