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Abstract

Pairs of connected graphs X,Y such that a graph G being 2-connected and XY -

free implies G is hamiltonian were characterized by Bedrossian. Using the closure

concept for claw-free graphs, the first author simplified the characterization by show-

ing that if considering the closure of G, the list in the Bedrossian’s characterization

can be reduced to one pair, namely, K1,3, N1,1,1 (where Ki,j is the complete bipartite

graph, and Ni,j,k is the graph obtained by identifying endvertices of three disjoint

paths of lengths i, j, k to the vertices of a triangle). Faudree et al. characterized

pairs X,Y such that G being 2-connected and XY -free implies G has a 2-factor.

Recently, the first author et al. strengthened the closure concept for claw-free graphs

such that the closure of a graph has stronger properties while still preserving the

(non)-existence of a 2-factor. In this paper we show that, using the 2-factor closure,

the list of forbidden pairs for 2-factors can be reduced to two pairs, namely, K1,4, P4

and K1,3, N1,1,3.

1 Notation and terminology

In this paper, by a graph we mean a simple finite undirected graph G = (V (G), E(G)),
and for notations and terminology not defined here we refer to [3].

Specifically, Ck denotes the cycle on k vertices and Pk the path on k vertices (i.e. of
length k− 1). A trivial path is a path having only one vertex, and a path with endvertices
a, b is also referred to as an (a, b)-path. For x ∈ V (G), dG(x) denotes the degree of x, and
∆(G) stands for the maximum degree of G, i.e. ∆(G) = max{dG(x)| x ∈ V (G)}. An edge
e = uv ∈ E(G) is a pendant edge of G if min{dG(u), dG(v)} = 1 and max{dG(u), dG(v)} ≥
3. The girth of a graph G, denoted g(G), is the length of a shortest cycle in G, and the
circumference of G, denoted c(G), is the length of a longest cycle in G. A clique in a graph
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G is a (not necessarily maximal) complete subgraph of G, and, for an edge e ∈ E(G),
ωG(e) denotes the largest order of a clique containing e.

We use the notation H ⊂ G for a subgraph H of a graph G, and, for a set M ⊂ V (G),
⟨M⟩G denotes the induced subgraph of G on M . If H is an induced subgraph of G, then

we also use the notation H
IND⊂ G.

The distance in G of two vertices x, y ∈ V (G) is denoted distG(x, y), and for two
subgraphs H1, H2 ⊂ G we set distG(H1, H2) = min{distG(x, y)| x ∈ V (H1), y ∈ V (H2)}. If
x ∈ V (G), then the neighborhood of x in G is the set of all neighbors of x in G, i.e. NG(x) =
{y ∈ V (G)| xy ∈ E(G)}, and for a subgraph F ⊂ G we set NG(F ) = ∪x∈V (F )NG(x). A
vertex x ∈ V (G) is said to be locally connected or simplicial if ⟨NG(x)⟩G is a connected
graph or a clique, respectively.

A cycle in G of length |V (G)| is called a hamiltonian cycle, and a graph containing a
hamiltonian cycle is said to be hamiltonian. A 2-factor in a graph G is a spanning subgraph
of G in which all vertices have degree 2. Thus, a hamiltonian cycle is a connected 2-factor.

The line graph of a graph H is the graph G = L(H) with vertex set E(H), in which two
vertices are adjacent if and only if the corresponding edges of H have a vertex in common.
It is a well-known fact that if G is a line graph (of some graph), then the graph H such that
G = L(H) is uniquely determined (with one exception of the graphs C3 and K1,3, for which
both L(C3) and L(K1,3) are isomorphic to C3). The graph H for which L(H) = G will be
called the preimage of G and denoted H = L−1(G). It is easy to observe that a graph F
is a subgraph (not necessarily induced) of a graph H if and only if its line graph L(F ) is
an induced subgraph of the graph G = L(H). It is also well-known that a line graph G
is k-connected if and only if its preimage H = L−1(G) is essentially k-edge-connected, i.e.,
H contains no edge cut R such that |R| < k and at least two components of G − R are
nontrivial (i.e. containing at least one edge).

If C is a class of graphs, we say that a graph G is C-free if G does not contain any graph
from C as an induced subgraph. If C = {X1, . . . , Xk}, we also say that G is X1 . . . Xk-
free and the graphs Xi are referred to in this context as forbidden induced subgraphs.
Specifically, the four-vertex star K1,3 will be called the claw, and a K1,3-free graph will be
also said to be claw-free. It is a well-known fact (which follows e.g. also from the forbidden
subgraph characterization of line graphs by Beineke [2]) that every line graph is claw-free.
Other graphs that will be often used as forbidden induced subgraphs are shown in Figure 1
(where in all cases i, j, k ≥ 1).
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Figure 1: Forbidden induced subgraphs
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2 Introduction

The first result on forbidden induced subgraphs for cycle and path properties of graphs is
by Goodman and Hedetniemi [10] who observed that every 2-connected K1,3Z1-free graph
is hamiltonian. Analogous results were then proved for 2-connected K1,3N1,1,1-free graphs
[7], K1,3Z2-free graphs [11] and K1,3P6-free graphs [5]. Bedrossian [1] characterized all pairs
of forbidden subgraphs for hamiltonicity, and later on, Faudree and Gould [9] reconsidered
the Bedrossian’s characterization (where the ’only if’ part is now based on infinite families
of graphs).

