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Abstract

Since Moore digraphs do not exist for k 6= 1 and d 6= 1, the prob-
lem of finding digraphs of out-degree d ≥ 2, diameter k ≥ 2 and order
close to the Moore bound, becomes an interesting problem. To prove
the non-existence of such digraphs or to assist in their construction (if
they exist), we first may wish to establish some properties that such
digraphs must possess. In this paper we consider the diregularity of
such digraphs. It is easy to show that any digraph with out-degree
at most d ≥ 2, diameter k ≥ 2 and order one or two less than Moore
bound must have all vertices of out-degree d. However, establishing
the regularity or otherwise of the in-degree of such a digraph is not
easy. In this paper we prove that all digraphs of defect two are either
diregular or almost diregular. Additionally, in the case of defect one
we present a new, simpler and shorter, proof that a digraph of defect
one must be diregular, and in the case of defect two and for d = 2
and k ≥ 3, we present an alternative proof that a digraph of defect
two must be diregular.

1This research was partly supported by the Leverhulme Visiting Professorship of the
second author.
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1 Introduction

By a directed graph, or a digraph, we mean a structure G = (V (G), A(G)),

where V (G) is a finite nonempty set of distinct elements called vertices, and

A(G) is a set of ordered pairs (u, v) of distinct vertices u, v ∈ V (G). The

elements of A(G) are called arcs.

The order of the digraph G is the number of vertices in G. An in-

neighbour (respectively, out-neighbour) of a vertex v in G is a vertex u

(respectively, w) such that (u, v) ∈ A(G) (respectively, (v, w) ∈ A(G)).

The set of all in-neighbours (respectively, out-neighbours) of a vertex v is

called the in-neighbourhood (respectively, the out-neighbourhood) of v and

denoted by N−(v) (respectively, N+(v)). The in-degree (respectively, out-

degree) of a vertex v is the number of all its in-neighbours (respectively,

out-neighbours). If every vertex of a digraph G has the same in-degree

(respectively, out-degree) then G is said to be in-regular (respectively, out-

regular). A digraph G is called a diregular digraph of degree d if G is

in-regular of in-degree d and out-regular of out-degree d.

An alternating sequence v0a1v1a2...alvl of vertices and arcs in G such

that ai = (vi−1, vi), for each i, is called a walk of length l in G. A walk is

closed if v0 = vl. If all the vertices of a v0 − vl walk are distinct, then such

a walk is called a path. A cycle is a closed path.

The distance from vertex u to vertex v, denoted by dist(u, v), is the

length of a shortest path from u to v, if any; otherwise, dist(u, v) = ∞.

Note that, in general, dist(u, v) is not necessarily equal to dist(v, u). The

in-eccentricity of v, denoted by e−(v), is defined as e−(v) = max{dist(u, v) :

u ∈ V } and out-eccentricity of v, denoted by e+(v), is defined as e+(v) =

max{dist(v, u) : u ∈ V }. The in-radius of G, denoted by rad−(G), is defined

as rad−(G) = min{e−(v) : v ∈ V }, and the out-radius of G, denoted by

rad+(G), is defined as rad+(G) = min{e+(v) : v ∈ V }. The diameter of G,

denoted by diam(G), is defined as diam(G) = max{e−(v), e+(v) : v ∈ V }.
The girth of a digraph G is the length of a shortest cycle in G.

The well known degree/diameter problem for digraphs is to determine

the largest possible order nd,k of a digraph, given out-degree at most d ≥ 1
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and diameter k ≥ 1. There is a natural upper bound on the order of

digraphs, given out-degree at most d and diameter k. For any given vertex

v of a digraph G, we can count the maximum possible number of vertices

at a particular distance from that vertex. Let ni , for 0 ≤ i ≤ k, be the

number of vertices at distance i from v. Then ni ≤ di, for 0 ≤ i ≤ k, and

consequently,

nd,k =
k∑

i=0

ni ≤ 1 + d + d2 + · · ·+ dk. (1)

The right-hand side of (1), denoted by Md,k, is called the Moore bound.

If the equality sign holds in (1) then the digraph is called a Moore digraph.

