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Abstract

We show that, in a claw-free graph, Hamilton-connectedness is preserved under the
operation of local completion performed at a vertex with 2-connected neighborhood.
This result proves a conjecture by Bollobás et al.

1 Notation and terminology

In this paper, by a graph we mean a finite simple undirected graph G = (V (G), E(G)).
For a vertex x ∈ V (G), NG(x) denotes the neighborhood of x in G, i.e. NG(x) = {y ∈
V (G)| xy ∈ E(G)}, and NG[x] denotes the closed neighborhood of x in G, i.e. NG[x] =
NG(x) ∪ {x}. If G,H are graphs, then H ⊂ G means that H is a subgraph of G. The
induced subgraph of G on a set M ⊂ V (G) is denoted ⟨M⟩G. By a clique we mean a (not
necessarily maximal) complete subgraph of G. A vertex x ∈ V (G) for which ⟨NG(x)⟩G
is a connected graph (k-connected graph, clique) is said to be locally connected (locally
k-connected, simplicial), respectively.

A path with endvertices a, b will be referred to as an (a, b)-path. If P is an (a, b)-path
and u ∈ V (P ), then u−(P ) and u+(P ) denotes the predecessor and successor of u on P
(always considered in the orientation from a to b). If no confusion can arise we simply
write u− and u+. If P is a path and u, v ∈ V (P ), then uPv denotes the (u, v)-subpath of
P . If we want to emphasize that a subpath is traversed in the same (opposite) orientation

as P , we use the notation u
−→
P v or u

←−
P v, respectively.

Throughout the paper, κ(G) denotes the (vertex) connectivity of G and c(G) the
circumference of G (i.e. the length of a longest cycle in G). A graph G is hamiltonian if
c(G) = |V (G)|.

For a graph G and a, b ∈ V (G), p(G) denotes the length of a longest path in G, pa(G)
the length of a longest path in G with one endvertex at a ∈ V (G), and pab(G) the length
of a longest (a, b)-path in G. A graph G is homogeneously traceable if, for any a ∈ V (G), G
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has a hamiltonian path with one endvertex at a (i.e., for any a ∈ V (G), pa(G) = |V (G)|),
and G is Hamilton-connected if, for any a, b ∈ V (G), G has a hamiltonian (a, b)-path (i.e.,
for any a, b ∈ V (G), pab(G) = |V (G)|).

We say that G is claw-free if G does not contain a copy of the claw K1,3 as an induced
subgraph. Whenever we list vertices of an induced claw, its center (i.e. the only vertex
of degree 3) is always the first vertex of the list.

For further concepts and notations not defined here we refer the reader to [2].

2 Introduction

A locally connected nonsimplicial vertex is called eligible. The local completion of G at a
vertex x is the graph G′

x obtained from G by adding all edges with both vertices in NG(x)
(note that the local completion at x turns x into a simplicial vertex, and preserves the
claw-free property of G).

The closure cl(G) of a claw-free graph G is the graph obtained from G by recursively
performing the local completion operation at eligible vertices as long as this is possible.
We say that G is closed if G = cl(G).

The following was proved in [7].

Theorem A [7]. For every claw-free graph G:
(i) cl(G) is uniquely determined,
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) c(cl(G)) = c(G),
(iv) cl(G) is hamiltonian if and only if G is hamiltonian.

A graph class C is stable if G ∈ C implies cl(G) ∈ C. If C is a stable class, then a graph
property π is stable in C if G has π if and only if cl(G) has π, and a graph invariant α is
stable in C if α(G) = α(cl(G)), for any G ∈ C.
Thus, Theorem A says that circumference is a stable invariant and hamiltonicity is a
stable property in the class of claw-free graphs.

Let G be the line graph of the multigraph H shown in Figure 1(a). Then G has no
hamiltonian (u1, u2)-path (where u1, u2 are the vertices of G = L(H) that correspond
to the edges u1, u2 in H), but cl(G) is Hamilton-connected. This example shows that
Hamilton-connectedness is not stable in 3-connected claw-free graphs.

Brandt [3] proved that every 9-connected claw-free graph is Hamilton-connected, and
Hu, Tian and Wei [5] improved this result by showing that every 8-connected claw-
free graph is Hamilton-connected. Consequently, Hamilton-connectedness is stable in
8-connected claw-free graphs.

The following extension of the closure concept was introduced in [1]. For an integer
k ≥ 1, a locally k-connected nonsimplicial vertex is said to be k-eligible, and the k-closure
of G, denoted clk(G), is the graph obtained from G by recursively performing the local
completion operation at k-eligible vertices as long as this is possible. A graph G is k-closed
if G = clk(G).
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Figure 1

A graph class C is k-stable if G ∈ C implies clk(G) ∈ C. For a k-stable class C, a graph
property π is k-stable in C if G has π if and only if clk(G) has π, and a graph invariant α
is k-stable in C if α(G) = α(cl(G)), for any G ∈ C.

The following result is implicit in the proof of the main result of [1].

Proposition B [1]. Let G be a claw-free graph, let x ∈ V (G) and let G′
x be the local

completion of G at x.
(i) If ⟨NG(x)⟩G is 2-connected, then, for any a ∈ V (G), pa(G) = pa(G

′
x);

(ii) If ⟨NG(x)⟩G is 3-connected, then, for any a, b ∈ V (G), pab(G) = pab(G
′
x).

Proposition B then immediately implies (ii) and (iii) of the following result.

Theorem C [1]. For every claw-free graph G,
(i) clk(G) is uniquely determined,
(ii) cl2(G) is homogeneously traceable if and only if G is homogeneously traceable,
(iii) cl3(G) is Hamilton-connected if and only if G is Hamilton-connected.

Thus, homogeneous traceability is 2-stable and hamilton-connectedness is 3-stable in the
class of claw-free graphs.

Let now G be the graph in Figure 1(b) (where the ovals represent cliques on at least
three vertices). Then G has no hamiltonian (a, b)-path, the vertex x is 2-eligible, and
there is a hamiltonian (a, b)-path in the local completion G′

x of G at x. This example
shows that the property “having a hamiltonian (a, b)-path for given a, b ∈ V (G)” is not
2-stable. However, neither G nor its 2-closure are Hamilton-connected. This observation
motivated in [1] the following conjecture.

Conjecture D [1]. Hamilton-connectedness is 2-stable in the class of claw-free graphs.

It should be noted here that in [6] the author claimed to give an infinite family of
counterexamples to Conjecture D. However, the behavior of the graphs constructed in [6]
is similar to that of the graph in Figure 1(b), i.e., they show that the property of “having
a hamiltonian (a, b)-path for given a, b ∈ V (G)” is not 2-stable, but do not disprove
Conjecture D.
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3 Results

In the graph G of Figure 1(b), the vertex x is locally 2-connected in G, the graph G does
not have a hamiltonian (a, b)-path while G′

x does, and there is another pair of vertices
u, v (in this example, u = a and v = y) for which there is no hamiltonian (u, v)-path in
G′

x. The following theorem shows that this essentially has always to be the case.

