# On stability of Hamilton-connectedness under the 2-closure in claw-free graphs

Zdeněk Ryjáček  $^{1,2}$  Petr Vrána $^1$ 

January 28, 2010

#### Abstract

We show that, in a claw-free graph, Hamilton-connectedness is preserved under the operation of local completion performed at a vertex with 2-connected neighborhood. This result proves a conjecture by Bollobás et al.

## 1 Notation and terminology

In this paper, by a graph we mean a finite simple undirected graph G = (V(G), E(G)). For a vertex  $x \in V(G)$ ,  $N_G(x)$  denotes the neighborhood of x in G, i.e.  $N_G(x) = \{y \in V(G) | xy \in E(G)\}$ , and  $N_G[x]$  denotes the closed neighborhood of x in G, i.e.  $N_G[x] = N_G(x) \cup \{x\}$ . If G, H are graphs, then  $H \subset G$  means that H is a subgraph of G. The induced subgraph of G on a set  $M \subset V(G)$  is denoted  $\langle M \rangle_G$ . By a clique we mean a (not necessarily maximal) complete subgraph of G. A vertex  $x \in V(G)$  for which  $\langle N_G(x) \rangle_G$  is a connected graph (k-connected graph, clique) is said to be locally connected (locally k-connected, simplicial), respectively.

A path with endvertices a, b will be referred to as an (a, b)-path. If P is an (a, b)-path and  $u \in V(P)$ , then  $u^{-(P)}$  and  $u^{+(P)}$  denotes the predecessor and successor of u on P(always considered in the orientation from a to b). If no confusion can arise we simply write  $u^-$  and  $u^+$ . If P is a path and  $u, v \in V(P)$ , then uPv denotes the (u, v)-subpath of P. If we want to emphasize that a subpath is traversed in the same (opposite) orientation as P, we use the notation  $u \overrightarrow{P} v$  or  $u \overleftarrow{P} v$ , respectively.

Throughout the paper,  $\kappa(G)$  denotes the (vertex) connectivity of G and c(G) the circumference of G (i.e. the length of a longest cycle in G). A graph G is hamiltonian if c(G) = |V(G)|.

For a graph G and  $a, b \in V(G)$ , p(G) denotes the length of a longest path in G,  $p_a(G)$ the length of a longest path in G with one endvertex at  $a \in V(G)$ , and  $p_{ab}(G)$  the length of a longest (a, b)-path in G. A graph G is homogeneously traceable if, for any  $a \in V(G)$ , G

<sup>&</sup>lt;sup>1</sup>Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 306 14 Pilsen, Czech Republic, e-mail ryjacek@kma.zcu.cz, vranaxxpetr@o2active.cz.

<sup>&</sup>lt;sup>2</sup>Research supported by grants No. 1M0545 and MSM 4977751301 of the Czech Ministry of Education.

has a hamiltonian path with one endvertex at a (i.e., for any  $a \in V(G)$ ,  $p_a(G) = |V(G)|$ ), and G is *Hamilton-connected* if, for any  $a, b \in V(G)$ , G has a hamiltonian (a, b)-path (i.e., for any  $a, b \in V(G)$ ,  $p_{ab}(G) = |V(G)|$ ).

We say that G is *claw-free* if G does not contain a copy of the *claw*  $K_{1,3}$  as an induced subgraph. Whenever we list vertices of an induced claw, its *center* (i.e. the only vertex of degree 3) is always the first vertex of the list.

For further concepts and notations not defined here we refer the reader to [2].

## 2 Introduction

A locally connected nonsimplicial vertex is called *eligible*. The *local completion* of G at a vertex x is the graph  $G'_x$  obtained from G by adding all edges with both vertices in  $N_G(x)$  (note that the local completion at x turns x into a simplicial vertex, and preserves the claw-free property of G).

The closure cl(G) of a claw-free graph G is the graph obtained from G by recursively performing the local completion operation at eligible vertices as long as this is possible. We say that G is closed if G = cl(G).

The following was proved in [7].

**Theorem A** [7]. For every claw-free graph G:

- (i) cl(G) is uniquely determined,
- (ii) cl(G) is the line graph of a triangle-free graph,
- $(iii) \ c(cl(G)) = c(G),$
- (iv) cl(G) is hamiltonian if and only if G is hamiltonian.

A graph class  $\mathcal{C}$  is *stable* if  $G \in \mathcal{C}$  implies  $cl(G) \in \mathcal{C}$ . If  $\mathcal{C}$  is a stable class, then a graph property  $\pi$  is *stable* in  $\mathcal{C}$  if G has  $\pi$  if and only if cl(G) has  $\pi$ , and a graph invariant  $\alpha$  is *stable* in  $\mathcal{C}$  if  $\alpha(G) = \alpha(cl(G))$ , for any  $G \in \mathcal{C}$ .

Thus, Theorem A says that circumference is a stable invariant and hamiltonicity is a stable property in the class of claw-free graphs.

Let G be the line graph of the multigraph H shown in Figure 1(a). Then G has no hamiltonian  $(u_1, u_2)$ -path (where  $u_1, u_2$  are the vertices of G = L(H) that correspond to the edges  $u_1, u_2$  in H), but cl(G) is Hamilton-connected. This example shows that Hamilton-connectedness is not stable in 3-connected claw-free graphs.

Brandt [3] proved that every 9-connected claw-free graph is Hamilton-connected, and Hu, Tian and Wei [5] improved this result by showing that every 8-connected clawfree graph is Hamilton-connected. Consequently, Hamilton-connectedness is stable in 8-connected claw-free graphs.

The following extension of the closure concept was introduced in [1]. For an integer  $k \geq 1$ , a locally k-connected nonsimplicial vertex is said to be k-eligible, and the k-closure of G, denoted  $cl_k(G)$ , is the graph obtained from G by recursively performing the local completion operation at k-eligible vertices as long as this is possible. A graph G is k-closed if  $G = cl_k(G)$ .



Figure 1

A graph class  $\mathcal{C}$  is *k*-stable if  $G \in \mathcal{C}$  implies  $cl_k(G) \in \mathcal{C}$ . For a *k*-stable class  $\mathcal{C}$ , a graph property  $\pi$  is *k*-stable in  $\mathcal{C}$  if G has  $\pi$  if and only if  $cl_k(G)$  has  $\pi$ , and a graph invariant  $\alpha$ is *k*-stable in  $\mathcal{C}$  if  $\alpha(G) = \alpha(cl(G))$ , for any  $G \in \mathcal{C}$ .

The following result is implicit in the proof of the main result of [1].

**Proposition B** [1]. Let G be a claw-free graph, let  $x \in V(G)$  and let  $G'_x$  be the local completion of G at x.

(i) If  $\langle N_G(x) \rangle_G$  is 2-connected, then, for any  $a \in V(G)$ ,  $p_a(G) = p_a(G'_x)$ ;

(ii) If  $\langle N_G(x) \rangle_G$  is 3-connected, then, for any  $a, b \in V(G)$ ,  $p_{ab}(G) = p_{ab}(G'_x)$ .

Proposition B then immediately implies (ii) and (iii) of the following result.

**Theorem C** [1]. For every claw-free graph G,

- (i)  $\operatorname{cl}_k(G)$  is uniquely determined,
- (ii)  $cl_2(G)$  is homogeneously traceable if and only if G is homogeneously traceable,
- (*iii*)  $cl_3(G)$  is Hamilton-connected if and only if G is Hamilton-connected.

Thus, homogeneous traceability is 2-stable and hamilton-connectedness is 3-stable in the class of claw-free graphs.