It is well known that Moore digraphs exist only in the cases when d = 1

(directed cycles of length k + 1, Ck+1 , for any k ≥ 1) or k = 1 (complete

digraphs of order d + 1, Kd+1, for any d ≥ 1) [2, 11]. For more details of

Moore digraphs and digraphs close to the Moore bound, see the survey [9].

Note that every Moore digraph is diregular (of degree one in the case of

Ck+1 and of degree d in the case of Kd+1). Since for d > 1 and k > 1, there

are no Moore digraphs, we are next interested in digraphs of order n ‘close’

to Moore bound.

It is easy to show that a digraph of order n, Md,k −Md,k−1 + 1 ≤ n ≤
Md,k − 1, with out-degree at most d ≥ 2 and diameter k ≥ 2, must have all

vertices of out-degree d. In other words, the out-degree of such a digraph

is constant (= d). This can be easily seen because if there were a vertex in

the digraph with out-degree d1 < d (i.e., d1 ≤ d− 1), then the order of the

digraph,

n ≤ 1 + d1 + d1d + · · ·+ d1d
k−1

= 1 + d1(1 + d + · · ·+ dk−1)

≤ 1 + (d− 1)(1 + d + · · ·+ dk−1)

= (1 + d + · · ·+ dk)− (1 + d + · · ·+ dk−1)

= Md,k −Md,k−1

However, establishing the regularity or otherwise of in-degree for digraphs

of order close to Moore bound is not easy. It is well known that there exist
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digraphs of out-degree d and diameter k whose order is just two or three

less than the Moore bound and in which not all vertices have the same

in-degree. In Figure 1 we give two examples of digraphs of diameter 2, out-

degree d = 2, 3, respectively, and order Md,2− d, with vertices not all of the

same in-degree.

Figure 1: Two examples of non-diregular digraphs.

Miller, Gimbert, Širáň and Slamin [6] considered the diregularity of

digraphs of defect one, that is, n = Md,k − 1, and proved that such di-

graphs are diregular. For defect two, diameter k = 2 and any out-degree

d ≥ 2, non-diregular digraphs always exist. One such family of digraphs

can be generated from Kautz digraphs which contain vertices with identi-

cal out-neighbourhoods and so we can apply the vertex deletion scheme,

see [7]. This technique can be used on any digraph, of maximum out-

degree d, diameter k and order n, that contains two vertices u and v with

N+(u) = N+(v). In such a case, we delete one of the vertices, say u, and

redirect all in-neighbours of u to go to v, thereby obtaining a digraph of

maximum out-degree d, diameter k′ ≤ k and order n− 1. Figure 2 shows a

digraph obtained by vertex deletion scheme on G after deleting vertex v12.

The notion of ‘almost diregularity’ was first introduced in [3]. Through-

out this paper, let S be the set of all vertices of G whose in-degree is less

than d, where d is the average out-degree (or, equivalently, in-degree) of G.

Let S ′ be the set of all vertices of G whose in-degree is greater than d; and let

σ− be the in-excess, σ− = σ−(G) =
∑

w∈S′(d
−(w)− d) =

∑
v∈S(d− d−(v)).
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Figure 2: Digraphs G of order 12 and G1 of order 11.

Similarly, let R be the set of all vertices of G whose out-degree is less than d.

Let R′ be the set of all vertices of G whose out-degree is greater than d. We

define the out-excess, σ+ = σ+(G) =
∑

w∈R′(d
+(w)−d) =

∑
v∈R(d−d+(v)).

A digraph of average in-degree d is called almost in-regular if the in-excess

is at most equal to d. Similarly, a digraph of average out-degree d is called

almost out-regular if the out-excess is at most equal to d. A digraph is al-

most diregular if it is almost in-regular and almost out-regular. Note that

if σ− = 0 (respectively, σ+ = 0) then G is in-regular (respectively, out-

regular).

To start with, as a “warm up”, we present a new proof that a digraph

of defect one must be diregular. This proof is simpler and shorter than

the original one presented in [6]. This is followed by the main result of

this paper, namely, that all digraphs of defect two, out-degree d ≥ 2 and

diameter k ≥ 2 are out-regular and almost in-regular. Finally, we present

an alternative proof that a digraph of defect two, out-degree d = 2 and

diameter k ≥ 3 is diregular. This proof is again simpler than the original

one presented in [12].
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2 Results

Let G be a digraph of out-degree d, diameter k and order Md,k − 1. Since

the order of G is Md,k−1, using a counting argument, it is easy to show that

for each vertex u of G there exists exactly one vertex r(u) in G with the

property that there are two u → r(u) walks in G of lengths not exceeding

k. The vertex r(u) is called the repeat of u; this concept was introduced in

[8]. If G is a diregular digraph then it follows from [1] that the mapping

v → r(v) is an automorphism of the digraph G.

