On stability of Hamilton-connectedness under the 2-closure in claw-free graphs

Zdeněk Ryjáček ${ }^{1,2}$
Petr Vrána ${ }^{1}$

January 28, 2010

Abstract

We show that, in a claw-free graph, Hamilton-connectedness is preserved under the operation of local completion performed at a vertex with 2-connected neighborhood. This result proves a conjecture by Bollobás et al.

1 Notation and terminology

In this paper, by a graph we mean a finite simple undirected graph $G=(V(G), E(G))$. For a vertex $x \in V(G), N_{G}(x)$ denotes the neighborhood of x in G, i.e. $N_{G}(x)=\{y \in$ $V(G) \mid x y \in E(G)\}$, and $N_{G}[x]$ denotes the closed neighborhood of x in G, i.e. $N_{G}[x]=$ $N_{G}(x) \cup\{x\}$. If G, H are graphs, then $H \subset G$ means that H is a subgraph of G. The induced subgraph of G on a set $M \subset V(G)$ is denoted $\langle M\rangle_{G}$. By a clique we mean a (not necessarily maximal) complete subgraph of G. A vertex $x \in V(G)$ for which $\left\langle N_{G}(x)\right\rangle_{G}$ is a connected graph (k-connected graph, clique) is said to be locally connected (locally k-connected, simplicial), respectively.

A path with endvertices a, b will be referred to as an (a, b)-path. If P is an (a, b)-path and $u \in V(P)$, then $u^{-(P)}$ and $u^{+(P)}$ denotes the predecessor and successor of u on P (always considered in the orientation from a to b). If no confusion can arise we simply write u^{-}and u^{+}. If P is a path and $u, v \in V(P)$, then $u P v$ denotes the (u, v)-subpath of P. If we want to emphasize that a subpath is traversed in the same (opposite) orientation as P, we use the notation $u \vec{P} v$ or $u \overleftarrow{P} v$, respectively.

Throughout the paper, $\kappa(G)$ denotes the (vertex) connectivity of G and $c(G)$ the circumference of G (i.e. the length of a longest cycle in G). A graph G is hamiltonian if $c(G)=|V(G)|$.

For a graph G and $a, b \in V(G), p(G)$ denotes the length of a longest path in $G, p_{a}(G)$ the length of a longest path in G with one endvertex at $a \in V(G)$, and $p_{a b}(G)$ the length of a longest (a, b)-path in G. A graph G is homogeneously traceable if, for any $a \in V(G), G$

[^0]has a hamiltonian path with one endvertex at a (i.e., for any $\left.a \in V(G), p_{a}(G)=|V(G)|\right)$, and G is Hamilton-connected if, for any $a, b \in V(G), G$ has a hamiltonian (a, b)-path (i.e., for any $\left.a, b \in V(G), p_{a b}(G)=|V(G)|\right)$.

We say that G is claw-free if G does not contain a copy of the claw $K_{1,3}$ as an induced subgraph. Whenever we list vertices of an induced claw, its center (i.e. the only vertex of degree 3) is always the first vertex of the list.

For further concepts and notations not defined here we refer the reader to [2].

2 Introduction

A locally connected nonsimplicial vertex is called eligible. The local completion of G at a vertex x is the graph G_{x}^{\prime} obtained from G by adding all edges with both vertices in $N_{G}(x)$ (note that the local completion at x turns x into a simplicial vertex, and preserves the claw-free property of G).

The closure $\operatorname{cl}(G)$ of a claw-free graph G is the graph obtained from G by recursively performing the local completion operation at eligible vertices as long as this is possible. We say that G is closed if $G=\operatorname{cl}(G)$.

The following was proved in [7].
Theorem A [7]. For every claw-free graph G :
(i) $\operatorname{cl}(G)$ is uniquely determined,
(ii) $\operatorname{cl}(G)$ is the line graph of a triangle-free graph,
(iii) $c(\mathrm{cl}(G))=c(G)$,
(iv) $\operatorname{cl}(G)$ is hamiltonian if and only if G is hamiltonian.

A graph class \mathcal{C} is stable if $G \in \mathcal{C}$ implies $\operatorname{cl}(G) \in \mathcal{C}$. If \mathcal{C} is a stable class, then a graph property π is stable in \mathcal{C} if G has π if and only if $\operatorname{cl}(G)$ has π, and a graph invariant α is stable in \mathcal{C} if $\alpha(G)=\alpha(\operatorname{cl}(G))$, for any $G \in \mathcal{C}$.
Thus, Theorem A says that circumference is a stable invariant and hamiltonicity is a stable property in the class of claw-free graphs.

Let G be the line graph of the multigraph H shown in Figure $1(a)$. Then G has no hamiltonian $\left(u_{1}, u_{2}\right)$-path (where u_{1}, u_{2} are the vertices of $G=L(H)$ that correspond to the edges u_{1}, u_{2} in H), but $\operatorname{cl}(G)$ is Hamilton-connected. This example shows that Hamilton-connectedness is not stable in 3-connected claw-free graphs.

Brandt [3] proved that every 9 -connected claw-free graph is Hamilton-connected, and Hu , Tian and Wei [5] improved this result by showing that every 8 -connected clawfree graph is Hamilton-connected. Consequently, Hamilton-connectedness is stable in 8-connected claw-free graphs.

The following extension of the closure concept was introduced in [1]. For an integer $k \geq 1$, a locally k-connected nonsimplicial vertex is said to be k-eligible, and the k-closure of G, denoted $\mathrm{cl}_{k}(G)$, is the graph obtained from G by recursively performing the local completion operation at k-eligible vertices as long as this is possible. A graph G is k-closed if $G=\mathrm{cl}_{k}(G)$.

Figure 1

A graph class \mathcal{C} is k-stable if $G \in \mathcal{C}$ implies $\operatorname{cl}_{k}(G) \in \mathcal{C}$. For a k-stable class \mathcal{C}, a graph property π is k-stable in \mathcal{C} if G has π if and only if $\mathrm{cl}_{k}(G)$ has π, and a graph invariant α is k-stable in \mathcal{C} if $\alpha(G)=\alpha(\operatorname{cl}(G))$, for any $G \in \mathcal{C}$.

The following result is implicit in the proof of the main result of [1].
Proposition B [1]. Let G be a claw-free graph, let $x \in V(G)$ and let G_{x}^{\prime} be the local completion of G at x.
(i) If $\left\langle N_{G}(x)\right\rangle_{G}$ is 2-connected, then, for any $a \in V(G), p_{a}(G)=p_{a}\left(G_{x}^{\prime}\right)$;
(ii) If $\left\langle N_{G}(x)\right\rangle_{G}$ is 3-connected, then, for any $a, b \in V(G), p_{a b}(G)=p_{a b}\left(G_{x}^{\prime}\right)$.

Proposition B then immediately implies (ii) and (iii) of the following result.
Theorem C [1]. For every claw-free graph G,
(i) $\mathrm{cl}_{k}(G)$ is uniquely determined,
(ii) $\mathrm{cl}_{2}(G)$ is homogeneously traceable if and only if G is homogeneously traceable,
(iii) $\mathrm{cl}_{3}(G)$ is Hamilton-connected if and only if G is Hamilton-connected.

Thus, homogeneous traceability is 2 -stable and hamilton-connectedness is 3 -stable in the class of claw-free graphs.

Let now G be the graph in Figure 1(b) (where the ovals represent cliques on at least three vertices). Then G has no hamiltonian (a, b)-path, the vertex x is 2-eligible, and there is a hamiltonian (a, b)-path in the local completion G_{x}^{\prime} of G at x. This example shows that the property "having a hamiltonian (a, b)-path for given $a, b \in V(G)$ " is not 2 -stable. However, neither G nor its 2 -closure are Hamilton-connected. This observation motivated in [1] the following conjecture.

Conjecture D [1]. Hamilton-connectedness is 2-stable in the class of claw-free graphs.
It should be noted here that in [6] the author claimed to give an infinite family of counterexamples to Conjecture D. However, the behavior of the graphs constructed in [6] is similar to that of the graph in Figure 1(b), i.e., they show that the property of "having a hamiltonian (a, b)-path for given $a, b \in V(G) "$ is not 2-stable, but do not disprove Conjecture D.

3 Results

In the graph G of Figure $1(b)$, the vertex x is locally 2-connected in G, the graph G does not have a hamiltonian (a, b)-path while G_{x}^{\prime} does, and there is another pair of vertices u, v (in this example, $u=a$ and $v=y$) for which there is no hamiltonian (u, v)-path in G_{x}^{\prime}. The following theorem shows that this essentially has always to be the case.

Theorem 1. Let $x \in V(G)$ a locally 2-connected vertex of a claw-free graph G and let G_{x}^{\prime} be the local completion of G at x. Then G is Hamilton-connected if and only if G_{x}^{\prime} is Hamilton-connected.

Theorem 1 immediately implies the following theorem, which is the main result of this paper and gives an affirmative answer to Conjecture D.

Theorem 2. Hamilton-connectedness is 2-stable in the class of claw-free graphs.
Proof of Theorem 2 follows immediately from Theorem 1.
Note that, in [8], Theorem 2 is one of the main tools that allow to develop a closure concept for Hamilton-connectedness, which is then used to show that every 7-connected claw-free graph is Hamilton-connected.