Theorem A [1], [9]. Let X,Y be connected graphs with X, Y ̸≃ P3 and let G be a
2-connected graph of order n ≥ 10 that is not a cycle. Then, G being XY -free implies G
is hamiltonian if and only if (up to a symmetry) X = K1,3 and Y is an induced subgraph
of at least one of the graphs P6, Z3, B1,2 or N1,1,1.

The first author [12] introduced a closure concept for claw-free graphs as follows. The
local completion of a graph G at a vertex x ∈ V (G) is the graph G

∗
x = (V (G), E(G) ∪

{uv| u, v ∈ NG(x)})), and a vertex x ∈ V (G) is eligible if x is locally connected and
nonsimplicial. The set of all eligible vertices of G is denoted EL(G). The closure cl(G) of
a claw-free graph G is the graph obtained by recursively performing the local completion
operation at eligible vertices as long as this is possible (i.e., more precisely, there is a
sequence of graphs G1, . . . , Gk such that G1 = G, Gi+1 = (Gi)

∗
xi

for some xi ∈ EL(Gi),
i = 1, . . . , k − 1, Gk = cl(G) and EL(Gk) = ∅). A graph G is closed if G = cl(G).

The following result summarizes basic properties of the closure.

Theorem B [12]. For every claw-free graph G:
(i) cl(G) is uniquely determined,
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) c(cl(G)) = c(G),
(iv) cl(G) is hamiltonian if and only if G is hamiltonian.

Using the closure concept, it was shown in [13] that the list of forbidden subgraphs
in the characterization, given in Theorem A, can be reduced (with one simple class of
exceptions) to just one graph, namely the graph N1,1,1, and the structure of closures of
such graphs was fully described. Let F cl, CN

1 and CN
2 be the families of graphs shown

in Figure 2 (where circular and elliptical parts represent cliques). The following theorem
summarizes Theorems 6 and 8 of [13].

Theorem C [13]. Let G be a 2-connected XY -free graph, where X, Y is a pair of
connected graphs such that G being XY -free implies G is hamiltonian. Then G satisfies
each of the following:

(i) G is claw-free and cl(G) is N1,1,1-free or cl(G) ∈ F cl,
(ii) G is claw-free and cl(G) ∈ F cl ∪ CN

1 ∪ CN
2 .
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Figure 2: Exception classes for Theorem C

In [4], the closure concept for hamiltonicity was strengthened in the following way. Let
G be a closed claw-free graph. A k-cycle C in G is said to be eligible if 4 ≤ k ≤ 6 and at
least k − 3 nonconsecutive edges of C are contained in no clique of order at least 3. For
an eligible cycle C in G, the graph G

∗
C = (V (G), E(G) ∪ {uv| u, v ∈ NG(C)}) is called the

cycle-completion of G at C.
Let now G be a claw-free graph. A graph clC(G) is said to be a cycle closure of G,

if there is a sequence of graphs G1, . . . , Gt such that G1 = cl(G), Gi+1 = cl((Gi)
∗
C) for

some eligible cycle C in Gi, i = 1, . . . , t − 1, and Gt = clC(G) contains no eligible cycle.
It was shown in [4] that, for any claw-free graph G, clC(G) is uniquely determined and
c(G) = c(clC(G)).

Let k ≥ 4 be an integer and let K1, . . . , Kk be vertex-disjoint cliques of order |V (Ki)| =
ri ≥ 2 with xi, yi ∈ V (Ki), xi ̸= yi, i = 1, . . . , k. The graph, obtained by identifying yi with
xi+1, i = 1, . . . , k (indices modulo k) will be denoted Cr1,...,rk . We set Ck = {Cr1,...,rk | ri ≥ 2,
i = 1, . . . , k}, and for an integer t ≥ 4 we further denote C≥t = ∪k≥tCk (see Figure 3). It is
easy to see that all graphs in C≥t are 2-connected, K1,3N1,1,1,-free and closed. The following
theorem shows that, using the cycle closure, the characterization given in Theorem A can
be further simplified.
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Figure 3: 2-connected closed K1,3N1,1,1,-free graphs

Theorem D [13]. Let G be a 2-connected XY -free graph of order n ≥ 11, where X, Y
is a pair of connected graphs such that G being XY -free implies G is hamiltonian. Then
G satisfies each of the following:

(i) G is claw-free and clC(G) is N1,1,1-free,
(ii) G is claw-free and clC(G) is either complete or belongs to C≥4.
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The characterization of pairs of forbidden subgraphs for 2-factors corresponding to
Theorem A for hamiltonian cycles was given by Faudree et al. [8] in the following result.
Note that the list in the characterization does not contain any Zi since, as shown in [8],
the largest Zi implying a 2-factor is the Z4 which is an induced subgraph of the B1,4.

Theorem E [8]. Let X and Y be connected graphs with X, Y ̸≃ P3, and let G be a
2-connected graph of order n ≥ 10. Then, G being XY -free implies that G has a 2-factor
if and only if, up to the order of the pairs, either {X, Y } = {K1,4, P4}, or X = K1,3 and Y
is an induced subgraph of at least one of the graphs P7, B1,4 or N1,1,3.

The closure concept for claw-free graphs, introduced in [12], was strengthened in [14]
such that it still preserves the (non)-existence of a 2-factor in G (while hamiltonian prop-
erties are not preserved).