Let now G be the graph in Figure 1(b) (where the ovals represent cliques on at least three vertices). Then G has no hamiltonian (a, b)-path, the vertex x is 2-eligible, and there is a hamiltonian (a, b)-path in the local completion  $G'_x$  of G at x. This example shows that the property "having a hamiltonian (a, b)-path for given  $a, b \in V(G)$ " is not 2-stable. However, neither G nor its 2-closure are Hamilton-connected. This observation motivated in [1] the following conjecture.

Conjecture D [1]. Hamilton-connectedness is 2-stable in the class of claw-free graphs.

It should be noted here that in [6] the author claimed to give an infinite family of counterexamples to Conjecture D. However, the behavior of the graphs constructed in [6] is similar to that of the graph in Figure 1(b), i.e., they show that the property of "having a hamiltonian (a, b)-path for given  $a, b \in V(G)$ " is not 2-stable, but do not disprove Conjecture D.

#### **3** Results

In the graph G of Figure 1(b), the vertex x is locally 2-connected in G, the graph G does not have a hamiltonian (a, b)-path while  $G'_x$  does, and there is another pair of vertices u, v (in this example, u = a and v = y) for which there is no hamiltonian (u, v)-path in  $G'_x$ . The following theorem shows that this essentially has always to be the case.

**Theorem 1.** Let  $x \in V(G)$  a locally 2-connected vertex of a claw-free graph G and let  $G'_x$  be the local completion of G at x. Then G is Hamilton-connected if and only if  $G'_x$  is Hamilton-connected.

Theorem 1 immediately implies the following theorem, which is the main result of this paper and gives an affirmative answer to Conjecture D.

**Theorem 2.** Hamilton-connectedness is 2-stable in the class of claw-free graphs.

**Proof** of Theorem 2 follows immediately from Theorem 1.

Note that, in [8], Theorem 2 is one of the main tools that allow to develop a closure concept for Hamilton-connectedness, which is then used to show that every 7-connected claw-free graph is Hamilton-connected.

Before proving Theorem 1, we first give several auxiliary structural results.

Fouquet [4] proved that in a connected claw-free graph G with independence number at least 3 the neighborhood of every vertex either can be covered by two cliques or contains an induced  $C_5$ . On the other hand, by Proposition B, if  $x \in V(G)$  is such that  $\kappa(\langle N_G(x) \rangle_G) \geq$ 3, then  $G'_x$  is Hamilton-connected if and only if G is Hamilton-connected and there is nothing to do. The following statement describes in more detail the structure of the neighborhood of x in the difficult case, i.e. when  $\kappa(\langle N_G(x) \rangle_G) = 2$ .

**Lemma 3.** Let G be a claw-free graph, let  $x \in V(G)$  be such that  $\kappa(\langle N_G(x) \rangle_G) = 2$ , let  $R = \{r_1, r_2\}$  be a cutset of  $\langle N_G(x) \rangle_G$  and let  $N_1$ ,  $N_2$  be the components of  $\langle N_G(x) \rangle_G - R$ . Then x and R satisfy exactly one of the following:

- (a)  $V(\langle N_G(x) \rangle_G)$  can be covered by two cliques,
- (b)  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$  and, up to a symmetry,
  - (i)  $N_1$ ,  $N_2$  are cliques,
  - (*ii*) for every  $y \in V(N_1)$ , both  $yr_1 \in E(G)$  and  $yr_2 \in E(G)$ ,
  - (*iii*)  $r_1r_2 \notin E(G)$ ,
  - (iv) for every  $y \in V(N_2)$ ,  $yr_1 \in E(G)$  or  $yr_2 \in E(G)$ ,
  - (v) there are  $z_1, z_2 \in V(N_2)$  such that  $r_i z_i \in E(G)$  but  $r_i z_{3-i} \notin E(G)$ , i = 1, 2(i.e.,  $r_i$  is the only neighbor of  $z_i$  in R).

**Proof.** Suppose that x and  $N_G(x)$  satisfy the assumptions of the lemma and  $V(\langle N_G(x) \rangle_G)$  cannot be covered by two cliques; we verify the conditions (i) - (v) of (b). Denote  $N_1, N_2$  the components of  $\langle N_G(x) \rangle_G - R$ .

(i) If  $u_1, u_2 \in V(N_1)$ ,  $u_1 u_2 \notin E(G)$ , then, for some  $v \in V(N_2)$ ,  $\langle \{x, u_1, u_2, v\} \rangle_G$  is a claw. Hence  $N_1$  (and symetrically also  $N_2$ ) is a clique.

- (ii) We first observe that each of  $r_1, r_2$  is adjacent to all vertices of at least one of  $N_1, N_2$ since if e.g. there are  $u_1 \in V(N_1)$  and  $u_2 \in V(N_2)$  such that both  $r_1u_1 \notin E(G)$  and  $r_1u_2 \notin E(G)$ , then  $\langle \{x, u_1, r_1, u_2\} \rangle_G$  is a claw (and symmetrically for  $r_2$ ). Choose the notation such that  $r_1$  is adjacent to all vertices of  $N_1$ . If  $r_2$  is adjacent to all vertices of  $N_2$ , then  $\langle V(N_1) \cup \{r_1\} \rangle_G$  and  $\langle V(N_2) \cup \{r_2\} \rangle_G$  are two cliques covering  $V(\langle N_G(x) \rangle_G)$ , a contradiction. Hence  $r_2$  is adjacent to all vertices of  $N_1$ .
- (*iii*) If  $r_1r_2 \in E(G)$ , then  $\langle V(N_1) \cup \{r_1, r_2\} \rangle_G$  and  $N_2$  are two cliques covering  $V(\langle N_G(x) \rangle_G)$ , a contradiction.
- (iv) If both  $yr_1 \notin E(G)$  and  $yr_2 \notin E(G)$  for some  $y \in V(N_2)$ , then  $\langle \{x, r_1, y, r_2\} \rangle_G$  is a claw.
- (v) If there is no such  $z_1$ , then  $r_2$  is adjacent to all vertices of  $N_2$  and  $V(\langle N_G(x) \rangle_G)$  can be covered by two cliques, a contradiction. Symmetrically for  $z_2$ .

Finally,  $C = r_1 z_1 z_2 r_2 u r_1$ , where u is an arbitrary vertex of  $N_1$ , is an induced  $C_5$  in  $\langle N_G(x) \rangle_G$ .

**Corollary 4.** Let G be a claw-free graph, let  $x \in V(G)$  be such that  $\kappa(\langle N_G(x) \rangle_G) = 2$ and let  $R = \{r_1, r_2\}$  be a cutset of  $\langle N_G(x) \rangle_G$ . Then there are sets  $K_1, K_2 \subset N_G(x)$  such that:

- (1)  $K_1 \cap K_2 = \emptyset$  and  $K_1 \cup K_2 = N_G(x)$ ,
- (2)  $|K_i| \ge 2, i = 1, 2,$
- (3) there is exactly one of the following two possibilities:
  - (a)  $\langle K_i \rangle_G$  is a clique, i = 1, 2,
  - (b)  $V(\langle N_G(x) \rangle_G)$  contains an induced  $C_5$  and
    - (i)  $R \subset K_1$ ,
      - (*ii*)  $r_1r_2 \notin E(G)$ ,
      - (*iii*)  $\langle K_1 \rangle_G + r_1 r_2$  and  $\langle K_2 \rangle_G$  are cliques,
    - (iv) for every  $y \in K_2$ ,  $yr_1 \in E(G)$  or  $yr_2 \in E(G)$ ,
    - (v) there are  $z_1, z_2 \in K_2$  such that  $r_i z_i \in E(G)$  but  $r_i z_{3-i} \notin E(G)$ , i = 1, 2 (i.e.,  $r_i$  is the only neighbor of  $z_i$  in R).