Before proving Theorem 1, we first give several auxiliary structural results.
Fouquet [4] proved that in a connected claw-free graph G with independence number at least 3 the neighborhood of every vertex either can be covered by two cliques or contains an induced C_{5}. On the other hand, by Proposition B, if $x \in V(G)$ is such that $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right) \geq$ 3, then G_{x}^{\prime} is Hamilton-connected if and only if G is Hamilton-connected and there is nothing to do. The following statement describes in more detail the structure of the neighborhood of x in the difficult case, i.e. when $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right)=2$.

Lemma 3. Let G be a claw-free graph, let $x \in V(G)$ be such that $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right)=2$, let $R=\left\{r_{1}, r_{2}\right\}$ be a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$ and let N_{1}, N_{2} be the components of $\left\langle N_{G}(x)\right\rangle_{G}-R$. Then x and R satisfy exactly one of the following:
(a) $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$ can be covered by two cliques,
(b) $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5} and, up to a symmetry,
(i) N_{1}, N_{2} are cliques,
(ii) for every $y \in V\left(N_{1}\right)$, both $y r_{1} \in E(G)$ and $y r_{2} \in E(G)$,
(iii) $r_{1} r_{2} \notin E(G)$,
(iv) for every $y \in V\left(N_{2}\right)$, $y r_{1} \in E(G)$ or $y r_{2} \in E(G)$,
(v) there are $z_{1}, z_{2} \in V\left(N_{2}\right)$ such that $r_{i} z_{i} \in E(G)$ but $r_{i} z_{3-i} \notin E(G), i=1,2$ (i.e., r_{i} is the only neighbor of z_{i} in R).

Proof. \quad Suppose that x and $N_{G}(x)$ satisfy the assumptions of the lemma and $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$ cannot be covered by two cliques; we verify the conditions $(i)-(v)$ of (b). Denote N_{1}, N_{2} the components of $\left\langle N_{G}(x)\right\rangle_{G}-R$.
(i) If $u_{1}, u_{2} \in V\left(N_{1}\right), u_{1} u_{2} \notin E(G)$, then, for some $v \in V\left(N_{2}\right),\left\langle\left\{x, u_{1}, u_{2}, v\right\}\right\rangle_{G}$ is a claw. Hence N_{1} (and symetrically also N_{2}) is a clique.
(ii) We first observe that each of r_{1}, r_{2} is adjacent to all vertices of at least one of N_{1}, N_{2} since if e.g. there are $u_{1} \in V\left(N_{1}\right)$ and $u_{2} \in V\left(N_{2}\right)$ such that both $r_{1} u_{1} \notin E(G)$ and $r_{1} u_{2} \notin E(G)$, then $\left\langle\left\{x, u_{1}, r_{1}, u_{2}\right\}\right\rangle_{G}$ is a claw (and symmetrically for r_{2}). Choose the notation such that r_{1} is adjacent to all vertices of N_{1}. If r_{2} is adjacent to all vertices of N_{2}, then $\left\langle V\left(N_{1}\right) \cup\left\{r_{1}\right\}\right\rangle_{G}$ and $\left\langle V\left(N_{2}\right) \cup\left\{r_{2}\right\}\right\rangle_{G}$ are two cliques covering $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$, a contradiction. Hence r_{2} is adjacent to all vertices of N_{1}.
(iii) If $r_{1} r_{2} \in E(G)$, then $\left\langle V\left(N_{1}\right) \cup\left\{r_{1}, r_{2}\right\}\right\rangle_{G}$ and N_{2} are two cliques covering $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$, a contradiction.
(iv) If both $y r_{1} \notin E(G)$ and $y r_{2} \notin E(G)$ for some $y \in V\left(N_{2}\right)$, then $\left\langle\left\{x, r_{1}, y, r_{2}\right\}\right\rangle_{G}$ is a claw.
(v) If there is no such z_{1}, then r_{2} is adjacent to all vertices of N_{2} and $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$ can be covered by two cliques, a contradiction. Symmetrically for z_{2}.
Finally, $C=r_{1} z_{1} z_{2} r_{2} u r_{1}$, where u is an arbitrary vertex of N_{1}, is an induced C_{5} in $\left\langle N_{G}(x)\right\rangle_{G}$.

Corollary 4. Let G be a claw-free graph, let $x \in V(G)$ be such that $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right)=2$ and let $R=\left\{r_{1}, r_{2}\right\}$ be a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$. Then there are sets $K_{1}, K_{2} \subset N_{G}(x)$ such that:
(1) $K_{1} \cap K_{2}=\emptyset$ and $K_{1} \cup K_{2}=N_{G}(x)$,
(2) $\left|K_{i}\right| \geq 2, i=1,2$,
(3) there is exactly one of the following two possibilities:
(a) $\left\langle K_{i}\right\rangle_{G}$ is a clique, $i=1,2$,
(b) $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$ contains an induced C_{5} and
(i) $R \subset K_{1}$,
(ii) $r_{1} r_{2} \notin E(G)$,
(iii) $\left\langle K_{1}\right\rangle_{G}+r_{1} r_{2}$ and $\left\langle K_{2}\right\rangle_{G}$ are cliques,
(iv) for every $y \in K_{2}, y r_{1} \in E(G)$ or $y r_{2} \in E(G)$,
(v) there are $z_{1}, z_{2} \in K_{2}$ such that $r_{i} z_{i} \in E(G)$ but $r_{i} z_{3-i} \notin E(G)$, $i=1,2$ (i.e., r_{i} is the only neighbor of z_{i} in R).

Proof. Suppose first that $V\left(\left\langle N_{G}(x)\right\rangle_{G}\right)$ can be covered by two cliques A_{1}, A_{2}. If both $\left|V\left(A_{1}\right)\right| \geq 2$ and $\left|V\left(A_{2}\right)\right| \geq 2$, we set $K_{i}=V\left(A_{i}\right), i=1,2$, and we are done. Hence suppose that e.g. $\left|V\left(A_{1}\right)\right|=1$ with $V\left(A_{1}\right)=\{a\}$. By the 2-connectedness of $\left\langle N_{G}(x)\right\rangle_{G}$, there are $b_{1}, b_{2} \in V\left(A_{2}\right)$ such that $a b_{1}, a b_{2} \in E(G)$. If $\left|V\left(A_{2}\right)\right|=2$, then $\left\langle N_{G}(x)\right\rangle_{G}$ is a triangle and there is no cutset R. Hence $\left|V\left(A_{2}\right)\right| \geq 3$ and we set $K_{1}=\left\{a, b_{1}\right\}$ and $K_{2}=V\left(A_{2}\right) \backslash\left\{b_{1}\right\}$.

If $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}, then, by Lemma 3, we set $K_{1}=V\left(N_{1}\right) \cup\left\{r_{1}, r_{2}\right\}$ and $K_{2}=V\left(N_{2}\right)$. The rest is clear.

Note that, for a given x, neither the cutset R nor the decomposition of $N_{G}(x)$ into K_{1} and K_{2} are, in general, uniquely determined; however, K_{1} and K_{2} are uniquely determined for a given R if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}.

For the proof of Theorem 1 we will further need some special notation and one more structural result characterizing the situations when $p_{a b}(G)<p_{a b}\left(G_{x}^{\prime}\right)$.

For a given (a, b)-path P in a graph G, a vertex $x \in V(G)$ and $i=0,1,2$ we denote $V_{i}^{x}(P)=\left\{y \in V(P) \cap N_{G}(x) ;\left|\left\{y^{-}, y^{+}\right\} \cap N_{G}[x]\right|=i\right\}$. If $V_{1}^{x}(P) \neq \emptyset$, then $a_{P}^{x}\left(b_{P}^{x}\right)$ denotes the first (last) vertex of P which is in $V_{1}^{x}(P)$, respectively (if the vertex x is clear from the context, we will simply denote $V_{1}(P), a_{P}$ and $\left.b_{P}\right)$. Thus, equivalently, $a_{P}\left(b_{P}\right)$ is the first (last) vertex of an (a, b)-path P for which the edge $a_{P} a_{P}^{+}\left(b_{P}^{-} b_{P}\right)$ is in $\left\langle N_{G}(x)\right\rangle_{G}$. Analogously we define $V_{i}^{x}(C)=\left\{y \in V(C) \cap N_{G}(x) ;\left|\left\{y^{-}, y^{+}\right\} \cap N_{G}[x]\right|=i\right\}$ for a cycle $C \subset G$.

Proposition 5. Let G be a claw-free graph, let $x \in V(G)$ be such that $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right)=2$, let G^{\prime} be the local completion of G at x and let $a, b \in V(G), a \neq b$. Then $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$ if and only if $\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$ and, for every longest (a, b)-path P^{\prime} in G^{\prime},
(1) $x \in V\left(P^{\prime}\right)$,
(2) $\left|\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\}\right|=4$,
(3) $a_{P^{\prime}} b_{P^{\prime}} \in E(G)$,
(4) if C is the component of $\left\langle N_{G}(x)\right\rangle_{G}-R$ not containing $a_{P^{\prime}}$, then $V(C) \backslash V_{0}^{x}\left(P^{\prime}\right) \neq \emptyset$,
(5) there are no two vertices $u, v \in V_{1}^{x}\left(P^{\prime}\right)$ such that u, v are in different components of $\left\langle N_{G}(x)\right\rangle_{G}-R$ and all interior vertices of the subpath $u P^{\prime} v$ of the path P^{\prime} are in $\left(V(G) \backslash N_{G}[x]\right) \cup V_{0}^{x}\left(P^{\prime}\right)$.
Moreover, if $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$, then there are vertices $\bar{a}, \bar{b} \in N_{G}(x)$ such that
(6) $\bar{a}=a_{P^{\prime}}$ and $\bar{b}=b_{P^{\prime}}$ for any longest (a, b)-path P^{\prime} in G^{\prime},
(7) $a \bar{a} \in E(G)$ and $b \bar{b} \in E(G)$.