Let C be a cycle of even length k ≥ 4 in a graph G. Two edges e1, e2 ∈ E(G) are
said to be antipodal in C, if they are at maximum distance in C, i.e. if distC(e1, e2) =
k/2 − 1. An even cycle C in a graph G is said to be edge-antipodal in G, abbreviated
EA, if min{ωG(e1), ωG(e2)} = 2 for any two antipodal edges e1, e2 ∈ E(C). Analogously,
two vertices x1, x2 ∈ V (C) are antipodal in C if they are at maximum distance in C,
i.e. if distC(x1, x2) = k/2, and C is said to be vertex-antipodal in G, abbreviated VA, if
min{dG(x1), dG(x2)} = 2 for any two antipodal vertices x1, x2 ∈ V (C). It is easy to observe
that an even (not necessarily induced) cycle C in a graph H is VA in H if and only if the
cycle C ′ = L(C) is an induced EA-cycle in G = L(H).

A vertex x in a claw-free graph G is 2f-eligible, if either x ∈ EL(G), or x /∈ EL(G) and
x is in an induced cycle of length 4 or 5 or in an induced EA-cycle of length 6. The set
of all 2f-eligible vertices of G is denoted EL2f (G). A graph cl2f (G) is a 2-factor-closure
(abbreviated 2f-closure) of a claw-free graph G, if there is a sequence of graphs G1, . . . , Gk

such that G1 = G, Gi+1 = (Gi)
∗
xi

for some xi ∈ EL2f (Gi), i = 1, . . . , k − 1, Gk = cl2f (G)
and EL2f (Gk) = ∅ (i.e., the 2f-closure of a claw-free graph G is obtained by recursively
repeating the local completion operation at 2f-eligible vertices, as long as this is possible).
A graph G is 2f-closed if G = cl2f (G). The following result summarizes basic properties of
the 2f-closure.

Theorem F [14]. Let G be a claw-free graph. Then
(i) the closure cl2f (G) is uniquely determined,
(ii) there is a graph H such that

(α) L(H) = cl2f (G),
(β) g(H) ≥ 6,
(γ) H does not contain any vertex-antipodal cycle of length 6,

(iii) G has a 2-factor if and only if cl2f (G) has a 2-factor.

In the main result of this paper, Theorem 11, we use the 2f-closure to reduce the list
given in the characterization in Theorem E in a way similar to that in which Theorems C
and D reduce the list given in Theorem A. Namely, we show that if X,Y is a pair of
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connected graphs such that a 2-connected graph G being XY -free implies G has a 2-
factor, then every 2-connected XY -free graph G of order at least 10 satisfies each of the
following:

(i) G is K1,4P4-free, or G is claw-free and cl2f (G) is N1,1,3-free,
(ii) G is K1,4P4-free, or G is claw-free and cl2f (G) is complete or belongs to C≥6.

3 Results

In this section we show that if a 2-connected graph G is K1,3P7-free, K1,3B1,4-free or
K1,3N1,1,3-free, then its 2f-closure cl2f (G) is always K1,3N1,1,3-free, and we fully describe
the structure of 2-connected 2f-closed K1,3N1,1,3-free graphs. In our proofs, we will often
use the graphs L−1(N1,1,3) and L−1(B1,4) shown in Figure 4.
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........................................................................................................................................................................................................................................................................................................................................
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•
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................................................................................................................................................................................................................................................................
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Figure 4: The preimages of N1,1,3 and B1,4

If F is a graph and e ∈ E(F ), we say that a graph F ′ is obtained from F by subdivision
of e, if F ′ is isomorphic to the graph obtained by replacing e by a path of length 2. Let
e = xy ∈ E(F ) be a pendant edge of a graph F with dF (x) = 1 and dF (y) ≥ 3. We
say that a graph F ′ is obtained from F by rotation of e if F ′ is isomorphic to the graph
obtained from the graph F − x by subdivision of one of the edges containing the vertex y.
Whenever we speak of a rotation of an edge e, it is always understood that e is a pendant
edge.

The following result shows the way subdivisions and rotations of edges of a graph are
related to local completions.

Proposition 1. Let G be a claw-free graph, G
∗
x the local completion of G at a vertex

x ∈ V (G), and let F be a connected triangle-free graph with ∆(F ) ≤ 3 such that H =

L(F )
IND⊂ G

∗
x. Then either H

IND⊂ G, or there is a graph F ′ such that H ′ = L(F ′)
IND⊂ G and

F ′ is obtained from F by subdivision or rotation of an edge.

Proof. Let H
IND⊂ G

∗
x be such that H = L(F ) for some connected triangle-free graph F

with ∆(F ) ≤ 3, and set B = (E(G
∗
x) \ E(G)) ∩ E(H). If B = ∅, then H

IND⊂ G and we are
done, hence suppose B ̸= ∅. Since H is induced, all edges in B are in one maximal clique
KB of H, and since ⟨NG(x)⟩G∗

x
is a clique, x has no neighbors outside KB. Note that all

maximal cliques in H are of order 2 or 3 (since ∆(F ) ≤ 3) and edge-disjoint (since F is
triangle-free). For a vertex v ∈ V (H) let vF denote the edge of F = L−1(H), corresponding
to v.
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Case 1: |B| = 1. Let e = uv ∈ B. If ωH(e) = 2, then uxv is an induced path in G
and x has no other neighbors in V (H). Set H ′ = (V (H)∪ {x}, (E(H) \ {uv})∪ {ux, vx}).
Then H ′ IND⊂ G and H ′ = L(F ′), where F ′ is isomorphic to the graph obtained from F by
subdivision of uF or of vF .