**Proof.** Suppose first that  $V(\langle N_G(x) \rangle_G)$  can be covered by two cliques  $A_1$ ,  $A_2$ . If both  $|V(A_1)| \geq 2$  and  $|V(A_2)| \geq 2$ , we set  $K_i = V(A_i)$ , i = 1, 2, and we are done. Hence suppose that e.g.  $|V(A_1)| = 1$  with  $V(A_1) = \{a\}$ . By the 2-connectedness of  $\langle N_G(x) \rangle_G$ , there are  $b_1, b_2 \in V(A_2)$  such that  $ab_1, ab_2 \in E(G)$ . If  $|V(A_2)| = 2$ , then  $\langle N_G(x) \rangle_G$  is a triangle and there is no cutset R. Hence  $|V(A_2)| \geq 3$  and we set  $K_1 = \{a, b_1\}$  and  $K_2 = V(A_2) \setminus \{b_1\}$ .

If  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ , then, by Lemma 3, we set  $K_1 = V(N_1) \cup \{r_1, r_2\}$ and  $K_2 = V(N_2)$ . The rest is clear.

Note that, for a given x, neither the cutset R nor the decomposition of  $N_G(x)$  into  $K_1$ and  $K_2$  are, in general, uniquely determined; however,  $K_1$  and  $K_2$  are uniquely determined for a given R if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ .

For the proof of Theorem 1 we will further need some special notation and one more structural result characterizing the situations when  $p_{ab}(G) < p_{ab}(G'_x)$ .

For a given (a, b)-path P in a graph G, a vertex  $x \in V(G)$  and i = 0, 1, 2 we denote  $V_i^x(P) = \{y \in V(P) \cap N_G(x); |\{y^-, y^+\} \cap N_G[x]| = i\}$ . If  $V_1^x(P) \neq \emptyset$ , then  $a_P^x(b_P^x)$ denotes the first (last) vertex of P which is in  $V_1^x(P)$ , respectively (if the vertex x is clear from the context, we will simply denote  $V_1(P)$ ,  $a_P$  and  $b_P$ ). Thus, equivalently,  $a_P(b_P)$  is the first (last) vertex of an (a, b)-path P for which the edge  $a_P a_P^+(b_P^- b_P)$  is in  $\langle N_G(x) \rangle_G$ . Analogously we define  $V_i^x(C) = \{y \in V(C) \cap N_G(x); |\{y^-, y^+\} \cap N_G[x]| = i\}$  for a cycle  $C \subset G$ .

**Proposition 5.** Let G be a claw-free graph, let  $x \in V(G)$  be such that  $\kappa(\langle N_G(x) \rangle_G) = 2$ , let G' be the local completion of G at x and let  $a, b \in V(G)$ ,  $a \neq b$ . Then  $p_{ab}(G) < p_{ab}(G')$  if and only if  $\{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$  and, for every longest (a, b)-path P' in G',

- (1)  $x \in V(P')$ ,
- (2)  $|\{a, a_{P'}, b, b_{P'}\}| = 4,$
- $(3) a_{P'}b_{P'} \in E(G),$
- (4) if C is the component of  $\langle N_G(x) \rangle_G R$  not containing  $a_{P'}$ , then  $V(C) \setminus V_0^x(P') \neq \emptyset$ ,
- (5) there are no two vertices  $u, v \in V_1^x(P')$  such that u, v are in different components of  $\langle N_G(x) \rangle_G - R$  and all interior vertices of the subpath uP'v of the path P' are in  $(V(G) \setminus N_G[x]) \cup V_0^x(P')$ .
- Moreover, if  $p_{ab}(G) < p_{ab}(G')$ , then there are vertices  $\bar{a}, \bar{b} \in N_G(x)$  such that
  - (6)  $\bar{a} = a_{P'}$  and  $b = b_{P'}$  for any longest (a, b)-path P' in G',
  - (7)  $a\bar{a} \in E(G)$  and  $b\bar{b} \in E(G)$ .

**Proof** of Proposition 5 is lengthy and technical and it is thus postponed to Section 4.

Note that statement (6) of Proposition 5 equivalently says that if  $p_{ab}(G) < p_{ab}(G')$ , then, for given vertices a, b are the vertices  $a_{P'}, b_{P'}$  uniquely determined (i.e., do not depend on the choice of the (a, b)-path P'). In the rest of this section we will keep the notation  $\bar{a}, \bar{b}$  for these vertices given by (6) of Proposition 5.

**Proposition 6.** Let G be a claw-free graph, let  $x \in V(G)$  be such that  $\kappa(\langle N_G(x) \rangle_G) = 2$ , let G' be the local completion of G at x and let  $a, b \in V(G), a \neq b$ . If  $p_{ab}(G) < p_{ab}(G')$ , then, for every hamiltonian cycle C in G',  $E(C) \cap \{a\bar{a}, b\bar{b}\} = \emptyset$ .

**Proof.** Let  $a, b \in V(G)$  be such that  $p_{ab}(G) < p_{ab}(G')$ . By Proposition 5,  $a, b \in N_G(x)$ . Let C be a hamiltonian cycle in G' and suppose, to the contrary, that  $a\bar{a} \in E(C)$  (the proof for  $b\bar{b} \in E(C)$  is symmetric). Let  $Q_1, \ldots, Q_k$  denote nontrivial components of the graph obtained from C by removing all edges with both vertices in  $N_G[x], q_i^1, q_i^2$  the endvertices of  $Q_i, i = 1, \ldots, k$ , and set  $A = \{q_i^j; i = 1, \ldots, k, j = 1, 2\}$ . Then  $A \subset N_G(x)$  and every  $Q_i$  is a path with endvertices in A and with interior vertices in  $V_0^x(C) \cup (V(G) \setminus N_G[x])$ .

1. Suppose first that  $a \notin A$ . If  $a \notin \bigcup_{i=1}^{k} V(Q_i)$ , then, using edges in  $\langle N_G[x] \rangle_{G'}$ , we can connect the paths  $Q_1, \ldots, Q_k$  to obtain a hamiltonian (a, b)-path P' in G' with  $a = a_{P'}$ , contradicting Proposition 5 (2) (recall that  $\langle N_G[x] \rangle_{G'}$  is a clique). Hence  $a \in V_0^x(C)$ , but then, considering the claw at  $\langle \{a, a^{-(C)}, a^{+(C)}, x\} \rangle_G$  we have  $a^{-(C)}a^{+(C)} \in E(G)$ , and replacing in C the path  $a^{-(C)}aa^{+(C)}$  by the edge  $a^{-(C)}a^{+(C)}$  we are in the previous situation.

2. Hence  $a \in A$ . Symmetrically,  $b \in A$  (note that in the proof of  $a \in A$  we have not used the assumption that  $a\bar{a} \in E(C)$ ). Choose the notation such that  $a = q_1^1$ . By the assumption,  $a\bar{a} \in E(C)$ , implying  $q_1^2 \neq \bar{a}$ .

If  $q_1^2 \neq b$ , then the paths  $Q_1, \ldots, Q_k$  can be interconnected in  $\langle N_G[x] \rangle_{G'}$  to obtain a hamiltonian (a, b)-path P' in G' with  $a_{P'} = q_1^2 \neq \bar{a}$ , contradicting (6) of Proposition 5. Hence  $q_1^2 = b$ .