Proof of Proposition 5 is lengthy and technical and it is thus postponed to Section 4.
Note that statement (6) of Proposition 5 equivalently says that if $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$, then, for given vertices a, b are the vertices $a_{P^{\prime}}, b_{P^{\prime}}$ uniquely determined (i.e., do not depend on the choice of the (a, b)-path $\left.P^{\prime}\right)$. In the rest of this section we will keep the notation \bar{a}, \bar{b} for these vertices given by (6) of Proposition 5 .

Proposition 6. Let G be a claw-free graph, let $x \in V(G)$ be such that $\kappa\left(\left\langle N_{G}(x)\right\rangle_{G}\right)=2$, let G^{\prime} be the local completion of G at x and let $a, b \in V(G), a \neq b$. If $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$, then, for every hamiltonian cycle C in $G^{\prime}, E(C) \cap\{a \bar{a}, b \bar{b}\}=\emptyset$.

Proof. Let $a, b \in V(G)$ be such that $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$. By Proposition 5, $a, b \in N_{G}(x)$. Let C be a hamiltonian cycle in G^{\prime} and suppose, to the contrary, that $a \bar{a} \in E(C)$ (the proof for $b \bar{b} \in E(C)$ is symmetric). Let Q_{1}, \ldots, Q_{k} denote nontrivial components of the graph obtained from C by removing all edges with both vertices in $N_{G}[x], q_{i}^{1}, q_{i}^{2}$ the endvertices of $Q_{i}, i=1, \ldots, k$, and set $A=\left\{q_{i}^{j} ; i=1, \ldots, k, j=1,2\right\}$. Then $A \subset N_{G}(x)$ and every Q_{i} is a path with endvertices in A and with interior vertices in $V_{0}^{x}(C) \cup\left(V(G) \backslash N_{G}[x]\right)$.

1. Suppose first that $a \notin A$. If $a \notin \cup_{i=1}^{k} V\left(Q_{i}\right)$, then, using edges in $\left\langle N_{G}[x]\right\rangle_{G^{\prime}}$, we can connect the paths Q_{1}, \ldots, Q_{k} to obtain a hamiltonian (a, b)-path P^{\prime} in G^{\prime} with $a=a_{P^{\prime}}$, contradicting Proposition 5 (2) (recall that $\left\langle N_{G}[x]\right\rangle_{G^{\prime}}$ is a clique). Hence $a \in V_{0}^{x}(C)$, but then, considering the claw at $\left\langle\left\{a, a^{-(C)}, a^{+(C)}, x\right\}\right\rangle_{G}$ we have $a^{-(C)} a^{+(C)} \in E(G)$, and replacing in C the path $a^{-(C)} a a^{+(C)}$ by the edge $a^{-(C)} a^{+(C)}$ we are in the previous situation.
2. Hence $a \in A$. Symmetrically, $b \in A$ (note that in the proof of $a \in A$ we have not used the assumption that $a \bar{a} \in E(C)$). Choose the notation such that $a=q_{1}^{1}$. By the assumption, $a \bar{a} \in E(C)$, implying $q_{1}^{2} \neq \bar{a}$.

If $q_{1}^{2} \neq b$, then the paths Q_{1}, \ldots, Q_{k} can be interconnected in $\left\langle N_{G}[x]\right\rangle_{G^{\prime}}$ to obtain a hamiltonian (a, b)-path P^{\prime} in G^{\prime} with $a_{P^{\prime}}=q_{1}^{2} \neq \bar{a}$, contradicting (6) of Proposition 5. Hence $q_{1}^{2}=b$.

By Proposition $5, R=\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, hence there are $y_{1}, y_{2} \in N_{G}(x) \cap$ $N_{G}(a)$ such that $y_{1} \neq y_{2}, y_{1} y_{2} \notin E(G)$ and $y_{1} \neq b \neq y_{2}$. Set $a^{+}=a^{+\left(Q_{1}\right)}$ (note that $a^{+} \notin$ $\left.N_{G}(x)\right)$. From the claw at $\left\langle\left\{a, a^{+}, y_{1}, y_{2}\right\}\right\rangle_{G}$ we then have $a^{+} y_{1} \in E(G)$ or $a^{+} y_{2} \in E(G)$; choose the notation such that $a^{+} y_{1} \in E(G)$. We have 3 possibilities.
a) $y_{1} \notin \cup_{i=1}^{k} V\left(Q_{i}\right)$. Then we set $Q_{1}^{\prime}=y_{1} a^{+} Q_{1} b$ and for the system of paths $Q_{1}^{\prime}, Q_{2}, \ldots, Q_{k}$ we are in case 1 .
b) $y_{1} \in V_{0}^{x}(C)$. Then $y_{1} \in V_{0}^{x}\left(Q_{j}\right)$ for some $j, 2 \leq j \leq k$; choose the notation such that $j=2$. From the claw at $\left\langle\left\{y_{1}, y_{1}^{-\left(Q_{2}\right)}, y_{1}^{+\left(Q_{2}\right)}, x\right\}\right\rangle_{G}$ we have $y_{1}^{-\left(Q_{2}\right)} y_{1}^{+\left(Q_{2}\right)} \in E(G)$. We set $Q_{2}^{\prime}=q_{2}^{1} Q_{2} y_{1}^{-\left(Q_{2}\right)} y_{1}^{+\left(Q_{2}\right)} Q_{2} q_{2}^{2}$ and for the system of paths $Q_{1}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k}$ we are in subcase 2 a).
c) $y_{1} \in A$. We choose the notation such that $y_{1}=q_{2}^{2}$, set $Q_{2}^{\prime}=q_{2}^{1} Q_{2} q_{2}^{2} a^{+} Q_{1} b$, and for the system of paths $Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k}$ we are in case 1 .

Now we can prove stability of Hamilton-connectedness under cl_{2}.
Proof of Theorem 1. Suppose, to the contrary, that G^{\prime} is Hamilton-connected but G is not. Then $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$ for some $a, b \in V(G), a \neq b$. By Proposition 5, there are uniquely determined vertices \bar{a}, \bar{b} such that $|\{a, \bar{a}, b, \bar{b}\}|=4$ and $a \bar{a}, b \bar{b} \in E(G)$. If P is a hamiltonian (a, \bar{a})-path in G^{\prime}, then $C=P+a \bar{a}$ is a hamiltonian cycle in G^{\prime} with $a \bar{a} \in E(C)$, contradicting Proposition 6 .

4 Proof of Proposition 5

We first prove one simple lemma that will be useful throughout the proof.
Lemma 7. Let G be a claw-free graph, $x \in V(G)$, let G^{\prime} be the local completion of G at x and let P^{\prime} be a longest (a, b)-path in G^{\prime} (for some $a, b \in V(G), a \neq b$) such that $x \in V\left(P^{\prime}\right)$. Then there is a longest (a, b)-path $P^{\prime \prime}$ in G^{\prime} such that
(i) $V\left(P^{\prime \prime}\right)=V\left(P^{\prime}\right)$,
(ii) $V_{0}^{x}\left(P^{\prime \prime}\right)=\emptyset$,
(iii) for every subpath $Q^{\prime}=u P^{\prime} v$ of P^{\prime} with $u, v \in N_{G}(x) \backslash V_{0}^{x}\left(P^{\prime}\right)$ and interior vertices in $\left(V\left(G^{\prime}\right) \backslash N_{G}[x]\right) \cup V_{0}^{x}\left(P^{\prime}\right)$ the corresponding subpath $Q^{\prime \prime}=u P^{\prime \prime} v$ of $P^{\prime \prime}$ satisfies $V\left(Q^{\prime \prime}\right)=V\left(Q^{\prime}\right) \backslash V_{0}^{x}\left(P^{\prime}\right)$,
(iv) the vertices in $V_{1}^{x}\left(P^{\prime}\right)$ and $V_{1}^{x}\left(P^{\prime \prime}\right)$ occur on P^{\prime} and $P^{\prime \prime}$ in the same order.

Proof. Let $y \in V_{0}^{x}\left(P^{\prime}\right)$. Then $x y^{-}, x y^{+} \notin E(G)$, and from the claw at $\left\langle\left\{y, y^{-}, y^{+}, x\right\}\right\rangle_{G}$ we have $y^{-} y^{+} \in E(G)$. The lemma then immediately follows from the fact that $\left\langle N_{G}(x)\right\rangle_{G^{\prime}}$ is a clique.