Thus, let ωH(e) = 3. Let {u, v, w} = KB and set H ′ = (V (H), E(H) \ {uv}). Similarly

as before, H ′ IND⊂ G. If dH(w) = 3, then also dH′(w) = 3, and ⟨{w, u, v, w′}⟩H′ , where
w′ is the third neighbor of w in H, is an induced claw in G, a contradiction. Hence
dH′(w) = dH(w) = 2. Then w is a simplicial vertex in H, implying wF is a pendant
edge of F . Then uwv is an induced path in G, hence H ′ = L(F ′), where in F ′ the edges
uF ′ , wF ′ , vF ′ determine a path of length 3. Hence F ′ is obtained by rotation of wF .

Case 2: |B| = 2. Then necessarily |V (KB)| = 3. Let V (KB) = {u, v, w} and choose
the notation such that B = {uw, vw} (i.e., uv ∈ E(G)). Set H ′ = (V (H) ∪ {x}, (E(H) \
{uw, vw} ∪ {xu, xv, xw}). Then H ′ IND⊂ G and H ′ = L(F ′), where F ′ is obtained from F
by replacing the edge wF by the path of length 2 determined by the edges wF ′ , xF ′ . Thus,
F ′ is a subdivision of F .

Case 3: |B| = 3. Then V (KB) = {u, v, w} is independent in G. Since V (KB) ⊂ NG(x),
⟨{x, u, v, w}⟩G is a claw, a contradiction.

The following result that was originally proved in [6] for cl(G). We include its (short)
proof here since we use the result here with a different type of closure and we prove it in
a slightly more general setting.

Proposition 2. Let G be a claw-free graph, x ∈ V (G), i, j, k ≥ 1 integers, and let G
∗
x

be the local completion of G at x.
(i) If G is Pi-free, then G

∗
x is Pi-free,

(ii) if G is Ni,j,k-free, then G
∗
x is Ni,j,k-free.

Note that Proposition 2 immediately implies that if G is K1,3Pi-free or K1,3Ni,j,k-free,
then so is cl2f (G).

Proof. If H
IND⊂ G

∗
x with H ≃ Pi, then, since Pi = L(Pi+1), by Proposition 1 either

H
IND⊂ G, or H ′ IND⊂ G, where H ′ is the line graph of a subdivision of Pi+1 = L−1(H). In

both cases, G is not Pi-free.

Similarly, ifH
IND⊂ G

∗
x withH ≃ Ni,j,k, then, since L

−1(Ni,j,k) is a connected triangle-free
graph with maximum degree at most 3 and with no pendant edges (recall that we suppose

i, j, k ≥ 1; for L−1(N1,1,3) see Figure 4), by Proposition 1 we have either H
IND⊂ G, or

H ′ IND⊂ G, where H ′ is the line graph of a subdivision of L−1(Ni,j,k). Since every subdivision
of L−1(Ni,j,k) contains a subgraph isomorphic to L−1(Ni,j,k), G is not Ni,j,k-free.

It should be noted here that a result similar to Proposition 2 is not true in the case
of the class of K1,3Bi,j-free graphs. The graph in Figure 5 is an example of a 2-connected
K1,3Bi,j-free graph G for which cl2f (G) contains an induced Bi,j.

For our next results we will need some definitions and notation.
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Figure 5: A 2-connected K1,3Bi,j-free graph

Let k ≥ 4 and i1, . . . , ik be nonnegative integers. The graph, obtained from a cycle C of
length k with V (C) = {z1, . . . , zk} and k (not necessarily nontrivial) vertex-disjoint paths
P1, . . . , Pk with |V (Pj)| = ij + 1 and Pj = yj0y

j
1 . . . y

j
k by identifying zj = yj0, j = 1, . . . , k,

is called an (i1, . . . , ik)-sun, or, briefly, a sun (see Figure 6). The cycle C is called the disc
and the paths P1, . . . , Pk the beams of the sun, and for a beam Pj, the vertex zj is called
its root. The family of all suns will be denoted S.

•
z1

•z2•z3

•
z4

•z5

•
y11 •

y12

•
y21 •

y22 •
y23 •

y24

•
y41
..................................................................................................
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............
............
............
............
.................................................................................................................................................................................................................................................................................................................................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...... ...........................................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................................................

S

Figure 6: A (2, 4, 0, 1, 0)-sun

Now we can handle the case when G is K1,3P7-free.

Theorem 3. Let G be a 2-connected K1,3P7-free graph. Then cl2f (G) is K1,3N1,1,3-free.

Proof. Let, to the contrary, G be a 2-connected K1,3P7-free graph such that cl2f (G) is
not K1,3N1,1,3-free. By Proposition 2, we can suppose that G is 2f-closed. By Theorem F,
there is a graph H = L−1(G) with g(H) ≥ 6. Since G is not K1,3N1,1,3-free, H contains
a subgraph F (not necessarily induced) such that F ≃ L−1(N1,1,3). Let the vertices of F
be labeled as indicated in Figure 4. The graph G is 2-connected, hence H is essentially
2-edge-connected. Thus, the edge ca10 cannot be a cut-edge of H, hence there is a path
P = d0d1 . . . dk, k ≥ 1, such that, up to a symmetry, d0 ∈ {c, a20, a21}, dk ∈ {a10, a11, a12, a13}
and di ∈ V (H)\V (F ) for 1 ≤ i ≤ k−1. The path P then together with the unique (d0, dk)-
path PF in F determines a cycle of length at least 6, containing c. Then ⟨V (C)∪{a30, a31}⟩H
is a sun containing a P8, hence G = L(H) contains an induced P7, a contradiction.