Theorem 1. Let x ∈ V (G) a locally 2-connected vertex of a claw-free graph G and let
G′

x be the local completion of G at x. Then G is Hamilton-connected if and only if G′
x is

Hamilton-connected.

Theorem 1 immediately implies the following theorem, which is the main result of this
paper and gives an affirmative answer to Conjecture D.

Theorem 2. Hamilton-connectedness is 2-stable in the class of claw-free graphs.

Proof of Theorem 2 follows immediately from Theorem 1.

Note that, in [8], Theorem 2 is one of the main tools that allow to develop a closure
concept for Hamilton-connectedness, which is then used to show that every 7-connected
claw-free graph is Hamilton-connected.

Before proving Theorem 1, we first give several auxiliary structural results.

Fouquet [4] proved that in a connected claw-free graphG with independence number at
least 3 the neighborhood of every vertex either can be covered by two cliques or contains an
induced C5. On the other hand, by Proposition B, if x ∈ V (G) is such that κ(⟨NG(x)⟩G) ≥
3, then G′

x is Hamilton-connected if and only if G is Hamilton-connected and there is
nothing to do. The following statement describes in more detail the structure of the
neighborhood of x in the difficult case, i.e. when κ(⟨NG(x)⟩G) = 2.

Lemma 3. Let G be a claw-free graph, let x ∈ V (G) be such that κ(⟨NG(x)⟩G) = 2, let
R = {r1, r2} be a cutset of ⟨NG(x)⟩G and let N1, N2 be the components of ⟨NG(x)⟩G−R.
Then x and R satisfy exactly one of the following:

(a) V (⟨NG(x)⟩G) can be covered by two cliques,
(b) ⟨NG(x)⟩G contains an induced C5 and, up to a symmetry,

(i) N1, N2 are cliques,
(ii) for every y ∈ V (N1), both yr1 ∈ E(G) and yr2 ∈ E(G),
(iii) r1r2 /∈ E(G),
(iv) for every y ∈ V (N2), yr1 ∈ E(G) or yr2 ∈ E(G),
(v) there are z1, z2 ∈ V (N2) such that rizi ∈ E(G) but riz3−i /∈ E(G), i = 1, 2

(i.e., ri is the only neighbor of zi in R).

Proof. Suppose that x andNG(x) satisfy the assumptions of the lemma and V (⟨NG(x)⟩G)
cannot be covered by two cliques; we verify the conditions (i)− (v) of (b). Denote N1, N2

the components of ⟨NG(x)⟩G −R.
(i) If u1, u2 ∈ V (N1), u1u2 /∈ E(G), then, for some v ∈ V (N2), ⟨{x, u1, u2, v}⟩G is a

claw. Hence N1 (and symetrically also N2) is a clique.
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(ii) We first observe that each of r1, r2 is adjacent to all vertices of at least one of N1, N2

since if e.g. there are u1 ∈ V (N1) and u2 ∈ V (N2) such that both r1u1 /∈ E(G) and
r1u2 /∈ E(G), then ⟨{x, u1, r1, u2}⟩G is a claw (and symmetrically for r2). Choose
the notation such that r1 is adjacent to all vertices of N1. If r2 is adjacent to all
vertices of N2, then ⟨V (N1)∪{r1}⟩G and ⟨V (N2)∪{r2}⟩G are two cliques covering
V (⟨NG(x)⟩G), a contradiction. Hence r2 is adjacent to all vertices of N1.

(iii) If r1r2 ∈ E(G), then ⟨V (N1)∪{r1, r2}⟩G andN2 are two cliques covering V (⟨NG(x)⟩G),
a contradiction.

(iv) If both yr1 /∈ E(G) and yr2 /∈ E(G) for some y ∈ V (N2), then ⟨{x, r1, y, r2}⟩G is a
claw.

(v) If there is no such z1, then r2 is adjacent to all vertices of N2 and V (⟨NG(x)⟩G)
can be covered by two cliques, a contradiction. Symmetrically for z2.

Finally, C = r1z1z2r2ur1, where u is an arbitrary vertex of N1, is an induced C5 in
⟨NG(x)⟩G.

Corollary 4. Let G be a claw-free graph, let x ∈ V (G) be such that κ(⟨NG(x)⟩G) = 2
and let R = {r1, r2} be a cutset of ⟨NG(x)⟩G. Then there are sets K1, K2 ⊂ NG(x) such
that:

(1) K1 ∩K2 = ∅ and K1 ∪K2 = NG(x),
(2) |Ki| ≥ 2, i = 1, 2,
(3) there is exactly one of the following two possibilities:

(a) ⟨Ki⟩G is a clique, i = 1, 2,
(b) V (⟨NG(x)⟩G) contains an induced C5 and

(i) R ⊂ K1,
(ii) r1r2 /∈ E(G),
(iii) ⟨K1⟩G + r1r2 and ⟨K2⟩G are cliques,
(iv) for every y ∈ K2, yr1 ∈ E(G) or yr2 ∈ E(G),
(v) there are z1, z2 ∈ K2 such that rizi ∈ E(G) but riz3−i /∈ E(G),

i = 1, 2 (i.e., ri is the only neighbor of zi in R).

Proof. Suppose first that V (⟨NG(x)⟩G) can be covered by two cliques A1, A2. If both
|V (A1)| ≥ 2 and |V (A2)| ≥ 2, we set Ki = V (Ai), i = 1, 2, and we are done. Hence
suppose that e.g. |V (A1)| = 1 with V (A1) = {a}. By the 2-connectedness of ⟨NG(x)⟩G,
there are b1, b2 ∈ V (A2) such that ab1, ab2 ∈ E(G). If |V (A2)| = 2, then ⟨NG(x)⟩G is
a triangle and there is no cutset R. Hence |V (A2)| ≥ 3 and we set K1 = {a, b1} and
K2 = V (A2) \ {b1}.

If ⟨NG(x)⟩G contains an induced C5, then, by Lemma 3, we set K1 = V (N1)∪{r1, r2}
and K2 = V (N2). The rest is clear.

Note that, for a given x, neither the cutset R nor the decomposition of NG(x) into K1

andK2 are, in general, uniquely determined; however, K1 andK2 are uniquely determined
for a given R if ⟨NG(x)⟩G contains an induced C5.