Let G be a digraph of out-degree d ≥ 2, diameter k ≥ 3 and order

Md,k−2. Using a counting argument, it is easy to show that, for each vertex

u of G, there exist exactly two vertices r1(u) and r2(u) (not necessarily

distinct) in G with the property that there are two u → ri(u) walks, for

i = 1, 2, in G of length not exceeding k. The vertices ri(u), i = 1, 2, are the

repeats of u. If r1(x) = r2(x) = r(x) then r(x) is called a double repeat.

We will use the following notation throughout.

Notation 2.1 Let G(d, k, δ) be the set of all digraphs of maximum out-

degree d, diameter k and defect δ, that is, order n = Md,k − δ. Then we

refer to any digraph G ∈ G(d, k, δ) as a (d, k, δ)-digraph.

. . .
u1 u2

u

ud

T+
k−1(ud)

T+
k (u) N+

2 (u)

N+
1 (u)

N+
k (u)

...

Figure 3: Multiset T+
k (u)
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We will also use the following notation throughout. For each vertex u of

a digraph G described above, and for 1 ≤ s ≤ k, let T+
s (u) be the multiset

of all endvertices of directed paths in G of lengths at most s which start

at u. Similarly, by T−
s (u) we denote the multiset of all starting vertices of

directed paths of lengths at most s in G which terminate at u. Observe

that the vertex u is in both T+
s (u) and T−

s (u), as it corresponds to a path

of zero length. Let N+
s (u) be the set of all endvertices of directed paths

in G of length exactly s which start at u. Similarly, by N−
s (u) we denote

the set of all starting vertices of directed paths of length exactly s in G

which terminate at u. If s = 1, the sets T+
1 (u) \ {u} and T−

1 (u) \ {u}
represent the out- and in-neighbourhoods of the vertex u in the digraph G;

we denote these neighbourhoods simply by N+(u) and N−(u), respectively.

We illustrate the notations T+
s (u) and N+

s (u) in Figure 3.

We present our new results concerning the diregularity of digraphs of

order close to Moore bound in the following sections.

2.1 Diregularity of (d, k, 1)-digraphs

In this section we present a new proof of the diregularity of a digraph of

defect one with out-degree d ≥ 2 and diameter k ≥ 2. Let S be the set

of all vertices of G whose in-degree is less than d. Let S ′ be the set of all

vertices of G whose in-degree is greater than d; and let σ be the in-excess,

σ− =
∑

w∈S′(d
−(w)− d) =

∑
v∈S(d− d−(v)).

Lemma 2.1 Let G ∈ G(d, k, 1). Let S be the set of all vertices of G whose

in-degree is less than d. Let u ∈ G be an arbitrary vertex. Then S ⊆
N+(r(u)).

Proof. Let v ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v, and let

N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex

v must occur in each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that for

each i there exists a vertex xi ∈ {u} ∪ T+
k−1(ui) such that xiv is an arc of

G. Since the in-degree of v is less than d, the in-neighbours xi of v are

not all distinct. This implies that there exists some vertex which occurs at
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least twice in T+
k (u). Such a vertex must be a repeat of u. As G has defect

1, there is exactly one vertex of G which is the repeat of u, namely, r(u).

Therefore, S ⊆ N+(r(u)). 2

Since every vertex in G has out-degree d, we have the following corollary

of Lemma 2.1.

Corollary 2.1 |S| ≤ d.

Additionally, no other vertices of in-neighbours of v can occur twice in

T+
k (u), that is, the vertices xi, for i = 1, . . . , d − 1, are mutually distinct.

Therefore, we have the following corollary.

Corollary 2.2 Let v ∈ S. Then the in-degree of v is d− 1.

Lemma 2.2 Let x ∈ S ′. Then x is the repeat of every vertex in G.