We next consider the case whenG isK1,3B1,4-free. The proof is more complicated in this
case since, as already noted, G being K1,3B1,4-free does not imply cl2f (G) is K1,3B1,4-free
and the proof will require some more definitions.

We say that a sun S ∈ S is good if S contains a (not necessarily induced) subgraph
T ⊂ S such that T = L−1(B1,4) (see Figure 4). The family of all good suns will be denoted
SG. For S ∈ SG, the beam of S containing the center (i.e. the only vertex of degree 3)
of T is called the main beam of S, and if an S ∈ SG contains more subgraphs that are
isomorphic to T , we will always suppose that T is chosen such that the length of the main
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beam is maximum. Beams that are not main are called side beams. For example, the
(2, 4, 0, 1, 0)-sun in Figure 6 contains a T centered at z1 or at z4. Since the choice of the
center of T at z1 maximizes the length of the beam containing the center, we consider the
beam z1y

1
1y

1
2 as the main beam and the others as the side ones.

Let S ∈ SG. We say that S is a good sun of type A, if the main beam of S has length
at least two. The family of all good suns of type A will be denoted SA

G .

Whenever we speak of a rotation of an edge e of a sun, it is always understood that
e is a pendant edge, i.e. the only edge of a beam of length 1, and we will also sometimes
simply speak of rotation of a beam of length 1.

The following observation is straightforward.

Proposition 4. Let S ∈ SG and let S ′ ∈ S be obtained from S by subdivision of an
edge or by rotation of a side beam. Then S ′ ∈ SG. Moreover, if S ∈ SA

G , then also S ′ ∈ SA
G .

Let S ∈ SG. We say that S is a good sun of type B if, for every sequence S1, . . . , Sk such
that S1 = S and Si+1 is obtained from Si by subdivision or rotation of an edge, either

(i) Si ∈ SG, i = 1, . . . , k, or
(ii) there is a k0, 1 ≤ k0 ≤ k, such that Si ∈ SG for i = 1, . . . , k0 − 1 and Sk0 ∈ SA

G .
The family of all good suns of type B will be denoted SB

G .

Note that, by Proposition 4, for the proof that S ∈ SB
G it is enough to verify (i) and (ii)

for all sequences S1, . . . , Sk such that Si+1 is obtained from Si by rotation of an edge. Also
by Proposition 4, SA

G ⊂ SB
G , and, for example, for the sun S of Figure 6 we have S ∈ SA

G

and S − y12 ∈ SB
G \ SA

G .

From the definitions of the classes S, SG, SA
G , SB

G and from Propositions 1 and 4 we now
easily conclude the following result that will be crucial for handling the class ofK1,3B1,4-free
graphs. Here, for a class C we denote L(C) = {L(G)| G ∈ C}.

Theorem 5. Let G be a claw-free graph and let G
∗
x be the local completion of G at a

vertex x ∈ V (G).
(i) If G is L(S)-free, then G

∗
x is L(S)-free.

(ii) If G is L(SG)-free, then G
∗
x is L(SG)-free.

(iii) If G is L(SA
G)-free, then G

∗
x is L(SA

G)-free.
(iv) If G is L(SA

G ∪ SB
G )-free, then G

∗
x is L(SA

G ∪ SB
G )-free.

Proof. (i) If L(S)
IND⊂ G

∗
x for some S ∈ S, then, since every sun is a connected triangle-

free graph with maximum degree at most 3, Proposition 1 implies L(S ′)
IND⊂ G, where S ′ is

obtained by subdivision or rotation of an edge.
The proof of parts (ii), (iii) and (iv) is similar using Proposition 4 and the definition

of the class SB
G .
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Now we are ready to turn our attention to K1,3B1,4-free graphs.

Proposition 6. Let G be a K1,3B1,4-free graph. Then cl2f (G) contains no induced
subgraph F such that L−1(F ) ∈ SA

G ∪ SB
G .

Proof. If F
IND⊂ cl2f (G) is such that L−1(F ) ∈ SA

G ∪ SB
G , then, by Theorem 5 and by

induction, there is an F ′ IND⊂ G such that L−1(F ′) ∈ SA
G ∪ SB

G . Thus, L−1(F ) contains a
subgraph T ≃ L−1(B1,4), contradicting the fact that G is B1,4-free.

Proposition 7. Let G be a 2-connected 2f-closed claw-free graph. If G is not K1,3N1,1,3-
free, then G contains an induced subgraph F such that L−1(F ) ∈ SA

G ∪ SB
G .

Proof of Proposition 7 is postponed to Section 4.

Now we can prove that the 2f-closure of a 2-connected K1,3B1,4-free graph must be
N1,1,3-free.

Theorem 8. Let G be a 2-connected K1,3B1,4-free graph. Then cl2f (G) is N1,1,3-free.

Proof. If cl2f (G) is not N1,1,3-free, then, by Proposition 7, there is an F
IND⊂ cl2f (G)

with L−1(F ) ∈ SA
G ∪ SB

G , contradicting Proposition 6.