Note that (iii) yields a system of vertex-disjoint paths $Q_{i}, i=1, \ldots, k$, with endvertices in $N_{G}(x), V_{0}^{x}\left(Q_{i}\right)=\emptyset$, and with $V\left(P^{\prime}\right)=\left(\cup_{i=1}^{k} V\left(Q_{i}\right)\right) \cup N_{G}[x]$.
I. We first show that if $R=\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$ and every longest (a, b)-path in G^{\prime} satisfies the conditions (1) - (5) of Proposition 5, then $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$. Let, to the contrary, $p_{a b}(G)=p_{a b}\left(G^{\prime}\right)$, and let P be a longest (a, b)-path in G. Then P is a longest (a, b)-path also in G^{\prime}, hence P satisfies (1) - (5).

We define a graph G^{+}by $G^{+}=G$ if $\left\langle N_{G}(x)\right\rangle_{G}$ can be covered by two cliques, and $G^{+}=G+a b$ if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}. By Corollary 4, there are $K_{1}^{+}, K_{2}^{+} \subset$ $V(G)$ such that

- $\left|K_{i}^{+}\right| \geq 2$ and $\left\langle K_{i}^{+}\right\rangle_{G^{+}}$is a clique, $i=1,2$,
- $K_{1}^{+} \cap K_{2}^{+}=\emptyset$ and $K_{1}^{+} \cup K_{2}^{+}=N_{G}(x)$,
- if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}, then both a and b are in the same K_{i}^{+}.

Choose the notation such that $a \in K_{1}^{+}$.
We have several structural observations.
(i) $N_{G}(x) \subset V(P)$. This follows from (1) and from the fact that $\left\langle N_{G}(x)\right\rangle_{G^{\prime}}$ is a clique.
(ii) $a^{+}, b^{-} \notin N_{G}(x)$. If e.g. $a^{+} \in N_{G}(x)$, then $a=a_{P}$, contradicting (2).
(iii) a^{+}has a neighbor in K_{2}^{+}, and b^{-}has a neighbor in that of K_{1}^{+}, K_{2}^{+}which does not contain b. Since $R=\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}, a$ has a neighbor \tilde{a} in K_{2}^{+}. If a^{+}has a neighbor \tilde{a}_{1} in $K_{1}^{+} \backslash\{a, b\}$, then, using (5) and Lemma 7 we get a contradiction with (2). Hence $a^{+} \tilde{a} \in E(G)$ since otherwise $\left\langle\left\{a, a^{+}, \tilde{a}, \tilde{a}_{1}\right\}\right\rangle_{G}$ is a claw. The proof for b^{-}is symmetric.
(iv) $a_{P}, b_{P} \in K_{2}^{+}$. If $a_{P} \in K_{1}^{+}$, then, using (iii) and Lemma 7, we have a contradiction with (2). Hence $a_{P} \in K_{2}^{+}$, and by (3) (and since $\{a, b\}$ is a cutset) also $b_{P} \in K_{2}^{+}$.
(v) $b \in K_{1}^{+}$. If $b \in K_{2}^{+}$, then $b, b_{P} \in K_{2}^{+}$and we have a contradiction with (2) by a similar argument.
Let now $s \in K_{1}^{+} \backslash\left(\{a, b\} \cup V_{0}^{x}(P)\right)$ (such a vertex s exists by (4)). By $(i), s \in V(P)$, hence $s \in V_{1}^{x}(P) \cup V_{2}^{x}(P)$. By $(i v), a_{P}, b_{P} \in K_{2}^{+}$, and, by the definition of a_{P}, all interior vertices of the paths $a P a_{P}$ and $b_{P} P b$ are in $V_{0}^{x}(P)$ or outside $N_{G}[x]$. Hence there are vertices $c_{1}, c_{2} \in V_{1}^{x}(P) \cap\left(K_{1}^{+} \backslash\{a, b\}\right)$ and $d_{1}, d_{2} \in V_{1}^{x}(P) \cap K_{2}^{+}$such that the vertices $a, a_{P}, d_{1}, c_{1}, s, c_{2}, d_{2}, b_{P}, b$ occur on P in this order (not excluding the possibility that some of them can coincide). One of the subpaths $d_{1} P c_{1}, c_{2} P d_{2}$ (say, $d_{1} P c_{1}$) can be of length 2 with x as the only interior vertex, but the existence of $c_{2} P d_{2}$ contradicts (5).
II. Now we show that, conversely, $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$ implies that $\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, every longest (a, b)-path P^{\prime} in G^{\prime} satisfies the conditions (1) - (5) of Proposition 5 and, moreover, (6) and (7) also holds. Thus, suppose that $p_{a b}(G)<p_{a b}\left(G^{\prime}\right)$, let P^{\prime} be a longest (a, b)-path in G^{\prime} and let $R=\left\{r_{1}, r_{2}\right\}$ be a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$.

Observe that if $V_{1}^{x}\left(P^{\prime}\right)=\emptyset$, then $P^{\prime} \subset G$, contradicting the assumption $p_{a b}(G)<$ $p_{a b}\left(G^{\prime}\right)$. Hence $V_{1}^{x}\left(P^{\prime}\right) \neq \emptyset$ and then, by the maximality of P^{\prime} and since $\left\langle N_{G}(x)\right\rangle_{G^{\prime}}$ is a clique, we have $N_{G}[x] \subset V\left(P^{\prime}\right)$. Now we introduce some special terminology and notations and prove several auxiliary statements.

Similarly as in the first part of the proof, we set $G^{+}=G$ if $\left\langle N_{G}(x)\right\rangle_{G}$ can be covered by two cliques, and $G^{+}=G+r_{1} r_{2}$ if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}. Then, by Corollary 4, there are $K_{1}^{+}, K_{2}^{+} \subset V(G)$ such that $\left|K_{i}^{+}\right| \geq 2$ and $\left\langle K_{i}^{+}\right\rangle_{G^{+}}$is a clique, $i=1,2, K_{1}^{+} \cap K_{2}^{+}=\emptyset$ and $K_{1}^{+} \cup K_{2}^{+}=N_{G}(x)$, and if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5},
then both r_{1} and r_{2} are in the same K_{i}^{+}. Unlike in the first part, we choose the notation such that $a_{P^{\prime}} \in K_{2}^{+}$.

An (a,b)-path P^{\prime} in G^{\prime} is said to be a private path if P^{\prime} satisfies the following conditions:
(i) P^{\prime} is a longest (a, b)-path in G^{\prime},
(ii) $x \in V\left(P^{\prime}\right)$,
(iii) $V_{0}^{x}\left(P^{\prime}\right)=\emptyset$,
(iv) subject to $(i),(i i)$ and $(i i i),\left|\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\}\right|$ is minimum.

Note that, by (i) and (ii), a private path contains all vertices of $N_{G}[x]$. By Lemma 7, for any longest (a, b)-path in G^{\prime} containing x there is a private (a, b)-path in G^{\prime} with the same vertex set. Moreover, it is clear that if (1), (2), (3), (5) and (6) of Proposition 5 are satisfied for any private (a, b)-path in G^{\prime}, then these conditions also hold for any longest (a, b)-path in G^{\prime}. The conditions (2) of Proposition 5 and (iv) of the definition of private path then imply that every longest (a, b)-path P^{\prime} in G^{\prime} with $V_{0}^{x}\left(P^{\prime}\right)=\emptyset$ is private in this case. These observations together with the fact that (7) does not depend on P^{\prime} imply that it is sufficient to verify $(1)-(7)$ for all private (a, b)-paths in G^{\prime}.

Thus, suppose that P^{\prime} is a private (a, b)-path in G^{\prime}. We denote $Q^{\prime}=a_{P^{\prime}} P^{\prime} b_{P^{\prime}}$ the $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-subpath of $P^{\prime}, Q_{1}^{\prime}, \ldots, Q_{k}^{\prime}$ the nontrivial components of the graph obtained from Q^{\prime} by removing edges with both ends in $N_{G}[x]$ and q_{i}^{1}, q_{i}^{2} the endvertices of $Q_{i}^{\prime}, i=1, \ldots, k$ (where the numbering of Q_{i}^{\prime} and q_{i}^{j} is chosen in the orientation from $a_{P^{\prime}}$ to $b_{P^{\prime}}$).

Let further S denote the system of subsets of $N_{G}(x)$ defined by $S=S^{(1)} \cup S^{(2)}$, where $S^{(2)}=\left\{\left\{q_{i}^{1}, q_{i}^{2}\right\} \mid i=1, \ldots, k\right\}$ and $S^{(1)}=\left\{\{u\} \mid u \in N_{G}(x) \backslash\left(\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\} \cup\left(\cup_{s \in S^{(2)}} S\right)\right\}\right.$. For $S^{\prime} \subset S$ we set $V\left(S^{\prime}\right)=\cup_{s \in S^{\prime}} s$. This means that $N_{G}(x)$ consists of $V(S), a_{P^{\prime}}$, $b_{P^{\prime}}$, and possibly a or b (or both), and any longest (a, b)-path in G^{\prime} (and, to obtain a contradiction, also in G), has to contain all elements of $S^{(1)}$ and all paths represented by pairs of their endvertices in $S^{(2)}$. We further denote $S_{i}=\left\{s \in S \mid V(s) \subset K_{i}^{+}\right\}, i=1,2$, and $S_{12}=\left\{s \in S \mid V(s) \cap K_{i}^{+} \neq \emptyset, i=1,2\right\}$ (thus, $S=S_{1} \cup S_{2} \cup S_{12}$ and $S_{12} \subset S^{(2)}$).