Proof. Let v ∈ S and x ∈ S ′. First we consider the number of distinct

vertices in the multiset T−
k (u) where u ∈ V (G)\{x, v}. By diameter as-

sumption, vertex x must occur at distance at most k to u. Since x goes to

vertex of in-degree d− 1, we have

|T−
k (u)| ≤ 1 + d + d2 + ... + dk − 1

= Md,k − 1.

This implies that every u ∈ V (G)\{x, v} is not a repeat of any vertex in G.

We now consider the number of distinct vertices in the multiset T−
k (v1),

where v1 ∈ S. To reach v1 from all the other vertices in G, the number of

distinct vertices in T−
k (v1) must be

|T−
k (v1)| ≤

k∑
t=0

|N−
t (v1)|. (2)

To estimate the above sum we can observe the following inequality

|N−
t (v1)| ≤

∑

u∈N−
t−1(v1)

d−(u) = d|N−
t−1(v1)|+ εt, (3)
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where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ. Since d−(v1) = d− 1, we have

|N−(v1)| = |N−
1 (v1)| = d − 1. It is not difficult to see that a safe upper

bound on the sum of |T−
k (v1)| is obtained from Inequality (3) by setting

ε2 = d, and εt = 0 for 3 ≤ t ≤ k. This gives

|T−
k (v1)| ≤ 1 + |N−

1 (v1)|+ |N−
2 (v1)|+ |N−

3 (v1)|+ . . . + |N−
k (v1)|

= 1 + (d− 1) + (d(d− 1) + ε2) + (d(d(d− 1) + ε2) + ε3)

(1 + d + · · ·+ dk−3)

= 1 + (d− 1) + (d(d− 1) + d) + (d(d(d− 1) + d) + 0)

(1 + d + · · ·+ dk−3)

= 1 + d− 1 + d2 + d3(1 + d + · · ·+ dk−3)

= Md,k − 1.

This implies that every vertex v1 ∈ S is not a repeat of any vertex in G.

Hence, the only repeat of every vertex in G is x ∈ S ′. 2

Corollary 2.3 |S| = d.

Theorem 2.1 [6] Every digraph of defect one is diregular.

Proof. Let v ∈ S and x ∈ S ′. Consider the multiset T+
k (x). By Lemma 2.1,

it follows that N+(x) = {v1, v2, . . . , vd}, where vi∈{1,2,...,d} ∈ S. By Lemma

2.2, x is a selfrepeat. Therefore, one of the vertices v1, v2, . . . , vd has distance

k − 1 to x. Without loss of generality, we suppose that dist(v1, x) = k − 1.

But then v1 also is a selfrepeat, and this contradicts the fact that x is the

only repeat in G. 2

2.2 Diregularity of (d, k, 2)-digraphs

In this section we present a new result concerning the in-regularity of di-

graphs of defect two for any out-degree d ≥ 2 and diameter k ≥ 2. Let S

be the set of all vertices of G whose in-degree is less than d. Let S ′ be the

set of all vertices of G whose in-degree is greater than d; and let σ be the

in-excess, σ− =
∑

w∈S′(d
−(w)− d) =

∑
v∈S(d− d−(v)).
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Lemma 2.3 Let G ∈ G(d, k, 2). Let S be the set of all vertices of G whose

in-degree is less than d. Then S ⊆ N+(r1(u)) ∪ N+(r2(u)), for any vertex

u ∈ G.

Proof. Let v ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v, and let

N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex

v must occur in each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that, for

each i, there exists a vertex xi ∈ {u} ∪ T+
k−1(ui) such that xiv is an arc of

G. Since the in-degree of v is less than d then the in-neighbours xi of v are

not all distinct. This implies that there exists some vertex which occurs at

least twice in T+
k (u). Such a vertex must be a repeat of u. As G has defect

2, there are at most two vertices of G which are repeats of u, namely, r1(u)

and r2(u). Therefore, S ⊆ N+(r1(u)) ∪N+(r2(u)). 2

Combining Lemma 2.3 with the fact that every vertex in G has out-

degree d gives

Corollary 2.4 |S| ≤ 2d.

In principle, we might expect that the in-degree of v ∈ S could attain

any value between 1 and d − 1. However, the next lemma asserts that the

in-degree cannot be less than d− 1.

Lemma 2.4 Let G ∈ G(d, k, 2). If v1 ∈ S then d−(v1) = d− 1.