For the proof of Theorem 1 we will further need some special notation and one more
structural result characterizing the situations when pab(G) < pab(G

′
x).
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For a given (a, b)-path P in a graph G, a vertex x ∈ V (G) and i = 0, 1, 2 we denote
V x
i (P ) = {y ∈ V (P ) ∩ NG(x); |{y−, y+} ∩ NG[x]| = i}. If V x

1 (P ) ̸= ∅, then axP (bxP )
denotes the first (last) vertex of P which is in V x

1 (P ), respectively (if the vertex x is clear
from the context, we will simply denote V1(P ), aP and bP ). Thus, equivalently, aP (bP ) is
the first (last) vertex of an (a, b)-path P for which the edge aPa

+
P (b−P bP ) is in ⟨NG(x)⟩G.

Analogously we define V x
i (C) = {y ∈ V (C) ∩NG(x); |{y−, y+} ∩NG[x]| = i} for a cycle

C ⊂ G.

Proposition 5. LetG be a claw-free graph, let x ∈ V (G) be such that κ(⟨NG(x)⟩G) = 2,
let G′ be the local completion of G at x and let a, b ∈ V (G), a ̸= b. Then pab(G) < pab(G

′)
if and only if {a, b} is a cutset of ⟨NG(x)⟩G and, for every longest (a, b)-path P ′ in G′,

(1) x ∈ V (P ′),
(2) |{a, aP ′ , b, bP ′}| = 4,
(3) aP ′bP ′ ∈ E(G),
(4) if C is the component of ⟨NG(x)⟩G−R not containing aP ′ , then V (C)\V x

0 (P
′) ̸= ∅,

(5) there are no two vertices u, v ∈ V x
1 (P

′) such that u, v are in different components
of ⟨NG(x)⟩G − R and all interior vertices of the subpath uP ′v of the path P ′ are
in (V (G) \NG[x]) ∪ V x

0 (P
′).

Moreover, if pab(G) < pab(G
′), then there are vertices ā, b̄ ∈ NG(x) such that

(6) ā = aP ′ and b̄ = bP ′ for any longest (a, b)-path P ′ in G′,
(7) aā ∈ E(G) and bb̄ ∈ E(G).

Proof of Proposition 5 is lengthy and technical and it is thus postponed to Section 4.

Note that statement (6) of Proposition 5 equivalently says that if pab(G) < pab(G
′),

then, for given vertices a, b are the vertices aP ′ , bP ′ uniquely determined (i.e., do not
depend on the choice of the (a, b)-path P ′). In the rest of this section we will keep the
notation ā, b̄ for these vertices given by (6) of Proposition 5.

Proposition 6. LetG be a claw-free graph, let x ∈ V (G) be such that κ(⟨NG(x)⟩G) = 2,
let G′ be the local completion of G at x and let a, b ∈ V (G), a ̸= b. If pab(G) < pab(G

′),
then, for every hamiltonian cycle C in G′, E(C) ∩ {aā, bb̄} = ∅.

Proof. Let a, b ∈ V (G) be such that pab(G) < pab(G
′). By Proposition 5, a, b ∈ NG(x).

Let C be a hamiltonian cycle inG′ and suppose, to the contrary, that aā ∈ E(C) (the proof
for bb̄ ∈ E(C) is symmetric). Let Q1, . . . , Qk denote nontrivial components of the graph
obtained from C by removing all edges with both vertices in NG[x], q

1
i , q

2
i the endvertices

of Qi, i = 1, . . . , k, and set A = {qji ; i = 1, . . . , k, j = 1, 2}. Then A ⊂ NG(x) and every
Qi is a path with endvertices in A and with interior vertices in V x

0 (C) ∪ (V (G) \NG[x]).

1. Suppose first that a /∈ A. If a /∈ ∪k
i=1V (Qi), then, using edges in ⟨NG[x]⟩G′ , we can

connect the paths Q1, . . . , Qk to obtain a hamiltonian (a, b)-path P ′ in G′ with a = aP ′ ,
contradicting Proposition 5 (2) (recall that ⟨NG[x]⟩G′ is a clique). Hence a ∈ V x

0 (C),
but then, considering the claw at ⟨{a, a−(C), a+(C), x}⟩G we have a−(C)a+(C) ∈ E(G), and
replacing in C the path a−(C)aa+(C) by the edge a−(C)a+(C) we are in the previous situation.
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2. Hence a ∈ A. Symmetrically, b ∈ A (note that in the proof of a ∈ A we have not
used the assumption that aā ∈ E(C)). Choose the notation such that a = q11. By the
assumption, aā ∈ E(C), implying q21 ̸= ā.

If q21 ̸= b, then the paths Q1, . . . , Qk can be interconnected in ⟨NG[x]⟩G′ to obtain a
hamiltonian (a, b)-path P ′ in G′ with aP ′ = q21 ̸= ā, contradicting (6) of Proposition 5.
Hence q21 = b.

By Proposition 5, R = {a, b} is a cutset of ⟨NG(x)⟩G, hence there are y1, y2 ∈ NG(x)∩
NG(a) such that y1 ̸= y2, y1y2 /∈ E(G) and y1 ̸= b ̸= y2. Set a

+ = a+(Q1) (note that a+ /∈
NG(x)). From the claw at ⟨{a, a+, y1, y2}⟩G we then have a+y1 ∈ E(G) or a+y2 ∈ E(G);
choose the notation such that a+y1 ∈ E(G). We have 3 possibilities.

a) y1 /∈ ∪k
i=1V (Qi). Then we setQ′

1 = y1a
+Q1b and for the system of pathsQ′

1, Q2, . . . , Qk

we are in case 1.

b) y1 ∈ V x
0 (C). Then y1 ∈ V x

0 (Qj) for some j, 2 ≤ j ≤ k; choose the notation such

that j = 2. From the claw at ⟨{y1, y−(Q2)
1 , y

+(Q2)
1 , x}⟩G we have y

−(Q2)
1 y

+(Q2)
1 ∈ E(G). We

set Q′
2 = q12Q2y

−(Q2)
1 y

+(Q2)
1 Q2q

2
2 and for the system of paths Q1, Q

′
2, Q3, . . . , Qk we are in

subcase 2a).

c) y1 ∈ A. We choose the notation such that y1 = q22, set Q
′
2 = q12Q2q

2
2a

+Q1b, and for
the system of paths Q′

2, Q3, . . . , Qk we are in case 1.

Now we can prove stability of Hamilton-connectedness under cl2.

Proof of Theorem 1. Suppose, to the contrary, that G′ is Hamilton-connected but G
is not. Then pab(G) < pab(G

′) for some a, b ∈ V (G), a ̸= b. By Proposition 5, there
are uniquely determined vertices ā, b̄ such that |{a, ā, b, b̄}| = 4 and aā, bb̄ ∈ E(G). If P
is a hamiltonian (a, ā)-path in G′, then C = P + aā is a hamiltonian cycle in G′ with
aā ∈ E(C), contradicting Proposition 6.

