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Abstract

We show a construction that gives an infinite family of claw-free graphs of con-
nectivity Kk = 2,3,4,5 with complete closure and without a cycle of a given fixed

length. This construction disproves a conjecture by the first author, A. Saito and
R.H. Schelp.

1 Introduction

We consider finite simple undirected graphs G = (V(G), E(G) and for concepts and
notations not defined here we refer to [4]. Specifically, for z,y € V(G), diste(z, y) denotes
the distance of = and y in G. The girth of G is the smallest length of a cycle in G. A
graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length |V (G)],
and G is pancyclic if G contains cycles C) of all lengths A\, 3 < A < |V(G)|. A subpath
of a cycle C' with endvertices z,y € V(C') will be called a segment and denoted zCy. A
graph G is claw-free if G does not contain an induced subgraph isomorphic to the claw
K173.

The following concepts were introduced in [14]. A vertex z € V(G) is eligible if its
neighborhood Ng(z) = {y € V(G)| zy € E(G)} induces a connected noncomplete graph,
and x is simplicial if the subgraph induced by Ng(z) is complete. The local completion
of G at a vertex z is the graph obtained from G by adding all edges with both vertices in
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N¢(z) (note that the local completion at = turns x into a simplicial vertex). The closure
cl(G) of a claw-free graph G is the graph obtained from G by recursively performing the
local completion operation at eligible vertices as long as this is possible. It was proved in
[14] that for every claw-free graph G
(7) cl(G) is uniquely determined,
(77) cl(@) is the line graph of a triangle-free graph,
(#7i) cl(G) is hamiltonian if and only if G is hamiltonian.
However, as shown in [5], for any integer k > 2 there is a k-connected nonpancyclic
claw-free graph with pancyclic closure.
Specifically, if cl(G) is complete (hence pancyclic), then G is hamiltonian by (7i7). As
shown in [15], such a graph G contains also a cycle of length |V (G)| — 1, but there are
nonpancyclic graphs with complete closure. The following conjecture was posed in [15].

Conjecture A [15].  Let ¢1, co be fixed constants. Then for large n, any claw-free
graph G of order n whose closure is complete contains cycles C; for all i, where 3 < i < ¢;
andn—cy <1 <n.

In our main result, Theorem 1, we disprove Conjecture A by giving infinite families of
counterexamples.

2 Main result

Theorem 1.  Let k,\ be integers, 2 < k < 5, A > 33 if k € {2,3,4} and A > 52 if
k = 5. Then there is an infinite family of claw-free graphs of connectivity x with complete
closure and not containing a cycle of length .

As mentioned in the introduction, Theorem 1 disproves one part of Conjecture A in
the sense that c¢; does not have to be large. However, we believe that the second part
of Conjecture A is true, and that such a construction as shown in Theorem 1 is possible
only for connectivities k < 5. Thus, we conjecture the following.

Conjecture 2. Let c be a fixed constant. Then for large n, any claw-free graph G of
order n whose closure is complete contains cycles C; for all i, n —c < i < n.

Conjecture 3. Every 6-connected claw-free graph with complete closure is pancyclic.

3 Proof of Theorem 1

Case 1: kK =2.Let £ > 3, p > 4 be integers, let Ji, Ji i = 0,1,...,2p—1 be vertex-disjoint
copies of the graphs shown in Figure 1, and let G be the graph obtained by identifying

= (b2 +1_ 52]212,1 2241 1= (b%;;: sz;i)f = (b5 = at’), wajn s (bQ]H = ?);
Yoj = (07 = a?"), Yo = (07T =ad’T), and by relabeling vy, := ¢y, vgj11 = 3,
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Wy = P Wy =T, j=0,1,...,p— 1, where the notation x := (b = a) means

that the vertex x is obtained by identifying the vertices a and b, and all indices are taken
modulo 2p (see Figure 2).
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Figure 2

It is straightforward to check that Gf)’g is a claw-free graph of connectivity 2 with
complete closure. Since |V (Ji)| = |V (J¢)| = 10¢ + 2, each copy of J¢ and also each copy
of Ji contains all cycles Cy for 3 < A\ < 10¢ + 2. Any cycle of the next possible length
A > 10/ + 2 has to contain a path from two copies of J¢ and one copy of J{, implying
A > 14¢ + 2. Thus, wa contains no Cy for 10/ +3 < X\ < 14¢ + 1. For fixed ¢ > 3 and
arbitrary p > 4 this gives the required infinite family.