Proof. Let v1 ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v1, and let

N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex

v1 must occur in each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that for

each i there exists a vertex xi ∈ {u} ∪ T+
k−1(ui) such that xiv1 is an arc

of G. If d−(v1) ≤ d − 3 then there are at least three repeats of u, which

is impossible. Suppose that d−(v1) ≤ d − 2. By Lemma 2.3, the in-excess

must satisfy

σ− =
∑

x∈S′
(d−(x)− d) =

∑
v1∈S

(d− d−(v1)) = |S| ≤ 2d.
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We now consider the number of vertices in the multiset T−
k (v1). To reach

v1 from all the other vertices in G, the number of distinct vertices in T−
k (v1)

must be

|T−
k (v1)| ≤

k∑
t=0

|N−
t (v1)|. (4)

To estimate the above sum we can observe the inequality

|N−
t (v1)| ≤

∑

u∈N−
t−1(v1)

d−(u) = d|N−
t−1(v1)|+ εt, (5)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ−. Suppose d−(v1) = d1 ≤ d− 2,

that is, |N−(v1)| = |N−
1 (v1)| = d1 ≤ d − 2. It is not difficult to see that a

safe upper bound on the sum of |T−
k (v1)| is obtained from inequality (5) by

setting ε2 = 2d, and εt = 0 for 3 ≤ t ≤ k. This gives

|T−
k (v1)| ≤ 1 + |N−

1 (v1)|+ |N−
2 (v1)|+ |N−

3 (v1)|+ . . . + |N−
k (v1)|

= 1 + d1 + (dd1 + ε2) + (d(dd1 + ε2) + ε3)

(1 + d + · · ·+ dk−3)

≤ 1 + (d− 2) + (d(d− 2) + 2d) + (d(d(d− 2) + 2d) + 0)

(1 + d + · · ·+ dk−3)

= 1 + d− 2 + d2 + d3(1 + d + · · ·+ dk−3)

= Md,k − 2.

Since ε2 = 2d, εt = 0 for 3 ≤ t ≤ k, and G contains a vertex of in-

degree d − 2, it follows that |S| = d. Let S = {v1, v2, . . . , vd}. Every

vi, for i = 2, 3, . . . , d, has to reach v1 at distance at most k. Since v1

and every vi have exactly the same in-neighbourhood, v1 is forced to be a

selfrepeat. This implies that v1 occurs twice in the multiset T−
k (v1). Hence

|T−
k (v1)| < Md,k − 2, which is a contradiction. Therefore, d−(v1) = d − 1,

for any v1 ∈ S. 2

Lemma 2.5 If S is the set of all vertices of G whose in-degree is d−1 then

|S| ≤ d.
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Proof. Suppose |S| ≥ d + 1. Then there exists vi ∈ S such that d−(vi) =

d− 1, for i = 1, 2, . . . , d + 1. The in-excess σ− =
∑

v∈S(d− d−(v)) ≥ d + 1.

This implies that |S ′| ≥ 1. However, we cannot have |S ′| = 1. For a

contradiction, suppose S ′ = {x}. To reach v1 (and vi, i = 2, 3, . . . , d + 1)

from all the other vertices in G, we must have x ∈ ⋂d+1
i=1 N−(vi), which is

impossible as the out-degree of x is d. Hence |S ′| ≥ 2.

Let u ∈ V (G) and u 6= vi. To reach vi from u, we must have
⋃d+1

i=1 N−(vi) ⊆
{r1(u), r2(u)}. Since G has out-degree d, it follows that |⋃d+1

i=1 N−(vi)| = d.

Let r1(u) = x1 and r2(u) = x2. Without loss of generality, we sup-

pose x1 ∈
⋃d

i=1 N−(vi) and x2 ∈ N−(vd+1). Now consider the multiset

T+
k (x1). Since every vi, for i = 1, 2, . . . , d, respectively, must reach {vj 6=i},

for j = 1, 2, . . . , d+1, within distance at most k, then x1 occurs three times

in T+
k (x1), otherwise x1 will have at least three repeats, which is impossible.