The fact that $\left\langle N_{G}(x)\right\rangle_{G^{\prime}}$ is a clique will allow us to use this notation to simplify description of paths in G^{\prime} : whenever, in the description of a path, a subset S^{\prime} of S occurs, this means that all elements of $S^{(1)} \cap S^{\prime}$ and all paths represented by elements of $S^{(2)} \cap S^{\prime}$ (if any) have to be included using appropriate edges of the clique $\left\langle N_{G}(x)\right\rangle_{G^{\prime}}$. For two consecutive elements u, v of such a description of a path, we will use the notation $\widehat{u v}$ to indicate that we do not exclude the possibility $u=v$.

Claim 8. Let P^{\prime} be a private (a, b)-path in G^{\prime}. If $a \in N_{G}(x)$ and $a \neq a_{P^{\prime}}$, then a^{+} has no neighbor in $V(S)$, and, symmetrically, if $b \in N_{G}(x)$ and $b \neq b_{P^{\prime}}$, then b^{-}has no neighbor in $V(S)$.

Proof. Suppose a^{+}is adjacent to $u \in V(s), s \in S$. Then for the path $\tilde{P}=$ $a s a^{+} P^{\prime} a_{P^{\prime}}(S \backslash s) x b_{P^{\prime}} b$ (recall that $\left\langle N_{G}[x]\right\rangle_{G^{\prime}}$ is a clique) we have $a=a_{\tilde{P}}$, contradicting the assumption that P^{\prime} is private. The proof for b^{-}is symmetric.

Claim 9. Let P^{\prime} be a longest (a, b)-path in $G^{\prime}, x \in V\left(P^{\prime}\right)$. If $a \in N_{G}(x), a \neq a_{P^{\prime}}$, and there are $y_{1}, y_{2} \in N_{G}(x) \cap N_{G}(a)$ such that
(i) $y_{1}, y_{2} \notin E(G)$,
(ii) $y_{i} \neq a_{P^{\prime}}$, and if $b=b_{P^{\prime}}$, then also $y_{i} \neq b_{P^{\prime}}, i=1,2$,
then P^{\prime} is not a private (a, b)-path in G^{\prime}.

Proof. Suppose that P^{\prime} satisfies the assumptions of Claim 9. Considering the claw at $\left\langle\left\{a, a^{+}, y_{1}, y_{2}\right\}\right\rangle_{G}$, we obtain (possibly after renumbering y_{1} and y_{2}) that $a^{+} y_{1} \in E(G)$. By Claim 8, $y_{1} \notin V(S)$ (otherwise we are done), hence $y_{1} \in\left\{b, b_{P^{\prime}}\right\}$. Moreover, $b \neq b_{P^{\prime}}$, for otherwise by (ii) we have $y_{1} \notin\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\}$, implying $y_{1} \in V(S)$, a contradiction.
Case 1: $y_{1}=b_{P^{\prime}}$. Then the path $P^{\prime \prime}=a(S \cup\{x\}) a_{P^{\prime}} \overleftarrow{P^{\prime}} a^{+} y_{1} \overrightarrow{P^{\prime}} b$ is a longest (a, b)-path in $\overline{G^{\prime}}$ with $a=a_{P^{\prime \prime}}$, hence P^{\prime} is not private.
Case 2: $y_{1}=b$. Then $b \neq b_{P^{\prime}}$ implies $b^{-} \notin N_{G}[x]$ and $a \neq a_{P^{\prime}}$ implies $a^{+} \notin N_{G}[x]$. From the claw at $\left\langle\left\{y_{1}, x, b^{-}, a^{+}\right\}\right\rangle_{G}$ we have $b^{-} a^{+} \in E(G)$. The path $P^{\prime \prime}=a(S \cup$ $\{x\}) a_{P^{\prime}} \overleftarrow{P^{\prime}} a^{+} b^{-} \overleftarrow{P^{\prime}} b_{P^{\prime}} b$ then satisfies $a=a_{P^{\prime \prime}}$, hence P^{\prime} is not private.

Claim 10. Let $\{a, b\}=R=\left\{r_{1}, r_{2}\right\}$ and let $P_{1}^{\prime}, P_{2}^{\prime}$ be private (a, b)-paths in G^{\prime} such that $a_{P_{1}^{\prime}} \neq a \neq a_{P_{2}^{\prime}}, b_{P_{1}^{\prime}} \neq b \neq b_{P_{2}^{\prime}}$ and $\left\{a_{P_{1}^{\prime}}, a_{P_{2}^{\prime}}\right\} \subset K_{j}^{+}$for some $j \in\{1,2\}$. Then $a_{P_{1}^{\prime}}=a_{P_{2}^{\prime}}$.

Proof. Since $\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, there are $w \in K_{j}^{+}$and $z \in K_{3-j}^{+}$such that $a w, a z \in E(G)$. If $w \neq a_{P_{1}^{\prime}}$, then, applying Claim 9 to P_{1}^{\prime}, we get that P_{1}^{\prime} is not private, a contradiction. Hence $w=a_{P_{1}^{\prime}}$. Analogously $w=a_{P_{2}^{\prime}}$, implying $a_{P_{1}^{\prime}}=a_{P_{2}^{\prime}}$.

In general, $\left\langle N_{G}(x)\right\rangle_{G}$ can have more 2-element cutsets. If this is the case, we suppose that the cutset $R=\left\{r_{1}, r_{2}\right\}$ is chosen such that, for the given private (a, b)-path P^{\prime},
(i) $\left|R \cap\left(\{a, b\} \backslash\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}\right)\right|$ is maximum,
(ii) if $\left|R \cap\left(\{a, b\} \backslash\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}\right)\right|=0$, then $\left|R \cap\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}\right|$ is maximum.

Let now H be the graph with $V(H)=N_{G}[x]$ and $E(H)=E\left(\left\langle N_{G}(x)\right\rangle_{G}\right) \cup S^{(2)}$, and let H^{\prime} be the local completion of H at x (i.e., H is a clique with some vertices belonging to $V(S)$ and some edges belonging to $\left.S^{(2)}\right)$. It is now clear that every longest (a, b)-path P^{\prime} in G^{\prime} defines an ($a_{P^{\prime}}, b_{P^{\prime}}$)-path Q^{\prime} in H^{\prime} such that Q^{\prime} contains x and all elements of S (i.e., all edges in $S^{(2)}$ and all vertices in $V\left(S^{(1)}\right)$. To reach a contradiction, i.e. to find an (a, b)-path P in G with $V(P)=V\left(P^{\prime}\right)$, it is sufficient to find an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q in H containing x and all elements of S.

Similarly as with G^{+}, we set $H^{+}=H$ if $\left\langle N_{G}(x)\right\rangle_{G}$ can be covered by two cliques, and $H^{+}=H+r_{1} r_{2}$ if $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}. We proceed in two steps: in Step A, we for a given $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q^{\prime} in H^{\prime} either find an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q^{+}in H^{+}containing x and all elements of S, or verify the conditions (1) - (7) of Proposition 5; in Step B, we complete the proof by showing that in each case when there is an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q^{+}in H^{+}containing x and all elements of S, there also is such a path Q in H.

Step A: H^{\prime} to H^{+}.
Let Q^{\prime} be an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path in H^{\prime} containing x and all elements of S.
Case 1: $b_{P^{\prime}} \in K_{1}^{+}$(recall that the notation is chosen such that $a_{P^{\prime}} \in K_{2}^{+}$.) Then $Q^{+}=$ $\overline{a_{P^{\prime}} S_{2} S_{12} x S_{1} b_{P^{\prime}} \text { is }}$ an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path in H^{+}containing x and all elements of S.
Case 2: $b_{P^{\prime}}=x$ (and hence also necessarily $b=x$).
a) If $S_{12} \neq \emptyset$, then for an $s \in S_{12}$ the path $Q^{+}=a_{P^{\prime}} S_{2} s S_{1}\left(S_{12} \backslash\{s\}\right) x b_{P^{\prime}}$ has the required properties.
b) If $S_{12}=\emptyset$ and there is an edge $u v \in E(G)$ with $u \in V\left(S_{1}\right)$ and $v \in V\left(S_{2}\right)$, then we set $Q^{+}=a_{P^{\prime}} S_{2} v u S_{1} x b_{P^{\prime}}$.
c) Hence $S_{12}=\emptyset$ and there is no edge $u v \in E(G)$ with $u \in V\left(S_{1}\right)$ and $v \in V\left(S_{2}\right)$. Recall that $\left|K_{1}^{+}\right| \geq 2,\left|K_{2}^{+}\right| \geq 2$, and there are only 2 vertices, namely a and $a_{P^{\prime}}$, that are not in $V\left(S_{1}\right) \cup V\left(S_{2}\right)$. If $\left\{a, a_{P^{\prime}}\right\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, then both K_{1}^{+}and K_{2}^{+}contains a vertex in $V\left(S_{1}\right) \cup V\left(S_{2}\right)$ and, by Claim $9, P^{\prime}$ is not private, a contradiction. Hence $\left\{a, a_{P^{\prime}}\right\}$ is not a cutset, but then there is an edge $u v$ with $u \in V\left(S_{1}\right)$ and $v \in V\left(S_{2}\right)$ and we are in subcase 2 b .