By Proposition 5,  $R = \{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , hence there are  $y_1, y_2 \in N_G(x) \cap N_G(a)$  such that  $y_1 \neq y_2, y_1y_2 \notin E(G)$  and  $y_1 \neq b \neq y_2$ . Set  $a^+ = a^{+(Q_1)}$  (note that  $a^+ \notin N_G(x)$ ). From the claw at  $\langle \{a, a^+, y_1, y_2\} \rangle_G$  we then have  $a^+y_1 \in E(G)$  or  $a^+y_2 \in E(G)$ ; choose the notation such that  $a^+y_1 \in E(G)$ . We have 3 possibilities.

a)  $y_1 \notin \bigcup_{i=1}^k V(Q_i)$ . Then we set  $Q'_1 = y_1 a^+ Q_1 b$  and for the system of paths  $Q'_1, Q_2, \ldots, Q_k$  we are in case 1.

b)  $y_1 \in V_0^x(C)$ . Then  $y_1 \in V_0^x(Q_j)$  for some  $j, 2 \leq j \leq k$ ; choose the notation such that j = 2. From the claw at  $\langle \{y_1, y_1^{-(Q_2)}, y_1^{+(Q_2)}, x\} \rangle_G$  we have  $y_1^{-(Q_2)} y_1^{+(Q_2)} \in E(G)$ . We set  $Q'_2 = q_2^1 Q_2 y_1^{-(Q_2)} y_1^{+(Q_2)} Q_2 q_2^2$  and for the system of paths  $Q_1, Q'_2, Q_3, \ldots, Q_k$  we are in subcase 2a).

c)  $y_1 \in A$ . We choose the notation such that  $y_1 = q_2^2$ , set  $Q'_2 = q_2^1 Q_2 q_2^2 a^+ Q_1 b$ , and for the system of paths  $Q'_2, Q_3, \ldots, Q_k$  we are in case 1.

Now we can prove stability of Hamilton-connectedness under  $cl_2$ .

**Proof of Theorem 1.** Suppose, to the contrary, that G' is Hamilton-connected but G is not. Then  $p_{ab}(G) < p_{ab}(G')$  for some  $a, b \in V(G)$ ,  $a \neq b$ . By Proposition 5, there are uniquely determined vertices  $\bar{a}$ ,  $\bar{b}$  such that  $|\{a, \bar{a}, b, \bar{b}\}| = 4$  and  $a\bar{a}, b\bar{b} \in E(G)$ . If P is a hamiltonian  $(a, \bar{a})$ -path in G', then  $C = P + a\bar{a}$  is a hamiltonian cycle in G' with  $a\bar{a} \in E(C)$ , contradicting Proposition 6.

## 4 Proof of Proposition 5

We first prove one simple lemma that will be useful throughout the proof.

**Lemma 7.** Let G be a claw-free graph,  $x \in V(G)$ , let G' be the local completion of G at x and let P' be a longest (a, b)-path in G' (for some  $a, b \in V(G)$ ,  $a \neq b$ ) such that  $x \in V(P')$ . Then there is a longest (a, b)-path P'' in G' such that

- (i) V(P'') = V(P'),
- (*ii*)  $V_0^x(P'') = \emptyset$ ,
- (iii) for every subpath Q' = uP'v of P' with  $u, v \in N_G(x) \setminus V_0^x(P')$  and interior vertices in  $(V(G') \setminus N_G[x]) \cup V_0^x(P')$  the corresponding subpath Q'' = uP''v of P'' satisfies  $V(Q'') = V(Q') \setminus V_0^x(P'),$
- (iv) the vertices in  $V_1^x(P')$  and  $V_1^x(P'')$  occur on P' and P'' in the same order.

**Proof.** Let  $y \in V_0^x(P')$ . Then  $xy^-, xy^+ \notin E(G)$ , and from the claw at  $\langle \{y, y^-, y^+, x\} \rangle_G$  we have  $y^-y^+ \in E(G)$ . The lemma then immediately follows from the fact that  $\langle N_G(x) \rangle_{G'}$  is a clique.

Note that (*iii*) yields a system of vertex-disjoint paths  $Q_i$ , i = 1, ..., k, with endvertices in  $N_G(x)$ ,  $V_0^x(Q_i) = \emptyset$ , and with  $V(P') = (\bigcup_{i=1}^k V(Q_i)) \cup N_G[x]$ .

**I.** We first show that if  $R = \{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$  and every longest (a, b)-path in G' satisfies the conditions (1) - (5) of Proposition 5, then  $p_{ab}(G) < p_{ab}(G')$ . Let, to the contrary,  $p_{ab}(G) = p_{ab}(G')$ , and let P be a longest (a, b)-path in G. Then P is a longest (a, b)-path also in G', hence P satisfies (1) - (5).

We define a graph  $G^+$  by  $G^+ = G$  if  $\langle N_G(x) \rangle_G$  can be covered by two cliques, and  $G^+ = G + ab$  if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ . By Corollary 4, there are  $K_1^+, K_2^+ \subset V(G)$  such that

•  $|K_i^+| \ge 2$  and  $\langle K_i^+ \rangle_{G^+}$  is a clique, i = 1, 2,

•  $K_1^+ \cap K_2^+ = \emptyset$  and  $K_1^+ \cup K_2^+ = N_G(x)$ ,

• if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ , then both a and b are in the same  $K_i^+$ . Choose the notation such that  $a \in K_1^+$ .

We have several structural observations.

- (i)  $N_G(x) \subset V(P)$ . This follows from (1) and from the fact that  $\langle N_G(x) \rangle_{G'}$  is a clique.
- (ii)  $a^+, b^- \notin N_G(x)$ . If e.g.  $a^+ \in N_G(x)$ , then  $a = a_P$ , contradicting (2).
- (iii)  $a^+$  has a neighbor in  $K_2^+$ , and  $b^-$  has a neighbor in that of  $K_1^+, K_2^+$  which does not contain b. Since  $R = \{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , a has a neighbor  $\tilde{a}$  in  $K_2^+$ . If  $a^+$  has a neighbor  $\tilde{a}_1$  in  $K_1^+ \setminus \{a, b\}$ , then, using (5) and Lemma 7 we get a contradiction with (2). Hence  $a^+\tilde{a} \in E(G)$  since otherwise  $\langle \{a, a^+, \tilde{a}, \tilde{a}_1\} \rangle_G$  is a claw. The proof for  $b^-$  is symmetric.
- (*iv*)  $a_P, b_P \in K_2^+$ . If  $a_P \in K_1^+$ , then, using (*iii*) and Lemma 7, we have a contradiction with (2). Hence  $a_P \in K_2^+$ , and by (3) (and since  $\{a, b\}$  is a cutset) also  $b_P \in K_2^+$ .
- (v)  $b \in K_1^+$ . If  $b \in K_2^+$ , then  $b, b_P \in K_2^+$  and we have a contradiction with (2) by a similar argument.

Let now  $s \in K_1^+ \setminus (\{a, b\} \cup V_0^x(P))$  (such a vertex s exists by (4)). By (i),  $s \in V(P)$ , hence  $s \in V_1^x(P) \cup V_2^x(P)$ . By (iv),  $a_P, b_P \in K_2^+$ , and, by the definition of  $a_P$ , all interior vertices of the paths  $aPa_P$  and  $b_PPb$  are in  $V_0^x(P)$  or outside  $N_G[x]$ . Hence there are vertices  $c_1, c_2 \in V_1^x(P) \cap (K_1^+ \setminus \{a, b\})$  and  $d_1, d_2 \in V_1^x(P) \cap K_2^+$  such that the vertices  $a, a_P, d_1, c_1, s, c_2, d_2, b_P, b$  occur on P in this order (not excluding the possibility that some of them can coincide). One of the subpaths  $d_1Pc_1, c_2Pd_2$  (say,  $d_1Pc_1$ ) can be of length 2 with x as the only interior vertex, but the existence of  $c_2Pd_2$  contradicts (5).