4 Proof of Proposition 5

We first prove one simple lemma that will be useful throughout the proof.

Lemma 7. Let G be a claw-free graph, x ∈ V (G), let G′ be the local completion of
G at x and let P ′ be a longest (a, b)-path in G′ (for some a, b ∈ V (G), a ̸= b) such that
x ∈ V (P ′). Then there is a longest (a, b)-path P ′′ in G′ such that

(i) V (P ′′) = V (P ′),
(ii) V x

0 (P
′′) = ∅,

(iii) for every subpath Q′ = uP ′v of P ′ with u, v ∈ NG(x) \V x
0 (P

′) and interior vertices
in (V (G′) \NG[x]) ∪ V x

0 (P
′) the corresponding subpath Q′′ = uP ′′v of P ′′ satisfies

V (Q′′) = V (Q′) \ V x
0 (P

′),
(iv) the vertices in V x

1 (P
′) and V x

1 (P
′′) occur on P ′ and P ′′ in the same order.

Proof. Let y ∈ V x
0 (P

′). Then xy−, xy+ /∈ E(G), and from the claw at ⟨{y, y−, y+, x}⟩G
we have y−y+ ∈ E(G). The lemma then immediately follows from the fact that ⟨NG(x)⟩G′

is a clique.
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Note that (iii) yields a system of vertex-disjoint paths Qi, i = 1, . . . , k, with endver-
tices in NG(x), V

x
0 (Qi) = ∅, and with V (P ′) = (∪k

i=1V (Qi)) ∪NG[x].

I. We first show that if R = {a, b} is a cutset of ⟨NG(x)⟩G and every longest (a, b)-path
in G′ satisfies the conditions (1) – (5) of Proposition 5, then pab(G) < pab(G

′). Let, to the
contrary, pab(G) = pab(G

′), and let P be a longest (a, b)-path in G. Then P is a longest
(a, b)-path also in G′, hence P satisfies (1) – (5).

We define a graph G+ by G+ = G if ⟨NG(x)⟩G can be covered by two cliques, and
G+ = G + ab if ⟨NG(x)⟩G contains an induced C5. By Corollary 4, there are K+

1 , K
+
2 ⊂

V (G) such that
• |K+

i | ≥ 2 and ⟨K+
i ⟩G+ is a clique, i = 1, 2,

• K+
1 ∩K+

2 = ∅ and K+
1 ∪K+

2 = NG(x),
• if ⟨NG(x)⟩G contains an induced C5, then both a and b are in the same K+

i .
Choose the notation such that a ∈ K+

1 .

We have several structural observations.
(i) NG(x) ⊂ V (P ). This follows from (1) and from the fact that ⟨NG(x)⟩G′ is a clique.
(ii) a+, b− /∈ NG(x). If e.g. a

+ ∈ NG(x), then a = aP , contradicting (2).
(iii) a+ has a neighbor in K+

2 , and b− has a neighbor in that of K+
1 , K

+
2 which does

not contain b. Since R = {a, b} is a cutset of ⟨NG(x)⟩G, a has a neighbor ã in
K+

2 . If a+ has a neighbor ã1 in K+
1 \ {a, b}, then, using (5) and Lemma 7 we get

a contradiction with (2). Hence a+ã ∈ E(G) since otherwise ⟨{a, a+, ã, ã1}⟩G is a
claw. The proof for b− is symmetric.

(iv) aP , bP ∈ K+
2 . If aP ∈ K+

1 , then, using (iii) and Lemma 7, we have a contradiction
with (2). Hence aP ∈ K+

2 , and by (3) (and since {a, b} is a cutset) also bP ∈ K+
2 .

(v) b ∈ K+
1 . If b ∈ K+

2 , then b, bP ∈ K+
2 and we have a contradiction with (2) by a

similar argument.
Let now s ∈ K+

1 \ ({a, b} ∪ V x
0 (P )) (such a vertex s exists by (4)). By (i), s ∈ V (P ),

hence s ∈ V x
1 (P )∪ V x

2 (P ). By (iv), aP , bP ∈ K+
2 , and, by the definition of aP , all interior

vertices of the paths aPaP and bPPb are in V x
0 (P ) or outside NG[x]. Hence there are

vertices c1, c2 ∈ V x
1 (P ) ∩ (K+

1 \ {a, b}) and d1, d2 ∈ V x
1 (P ) ∩ K+

2 such that the vertices
a, aP , d1, c1, s, c2, d2, bP , b occur on P in this order (not excluding the possibility that some
of them can coincide). One of the subpaths d1Pc1, c2Pd2 (say, d1Pc1) can be of length 2
with x as the only interior vertex, but the existence of c2Pd2 contradicts (5).

II. Now we show that, conversely, pab(G) < pab(G
′) implies that {a, b} is a cutset of

⟨NG(x)⟩G, every longest (a, b)-path P ′ in G′ satisfies the conditions (1) – (5) of Proposi-
tion 5 and, moreover, (6) and (7) also holds. Thus, suppose that pab(G) < pab(G

′), let P ′

be a longest (a, b)-path in G′ and let R = {r1, r2} be a cutset of ⟨NG(x)⟩G.
Observe that if V x

1 (P
′) = ∅, then P ′ ⊂ G, contradicting the assumption pab(G) <

pab(G
′). Hence V x

1 (P
′) ̸= ∅ and then, by the maximality of P ′ and since ⟨NG(x)⟩G′ is a

clique, we have NG[x] ⊂ V (P ′). Now we introduce some special terminology and notations
and prove several auxiliary statements.

Similarly as in the first part of the proof, we set G+ = G if ⟨NG(x)⟩G can be covered
by two cliques, and G+ = G + r1r2 if ⟨NG(x)⟩G contains an induced C5. Then, by
Corollary 4, there are K+

1 , K
+
2 ⊂ V (G) such that |K+

i | ≥ 2 and ⟨K+
i ⟩G+ is a clique,

i = 1, 2, K+
1 ∩K+

2 = ∅ and K+
1 ∪K+

2 = NG(x), and if ⟨NG(x)⟩G contains an induced C5,
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then both r1 and r2 are in the same K+
i . Unlike in the first part, we choose the notation

such that aP ′ ∈ K+
2 .