• •
•

• •
•

• ••
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P3,3,3

Figure 7: The only noncomplete 2-connected 2f-closed K1,3N1,1,3-free graph not in C≥6

In our next result we describe the structure of 2-connected 2f-closed N1,1,3-free graphs.
Here C≥6 is the family of graphs defined in Section 2 (see Figure 3) and P3,3,3 is the graph
shown in Figure 7.

Theorem 9. Let G be a 2-connected 2f-closed claw-free graph. Then G is N1,1,3-free if
and only if G is either complete or G ∈ C≥6 ∪ {P3,3,3}.

Proof of Theorem 9 is postponed to Section 4.

Corollary 10. Let Y ∈ {P7, B1,4, N1,1,3} and let G be a 2-connected K1,3Y -free graph.
Then either cl2f (G) is complete or cl2f (G) ∈ C≥6 ∪ {P3,3,3}.

Proof follows immediately from Proposition 2 and from Theorems 3, 8 and 9.
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Our final theorem summarizes results given in Theorem E, Proposition 2, Theorem 3,
Theorem 8 and in Corollary 10.

Theorem 11. Let G be a 2-connected XY -free graph of order n ≥ 10, where X, Y is
a pair of connected graphs such that G being XY -free implies G has a 2-factor. Then G
satisfies each of the following:

(i) G is K1,4P4-free, or G is claw-free and cl2f (G) is N1,1,3-free,
(ii) G is K1,4P4-free, or G is claw-free and cl2f (G) is either complete or belongs to C≥6.

4 Proofs

Throughout this section, for the description of a subgraph T of H isomorphic to L−1(N1,1,3)
(see Figure 4) we will use the notation T (P1;P2;P3), where the three paths P1, P2, P3

determining T are ordered such that P1 is the longest one, and the center of T (i.e. the
common vertex of P1, P2 and P3) is always the first one.

For a sun with vertex set {x1, . . . , xs} we will use notation S(x1 . . . xs), where in the
list of vertices we always list first the vertices of the disc, followed by lists of vertices of the
beams, where the vertices of beams are ordered starting with the root and the beams are
ordered in the order of the vertices of the disc; lists are separated with semicolons. If a sun
is good, we always start the list of vertices of the disc with the root of the main beam (and,
consequently, the main beam is also the first one in the list of beams). For example, the
(good of type A) sun in Figure 6 will be denoted S(z1z2z3z4z5; z1y

1
1y

1
2; z2y

2
1y

2
2y

2
3y

2
4; z4y

4
1).

Proof of Proposition 7. Let G be a 2-connected 2f-closed claw-free graph and suppose
that G is not N1,1,3-free. By Theorem F, there is a graph H = L−1(G) such that g(H) ≥ 6
and H contains no VA-cycle of length 6. Since G is not N1,1,3-free, H contains a subgraph
F (not necessarily induced) such that F ≃ L−1(N1,1,3). We will use the labeling of vertices
of F as indicated in Figure 4. The graph G is 2-connected and hence H is essentially
2-edge-connected. Thus, the edge ca10 cannot be a cut-edge of H, implying there is a path
P = d0d1 . . . dk, k ≥ 1, such that, up to a symmetry, d0 ∈ {c, a20, a21}, dk ∈ {a10, a11, a12, a13}
and di ∈ V (H) \ V (F ) for 1 ≤ i ≤ k − 1. We will show that in each of the possible cases
H contains a sun S ∈ SA

G ∪ SB
G . We list all possible cases in the following table in which

the first two columns describe the case, in the third column we give minimum length of
the path P which follows from the fact that g(H) ≥ 6, and in the last column we indicate
the sun obtained in this case.
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Case Minimum The sun S containing
d0 dk length k of P a copy of L−1(B1,4)

a20 a10 4 S(dk . . . d0c; dka
1
1a

1
2; d0a

2
1) ∈ SA

G

a20 a11 3 S(ca10dk . . . d0; ca
3
0a

3
1; dka

1
2) ∈ SA

G

a20 a12 2 S(dk . . . d0ca
1
0a

1
1; dka

1
3; ca

3
0a

3
1) ∈ SB

G

a20 a13 1 S(ca10a
1
1a

1
2dk . . . d0; ca

3
0a

3
1) ∈ SA

G if k ≥ 2

a21 a10 3 S(cdk . . . d0a
2
0; ca

3
0a

3
1) ∈ SA

G if k ≥ 4
a21 a11 2 S(dk . . . d0a

2
0ca

1
0; dka

1
2a

1
3; ca

3
0) ∈ SA

G

a21 a12 1 S(dk . . . d0a
2
0ca

1
0a

1
1; dka

1
3; ca

3
0a

3
1) ∈ SB

G

a21 a13 1 S(ca10a
1
1a

1
2dk . . . d0a

2
0; ca

3
0a

3
1) ∈ SA

G

c a10 5 S(d0 . . . dk; d0a
3
0a

3
1) ∈ SA

G if k ≥ 6
c a11 4 S(d0 . . . dka

1
0; d0a

3
0a

3
1; dka

1
2) ∈ SA

G

c a12 3 S(dk . . . d0a
1
0a

1
1; dka

1
3; d0a

3
0a

3
1) ∈ SB

G

c a13 2 S(d0 . . . dka
1
2a

1
1a

1
0; d0a

3
0a

3
1) ∈ SA

G if k ≥ 3

Note that in the third, seventh and eleventh case we obtain a sun S such that the rotation
of its beam of length 1 results in a good sun S ′ with disc of length 7 and main beam of
length 2. Clearly S ′ ∈ SA

G , hence S ∈ SB
G by Proposition 4 and by the remark before

Proposition 1.