II. Now we show that, conversely,  $p_{ab}(G) < p_{ab}(G')$  implies that  $\{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , every longest (a, b)-path P' in G' satisfies the conditions (1) - (5) of Proposition 5 and, moreover, (6) and (7) also holds. Thus, suppose that  $p_{ab}(G) < p_{ab}(G')$ , let P' be a longest (a, b)-path in G' and let  $R = \{r_1, r_2\}$  be a cutset of  $\langle N_G(x) \rangle_G$ .

Observe that if  $V_1^x(P') = \emptyset$ , then  $P' \subset G$ , contradicting the assumption  $p_{ab}(G) < p_{ab}(G')$ . Hence  $V_1^x(P') \neq \emptyset$  and then, by the maximality of P' and since  $\langle N_G(x) \rangle_{G'}$  is a clique, we have  $N_G[x] \subset V(P')$ . Now we introduce some special terminology and notations and prove several auxiliary statements.

Similarly as in the first part of the proof, we set  $G^+ = G$  if  $\langle N_G(x) \rangle_G$  can be covered by two cliques, and  $G^+ = G + r_1 r_2$  if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ . Then, by Corollary 4, there are  $K_1^+, K_2^+ \subset V(G)$  such that  $|K_i^+| \geq 2$  and  $\langle K_i^+ \rangle_{G^+}$  is a clique,  $i = 1, 2, K_1^+ \cap K_2^+ = \emptyset$  and  $K_1^+ \cup K_2^+ = N_G(x)$ , and if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ , then both  $r_1$  and  $r_2$  are in the same  $K_i^+$ . Unlike in the first part, we choose the notation such that  $a_{P'} \in K_2^+$ .

An (a, b)-path P' in G' is said to be a *private path* if P' satisfies the following conditions:

- (i) P' is a longest (a, b)-path in G',
- (*ii*)  $x \in V(P')$ ,
- (*iii*)  $V_0^x(P') = \emptyset$ ,

(iv) subject to (i), (ii) and (iii),  $|\{a, a_{P'}, b, b_{P'}\}|$  is minimum.

Note that, by (i) and (ii), a private path contains all vertices of  $N_G[x]$ . By Lemma 7, for any longest (a, b)-path in G' containing x there is a private (a, b)-path in G' with the same vertex set. Moreover, it is clear that if (1), (2), (3), (5) and (6) of Proposition 5 are satisfied for any private (a, b)-path in G', then these conditions also hold for any longest (a, b)-path in G'. The conditions (2) of Proposition 5 and (iv) of the definition of private path then imply that every longest (a, b)-path P' in G' with  $V_0^x(P') = \emptyset$  is private in this case. These observations together with the fact that (7) does not depend on P' imply that it is sufficient to verify (1) - (7) for all private (a, b)-paths in G'.

Thus, suppose that P' is a private (a, b)-path in G'. We denote  $Q' = a_{P'}P'b_{P'}$  the  $(a_{P'}, b_{P'})$ -subpath of  $P', Q'_1, \ldots, Q'_k$  the nontrivial components of the graph obtained from Q' by removing edges with both ends in  $N_G[x]$  and  $q_i^1, q_i^2$  the endvertices of  $Q'_i, i = 1, \ldots, k$  (where the numbering of  $Q'_i$  and  $q_i^j$  is chosen in the orientation from  $a_{P'}$  to  $b_{P'}$ ).

Let further S denote the system of subsets of  $N_G(x)$  defined by  $S = S^{(1)} \cup S^{(2)}$ , where  $S^{(2)} = \{\{q_i^1, q_i^2\} | i = 1, ..., k\}$  and  $S^{(1)} = \{\{u\} | u \in N_G(x) \setminus (\{a, a_{P'}, b, b_{P'}\} \cup (\cup_{s \in S^{(2)}} s)\}$ . For  $S' \subset S$  we set  $V(S') = \bigcup_{s \in S'} s$ . This means that  $N_G(x)$  consists of V(S),  $a_{P'}$ ,  $b_{P'}$ , and possibly a or b (or both), and any longest (a, b)-path in G' (and, to obtain a contradiction, also in G), has to contain all elements of  $S^{(1)}$  and all paths represented by pairs of their endvertices in  $S^{(2)}$ . We further denote  $S_i = \{s \in S | V(s) \subset K_i^+\}, i = 1, 2$ , and  $S_{12} = \{s \in S | V(s) \cap K_i^+ \neq \emptyset, i = 1, 2\}$  (thus,  $S = S_1 \cup S_2 \cup S_{12}$  and  $S_{12} \subset S^{(2)}$ ).

The fact that  $\langle N_G(x) \rangle_{G'}$  is a clique will allow us to use this notation to simplify description of paths in G': whenever, in the description of a path, a subset S' of S occurs, this means that all elements of  $S^{(1)} \cap S'$  and all paths represented by elements of  $S^{(2)} \cap S'$ (if any) have to be included using appropriate edges of the clique  $\langle N_G(x) \rangle_{G'}$ . For two consecutive elements u, v of such a description of a path, we will use the notation  $\widehat{uv}$  to indicate that we do not exclude the possibility u = v.

**Claim 8.** Let P' be a private (a, b)-path in G'. If  $a \in N_G(x)$  and  $a \neq a_{P'}$ , then  $a^+$  has no neighbor in V(S), and, symmetrically, if  $b \in N_G(x)$  and  $b \neq b_{P'}$ , then  $b^-$  has no neighbor in V(S).

**Proof.** Suppose  $a^+$  is adjacent to  $u \in V(s)$ ,  $s \in S$ . Then for the path  $\tilde{P} = asa^+P'a_{P'}(S \setminus s)xb_{P'}b$  (recall that  $\langle N_G[x] \rangle_{G'}$  is a clique) we have  $a = a_{\tilde{P}}$ , contradicting the assumption that P' is private. The proof for  $b^-$  is symmetric.

**Claim 9.** Let P' be a longest (a, b)-path in G',  $x \in V(P')$ . If  $a \in N_G(x)$ ,  $a \neq a_{P'}$ , and there are  $y_1, y_2 \in N_G(x) \cap N_G(a)$  such that

(i)  $y_1, y_2 \notin E(G),$ 

(ii)  $y_i \neq a_{P'}$ , and if  $b = b_{P'}$ , then also  $y_i \neq b_{P'}$ , i = 1, 2,

then P' is not a private (a, b)-path in G'.

**Proof.** Suppose that P' satisfies the assumptions of Claim 9. Considering the claw at  $\langle \{a, a^+, y_1, y_2\} \rangle_G$ , we obtain (possibly after renumbering  $y_1$  and  $y_2$ ) that  $a^+y_1 \in E(G)$ . By Claim 8,  $y_1 \notin V(S)$  (otherwise we are done), hence  $y_1 \in \{b, b_{P'}\}$ . Moreover,  $b \neq b_{P'}$ , for otherwise by (*ii*) we have  $y_1 \notin \{a, a_{P'}, b, b_{P'}\}$ , implying  $y_1 \in V(S)$ , a contradiction.

Case 1:  $y_1 = b_{P'}$ . Then the path  $P'' = a(S \cup \{x\})a_{P'}\overleftarrow{P'}a^+y_1\overrightarrow{P'}b$  is a longest (a, b)-path in  $\overline{G'}$  with  $a = a_{P''}$ , hence P' is not private.