An (a, b)-path P ′ in G′ is said to be a private path if P ′ satisfies the following condi-
tions:

(i) P ′ is a longest (a, b)-path in G′,
(ii) x ∈ V (P ′),
(iii) V x

0 (P
′) = ∅,

(iv) subject to (i), (ii) and (iii), |{a, aP ′ , b, bP ′}| is minimum.
Note that, by (i) and (ii), a private path contains all vertices of NG[x]. By Lemma 7,
for any longest (a, b)-path in G′ containing x there is a private (a, b)-path in G′ with the
same vertex set. Moreover, it is clear that if (1), (2), (3), (5) and (6) of Proposition 5 are
satisfied for any private (a, b)-path in G′, then these conditions also hold for any longest
(a, b)-path in G′. The conditions (2) of Proposition 5 and (iv) of the definition of private
path then imply that every longest (a, b)-path P ′ in G′ with V x

0 (P
′) = ∅ is private in this

case. These observations together with the fact that (7) does not depend on P ′ imply
that it is sufficient to verify (1) – (7) for all private (a, b)-paths in G′.

Thus, suppose that P ′ is a private (a, b)-path in G′. We denote Q′ = aP ′P ′bP ′ the
(aP ′ , bP ′)-subpath of P ′, Q′

1, . . . , Q
′
k the nontrivial components of the graph obtained from

Q′ by removing edges with both ends in NG[x] and q1i , q
2
i the endvertices of Q

′
i, i = 1, . . . , k

(where the numbering of Q′
i and qji is chosen in the orientation from aP ′ to bP ′).

Let further S denote the system of subsets of NG(x) defined by S = S(1) ∪S(2), where
S(2) = {{q1i , q2i }| i = 1, . . . , k} and S(1) = {{u}| u ∈ NG(x) \ ({a, aP ′ , b, bP ′} ∪ (∪s∈S(2)s)}.
For S ′ ⊂ S we set V (S ′) = ∪s∈S′s. This means that NG(x) consists of V (S), aP ′ ,
bP ′ , and possibly a or b (or both), and any longest (a, b)-path in G′ (and, to obtain a
contradiction, also in G), has to contain all elements of S(1) and all paths represented by
pairs of their endvertices in S(2). We further denote Si = {s ∈ S| V (s) ⊂ K+

i }, i = 1, 2,
and S12 = {s ∈ S| V (s) ∩K+

i ̸= ∅, i = 1, 2} (thus, S = S1 ∪ S2 ∪ S12 and S12 ⊂ S(2)).

The fact that ⟨NG(x)⟩G′ is a clique will allow us to use this notation to simplify
description of paths in G′: whenever, in the description of a path, a subset S ′ of S occurs,
this means that all elements of S(1)∩S ′ and all paths represented by elements of S(2)∩S ′

(if any) have to be included using appropriate edges of the clique ⟨NG(x)⟩G′ . For two
consecutive elements u, v of such a description of a path, we will use the notation ûv to
indicate that we do not exclude the possibility u = v.

Claim 8. Let P ′ be a private (a, b)-path in G′. If a ∈ NG(x) and a ̸= aP ′ , then a+

has no neighbor in V (S), and, symmetrically, if b ∈ NG(x) and b ̸= bP ′ , then b− has no
neighbor in V (S).

Proof. Suppose a+ is adjacent to u ∈ V (s), s ∈ S. Then for the path P̃ =
asa+P ′aP ′(S \ s)xbP ′b (recall that ⟨NG[x]⟩G′ is a clique) we have a = aP̃ , contradict-
ing the assumption that P ′ is private. The proof for b− is symmetric.

�
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Claim 9. Let P ′ be a longest (a, b)-path in G′, x ∈ V (P ′). If a ∈ NG(x), a ̸= aP ′ , and
there are y1, y2 ∈ NG(x) ∩NG(a) such that

(i) y1, y2 /∈ E(G),
(ii) yi ̸= aP ′ , and if b = bP ′ , then also yi ̸= bP ′ , i = 1, 2,

then P ′ is not a private (a, b)-path in G′.

Proof. Suppose that P ′ satisfies the assumptions of Claim 9. Considering the claw
at ⟨{a, a+, y1, y2}⟩G, we obtain (possibly after renumbering y1 and y2) that a

+y1 ∈ E(G).
By Claim 8, y1 /∈ V (S) (otherwise we are done), hence y1 ∈ {b, bP ′}. Moreover, b ̸= bP ′ ,
for otherwise by (ii) we have y1 /∈ {a, aP ′ , b, bP ′}, implying y1 ∈ V (S), a contradiction.

Case 1: y1 = bP ′ . Then the path P ′′ = a(S ∪ {x})aP ′
←−
P ′a+y1

−→
P ′b is a longest (a, b)-path in

G′ with a = aP ′′ , hence P ′ is not private.

Case 2: y1 = b. Then b ̸= bP ′ implies b− /∈ NG[x] and a ̸= aP ′ implies a+ /∈ NG[x].
From the claw at ⟨{y1, x, b−, a+}⟩G we have b−a+ ∈ E(G). The path P ′′ = a(S ∪
{x})aP ′

←−
P ′a+b−

←−
P ′bP ′b then satisfies a = aP ′′ , hence P ′ is not private. �

Claim 10. Let {a, b} = R = {r1, r2} and let P ′
1, P

′
2 be private (a, b)-paths in G′ such

that aP ′
1
̸= a ̸= aP ′

2
, bP ′

1
̸= b ̸= bP ′

2
and {aP ′

1
, aP ′

2
} ⊂ K+

j for some j ∈ {1, 2}. Then
aP ′

1
= aP ′

2
.

Proof. Since {a, b} is a cutset of ⟨NG(x)⟩G, there are w ∈ K+
j and z ∈ K+

3−j such that
aw, az ∈ E(G). If w ̸= aP ′

1
, then, applying Claim 9 to P ′

1, we get that P ′
1 is not private,

a contradiction. Hence w = aP ′
1
. Analogously w = aP ′

2
, implying aP ′

1
= aP ′

2
. �

In general, ⟨NG(x)⟩G can have more 2-element cutsets. If this is the case, we suppose
that the cutset R = {r1, r2} is chosen such that, for the given private (a, b)-path P ′,

(i) |R ∩ ({a, b} \ {aP ′ , bP ′})| is maximum,
(ii) if |R ∩ ({a, b} \ {aP ′ , bP ′})| = 0, then |R ∩ {aP ′ , bP ′}| is maximum.

Let now H be the graph with V (H) = NG[x] and E(H) = E(⟨NG(x)⟩G) ∪ S(2), and let
H ′ be the local completion of H at x (i.e., H is a clique with some vertices belonging to
V (S) and some edges belonging to S(2)). It is now clear that every longest (a, b)-path P ′

in G′ defines an (aP ′ , bP ′)-path Q′ in H ′ such that Q′ contains x and all elements of S
(i.e., all edges in S(2) and all vertices in V (S(1)). To reach a contradiction, i.e. to find an
(a, b)-path P in G with V (P ) = V (P ′), it is sufficient to find an (aP ′ , bP ′)-path Q in H
containing x and all elements of S.