The remaining possibilities are:

d0 = a20, dk = a13, k = 1;
d0 = a21, dk = a10, k = 3;
d0 = c, dk = a10, k = 5;
d0 = c, dk = a13, k = 2.

We consider these cases separately, starting with the second one.

Case 1: d0 = a21, dk = a10 and k = 3. We first observe that if d1a
3
1 ∈ E(H), then we have

S(d1d2d3ca
2
0d0; d1a

3
1a

3
0; d3a

1
1a

1
2a

1
3) ∈ SA

G ; hence we can suppose that d1a
3
1 /∈ E(H). Let S∗ =

S(cd3d2d1d0a
2
0; ca

3
0a

3
1) (note that S∗ /∈ SG). Clearly, S

∗ IND⊂ H, since any edge xy ∈ E(H) \
E(S∗) with x, y ∈ V (S∗) creates a cycle of length at most 5. The cycle C = ca20d0d1d2d3c (of
length 6) cannot be vertex-antipodal and hence at least one of the vertices d0, d1, d2 must
have a neighbor u outside S∗. If u is a neighbor of d0, then S(cd3d2d1d0a

2
0; ca

3
0a

3
1; d0u) ∈ SA

G ;
if u is a neighbor of d1, then S(d1d0a

2
0cd3d2; d1u; ca

3
0a

3
1) ∈ SB

G , and if u is a neighbor of d2,
then S(cd3d2d1d0a

2
0; ca

3
0a

3
1; d2u) ∈ SA

G .

Case 2: d0 = c, dk = a10 and k = 5. If we set F ′ = T (ca10a
1
1a

1
2a

1
3; cd1d2; ca

3
0a

3
1) and P ′ =

d2d3d4d5, then for F ′ and P ′ we are back in Case 1.

Case 3: d0 = c, dk = a13 and k = 2. If a12a
2
1 ∈ E(H), then S(a12a

1
1a

1
0d0d1d2; a

1
2a

2
1a

2
0; d0a

3
0a

3
1) ∈

SA
G ; hence we can suppose that a12a

2
1 /∈ E(H) and, symmetrically, a12a

3
1 /∈ E(H). Then

there is no edge xy ∈ E(H) \ (E(F )∪E(P )) with x, y ∈ V (F )∪ V (P ) (otherwise we get a
cycle of length at most 5). The cycle C = d0d1d2a

1
2a

1
1a

1
0d0 (of length 6) cannot be vertex-

antipodal; hence at least one of the vertices a11, a
1
2, d2 has a neighbor u ∈ V (H) \ (V (F ) ∪
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V (P )). If ua11 ∈ E(H), then S(d0d1d2a
1
2a

1
1a

1
0; d0a

3
0a

3
1; a

1
1u) ∈ SA

G ; if ua12 ∈ E(H), then
S(a12a

1
1a

1
0d0d1d2; a

2
1u; d0a

3
0a

3
1) ∈ SB

G and if ud2 ∈ E(H), then S(d0d1d2a
1
2a

1
1a

1
0; d0a

3
0a

3
1; d2u) ∈

SA
G .

Case 4: d0 = a20, dk = a13 and k = 1. Since H is essentially 2-edge-connected, the edge ca30
cannot be a cut-edge, implying there is a path P ′ = d′0d

′
1 . . . d

′
t, t ≥ 1, such that d′0 ∈

{a30, a31}, d′t ∈ V (F ) \ {a30, a31} and d′i ∈ V (H) \ V (F ) for 1 ≤ i ≤ t− 1.
If d′t ∈ {a10, a11, a12, a13}, then each of these possibilities is symmetric to some of the

previous cases, except for the case when d′0 = a30, d′t = a13 and t = 1; but then C =
a30a

1
3a

2
0ca

3
0 is a cycle of length 4, a contradiction. Hence it remains to consider the cases

when d′t ∈ {c, a20, a21}. We first make the following easy observations.

Claim 1. If H contains two edge-disjoint cycles with a common vertex, then H contains a
sun S ∈ SA

G .

Proof. If C1 = x1x2 . . . xrx1 and C2 = x1y2 . . . ysx1 are two cycles with r, s ≥ 6 and
V (C1) ∩ V (C2) = x1, then S(x1x2 . . . xr;x1y2y3y4y5y6) ∈ SA

G .

Claim 2. If H contains two cycles with exactly one common edge, then H contains a sun
S ∈ SA

G ∪ SB
G .

Proof. Let C1 = x1x2x3 . . . xrx1 and C2 = x1x2y3 . . . ysx1 be two cycles with r, s ≥ 6,
V (C1) ∩ V (C2) = {x1, x2} and E(C1) ∩ E(C2) = x1x2. If r ≥ 7 or s ≥ 7, then we
immediately have a S ∈ SA

G ; hence suppose r = s = 6. The only possible edges uv ∈
E(H) \ (E(C1)∪E(C2)) with u, v ∈ V (C1)∪ V (C2) that do not create a cycle of length at
most 5 are the edges x4y5 and x5y4, but in the first case S(x4x5x6x1x2x3;x4y5y4;x2y3) ∈ SA

G

and the second case is symmetric. Thus, suppose there is no edge outside E(C1) ∪ E(C2)
with both ends in V (C1) ∪ V (C2). Since C1 cannot be vertex-antipodal, at least one of
the vertices x3, x4, x5 has a neighbor u ∈ V (H) \ (V (C1) ∪ V (C2)). If ux3 ∈ E(H), then
S(x1x2x3x4x5x6;x1y6y5;x3u) ∈ SA

G ; if ux4 ∈ E(H), then S(x4x5x6x1x2x3;x4u;x1y6y5) ∈
SB
G , and the case ux5 ∈ E(H) is symmetric.