Case 3: $\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \subset K_{2}^{+}$.
a) If $S_{12} \neq \emptyset$, then for some $s \in S_{12}$ we set $Q^{+}=a_{P^{\prime}} S_{2} s S_{1}\left(S_{12} \backslash\{s\}\right) x b_{P^{\prime}}$.
b) If $S_{12}=\emptyset$ and there is an $u v \in E(G)$ with $u \in V\left(S_{1}\right)$ and $v \in\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \cup V\left(S_{2}\right)$, we set $Q^{+}=a_{P^{\prime}} S_{2} x S_{1} u b_{P^{\prime}}$ if $v=b_{P^{\prime}}$ and $Q^{+}=\widehat{a_{P^{\prime}} v} u S_{1} x S_{2} b_{P^{\prime}}$ otherwise.
c) Hence $S_{12}=\emptyset$ and there is no edge $u v \in E(G)$ with $u \in V\left(S_{1}\right)$ and $v \in\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \cup$ $V\left(S_{2}\right)$. If $S_{1}=\emptyset$, then $K_{1}^{+}=\{a, b\}$, implying $Q^{+}=Q^{\prime}$, hence $S_{1} \neq \emptyset$. By the 2connectedness of $\left\langle N_{G}(x)\right\rangle_{G}$ and since $\left|K_{i}^{+}\right| \geq 2, i=1,2$, there are two vertex-disjoint edges e_{1}, e_{2} between K_{1}^{+}and K_{2}^{+}.

If $a=a_{P^{\prime}}$, then $a, a_{P^{\prime}}$ and $b_{P^{\prime}}$ are in K_{2}^{+}, hence one of e_{1}, e_{2} has a vertex in $V\left(S_{1}\right)$ and we are in subcase 3 b . Hence $a \neq a_{P^{\prime}}$ and, symmetrically, $b \neq b_{P^{\prime}}$. The nonexistence of an edge $u v \in E(G)$ with $u \in V\left(S_{1}\right)$ and $v \in\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \cup V\left(S_{2}\right)$ then implies that $\{a, b\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$. By the choice of R, we have $R=\{a, b\}$.

Let now $y_{1} \in K_{1}^{+}$be such that $y_{1} \neq b$ and $y_{1} a \in E(G)$ (such an y_{1} exists since $\{a, b\}=R$). If $a \in K_{2}^{+}$, then for $y_{2}=b_{P^{\prime}}$ we have a contradiction with Claim 9, hence $a \in K_{1}^{+}$. Analogously we observe that $a_{P^{\prime}}$ is the only neighbor of a in K_{2}^{+}. Symmetrically, $b \in K_{1}^{+}$and $b_{P^{\prime}}$ is the only neighbor of b in K_{2}^{+}.

Summarizing, we have the following facts:

- $x \in V\left(P^{\prime}\right)$, verifying condition (1) of Proposition 5,
- $a \neq a_{P^{\prime}}$ and $b \neq b_{P^{\prime}}$, implying $\left|\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\}\right|=4$, thus verifying (2),
- $a_{P^{\prime}}, b_{P^{\prime}} \in K_{2}^{+}$, hence $a_{P^{\prime}} b_{P^{\prime}} \in E(G)$, implying (3),
- $S_{12}=\emptyset$, implying (5),
- $S_{1} \neq \emptyset$, hence also $V(C) \backslash V_{0}^{x}\left(P^{\prime}\right)=\left(K_{1}^{+} \backslash\{a, b\}\right) \backslash V_{0}^{x}\left(P^{\prime}\right) \neq \emptyset$ (since the case when $\left(K_{1}^{+} \backslash\{a, b\}\right) \subset V_{0}^{x}\left(P^{\prime}\right)$ can be transformed in an obvious way to the case $S_{1}=\emptyset$); this also establishes (4).
Moreover, by Claim 10, $a_{P^{\prime}}$ and $b_{P^{\prime}}$ are uniquely determined, verifying (6), and the fact that $a a_{P^{\prime}} \in E(G)$ and $b b_{P^{\prime}} \in E(G)$ implies (7).

Step B: H^{+}to H.

In this part we complete the proof by showing that in each case when there is an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q^{+}in H^{+}containing x and all elements of S, there also is such a path Q in H.

If $\left\langle N_{G}(x)\right\rangle_{G}$ can be covered by two cliques, then $H^{+}=H$ and there is nothing to do, hence in the rest of the proof suppose that $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5}. Let $K_{1}, K_{2} \subset N_{G}(x)$ be the sets given in Corollary 4 (note that, specifically, $R \subset K_{1}$, and $\left\{K_{1}, K_{2}\right\}=\left\{K_{1}^{+}, K_{2}^{+}\right\}$), and (if necessary) relabel the sets S_{1}, S_{2} in accordance with the labeling of K_{1}, K_{2},

Claim 11. Let P^{\prime} be a private (a, b)-path in G^{\prime}. If $\left\langle N_{G}(x)\right\rangle_{G}$ contains an induced C_{5} and $a \in N_{G}(x)$, then at least one of the following holds:

1. $a=a_{P^{\prime}}$,
2. $a a_{P^{\prime}} \in E(G)$,
3. $b=b_{P^{\prime}}, b \neq x, a b \in E(G)$.

Proof. Choose $y_{1}, y_{2} \in N_{G}(x) \cap N_{G}(a)$ such that $y_{1} y_{2} \notin E(G)$. This is always possible: for $a \in K_{1} \backslash R$ we choose $\left\{y_{1}, y_{2}\right\}=R$, for $a \in R$ we choose $y_{1} \in K_{1} \backslash R, y_{2} \in K_{2}$, and for $a \in K_{2}$ we choose $y_{1} \in R$ and $y_{2} \in K_{2}$ such that $y_{1} y_{2} \notin E(G)$ (such vertices exist since if r_{1} or r_{2} is adjacent to all vertices in K_{2} then $\left\langle N_{G}(x)\right\rangle_{G}$ can be covered by two cliques).

We suppose that $a \neq a_{P^{\prime}}$ and $a a_{P^{\prime}} \notin E(G)$, and we show that this implies condition 3. If $b=x$ (and hence also $b_{P^{\prime}}=b=x$), then $\left\{y_{1}, y_{2}\right\} \subset S$, and the fact that $y_{1} y_{2} \notin E(G)$ and Claim 8 imply that $\left\langle\left\{a, a^{+}, y_{1}, y_{2}\right\}\right\rangle_{G}$ is a claw, a contradiction. Hence $b \neq x$. If $b \neq b_{P^{\prime}}$, then, by Claim $9, P^{\prime}$ is not private, a contradiction. Hence $b=b_{P^{\prime}}$ and $b \neq x$. Now, if $a b \notin E(G)$, then also $a b_{P^{\prime}} \notin E(G)$ (and hence also $y_{i} \neq b_{P^{\prime}}, i=1,2$), and by Claim 9, P^{\prime} is not private, a contradiction. Thus, we have $a b \in E(G), b=b_{P^{\prime}}$ and $b \neq x$, verifying condition 3 .

Let now Q^{+}be an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path in H^{+}containing x and all elements of S.
Claim 12. If $V\left(S_{1}\right) \backslash R \neq \emptyset$, then there is an ($a_{P^{\prime}}, b_{P^{\prime}}$)-path Q in H containing x and all elements of S.

Proof. Choose $s \in V\left(S_{1}\right)$ and set $s^{-}=s^{-\left(Q^{+}\right)}$and $s^{+}=s^{+\left(Q^{+}\right)}$. If $\left\{s^{-}, s^{+}\right\}=R$, then $r_{1} r_{2} \notin E\left(Q^{+}\right)$and we are done, hence $\left\{s^{-}, s^{+}\right\} \neq R$.

1. If $s \in V\left(S_{1} \cap S^{(1)}\right)$, then we obtain the path Q by replacing in Q^{+}the path $s^{-} s s^{+}$ by the edge $s^{-} s^{+}$and the edge $r_{1} r_{2}$ by the path $r_{1} s r_{2}$ (not excluding the possibility that some of s^{-}, s^{+}can coincide with some of r_{1}, r_{2}).
2. Let $s \in V\left(S_{1} \cap S^{(2)}\right)$. Then $s \in s_{1}$ for some $s_{1} \in V\left(S_{1} \cap S^{(2)}\right)$, and we choose the notation such that $s_{1}=\left\{s, s^{+}\right\}$(if this is not the case, we interchange a, b). If $s^{+} \in R$ (say, $s^{+}=r_{1}$), then $s^{-} \notin R$ (otherwise $r_{1} r_{2} \notin E\left(G^{+}\right)$, and we obtain Q by replacing in Q^{+}the path $s^{-} s\left(s^{+}=r_{1}\right) r_{2}$ by the path $s^{-}\left(s^{+}=r_{1}\right) s r_{2}$. If $s^{+} \notin R$, then $\left\{s^{-}, s^{++}\right\} \neq R$ (otherwise $r_{1} r_{2} \notin E\left(Q^{+}\right)$), and we replace the path $s^{-} s s^{+} s^{++}$by the edge $s^{-} s^{++}$and the edge $r_{1} r_{2}$ by the path $r_{1} s s^{+} r_{2}$ or $r_{1} s^{+} s r_{2}$ (not excluding the case that some of s^{-}, s^{++}can coincide with some of r_{1}, r_{2}).

Claim 13. If $\{a, b\} \subset N_{G}(x),\{a, b\} \not \subset K_{2}$ and $\left|\left\{a, a_{P^{\prime}}, b, b_{P^{\prime}}\right\}\right|=4$, then there is an $\left(a_{P^{\prime}}, b_{P^{\prime}}\right)$-path Q in H containing x and all elements of S.