Similarly as with G+, we set H+ = H if ⟨NG(x)⟩G can be covered by two cliques, and
H+ = H + r1r2 if ⟨NG(x)⟩G contains an induced C5. We proceed in two steps: in Step A,
we for a given (aP ′ , bP ′)-path Q′ in H ′ either find an (aP ′ , bP ′)-path Q+ in H+ containing
x and all elements of S, or verify the conditions (1) – (7) of Proposition 5; in Step B, we
complete the proof by showing that in each case when there is an (aP ′ , bP ′)-path Q+ in
H+ containing x and all elements of S, there also is such a path Q in H.
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Step A: H ′ to H+.

Let Q′ be an (aP ′ , bP ′)-path in H ′ containing x and all elements of S.

Case 1: bP ′ ∈ K+
1 (recall that the notation is chosen such that aP ′ ∈ K+

2 .) Then Q+ =

aP ′S2S12xS1bP ′ is an (aP ′ , bP ′)-path in H+ containing x and all elements of S.

Case 2: bP ′ = x (and hence also necessarily b = x).

a) If S12 ̸= ∅, then for an s ∈ S12 the path Q+ = aP ′S2sS1(S12 \ {s})xbP ′ has the
required properties.

b) If S12 = ∅ and there is an edge uv ∈ E(G) with u ∈ V (S1) and v ∈ V (S2), then we
set Q+ = aP ′S2vuS1xbP ′ .

c) Hence S12 = ∅ and there is no edge uv ∈ E(G) with u ∈ V (S1) and v ∈ V (S2).
Recall that |K+

1 | ≥ 2, |K+
2 | ≥ 2, and there are only 2 vertices, namely a and aP ′ , that are

not in V (S1)∪V (S2). If {a, aP ′} is a cutset of ⟨NG(x)⟩G, then both K+
1 and K+

2 contains
a vertex in V (S1) ∪ V (S2) and, by Claim 9, P ′ is not private, a contradiction. Hence
{a, aP ′} is not a cutset, but then there is an edge uv with u ∈ V (S1) and v ∈ V (S2) and
we are in subcase 2b.

Case 3: {aP ′ , bP ′} ⊂ K+
2 .

a) If S12 ̸= ∅, then for some s ∈ S12 we set Q+ = aP ′S2sS1(S12 \ {s})xbP ′ .

b) If S12 = ∅ and there is an uv ∈ E(G) with u ∈ V (S1) and v ∈ {aP ′ , bP ′} ∪ V (S2),
we set Q+ = aP ′S2xS1ubP ′ if v = bP ′ and Q+ = âP ′vuS1xS2bP ′ otherwise.

c) Hence S12 = ∅ and there is no edge uv ∈ E(G) with u ∈ V (S1) and v ∈ {aP ′ , bP ′}∪
V (S2). If S1 = ∅, then K+

1 = {a, b}, implying Q+ = Q′, hence S1 ̸= ∅. By the 2-
connectedness of ⟨NG(x)⟩G and since |K+

i | ≥ 2, i = 1, 2, there are two vertex-disjoint
edges e1, e2 between K+

1 and K+
2 .

If a = aP ′ , then a, aP ′ and bP ′ are in K+
2 , hence one of e1, e2 has a vertex in V (S1)

and we are in subcase 3b. Hence a ̸= aP ′ and, symmetrically, b ̸= bP ′ . The nonexistence
of an edge uv ∈ E(G) with u ∈ V (S1) and v ∈ {aP ′ , bP ′} ∪ V (S2) then implies that {a, b}
is a cutset of ⟨NG(x)⟩G. By the choice of R, we have R = {a, b}.

Let now y1 ∈ K+
1 be such that y1 ̸= b and y1a ∈ E(G) (such an y1 exists since

{a, b} = R). If a ∈ K+
2 , then for y2 = bP ′ we have a contradiction with Claim 9, hence

a ∈ K+
1 . Analogously we observe that aP ′ is the only neighbor of a in K+

2 . Symmetrically,
b ∈ K+

1 and bP ′ is the only neighbor of b in K+
2 .

Summarizing, we have the following facts:
• x ∈ V (P ′), verifying condition (1) of Proposition 5,
• a ̸= aP ′ and b ̸= bP ′ , implying |{a, aP ′ , b, bP ′}| = 4, thus verifying (2),
• aP ′ , bP ′ ∈ K+

2 , hence aP ′bP ′ ∈ E(G), implying (3),
• S12 = ∅, implying (5),
• S1 ̸= ∅, hence also V (C) \ V x

0 (P
′) = (K+

1 \ {a, b}) \ V x
0 (P

′) ̸= ∅ (since the case
when (K+

1 \ {a, b}) ⊂ V x
0 (P

′) can be transformed in an obvious way to the case
S1 = ∅); this also establishes (4).

Moreover, by Claim 10, aP ′ and bP ′ are uniquely determined, verifying (6), and the fact
that aaP ′ ∈ E(G) and bbP ′ ∈ E(G) implies (7).
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Step B: H+ to H.

In this part we complete the proof by showing that in each case when there is an
(aP ′ , bP ′)-path Q+ in H+ containing x and all elements of S, there also is such a path Q
in H.

If ⟨NG(x)⟩G can be covered by two cliques, then H+ = H and there is nothing to
do, hence in the rest of the proof suppose that ⟨NG(x)⟩G contains an induced C5. Let
K1, K2 ⊂ NG(x) be the sets given in Corollary 4 (note that, specifically, R ⊂ K1, and
{K1, K2} = {K+

1 , K
+
2 }), and (if necessary) relabel the sets S1, S2 in accordance with the

labeling of K1, K2,

Claim 11. Let P ′ be a private (a, b)-path in G′. If ⟨NG(x)⟩G contains an induced C5

and a ∈ NG(x), then at least one of the following holds:
1. a = aP ′ ,
2. aaP ′ ∈ E(G),
3. b = bP ′ , b ̸= x, ab ∈ E(G).

Proof. Choose y1, y2 ∈ NG(x)∩NG(a) such that y1y2 /∈ E(G). This is always possible:
for a ∈ K1 \R we choose {y1, y2} = R, for a ∈ R we choose y1 ∈ K1 \R, y2 ∈ K2, and for
a ∈ K2 we choose y1 ∈ R and y2 ∈ K2 such that y1y2 /∈ E(G) (such vertices exist since if
r1 or r2 is adjacent to all vertices in K2 then ⟨NG(x)⟩G can be covered by two cliques).