Now we can easily see that in each of our cases H contains a subgraph consisting of
two cycles with a common vertex or edge and hence one of the claims applies.

Case Minimum Claim applicable
d′0 d′t length t of P ′ to this case

a30 c 5 Claim 1
a30 a20 4 Claim 2
a30 a21 3 Claim 2
a31 c 4 Claim 1
a31 a20 3 Claim 2
a31 a21 2 Claim 2

In each of the possible cases, we have found a sun S ∈ SA
G ∪ SB

G .

Proof of Theorem 9. It is immediate to see that every graph G ∈ C≥6 ∪ {P3,3,3} is 2-
connected, 2f-closed and K1,3N1,1,3-free. Let thus, conversely, G be a 2-connected 2f-closed

13



K1,3N1,1,3-free graph, suppose that G is not complete and let H = L−1(G). Since G is
2f-closed, g(H) ≥ 6 and H contains no VA-cycle of length 6. Since G is N1,1,3-free, H
contains no subgraph T (not necessarily induced) such that T ≃ L−1(N1,1,3).

The graph G is 2-connected noncomplete, implying H contains a cycle. If C =
x1 . . . xkx1 is a cycle in H and e = x1xs ∈ E(H) is a chord of C, then s ≥ 6 and
k ≥ s + 4 since g(H) ≥ 6, but then T (x1x2x3x4x5; x1xsxs+1;x1xkxk−1) ≃ L−1(N1,1,3),
a contradiction. Hence all cycles in H are chordless.

We first consider the case when H contains a cycle C = x1 . . . xkx1 of length k ≥
7. If there is an edge e = uv ∈ E(H) with u, v ∈ V (H) \ V (C), then the edge e
and the notation of the vertices of C can be chosen such that ux1 ∈ E(H), but then
T (x1x2x3x4x5;x1uv; x1xkxk−1) ≃ L−1(N1,1,3), a contradiction. Hence every edge of H has
at least one vertex on C.

Let u ∈ V (H) \ V (C) be a vertex of degree dH(u) ≥ 2, and let x1, xs ∈ V (C)
be neighbors of u. Clearly s ≥ 5 and k ≥ s + 3 since g(H) ≥ 6. If s ≥ 6, then
T (x1x2x3x4x5;x1uxs; x1xkxk−1) ≃ L−1(N1,1,3); hence s = 5. Symmetrically, k = s+ 3 = 8.
If dH(u) ≥ 3, then u has a neighbor v ∈ V (H) \ V (C) (since all cycles in H are chordless),
but then T (x1x2x3x4x5; x1uv; x1x8x7) ≃ L−1(N1,1,3); hence dH(u) = 2. Similarly dH(x4) =
2 (otherwise, for a vertex v ∈ NH(x4) \ V (C) we have T (x1x2x3x4v;x1ux5; x1x8x7) ≃
L−1(N1,1,3)), and, symmetrically, dH(x2) = 2. But then the cycle x1x2x3x4x5ux1 is a VA-
cycle of length 6 in H, a contradiction. Thus, all vertices in V (H) \ V (C) are of degree 1,
implying G = L(H) ∈ C≥7 ⊂ C≥6.

It remains to consider the case when all cycles in H are of length 6 (and chordless).
Let thus C = x1x2x3x4x5x6x1 ⊂ H.

If there is an edge e = uv ∈ E(H) with u, v ∈ V (H)\V (C), then, by the 2-connectedness
of G = L(H), there is a path P (not necessarily containing the edge e) with endvertices
on C and interior vertices outside C. Choose the notation such that P = x1z1 . . . zpy,
where z1, . . . , zp ∈ V (H) \ V (C) and y ∈ V (C). If y = x2 or y = x3 (or, symmetrically,
y = x5 or y = x6), then, for any value of p, the graph H contains a cycle of length
different from 6. Thus, there are only two possibilities that do not create a cycle of length
different from 6, namely, y = x1 and p = 5 or y = x4 and p = 2. But in the first case
immediately T (x1x2x3x4x5;x1z1z2;x1z5z4) ≃ L−1(N1,1,3); hence we have y = x4 and p = 2.
If there is a vertex w ∈ V (H) \ (V (C) ∪ V (P )), then, by symmetry, we can suppose that
wx6 ∈ E(H) or wx4 ∈ E(H), but then we have T (x1x2x3x4x5;x1z1z2; x1x6w) ≃ L−1(N1,1,3)
or T (x1x2x3x4w;x1z1z2; x1x6x5) ≃ L−1(N1,1,3), respectively. Hence V (H) = V (C)∪ V (P ),
implying G = L(H) ≃ P3,3,3.

Thus, the remaining possibility is that all edges of H have at least one vertex in V (C).
But then all vertices in V (H) \ V (C) are of degree 1 (otherwise we get a cycle of length at
most 5), implying G = L(H) ∈ C6 ∈ C≥6.
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[14] Ryjáček, Z.; Xiong, L,; Yoshimoto, K.: Closure concept for 2-factors in claw-free
graphs. Preprint 2009, submitted.

15