Case 2:  $y_1 = b$ . Then  $b \neq b_{P'}$  implies  $b^- \notin N_G[x]$  and  $a \neq a_{P'}$  implies  $a^+ \notin N_G[x]$ . From the claw at  $\langle \{y_1, x, b^-, a^+\} \rangle_G$  we have  $b^-a^+ \in E(G)$ . The path  $P'' = a(S \cup \{x\})a_{P'}\overrightarrow{P'}a^+b^-\overrightarrow{P'}b_{P'}b$  then satisfies  $a = a_{P''}$ , hence P' is not private.

**Claim 10.** Let  $\{a, b\} = R = \{r_1, r_2\}$  and let  $P'_1, P'_2$  be private (a, b)-paths in G' such that  $a_{P'_1} \neq a \neq a_{P'_2}, b_{P'_1} \neq b \neq b_{P'_2}$  and  $\{a_{P'_1}, a_{P'_2}\} \subset K_j^+$  for some  $j \in \{1, 2\}$ . Then  $a_{P'_1} = a_{P'_2}$ .

**Proof.** Since  $\{a, b\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , there are  $w \in K_j^+$  and  $z \in K_{3-j}^+$  such that  $aw, az \in E(G)$ . If  $w \neq a_{P_1'}$ , then, applying Claim 9 to  $P_1'$ , we get that  $P_1'$  is not private, a contradiction. Hence  $w = a_{P_1'}$ . Analogously  $w = a_{P_2'}$ , implying  $a_{P_1'} = a_{P_2'}$ .

In general,  $\langle N_G(x) \rangle_G$  can have more 2-element cutsets. If this is the case, we suppose that the cutset  $R = \{r_1, r_2\}$  is chosen such that, for the given private (a, b)-path P',

(i)  $|R \cap (\{a, b\} \setminus \{a_{P'}, b_{P'}\})|$  is maximum,

(*ii*) if  $|R \cap (\{a, b\} \setminus \{a_{P'}, b_{P'}\})| = 0$ , then  $|R \cap \{a_{P'}, b_{P'}\}|$  is maximum.

Let now H be the graph with  $V(H) = N_G[x]$  and  $E(H) = E(\langle N_G(x) \rangle_G) \cup S^{(2)}$ , and let H' be the local completion of H at x (i.e., H is a clique with some vertices belonging to V(S) and some edges belonging to  $S^{(2)}$ ). It is now clear that every longest (a, b)-path P' in G' defines an  $(a_{P'}, b_{P'})$ -path Q' in H' such that Q' contains x and all elements of S (i.e., all edges in  $S^{(2)}$  and all vertices in  $V(S^{(1)})$ . To reach a contradiction, i.e. to find an (a, b)-path P in G with V(P) = V(P'), it is sufficient to find an  $(a_{P'}, b_{P'})$ -path Q in H containing x and all elements of S.

Similarly as with  $G^+$ , we set  $H^+ = H$  if  $\langle N_G(x) \rangle_G$  can be covered by two cliques, and  $H^+ = H + r_1 r_2$  if  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ . We proceed in two steps: in Step A, we for a given  $(a_{P'}, b_{P'})$ -path Q' in H' either find an  $(a_{P'}, b_{P'})$ -path  $Q^+$  in  $H^+$  containing x and all elements of S, or verify the conditions (1) - (7) of Proposition 5; in Step B, we complete the proof by showing that in each case when there is an  $(a_{P'}, b_{P'})$ -path  $Q^+$  in  $H^+$  containing x and all elements of S, there also is such a path Q in H.

#### Step A: H' to $H^+$ .

Let Q' be an  $(a_{P'}, b_{P'})$ -path in H' containing x and all elements of S.

Case 1:  $b_{P'} \in K_1^+$  (recall that the notation is chosen such that  $a_{P'} \in K_2^+$ .) Then  $Q^+ = \overline{a_{P'}S_2S_{12}xS_1b_{P'}}$  is an  $(a_{P'}, b_{P'})$ -path in  $H^+$  containing x and all elements of S.

Case 2:  $b_{P'} = x$  (and hence also necessarily b = x).

a) If  $S_{12} \neq \emptyset$ , then for an  $s \in S_{12}$  the path  $Q^+ = a_{P'}S_2sS_1(S_{12} \setminus \{s\})xb_{P'}$  has the required properties.

b) If  $S_{12} = \emptyset$  and there is an edge  $uv \in E(G)$  with  $u \in V(S_1)$  and  $v \in V(S_2)$ , then we set  $Q^+ = a_{P'}S_2vuS_1xb_{P'}$ .

c) Hence  $S_{12} = \emptyset$  and there is no edge  $uv \in E(G)$  with  $u \in V(S_1)$  and  $v \in V(S_2)$ . Recall that  $|K_1^+| \ge 2$ ,  $|K_2^+| \ge 2$ , and there are only 2 vertices, namely a and  $a_{P'}$ , that are not in  $V(S_1) \cup V(S_2)$ . If  $\{a, a_{P'}\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , then both  $K_1^+$  and  $K_2^+$  contains a vertex in  $V(S_1) \cup V(S_2)$  and, by Claim 9, P' is not private, a contradiction. Hence  $\{a, a_{P'}\}$  is not a cutset, but then there is an edge uv with  $u \in V(S_1)$  and  $v \in V(S_2)$  and we are in subcase 2b.

#### Case 3: $\{a_{P'}, b_{P'}\} \subset K_2^+$ .

a) If  $S_{12} \neq \emptyset$ , then for some  $s \in S_{12}$  we set  $Q^+ = a_{P'}S_2sS_1(S_{12} \setminus \{s\})xb_{P'}$ .

b) If  $S_{12} = \emptyset$  and there is an  $uv \in E(G)$  with  $u \in V(S_1)$  and  $v \in \{a_{P'}, b_{P'}\} \cup V(S_2)$ , we set  $Q^+ = a_{P'}S_2xS_1ub_{P'}$  if  $v = b_{P'}$  and  $Q^+ = \widehat{a_{P'}vu}S_1xS_2b_{P'}$  otherwise.

c) Hence  $S_{12} = \emptyset$  and there is no edge  $uv \in E(G)$  with  $u \in V(S_1)$  and  $v \in \{a_{P'}, b_{P'}\} \cup V(S_2)$ . If  $S_1 = \emptyset$ , then  $K_1^+ = \{a, b\}$ , implying  $Q^+ = Q'$ , hence  $S_1 \neq \emptyset$ . By the 2-connectedness of  $\langle N_G(x) \rangle_G$  and since  $|K_i^+| \geq 2$ , i = 1, 2, there are two vertex-disjoint edges  $e_1, e_2$  between  $K_1^+$  and  $K_2^+$ .

If  $a = a_{P'}$ , then a,  $a_{P'}$  and  $b_{P'}$  are in  $K_2^+$ , hence one of  $e_1, e_2$  has a vertex in  $V(S_1)$ and we are in subcase 3b. Hence  $a \neq a_{P'}$  and, symmetrically,  $b \neq b_{P'}$ . The nonexistence of an edge  $uv \in E(G)$  with  $u \in V(S_1)$  and  $v \in \{a_{P'}, b_{P'}\} \cup V(S_2)$  then implies that  $\{a, b\}$ is a cutset of  $\langle N_G(x) \rangle_G$ . By the choice of R, we have  $R = \{a, b\}$ .