Case 2: kK =3. We omit the proof in this case since the required graphs can be easily
obtained from the construction for k = 4. Details are left to the reader.

Case 3: Kk =4. Let n,s be positive integers such that s divides n, let C' be a cycle of
length n, and let ¢y, ..., cs_1 be integers. Then ng(cy. .., cs_1) denotes (cf. [8]) the graph
obtained from C' by adding all edges joining v; to vi.,, where j = i (mod s). It is
shown in [7] that, for example, 145(5, —5) is the Heawood graph and 243(12,7,—7) is
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the McGee (3, 7)-cage (i.e. minimal cubic graph of girth 7), but, more importantly, the
graph 27244(45,59, —119, —89, 101, —109, —72, 72,109, —101, 89, 119, —59, —45, 72, —72) is
the cubic hamiltonian Cayley graph of girth 13, originally discovered by Hoare [9] (see also
[1], p. 21). It is easy to see that, for any integer r > 1, the graph H, = (272r)4(45, 59,
—119, -89, 101, —109, —72, 72,109, —101, 89, 119, —59, —45, 72, —72) is also a cubic hamil-
tonian graph of girth 13.

Now, let r > 1, £ > 3, set p = 136r, let H: (i = 1,2) be two vertex-disjoint copies
of H, with V(H}) = {v},v},...,v5,_}, let Cyi be hamiltonian cycle in H; and set
H = (V(H}),E(H!)\ E(Cg:)). We construct a graph G, from H}, H? and the graph
G2, by identifying v; = (v; = v}) and w; = (w; = v}), ¢ = 0,1,...,2p — 1. Then
Gﬁ’g is clearly claw-free (since it is obtained by attaching edges to simplicial vertices of
G?,), and has complete closure (since so does G7,). Moreover, Gﬁ,e is 4-connected: by
the construction of G?,, a vertex cut R of size at most 3 would have to contain a pair of
vertices To;, To;11 (or, symmetrically, ya;, yo;41) for some i, but then the third vertex in
R is adjacent to both wvy; and wvy;11 (or we; and we;11), contradicting the fact that H, is
cubic.

It remains to show that G;‘fj contains no cycle C for 10/ +3 < XA < 14/ + 1. Let,
to the contrary, C) be such a cycle. By part 2, C) has to contain at least one edge
from H! or H2. Let k be the number of such edges in C, and set V; = {vy, ... ,Vap—1}s
Vo = {wp,..., wyy—1}. Since diSth£<a,b) > 20 + 2 for any a,b € V) U V,, we have
14042 > |E(C)| > k + k(20 + 2) = k(2( + 3), from which k < 552 < 7. Hence k < 6.

If E(C)N E(Hi) # () for both 4 = 1,2, then, since a € Vi and b € V, implies
distgz, (a,b) > 7¢, we have [E(C)| > 140 + 2, a contradiction. Hence we can suppose
that C' contains no edges from H2. Set V(C)NV; = {vi,, Vi), - - -, Vi, _, }, Where the labels
Vipa € B(HL), j = 0,... .k — 1. Then |ig; — injs1| <
distcig(vh].,%j ,,) for any j, 0 < j < k — 1 (indices modulo 2p). Every segment

are chosen along C' and vy, ,

1
20+2
Vip; CViy, ., of C corresponds in H to a subpath of the hamiltonian cycle in H. These
paths together with the edges vi,,, vi,, ., € E(H}) determine in H a closed walk W
of length [E(W)| = k + Xi5g iz — | < K + 55 S50 distee (v, vigp,) < K+
k— ¢ k— ¢ ¢
T}&-Q Zj:é |E(Ui2jcvi2j+1)| = %k + T}ﬂ(k + Zj:é |E(Ui2jcvi2j+1)|) < %kj + 1244-:_22 <
k+ 7 < 13. Thus, H, contains a closed walk, and hence also a cycle, of length at most
12, a contradiction.