We suppose that a ̸= aP ′ and aaP ′ /∈ E(G), and we show that this implies condition 3.
If b = x (and hence also bP ′ = b = x), then {y1, y2} ⊂ S, and the fact that y1y2 /∈ E(G)
and Claim 8 imply that ⟨{a, a+, y1, y2}⟩G is a claw, a contradiction. Hence b ̸= x. If
b ̸= bP ′ , then, by Claim 9, P ′ is not private, a contradiction. Hence b = bP ′ and b ̸= x.
Now, if ab /∈ E(G), then also abP ′ /∈ E(G) (and hence also yi ̸= bP ′ , i = 1, 2), and by
Claim 9, P ′ is not private, a contradiction. Thus, we have ab ∈ E(G), b = bP ′ and b ̸= x,
verifying condition 3. �

Let now Q+ be an (aP ′ , bP ′)-path in H+ containing x and all elements of S.

Claim 12. If V (S1) \R ̸= ∅, then there is an (aP ′ , bP ′)-path Q in H containing x and
all elements of S.

Proof. Choose s ∈ V (S1) and set s− = s−(Q+) and s+ = s+(Q+). If {s−, s+} = R, then
r1r2 /∈ E(Q+) and we are done, hence {s−, s+} ̸= R.

1. If s ∈ V (S1 ∩ S(1)), then we obtain the path Q by replacing in Q+ the path s−ss+

by the edge s−s+ and the edge r1r2 by the path r1sr2 (not excluding the possibility that
some of s−, s+ can coincide with some of r1, r2).

2. Let s ∈ V (S1 ∩ S(2)). Then s ∈ s1 for some s1 ∈ V (S1 ∩ S(2)), and we choose the
notation such that s1 = {s, s+} (if this is not the case, we interchange a, b). If s+ ∈ R
(say, s+ = r1), then s− /∈ R (otherwise r1r2 /∈ E(G+), and we obtain Q by replacing in
Q+ the path s−s(s+ = r1)r2 by the path s−(s+ = r1)sr2. If s

+ /∈ R, then {s−, s++} ̸= R
(otherwise r1r2 /∈ E(Q+)), and we replace the path s−ss+s++ by the edge s−s++ and the
edge r1r2 by the path r1ss

+r2 or r1s
+sr2 (not excluding the case that some of s−, s++ can

coincide with some of r1, r2). �
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Claim 13. If {a, b} ⊂ NG(x), {a, b} ̸⊂ K2 and |{a, aP ′ , b, bP ′}| = 4, then there is an
(aP ′ , bP ′)-path Q in H containing x and all elements of S.

Proof. Clearly {a, b} ∩R = ∅, since otherwise r1r2 /∈ E(Q+), and by Claim 12 we can
suppose V (S1) \R = ∅.

1. If {a, b} ⊂ K1 \ R, then the application of Claim 9 to a and b (with y1 = r1 and
y2 = r2) gives R = {aP ′ , bP ′}, implying r1r2 /∈ E(Q+).

2. Hence a ∈ K1 \ R and b ∈ K2, implying ab /∈ E(G). Application of Claim 9 to a
gives aP ′ ∈ R; choose the notation such that aP ′ = r1. By Claim 10 (applied to b) then
bbP ′ ∈ E(G). Since R ̸= {aP ′ , bP ′} (otherwise r1r2 /∈ E(Q+)), we have bP ′ ∈ K2.

If br1 ∈ E(G), then Claim 9 applied to b (with y1 = r1 and y2 being a vertex in K2

with y2r1 /∈ E(G)), implies that bP ′ is the only neighbor of r2 in K2 that is not adjacent
to r1, and we set Q = aP ′S2S12xbP ′ if r2 ∈ V (S12) and Q = aP ′S2S12xr2bP ′ otherwise (not
excluding the case that S12 = ∅).

Hence br1 /∈ E(G), implying br2 ∈ E(G). By Claim 9 applied to b we then analogously
get that bP ′ is the only neighbor of r1 in K2 that is not adjacent to r2, and then Q =
aP ′xS12S2bP ′ if r2 ∈ V (S12) and Q = aP ′xr2S12S2bP ′ otherwise, where we do not exclude
the possibility S12 = ∅ and we choose the first vertex u ∈ V (S12) (i.e., u = x+(Q) or

u = r
+(Q)
2 , respectively) such that u ∈ K1 if |S12| is odd and u ∈ K2 if |S12| is even. �

Now observe that if R ∩ ({a, b} \ {aP ′ , bP ′}) ̸= ∅, or if R = {aP ′ , bP ′}, then again
r1r2 /∈ E(Q+) and we are done. Hence in the remaining part of the proof we suppose that
the following conditions are satisfied:

(∗) R ∩ ({a, b} \ {aP ′ , bP ′}) = ∅,
(∗∗) R ̸= {aP ′ , bP ′}.

For s ∈ S12 we will denote s = {s1, s2}, where s1 ∈ K1 and s2 ∈ K2.

Case 1: {aP ′ , bP ′} ⊂ K2. We choose the notation such that r1aP ′ ∈ E(G) (this is possible
by Corollary 4).

1. First suppose that |S12| ≥ 2. Let s, s′ ∈ S12, and choose the notation such that if

r1 is some of s1, s
′
1, then r1 = s1. Then we set Q = aP ′ r̂1s1s2S2s

′
2ŝ

′
1r2(S12 \ {s, s′})xbP ′

(where we do not exclude the possibility that r2 ∈ V (S12 \ {s, s′})).
2. Hence |S12| ≤ 1. By Claim 11, we have a /∈ K1 \ R, since a ∈ K1 \ R would

imply a ̸= aP ′ , aaP ′ /∈ E(G), and if b = bP ′ then also ab /∈ E(G), contradicting Claim 10.
Symmetrically, b /∈ K1 \ R. By Claim 12 we have (K1 \ R) ∩ V (S1) = ∅, implying
K1 \R ⊂ V (S12). Hence |S12| = 1. Let S12 = {s}, and then Q = aP ′r1xr2s1s2S2bP ′ .

Case 2: {aP ′ , bP ′} ⊂ K1. We choose the notation such that bP ′ /∈ R, and if aP ′ ∈ R, then
aP ′ = r1 (see the assumption (∗∗)).

1. If |S12| ≥ 2, let s, s′ ∈ S12, and choose the notation such that r2 /∈ s. Then

Q = âP ′r1s1s2S2s
′
2ŝ

′
1r2(S12 \ {s, s′})xbP ′ (where the notation âP ′r1s1 means that r1 can

coincide with aP ′ or s1).

2. Next suppose |S12| = 1, let S12 = {s} and choose the notation such that r1 /∈ s.
Then Q = âP ′r1xS2s2ŝ1r2bP ′ .
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3. Hence |S12| = 0. By the choice of notation and by (∗) and (∗∗) we have r2 ∈ V (S1).
If {a, b} ⊂ K2, then we have a ̸= aP ′ , b ̸= bP ′ and bbP ′ /∈ E(G), contradicting Claim 11
(applied to b). Hence at most one of a, b is in K2.