This implies that x1 is a double selfrepeat. Since two of vi, say vk and vl,

for k, l ∈ {1, 2, . . . , d + 1}, occur in the walk joining two selfrepeats then vk

and vl are selfrepeats. Then it is not possible for the d out-neighbours of

x1 to reach vd+1. 2

Theorem 2.2 For d ≥ 2 and k ≥ 3, every (d, k, 2)-digraph is out-regular

and almost in-regular. Moreover, if k = 2 then d−1 ≤ |S| ≤ d and if k ≥ 3

then |S| = d.

Proof. The out-regularity of (d, k, 2)-digraphs was established in the Intro-

duction. Hence we only need to prove that every (d, k, 2)-digraph is almost

in-regular. If S = ∅ then (d, k, 2)-digraph is diregular. By Lemma 2.4, if

S 6= ∅ then all vertices in S have in-degree d− 1. This gives

σ =
∑

x∈S′
(d−(x)− d) =

∑
v∈S

(d− d−(v)) = |S| ≤ 2d.

Take an arbitrary vertex v ∈ S; then |N−(v)| = |N−
1 (v)| = d − 1. By

the diameter assumption, the union of all the sets N−
t (v) for 0 ≤ t ≤ k is

the entire vertex set V (G) of G, which implies that

|V (G)| ≤
k∑

t=0

|N−
t (v)|. (6)
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To estimate the above sum we can observe that

|N−
t (v)| ≤

∑

u∈N−
t−1(v)

d−(u) = d|N−
t−1(v)|+ εt, (7)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ.

It is not difficult to see that a safe upper bound on the sum of |V (G)|
is obtained from inequality (7) by setting ε2 = σ = |S|, and εt = 0, for

3 ≤ t ≤ k; note that the latter is equivalent to assuming that all vertices

from S \ {v} are contained in N−
k (v) and that all vertices of S

′
belong to

N−
1 (v). This way we successively obtain

|V (G)| ≤ 1 + |N−
1 (v)|+ |N−

2 (v)|+ |N−
3 (v)|+ . . . + |N−

k (v)|
≤ 1 + (d− 1) + (d(d− 1) + |S|)(1 + d + · · ·+ dk−2)

= d + d2 + · · ·+ dk + (|S| − d)(1 + d + · · ·+ dk−2)

= Md,k − 2 + (|S| − d)(1 + d + · · ·+ dk−2) + 1.

But G is a digraph of order Md,k − 2 which implies that

(|S| − d)(1 + d + · · ·+ dk−2) + 1 ≥ 0

(|S| − d)
dk−1 − 1

d− 1
+ 1 ≥ 0

|S| ≥ d− d− 1

dk−1 − 1

If k = 2 and d ≥ 3 then |S| ≥ d− 1. Since we also have 1 ≤ |S| ≤ d, we get

d − 1 ≤ |S| ≤ d. If k ≥ 3 and d ≥ 3 then |S| ≥ d as 0 < d−1
dk−1−1

< 1. This

implies |S| = d. That is, in both cases G is almost in-regular. 2

2.3 Diregularity of (2, k, 2)-digraph

The proof of the non-existence of digraphs of defect two for d = 2 and k ≥ 3

in [5] relies on the diregularity of such digraphs which was proved by Slamin

and Miller in [12]. Here we apply the results from the previous section to

present a somewhat simpler proof.

In the case of diameter k = 2, there are four non-isomorphic digraphs

of defect two of out-degree 2 with vertices not all of the same in-degree, as

shown in Figure 4.
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Let S be the set of all vertices of G whose in-degree is 1; let S ′ be the

set of all vertices of G whose in-degree is greater than 2. Applying Theorem

2.2 asserts that, for d = 2 and k ≥ 3, every (2, k, 2)-digraph is out-regular

and almost in-regular.

Figure 4: Four non-isomorphic almost in-regular digraphs of order M2,2−2.

We will next prove that (2, k, 2)-digraphs must be diregular if k ≥ 3.

Theorem 2.3 [12] Every (2, k, 2)-digraph is diregular, for k ≥ 3.

Proof. Let G ∈ G(2, k, 2), k ≥ 3. By Theorem 2.2, if G is an almost

diregular digraph which is not diregular then |S| = 2. Let S = {v1, v2}.
Suppose N−(v1) = {x1} and N−(v2) = {x2}. Then the in-excess σ− =∑

v∈S(d − d−(v)) = 2. This implies that 1 ≤ |S ′| ≤ 2. Suppose |S ′| = 2.