Proof. Clearly $\{a, b\} \cap R=\emptyset$, since otherwise $r_{1} r_{2} \notin E\left(Q^{+}\right)$, and by Claim 12 we can suppose $V\left(S_{1}\right) \backslash R=\emptyset$.

1. If $\{a, b\} \subset K_{1} \backslash R$, then the application of Claim 9 to a and b (with $y_{1}=r_{1}$ and $y_{2}=r_{2}$) gives $R=\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}$, implying $r_{1} r_{2} \notin E\left(Q^{+}\right)$.
2. Hence $a \in K_{1} \backslash R$ and $b \in K_{2}$, implying $a b \notin E(G)$. Application of Claim 9 to a gives $a_{P^{\prime}} \in R$; choose the notation such that $a_{P^{\prime}}=r_{1}$. By Claim 10 (applied to b) then $b b_{P^{\prime}} \in E(G)$. Since $R \neq\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}$ (otherwise $r_{1} r_{2} \notin E\left(Q^{+}\right)$), we have $b_{P^{\prime}} \in K_{2}$.

If $b r_{1} \in E(G)$, then Claim 9 applied to b (with $y_{1}=r_{1}$ and y_{2} being a vertex in K_{2} with $\left.y_{2} r_{1} \notin E(G)\right)$, implies that $b_{P^{\prime}}$ is the only neighbor of r_{2} in K_{2} that is not adjacent to r_{1}, and we set $Q=a_{P^{\prime}} S_{2} S_{12} x b_{P^{\prime}}$ if $r_{2} \in V\left(S_{12}\right)$ and $Q=a_{P^{\prime}} S_{2} S_{12} x r_{2} b_{P^{\prime}}$ otherwise (not excluding the case that $S_{12}=\emptyset$).

Hence $b r_{1} \notin E(G)$, implying $b r_{2} \in E(G)$. By Claim 9 applied to b we then analogously get that $b_{P^{\prime}}$ is the only neighbor of r_{1} in K_{2} that is not adjacent to r_{2}, and then $Q=$ $a_{P^{\prime}} x S_{12} S_{2} b_{P^{\prime}}$ if $r_{2} \in V\left(S_{12}\right)$ and $Q=a_{P^{\prime}} x r_{2} S_{12} S_{2} b_{P^{\prime}}$ otherwise, where we do not exclude the possibility $S_{12}=\emptyset$ and we choose the first vertex $u \in V\left(S_{12}\right)$ (i.e., $u=x^{+(Q)}$ or $u=r_{2}^{+(Q)}$, respectively) such that $u \in K_{1}$ if $\left|S_{12}\right|$ is odd and $u \in K_{2}$ if $\left|S_{12}\right|$ is even.

Now observe that if $R \cap\left(\{a, b\} \backslash\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}\right) \neq \emptyset$, or if $R=\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}$, then again $r_{1} r_{2} \notin E\left(Q^{+}\right)$and we are done. Hence in the remaining part of the proof we suppose that the following conditions are satisfied:
(*) $R \cap\left(\{a, b\} \backslash\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}\right)=\emptyset$,
(**) $R \neq\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}$.
For $s \in S_{12}$ we will denote $s=\left\{s_{1}, s_{2}\right\}$, where $s_{1} \in K_{1}$ and $s_{2} \in K_{2}$.
Case 1: $\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \subset K_{2}$. We choose the notation such that $r_{1} a_{P^{\prime}} \in E(G)$ (this is possible by Corollary 4$)$.

1. First suppose that $\left|S_{12}\right| \geq 2$. Let $s, s^{\prime} \in S_{12}$, and choose the notation such that if r_{1} is some of s_{1}, s_{1}^{\prime}, then $r_{1}=s_{1}$. Then we set $Q=a_{P^{\prime}} \widehat{r_{1} s_{1}} s_{2} S_{2} s_{2}^{\prime} \widehat{s_{1}^{\prime} r_{2}}\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right) x b_{P^{\prime}}$ (where we do not exclude the possibility that $r_{2} \in V\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right)$).
2. Hence $\left|S_{12}\right| \leq 1$. By Claim 11, we have $a \notin K_{1} \backslash R$, since $a \in K_{1} \backslash R$ would imply $a \neq a_{P^{\prime}}, a a_{P^{\prime}} \notin E(G)$, and if $b=b_{P^{\prime}}$ then also $a b \notin E(G)$, contradicting Claim 10. Symmetrically, $b \notin K_{1} \backslash R$. By Claim 12 we have $\left(K_{1} \backslash R\right) \cap V\left(S_{1}\right)=\emptyset$, implying $K_{1} \backslash R \subset V\left(S_{12}\right)$. Hence $\left|S_{12}\right|=1$. Let $S_{12}=\{s\}$, and then $Q=a_{P^{\prime}} r_{1} x r_{2} s_{1} s_{2} S_{2} b_{P^{\prime}}$.

Case 2: $\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\} \subset K_{1}$. We choose the notation such that $b_{P^{\prime}} \notin R$, and if $a_{P^{\prime}} \in R$, then $a_{P^{\prime}}=r_{1}$ (see the assumption (**)).

1. If $\left|S_{12}\right| \geq 2$, let $s, s^{\prime} \in S_{12}$, and choose the notation such that $r_{2} \notin s$. Then $Q=\widehat{a_{P^{\prime}} r_{1} s_{1}} s_{2} S_{2} s_{2}^{\prime} \widehat{s_{1}^{\prime} r_{2}}\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right) x b_{P^{\prime}}$ (where the notation $\widehat{a_{P^{\prime}} r_{1} s_{1}}$ means that r_{1} can coincide with $a_{P^{\prime}}$ or s_{1}).
2. Next suppose $\left|S_{12}\right|=1$, let $S_{12}=\{s\}$ and choose the notation such that $r_{1} \notin s$. Then $Q=\widehat{a_{P^{\prime} r}} x S_{2} \widehat{s_{2}} \widehat{s_{1} r_{2}} b_{P^{\prime}}$.
3. Hence $\left|S_{12}\right|=0$. By the choice of notation and by $(*)$ and $(* *)$ we have $r_{2} \in V\left(S_{1}\right)$. If $\{a, b\} \subset K_{2}$, then we have $a \neq a_{P^{\prime}}, b \neq b_{P^{\prime}}$ and $b b_{P^{\prime}} \notin E(G)$, contradicting Claim 11 (applied to b). Hence at most one of a, b is in K_{2}.

We observe that there is a $v \in V\left(S_{2}\right)$ such that $r_{2} v \in E(G)$: for $\{a, b\} \cap K_{2}=\emptyset$ this follows from Corollary 4, and for $\{a, b\} \cap K_{2}=\{u\}$ the nonexistence of such a v implies that u is the only neighbor of r_{2} in K_{2}, but then the cutset $\left\{u, r_{1}\right\}$ of $\left\langle N_{G}(x)\right\rangle_{G}$ contradicts the choice of R. Thus, let $v \in V\left(S_{2}\right)$ be such that $r_{2} v \in E(G)$. If $v \in V\left(S_{2} \cap S^{(1)}\right)$, we set $s=\{v\}$ and then $Q=\widehat{a_{P^{\prime}}} r_{1} x\left(S_{2} \backslash\{s\}\right) v r_{2} b_{P^{\prime}} ;$ if $v \in V\left(S_{2} \cap S^{(2)}\right)$, then $s=\left\{v, v^{\prime}\right\} \in S_{2}$ for some $v^{\prime} \in V\left(S_{2}\right)$ and then $Q=\widehat{a_{P^{\prime}} r_{1}} x\left(S_{2} \backslash\{s\}\right) v^{\prime} v r_{2} b_{P^{\prime}}$.

Case 3: $a_{P^{\prime}} \in K_{1}, b_{P^{\prime}} \in K_{2}$. We choose the notation such that if $a_{P^{\prime}} \in R$, then $a_{P^{\prime}}=r_{1}$.

1. If $\left|S_{12}\right| \geq 2$, let $s, s^{\prime} \in S_{12}$, and choose the notation such that $r_{2} \notin s$. Then $Q=\widehat{a_{P^{\prime} r_{1}} s_{1}} s_{2} s_{2}^{\prime} \widehat{s_{1}^{\prime} r_{2}}\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right) x S_{2} b_{P^{\prime}}$.
2. If $\left|S_{12}\right|=1$, let $S_{12}=\{s\}$ and choose the notation such that $r_{1} \notin s$. Then $Q=\widehat{a_{P^{\prime}} r_{1}} x r_{2} s_{1} s_{2} S_{2} b_{P^{\prime}}$.
3. Hence $\left|S_{12}\right|=0$. We distinguish two subcases.
a) $a_{P^{\prime}} \in R$ (i.e. $a_{P^{\prime}}=r_{1}$). Since $K_{1} \backslash R \neq \emptyset$, by Claim 12 we have $K_{1} \backslash R \subset\{a, b\}$. By Claim 13, $K_{1} \backslash R \neq\{a, b\}$, hence $K_{1} \backslash R=\{a\}$ or $K_{1} \backslash R=\{b\}$. Since $\left|K_{2}\right| \geq 2$, we have $S_{2} \neq \emptyset$ (one of a, b is in $K_{1} \backslash R$ and $b \in K_{2}, b \neq b_{P^{\prime}}$ is not possible by Claim 13).