Case 4: k = 5. The construction for k = 5 is similar as above with two main differences:
to achieve 5-connectedness,

(7) the graph H, has to be 3-connected,

(1) the structure of the subgraphs Ji, Jj is different.
We begin with (7). The existence of 3-connected hamiltonian cubic graphs of large girth
is guaranteed by the following probabilistic results, where G,, ; denotes the uniform prob-
ability space of d-regular graphs on n vertices, dn even (see also [16]).

Fact 1 ([2], [17]). For fixed d > 3, any G € G, 4 is asymptotically almost surely
d-connected.




Fact 2 ([12], [13]). For fixed d > 3, any G € G, 4 is asymptotically almost surely
hamiltonian.

Fact 3 ([3], [18]). For fixed d, let X; = X;,, (i > 3) be the number of cycles of length
¢ in a graph in G, 4. For fixed k > 3, X3, ..., X}, are asymptotically independent Poisson
(d-1)"

random variables with means \; = ~=~.

From Facts 1-3 we easily conclude the following consequence.

Fact 4. There is an infinite family of cubic hamiltonian 3-connected graphs with arbi-
trarily large fixed girth.

Thus, let £ > 6 be an integer and let H be an arbitrary 3-connected hamiltonian cubic
graph with girth g(H) > (3¢ + 11)*. Set t = [V/(H))].

We construct a graph G5, by the same construction as used for G2 ,, but instead of

the graphs J?, Ji of Figure 1 we use the graphs Ji, Ji and J¢ of Figure 3, where we choose
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integers p, r such that t = 4( + 3)p+r, 0 <r < 4(¢ + 3), and instead of J} we use p —r

copies of Ji and r copies of J& (this guarantees that the total number of vertices cé in

G, equals t). We relabel the copies of the graphs Ji, Jé and Tg as shown in Figure 4
and relabel the vertices c§- in Jo,...,Jayp—1 by vg,...,v—1 such that if v; € V(J;,) and
vj, € V(J;,), then iy < iy implies j; < jo (vertices inside the subgraphs Jo, ..., Jy,—1 are
labeled arbitrarily). This labeling guarantees that any two consecutive vertices v; are at
distance (in Gg,e) at least 2, and in any three consecutive subgraphs J; any two vertices
v; are at distance at least 2. Since any three consecutive subgraphs J; contain at most

30+ 11 vertices v;, this implies that for any v;,, v;, we have |i; —iy| < SELzudistésve(vil,viQ)
P,
(indices modulo t).

Now, let Cy = xy, . .., z;_1270 be a hamiltonian cycle in H and set H = (V(H), E(H)\
E(Cy)). We construct the graph G2, from G5, and H by identifying v; := (v; = ),
1=20,...,t — 1. As before, Gg,e is a claw-free graph with complete closure. It is easy
to observe that the 3-connectedness of H guarantees Gf,,g is b-connected: a vertex cut R

of size at most 4 in C?g; would imply that the set {vg,vy,...,v,_1} can be partitioned
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Figure 4

into two subsets Vi, V5 in such a way that there are no edges between V;, V5 and the
corresponding subsets in V' (H) partition Cy into two segments, but thus contradicts the
3-connectedness of H. o o

Since |V/(J7)| = 50 + 21 and |V (J5)| + 1 = |V (J§)| = 5 + 20, G}, contains cycles C
for all A, 3 < X\ < 50+21, and the next possible cycle length in G5 , is 3(2(+7) = 6+ 21.
We show that also Gg’f contains no C'y for 5¢ 4+ 22 < A\ < 6/ + 20. For ¢ > 6 this will give
the required family.

Thus, let C be such a cycle, and let k& be the number of edges from H in C. As in
the previous case, the cycle C' corresponds to a closed walk W in H of length |E (V)]
k+ Y820 igj—igja| < k4351 4 distasvl (Vigy s Vigy 1, ) < k+35 1 YA E vy, Cosyy )|

S (k4 32570 | E(viy, Csy, ) )]) < 2552(60 4 20) < (304 11)2, a contradiction.

m A

Remarks. 1. It is easy to observe that in specific “small” cases our construction can
be slightly improved. There are some more scattered missing cycle lengths, namely 23 <
A <29 for k = 2,3,4, and \ € {32,37,38,42,43,44,47,48,49,50} for k = 5, and there
are easy modifications that give some further small missing cycles for small connectivities
(for example, for k = 2 it is possible to obtain an infinite family without a Cy), but
the drawback is that this makes the construction split into more cases. We leave these
straightforward details to the reader.