Then S ′ = {x1, x2}. If d−(x1) = 3 then it is not possible to reach v1 from

all the other vertices in G.

Therefore, |S ′| = 1, x1 = x2 (= x) and d−(x) = 4. We first consider

the multisets T+
k (v1) and T+

k (v2). Since v1 must reach v2 within distance at

most k and at the same time v2 also must reach v1 within distance at most

k, vertex x must occur at distance exactly k − 1 from both v1 and v2. It

follows that x occurs three times in the multiset T+
k (x), which means that

x is a double selfrepeat. Vertex x is also a repeat for every other vertex in

G. Let yi ∈ N−(x), for all i = 1, 2, 3, 4. Then two of yi occur at distance

k − 2 from v1 (respectively, v2). Without loss of generality, we suppose

that y1 ∈ N+
k−2(v2) and y2 ∈ N+

k−2(v1). It follows that y1 and y2 are each a

selfrepeat exactly once.
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Let S1 and S2 be two multisets. We denote S = S1 ] S2 the multiset

defined as follows. If x occurs n1 times in S1 and n2 times in S2 then x occurs

exactly n1+n2 times in S. Consider the multiset T+
k (y1) = V (G)]{x}]{y1}.

Alternatively, we can express T+
k (y1) = T+

k−1(c1)]T+
k−1(x)]{y1}. Combining

these two equations gives

V (G) ] {x} = T+
k−1(c1) ] T+

k−1(x) (8)

Consider the multiset T+
k (y2) = V (G)]{x}]{y2}. Similarly, we can express

T+
k (y2) = T+

k−1(c2) ] T+
k−1(x) ] {y2}. Combining these two equations gives

V (G) ] {x} = T+
k−1(c2) ] T+

k−1(x) (9)

From Equations (8) and (9), it follows that T+
k−1(c1) = T+

k−1(c2). Since

N+
k−l−1(c2) ∈ T+

k−1(x), we get c1 = c2, otherwise y1 has at least three repeats,

namely, {y1} ] {x} ] {u|u ∈ N+
k−l−1(c2) ∩ T+

k−1(c2)}, which is impossible.

N+
k−l−1(c3)

x

c3 c4

c3

y1y2

x

x x x

x

x

l

yq

y2y1 y3 y4

yp = y3

N+
k−l−1(c3)

c1 = c2

Figure 5: Illustration for the case |S| = 2.

We now consider the multiset T+
k (y3) = V (G)] {x} ] {r(y3)}. We have

also T+
k (y3) = T+

k−1(c3) ] T+
k−1(x) ] {y3}. Combining these two equations

gives

V (G) ] {x} = T+
k−1(c3) ] T+

k−1(x) ] {y3} − {r(y3)} (10)
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We need to show that r(y3) = y3. We consider the multiset T+
k−1(c3). Since

y1 and y2 are each repeat exactly once, that is, r(y1) = y1 and r(y2) = y2,

it follows y1, y2 /∈ T+
k−1(c3). Vertex yq must not be y3, otherwise there exist

a cycle of length k− 1 in G, which is impossible. This implies that yp = y3.

It follows that y3 occurs twice in the multiset T+
k (y3), which means that y3

is a selfrepeat. Then Equation (10) gives

V (G) ] {x} = T+
k−1(c3) ] T+

k−1(x) (11)

By combining Equations (8) and (11), we get T+
k−1(c1) = T+

k−1(c3). Since

N+
k−l−1(c3) ∈ T+

k−1(x), see Figure 5, we have c1 = c3, otherwise y1 has at least

three repeats, namely, {y1} ] {x} ] {u|u ∈ N+
k−l−1(c3) ∩ T+

k−1(c3)}, which is

impossible. Therefore, c1 = c2 = c3(= c). Since c1 ∈ N+(y1), c2 ∈ N+(y2)

and c3 ∈ N+(y3), it follows that c ∈ N+(y1)∩N+(y2)∩N+(y3). This implies

that S ′ = {x, c}, which is a contradiction. 2

We conclude this paper with a conjecture.

Conjecture 2.1 All digraphs of out-degree d ≥ 2 and defect 2 are diregular,

for diameter k ≥ 3.
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