If $r_{2} s \notin E(G)$ for all $s \in V\left(S_{2}\right)$, then $b_{P^{\prime}}$ is the only neighbor of r_{2} in K_{2} (since by Claim 13 necessarily $a=a_{P^{\prime}}$ or $\left.b=b_{P^{\prime}}\right)$, but then $\left\{a_{P^{\prime}}, b_{P^{\prime}}\right\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$ contradicting the choice of R. Hence there is a $u \in V\left(S_{2}\right)$ such that $r_{2} u \in E(G)$. If $u \in V\left(S_{2} \cap S^{(1)}\right)$, we set $s=\{u\}$ and then $Q=a_{P^{\prime}} x r_{2} u\left(S_{2} \backslash\{s\}\right) b_{P^{\prime}} ;$ if $u \in V\left(S_{2} \cap S^{(2)}\right)$, then $s=\left\{u, u^{\prime}\right\} \in S_{2}$ for some $u^{\prime} \in V\left(S_{2}\right)$ and then $Q=a_{P^{\prime}} x r_{2} u u^{\prime}\left(S_{2} \backslash\{s\}\right) b_{P^{\prime}}$.
b) $a_{P^{\prime}} \notin R$. If $\left|K_{2}\right|=2$, then $\left\{b_{P^{\prime}}, r_{1}\right\}$ or $\left\{b_{P^{\prime}}, r_{2}\right\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, contradicting the choice of R; hence $\left|K_{2}\right| \geq 3$. If $\left\{a, b, b_{P^{\prime}}\right\} \subset K_{2}$ with $b \neq b_{P^{\prime}}$, then we have $a \neq a_{P^{\prime}}$, $b \neq b_{P^{\prime}}$ and $a a_{P^{\prime}} \notin E(G)$, contradicting Claim 11. Hence there is a $u \in V\left(S_{2}\right)$. We choose the notation such that $r_{2} u \in E(G)$, set $u^{\prime}=u$ and $s=\{u\}$ if $u \in V\left(S_{2} \cap S^{(1)}\right)$ or $s=\left\{u, u^{\prime}\right\} \in S_{2}$ if $u \in V\left(S_{2} \cap S^{(2)}\right)$, and then $Q=a_{P^{\prime}} r_{1} x r_{2} u u^{\prime}\left(S_{2} \backslash\{s\}\right) b_{P^{\prime}}$.

Case 4: $a_{P^{\prime}} \in K_{1}, b_{P^{\prime}}=x$. We choose the notation such that if $a_{P^{\prime}} \in R$, then $a_{P^{\prime}}=r_{1}$; recall then $x=b_{P^{\prime}}$ implies $x=b_{P^{\prime}}=b$.

1. If $\left|S_{12}\right| \geq 2$, let $s, s^{\prime} \in S_{12}$, and choose the notation such that $r_{2} \notin s$. Then $Q=\widehat{a_{P^{\prime}} r_{1}} s_{1} s_{2} S_{2} s_{2}^{\prime} \widehat{s_{1}^{\prime} r_{2}}\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right) b_{P^{\prime}}$.
2. If $\left|S_{12}\right|=1$, let $S_{12}=\{s\}$ and choose the notation such that $r_{1} \notin s$. If $a \in K_{2}$ and a is the only neighbor of r_{1}, then $\left\{a, r_{2}\right\}$ is a cutset of $\left\langle N_{G}(x)\right\rangle_{G}$, contradicting the choice of R. Hence there is a $u \in K_{2}$ such that $u \in V\left(S_{2} \cup S_{12}\right)$ and $r_{1} u \in E(G)$.
a) If there is such a $u \in V\left(S_{2}\right)$, then $Q=\widehat{a_{P^{\prime} r_{1}}} u u^{\prime}\left(S_{2} \backslash\left\{s^{\prime}\right\}\right) s_{2} s_{1} r_{2} b_{P^{\prime}}$, where $u^{\prime}=u$ and $s^{\prime}=\{u\}$ if $u \in V\left(S_{2} \cap S^{(1)}\right)$ or $s^{\prime}=\left\{u, u^{\prime}\right\} \in S_{2}$ if $u \in V\left(S_{2} \cap S^{(2)}\right)$.
b) If such a $u \in V\left(S_{2}\right)$ does not exist, then $u=s_{2}$ (where $s=\left\{s_{1}, s_{2}\right\}$ is the only element of S_{12}), and by Corollary 4 we have $r_{2} v \in E(G)$ for every $v \in V\left(S_{2}\right)$ (since $r_{1} v \notin E(G)$). Then $Q=\widehat{a_{P^{\prime}} r_{1}} s_{2} \widehat{s_{1} r_{2}} S_{2} b_{P^{\prime}}$ (not excluding the possibility $S_{2}=\emptyset$).
3. It remains to consider the case $\left|S_{12}\right|=\emptyset$. If $a_{P^{\prime}} \in R$, then by Claim 12 we have $K_{1} \backslash R=\{a\}$, and if $a_{P^{\prime}} \notin R$, then, by Claim 12 and Claim 11, $K_{1} \backslash R=\left\{a, a_{P^{\prime}}\right\}$ (not
excluding the possibility $a=a_{P^{\prime}}$). Then $Q=\widehat{a_{P^{\prime} r_{1}}} S_{2} r_{2} b_{P^{\prime}}$ (it is straightforward to check that this is always possible if we keep an element of $V\left(S_{2}\right)$ that is nonadjacent to r_{1} as the last one).

Case 5: $a_{P^{\prime}} \in K_{2}, b_{P^{\prime}}=x$. We choose the notation such that $a_{P^{\prime}} r_{1} \in E(G)$ (this is always possible by Corollary 4).

1. If $\left|S_{12}\right| \geq 2$, let $s, s^{\prime} \in S_{12}$, and choose the notation such that $r_{2} \notin s$. Then $Q=a_{P^{\prime}} \widehat{r_{1} s_{1}} s_{2} S_{2} s_{2}^{\prime} \widehat{s_{1}^{\prime} r_{2}}\left(S_{12} \backslash\left\{s, s^{\prime}\right\}\right) b_{P^{\prime}}$.
2. Let $\left|S_{12}\right| \leq 1$. Then, by Claim 11 and by $(*), a \in K_{2}$, and since $K_{1} \backslash R \neq \emptyset$, we have $K_{1} \backslash R \subset V\left(S_{12}\right)$. Hence $\left|S_{12}\right|=1$, set $S_{12}=\{s\}$.
a) If $S_{2}=\emptyset$, then, by Corollary 4, either $s_{2} r_{1} \in E(G)$ and then $Q=a_{P^{\prime}} r_{1} s_{2} s_{1} r_{2} b_{P^{\prime}}$, or $s_{2} r_{2} \in E(G)$ and then $Q=a_{P^{\prime}} r_{1} s_{1} s_{2} r_{2} b_{P^{\prime}}$.
b) If $S_{2} \neq \emptyset$, we choose $u \in V\left(S_{2}\right)$ and denote $u^{\prime}=u$ and $s^{\prime}=\{u\}$ if $u \in V\left(S_{2} \cap S^{(1)}\right)$ or $s^{\prime}=\left\{u, u^{\prime}\right\} \in S_{2}$ if $u \in V\left(S_{2} \cap S^{(2)}\right)$. By Corollary 4, either $r_{1} u \in E(G)$ and then $Q=a_{P^{\prime}} r_{1} u u^{\prime}\left(S_{2} \backslash\left\{s^{\prime}\right\}\right) s_{2} s_{1} r_{2} b_{P^{\prime}}$, or $r_{2} u \in E(G)$ and then $Q=a_{P^{\prime}} r_{1} s_{1} s_{2}\left(S_{2} \backslash\left\{s^{\prime}\right\}\right) u^{\prime} u r_{2} b_{P^{\prime}}$.

References

[1] Bollobás, B.; Riordan, O.; Ryjáček, Z.; Saito, A.; Schelp, R.H.: Closure and hamiltonian-connectivity of claw-free graphs. Discrete Math. 195 (1999), 67-80.
[2] Bondy, J.A.; Murty, U.S.R.: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[3] Brandt, S.: 9-connected claw-free graphs are Hamilton-connected. J. Combin. Theory Ser. B 75 (1999), no. 2, 167-173.
[4] Fouquet, J.L.: A strengthening of Ben Rebea's lemma. J. Combin. Theory Ser. B 59 (1993) 35-40.
[5] Hu, Zhiquan; Tian, Feng; Wei, Bing: Hamilton connectivity of line graphs and clawfree graphs. J. Graph Theory 50 (2005), no. 2, 130-141.
[6] Kelmans, A.: On graph closures. Discrete Mathematics 271 (2003), 141-168.
[7] Ryjáček, Z.: On a closure concept in claw-free graphs. Journal of Combinatorial Theory, Series B, 70 (1997), 217-224.
[8] Ryjáček, Z.; Vrána, P.: Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. Manuscript 2008.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 30614 Pilsen, Czech Republic, e-mail ryjacek@kma.zcu.cz, vranaxxpetr@o2active.cz.
 ${ }^{2}$ Research supported by grants No. 1 M0545 and MSM 4977751301 of the Czech Ministry of Education.