Let now  $y_1 \in K_1^+$  be such that  $y_1 \neq b$  and  $y_1a \in E(G)$  (such an  $y_1$  exists since  $\{a, b\} = R$ ). If  $a \in K_2^+$ , then for  $y_2 = b_{P'}$  we have a contradiction with Claim 9, hence  $a \in K_1^+$ . Analogously we observe that  $a_{P'}$  is the only neighbor of a in  $K_2^+$ . Symmetrically,  $b \in K_1^+$  and  $b_{P'}$  is the only neighbor of b in  $K_2^+$ .

Summarizing, we have the following facts:

- $x \in V(P')$ , verifying condition (1) of Proposition 5,
- $a \neq a_{P'}$  and  $b \neq b_{P'}$ , implying  $|\{a, a_{P'}, b, b_{P'}\}| = 4$ , thus verifying (2),
- $a_{P'}, b_{P'} \in K_2^+$ , hence  $a_{P'}b_{P'} \in E(G)$ , implying (3),
- $S_{12} = \emptyset$ , implying (5),
- $S_1 \neq \emptyset$ , hence also  $V(C) \setminus V_0^x(P') = (K_1^+ \setminus \{a, b\}) \setminus V_0^x(P') \neq \emptyset$  (since the case when  $(K_1^+ \setminus \{a, b\}) \subset V_0^x(P')$  can be transformed in an obvious way to the case  $S_1 = \emptyset$ ); this also establishes (4).

Moreover, by Claim 10,  $a_{P'}$  and  $b_{P'}$  are uniquely determined, verifying (6), and the fact that  $aa_{P'} \in E(G)$  and  $bb_{P'} \in E(G)$  implies (7).

#### Step B: $H^+$ to H.

In this part we complete the proof by showing that in each case when there is an  $(a_{P'}, b_{P'})$ -path  $Q^+$  in  $H^+$  containing x and all elements of S, there also is such a path Q in H.

If  $\langle N_G(x) \rangle_G$  can be covered by two cliques, then  $H^+ = H$  and there is nothing to do, hence in the rest of the proof suppose that  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$ . Let  $K_1, K_2 \subset N_G(x)$  be the sets given in Corollary 4 (note that, specifically,  $R \subset K_1$ , and  $\{K_1, K_2\} = \{K_1^+, K_2^+\}$ ), and (if necessary) relabel the sets  $S_1, S_2$  in accordance with the labeling of  $K_1, K_2$ ,

**Claim 11.** Let P' be a private (a, b)-path in G'. If  $\langle N_G(x) \rangle_G$  contains an induced  $C_5$  and  $a \in N_G(x)$ , then at least one of the following holds:

1.  $a = a_{P'},$ 2.  $aa_{P'} \in E(G),$ 3.  $b = b_{P'}, b \neq x, ab \in E(G).$ 

**Proof.** Choose  $y_1, y_2 \in N_G(x) \cap N_G(a)$  such that  $y_1y_2 \notin E(G)$ . This is always possible: for  $a \in K_1 \setminus R$  we choose  $\{y_1, y_2\} = R$ , for  $a \in R$  we choose  $y_1 \in K_1 \setminus R$ ,  $y_2 \in K_2$ , and for  $a \in K_2$  we choose  $y_1 \in R$  and  $y_2 \in K_2$  such that  $y_1y_2 \notin E(G)$  (such vertices exist since if  $r_1$  or  $r_2$  is adjacent to all vertices in  $K_2$  then  $\langle N_G(x) \rangle_G$  can be covered by two cliques).

We suppose that  $a \neq a_{P'}$  and  $aa_{P'} \notin E(G)$ , and we show that this implies condition 3. If b = x (and hence also  $b_{P'} = b = x$ ), then  $\{y_1, y_2\} \subset S$ , and the fact that  $y_1y_2 \notin E(G)$  and Claim 8 imply that  $\langle \{a, a^+, y_1, y_2\} \rangle_G$  is a claw, a contradiction. Hence  $b \neq x$ . If  $b \neq b_{P'}$ , then, by Claim 9, P' is not private, a contradiction. Hence  $b = b_{P'}$  and  $b \neq x$ . Now, if  $ab \notin E(G)$ , then also  $ab_{P'} \notin E(G)$  (and hence also  $y_i \neq b_{P'}$ , i = 1, 2), and by Claim 9, P' is not private, a contradiction. Thus, we have  $ab \in E(G)$ ,  $b = b_{P'}$  and  $b \neq x$ , verifying condition 3.

Let now  $Q^+$  be an  $(a_{P'}, b_{P'})$ -path in  $H^+$  containing x and all elements of S.

**Claim 12.** If  $V(S_1) \setminus R \neq \emptyset$ , then there is an  $(a_{P'}, b_{P'})$ -path Q in H containing x and all elements of S.

**Proof.** Choose  $s \in V(S_1)$  and set  $s^- = s^{-(Q^+)}$  and  $s^+ = s^{+(Q^+)}$ . If  $\{s^-, s^+\} = R$ , then  $r_1r_2 \notin E(Q^+)$  and we are done, hence  $\{s^-, s^+\} \neq R$ .

1. If  $s \in V(S_1 \cap S^{(1)})$ , then we obtain the path Q by replacing in  $Q^+$  the path  $s^-ss^+$  by the edge  $s^-s^+$  and the edge  $r_1r_2$  by the path  $r_1sr_2$  (not excluding the possibility that some of  $s^-$ ,  $s^+$  can coincide with some of  $r_1, r_2$ ).

2. Let  $s \in V(S_1 \cap S^{(2)})$ . Then  $s \in s_1$  for some  $s_1 \in V(S_1 \cap S^{(2)})$ , and we choose the notation such that  $s_1 = \{s, s^+\}$  (if this is not the case, we interchange a, b). If  $s^+ \in R$  (say,  $s^+ = r_1$ ), then  $s^- \notin R$  (otherwise  $r_1r_2 \notin E(G^+)$ , and we obtain Q by replacing in  $Q^+$  the path  $s^-s(s^+ = r_1)r_2$  by the path  $s^-(s^+ = r_1)sr_2$ . If  $s^+ \notin R$ , then  $\{s^-, s^{++}\} \neq R$  (otherwise  $r_1r_2 \notin E(Q^+)$ ), and we replace the path  $s^-ss^+s^{++}$  by the edge  $s^-s^{++}$  and the edge  $r_1r_2$  by the path  $r_1ss^+r_2$  or  $r_1s^+sr_2$  (not excluding the case that some of  $s^-, s^{++}$  can coincide with some of  $r_1, r_2$ ).

**Claim 13.** If  $\{a, b\} \subset N_G(x)$ ,  $\{a, b\} \not\subset K_2$  and  $|\{a, a_{P'}, b, b_{P'}\}| = 4$ , then there is an  $(a_{P'}, b_{P'})$ -path Q in H containing x and all elements of S.

**Proof.** Clearly  $\{a, b\} \cap R = \emptyset$ , since otherwise  $r_1 r_2 \notin E(Q^+)$ , and by Claim 12 we can suppose  $V(S_1) \setminus R = \emptyset$ .

1. If  $\{a, b\} \subset K_1 \setminus R$ , then the application of Claim 9 to a and b (with  $y_1 = r_1$  and  $y_2 = r_2$ ) gives  $R = \{a_{P'}, b_{P'}\}$ , implying  $r_1r_2 \notin E(Q^+)$ .

2. Hence  $a \in K_1 \setminus R$  and  $b \in K_2$ , implying  $ab \notin E(G)$ . Application of Claim 9 to a gives  $a_{P'} \in R$ ; choose the notation such that  $a_{P'} = r_1$ . By Claim 10 (applied to b) then  $bb_{P'} \in E(G)$ . Since  $R \neq \{a_{P'}, b_{P'}\}$  (otherwise  $r_1r_2 \notin E(Q^+)$ ), we have  $b_{P'} \in K_2$ .