2. Cubic connected graphs of order n for infinitely many n, with girth g in Q(log, n),
are constructed independently by Chiu [6] and Morgenstern [10]. Morgenstern’s examples
are all non-bipartite and with girth ¢ > (2/3)log, n, in Chiu two sequences are con-
structed one with non-bipartite members, the other with balanced bipartite. All these
graphs are Cayley graphs and hence, by a result of Nedela and Skoviera [11], they are
cyclically 3-edge-connected and hence also 3-connected. It is, however, an open problem
if infinitely many examples are hamiltonian. Yet the examples are likely to be so since
they are also Ramanujan graphs. The smallest of graphs in Chiu, which is bipartite and
of order 24, can be seen 3-connected, hamiltonian, and of girth 4. The smallest of cubic
graphs in Morgenstern can be seen to be of order 60.



References

[1] N. Biggs: Constructions for cubic graphs with large girth. Electronic Journal of Com-
binatorics 5 (1998), #Al.

[2] B. Bollobéas: A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1 (1980), 311-316.

[3] B. Bollobas: Random graphs. In: Combinatorics (ed. H. N. V. Temperley), London
Mathematical Society Lecture Note Series, 52, Cambridge University Press, Cam-
bridge (1981), 80-102.

[4] J.A. Bondy, U.S.R. Murty: Graph Theory with Applications. Macmillan, London and
Elsevier, New York, 1976.

[5] S. Brandt, O. Favaron, Z. Ryjdcek: Closure and stable hamiltonian properties in
claw-free graphs. Journal of Graph Theory 32 (2000), 30-41.

[6] P. Chiu: Cubic Ramanujan graphs. Combinatorica 12 (1992), 275-285.
[7] G. Exoo: A trivalent graph of girth 17. Australas. J. Comb. 24 (2001), 261-264.

[8] R. Frucht: A canonical representation of trivalent Hamiltonian graphs. Journal of
Graph Theory 1 (1977), 45-60.

[9] M. J. Hoare: On the girth of trivalent Cayley graphs. Graphs and Other Combinatorial
Topics (Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague
1982), Teubner, Leipzig 1983, 109-114.

[10] M. Morgenstern, Existence and explicit constructions of ¢ 4+ 1 regular Ramanujan
graphs of every prime power ¢. Journal of Combinatorial Theory, Series B, 62 (1994),
44-62.

[11] R. Nedela, M. Skoviera: Atoms of cyclic connectivity in transitive cubic graphs.
Contemporary Methods in Graph Theory, Bibliographisches Inst., Mannheim, 1990,
479-488.

[12] R. W. Robinson, N. C. Wormald: Almost all cubic graphs are hamiltonian. Random
Structures & Algorithms, 3 (1992), 117-125.

[13] R. W. Robinson, N. C. Wormald, Almost all regular graphs are hamiltonian. Random
Structures & Algorithms, 5 (1994), 363-374.

[14] Z. Ryjdcek: On a closure concept in claw-free graphs. Journal of Combinatorial
Theory, Series B, 70 (1997), 217-224.

[15] Z. Ryjacek, A. Saito, R.H. Schelp: Claw-free graphs with complete closure. Discrete
Mathematics 236 (2001), 325-338.



[16] N.C. Wormald: Models of random regular graphs. Surveys in Combinatorics, 1999
(Canterbury), London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press,
Cambridge, 1999, 239-298.

[17] N. C. Wormald: The asymptotic connectivity of labelled regular graphs. Journal of
Combinatorial Theory, Series B, 31 (1981), 156-167.

[18] N. C. Wormald: The asymptotic distribution of short cycles in random regular
graphs. Journal of Combinatorial Theory, Series B, 31 (1981), 168-182.