We observe that there is a v ∈ V (S2) such that r2v ∈ E(G): for {a, b} ∩K2 = ∅ this
follows from Corollary 4, and for {a, b} ∩K2 = {u} the nonexistence of such a v implies
that u is the only neighbor of r2 in K2, but then the cutset {u, r1} of ⟨NG(x)⟩G contradicts
the choice of R. Thus, let v ∈ V (S2) be such that r2v ∈ E(G). If v ∈ V (S2 ∩S(1)), we set
s = {v} and then Q = âP ′r1x(S2 \ {s})vr2bP ′ ; if v ∈ V (S2 ∩ S(2)), then s = {v, v′} ∈ S2

for some v′ ∈ V (S2) and then Q = âP ′r1x(S2 \ {s})v′vr2bP ′ .

Case 3: aP ′ ∈ K1, bP ′ ∈ K2. We choose the notation such that if aP ′ ∈ R, then aP ′ = r1.

1. If |S12| ≥ 2, let s, s′ ∈ S12, and choose the notation such that r2 /∈ s. Then

Q = âP ′r1s1s2s
′
2ŝ

′
1r2(S12 \ {s, s′})xS2bP ′ .

2. If |S12| = 1, let S12 = {s} and choose the notation such that r1 /∈ s. Then
Q = âP ′r1xr2s1s2S2bP ′ .

3. Hence |S12| = 0. We distinguish two subcases.

a) aP ′ ∈ R (i.e. aP ′ = r1). Since K1 \ R ̸= ∅, by Claim 12 we have K1 \ R ⊂ {a, b}.
By Claim 13, K1 \ R ̸= {a, b}, hence K1 \ R = {a} or K1 \ R = {b}. Since |K2| ≥ 2, we
have S2 ̸= ∅ (one of a, b is in K1 \R and b ∈ K2, b ̸= bP ′ is not possible by Claim 13).

If r2s /∈ E(G) for all s ∈ V (S2), then bP ′ is the only neighbor of r2 in K2 (since by
Claim 13 necessarily a = aP ′ or b = bP ′), but then {aP ′ , bP ′} is a cutset of ⟨NG(x)⟩G
contradicting the choice of R. Hence there is a u ∈ V (S2) such that r2u ∈ E(G). If
u ∈ V (S2 ∩ S(1)), we set s = {u} and then Q = aP ′xr2u(S2 \ {s})bP ′ ; if u ∈ V (S2 ∩ S(2)),
then s = {u, u′} ∈ S2 for some u′ ∈ V (S2) and then Q = aP ′xr2uu

′(S2 \ {s})bP ′ .

b) aP ′ /∈ R. If |K2| = 2, then {bP ′ , r1} or {bP ′ , r2} is a cutset of ⟨NG(x)⟩G, contradicting
the choice of R; hence |K2| ≥ 3. If {a, b, bP ′} ⊂ K2 with b ̸= bP ′ , then we have a ̸= aP ′ ,
b ̸= bP ′ and aaP ′ /∈ E(G), contradicting Claim 11. Hence there is a u ∈ V (S2). We
choose the notation such that r2u ∈ E(G), set u′ = u and s = {u} if u ∈ V (S2 ∩ S(1)) or
s = {u, u′} ∈ S2 if u ∈ V (S2 ∩ S(2)), and then Q = aP ′r1xr2uu

′(S2 \ {s})bP ′ .

Case 4: aP ′ ∈ K1, bP ′ = x. We choose the notation such that if aP ′ ∈ R, then aP ′ = r1;
recall then x = bP ′ implies x = bP ′ = b.

1. If |S12| ≥ 2, let s, s′ ∈ S12, and choose the notation such that r2 /∈ s. Then

Q = âP ′r1s1s2S2s
′
2ŝ

′
1r2(S12 \ {s, s′})bP ′ .

2. If |S12| = 1, let S12 = {s} and choose the notation such that r1 /∈ s. If a ∈ K2 and
a is the only neighbor of r1, then {a, r2} is a cutset of ⟨NG(x)⟩G, contradicting the choice
of R. Hence there is a u ∈ K2 such that u ∈ V (S2 ∪ S12) and r1u ∈ E(G).

a) If there is such a u ∈ V (S2), then Q = âP ′r1uu
′(S2 \ {s′})s2s1r2bP ′ , where u′ = u

and s′ = {u} if u ∈ V (S2 ∩ S(1)) or s′ = {u, u′} ∈ S2 if u ∈ V (S2 ∩ S(2)).

b) If such a u ∈ V (S2) does not exist, then u = s2 (where s = {s1, s2} is the only
element of S12), and by Corollary 4 we have r2v ∈ E(G) for every v ∈ V (S2) (since
r1v /∈ E(G)). Then Q = âP ′r1s2ŝ1r2S2bP ′ (not excluding the possibility S2 = ∅).

3. It remains to consider the case |S12| = ∅. If aP ′ ∈ R, then by Claim 12 we have
K1 \ R = {a}, and if aP ′ /∈ R, then, by Claim 12 and Claim 11, K1 \ R = {a, aP ′} (not
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excluding the possibility a = aP ′). Then Q = âP ′r1S2r2bP ′ (it is straightforward to check
that this is always possible if we keep an element of V (S2) that is nonadjacent to r1 as
the last one).

Case 5: aP ′ ∈ K2, bP ′ = x. We choose the notation such that aP ′r1 ∈ E(G) (this is always
possible by Corollary 4).

1. If |S12| ≥ 2, let s, s′ ∈ S12, and choose the notation such that r2 /∈ s. Then

Q = aP ′ r̂1s1s2S2s
′
2ŝ

′
1r2(S12 \ {s, s′})bP ′ .

2. Let |S12| ≤ 1. Then, by Claim 11 and by (∗), a ∈ K2, and since K1 \ R ̸= ∅, we
have K1 \R ⊂ V (S12). Hence |S12| = 1, set S12 = {s}.

a) If S2 = ∅, then, by Corollary 4, either s2r1 ∈ E(G) and then Q = aP ′r1s2s1r2bP ′ ,
or s2r2 ∈ E(G) and then Q = aP ′r1s1s2r2bP ′ .

b) If S2 ̸= ∅, we choose u ∈ V (S2) and denote u′ = u and s′ = {u} if u ∈ V (S2 ∩ S(1))
or s′ = {u, u′} ∈ S2 if u ∈ V (S2 ∩ S(2)). By Corollary 4, either r1u ∈ E(G) and then
Q = aP ′r1uu

′(S2\{s′})s2s1r2bP ′ , or r2u ∈ E(G) and then Q = aP ′r1s1s2(S2\{s′})u′ur2bP ′ .
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