If  $br_1 \in E(G)$ , then Claim 9 applied to b (with  $y_1 = r_1$  and  $y_2$  being a vertex in  $K_2$  with  $y_2r_1 \notin E(G)$ ), implies that  $b_{P'}$  is the only neighbor of  $r_2$  in  $K_2$  that is not adjacent to  $r_1$ , and we set  $Q = a_{P'}S_2S_{12}xb_{P'}$  if  $r_2 \in V(S_{12})$  and  $Q = a_{P'}S_2S_{12}xr_2b_{P'}$  otherwise (not excluding the case that  $S_{12} = \emptyset$ ).

Hence  $br_1 \notin E(G)$ , implying  $br_2 \in E(G)$ . By Claim 9 applied to b we then analogously get that  $b_{P'}$  is the only neighbor of  $r_1$  in  $K_2$  that is not adjacent to  $r_2$ , and then  $Q = a_{P'}xS_{12}S_2b_{P'}$  if  $r_2 \in V(S_{12})$  and  $Q = a_{P'}xr_2S_{12}S_2b_{P'}$  otherwise, where we do not exclude the possibility  $S_{12} = \emptyset$  and we choose the first vertex  $u \in V(S_{12})$  (i.e.,  $u = x^{+(Q)}$  or  $u = r_2^{+(Q)}$ , respectively) such that  $u \in K_1$  if  $|S_{12}|$  is odd and  $u \in K_2$  if  $|S_{12}|$  is even.

Now observe that if  $R \cap (\{a, b\} \setminus \{a_{P'}, b_{P'}\}) \neq \emptyset$ , or if  $R = \{a_{P'}, b_{P'}\}$ , then again  $r_1r_2 \notin E(Q^+)$  and we are done. Hence in the remaining part of the proof we suppose that the following conditions are satisfied:

 $(*) R \cap (\{a,b\} \setminus \{a_{P'},b_{P'}\}) = \emptyset,$ 

 $(**) \ R \neq \{a_{P'}, b_{P'}\}.$ 

For  $s \in S_{12}$  we will denote  $s = \{s_1, s_2\}$ , where  $s_1 \in K_1$  and  $s_2 \in K_2$ .

Case 1:  $\{a_{P'}, b_{P'}\} \subset K_2$ . We choose the notation such that  $r_1 a_{P'} \in E(G)$  (this is possible by Corollary 4).

1. First suppose that  $|S_{12}| \ge 2$ . Let  $s, s' \in S_{12}$ , and choose the notation such that if  $r_1$  is some of  $s_1, s'_1$ , then  $r_1 = s_1$ . Then we set  $Q = a_{P'}\widehat{r_1s_1}s_2S_2s'_2s'_1\widehat{r_2}(S_{12} \setminus \{s, s'\})xb_{P'}$  (where we do not exclude the possibility that  $r_2 \in V(S_{12} \setminus \{s, s'\})$ ).

2. Hence  $|S_{12}| \leq 1$ . By Claim 11, we have  $a \notin K_1 \setminus R$ , since  $a \in K_1 \setminus R$  would imply  $a \neq a_{P'}$ ,  $aa_{P'} \notin E(G)$ , and if  $b = b_{P'}$  then also  $ab \notin E(G)$ , contradicting Claim 10. Symmetrically,  $b \notin K_1 \setminus R$ . By Claim 12 we have  $(K_1 \setminus R) \cap V(S_1) = \emptyset$ , implying  $K_1 \setminus R \subset V(S_{12})$ . Hence  $|S_{12}| = 1$ . Let  $S_{12} = \{s\}$ , and then  $Q = a_{P'}r_1xr_2s_1s_2S_2b_{P'}$ .

Case 2:  $\{a_{P'}, b_{P'}\} \subset K_1$ . We choose the notation such that  $b_{P'} \notin R$ , and if  $a_{P'} \in R$ , then  $a_{P'} = r_1$  (see the assumption (\*\*)).

1. If  $|S_{12}| \geq 2$ , let  $s, s' \in S_{12}$ , and choose the notation such that  $r_2 \notin s$ . Then  $Q = \widehat{a_{P'}r_1s_1s_2S_2s'_2s'_1r_2}(S_{12} \setminus \{s,s'\})xb_{P'}$  (where the notation  $\widehat{a_{P'}r_1s_1}$  means that  $r_1$  can coincide with  $a_{P'}$  or  $s_1$ ).

2. Next suppose  $|S_{12}| = 1$ , let  $S_{12} = \{s\}$  and choose the notation such that  $r_1 \notin s$ . Then  $Q = \widehat{a_{P'}r_1}xS_2s_2\widehat{s_1r_2}b_{P'}$ . 3. Hence  $|S_{12}| = 0$ . By the choice of notation and by (\*) and (\*\*) we have  $r_2 \in V(S_1)$ . If  $\{a, b\} \subset K_2$ , then we have  $a \neq a_{P'}, b \neq b_{P'}$  and  $bb_{P'} \notin E(G)$ , contradicting Claim 11 (applied to b). Hence at most one of a, b is in  $K_2$ .

We observe that there is a  $v \in V(S_2)$  such that  $r_2v \in E(G)$ : for  $\{a, b\} \cap K_2 = \emptyset$  this follows from Corollary 4, and for  $\{a, b\} \cap K_2 = \{u\}$  the nonexistence of such a v implies that u is the only neighbor of  $r_2$  in  $K_2$ , but then the cutset  $\{u, r_1\}$  of  $\langle N_G(x) \rangle_G$  contradicts the choice of R. Thus, let  $v \in V(S_2)$  be such that  $r_2v \in E(G)$ . If  $v \in V(S_2 \cap S^{(1)})$ , we set  $s = \{v\}$  and then  $Q = \widehat{a_{P'}r_1x}(S_2 \setminus \{s\})vr_2b_{P'}$ ; if  $v \in V(S_2 \cap S^{(2)})$ , then  $s = \{v, v'\} \in S_2$ for some  $v' \in V(S_2)$  and then  $Q = \widehat{a_{P'}r_1x}(S_2 \setminus \{s\})v'r_2b_{P'}$ .

Case 3:  $a_{P'} \in K_1, b_{P'} \in K_2$ . We choose the notation such that if  $a_{P'} \in R$ , then  $a_{P'} = r_1$ . 1. If  $|S_{12}| \ge 2$ , let  $s, s' \in S_{12}$ , and choose the notation such that  $r_2 \notin s$ . Then  $Q = \widehat{a_{P'}r_1s_1s_2s'_2s'_1r_2}(S_{12} \setminus \{s, s'\})xS_2b_{P'}$ .

2. If  $|S_{12}| = 1$ , let  $S_{12} = \{s\}$  and choose the notation such that  $r_1 \notin s$ . Then  $Q = \widehat{a_{P'}r_1}xr_2s_1s_2S_2b_{P'}$ .

3. Hence  $|S_{12}| = 0$ . We distinguish two subcases.

a)  $a_{P'} \in R$  (i.e.  $a_{P'} = r_1$ ). Since  $K_1 \setminus R \neq \emptyset$ , by Claim 12 we have  $K_1 \setminus R \subset \{a, b\}$ . By Claim 13,  $K_1 \setminus R \neq \{a, b\}$ , hence  $K_1 \setminus R = \{a\}$  or  $K_1 \setminus R = \{b\}$ . Since  $|K_2| \ge 2$ , we have  $S_2 \neq \emptyset$  (one of a, b is in  $K_1 \setminus R$  and  $b \in K_2$ ,  $b \neq b_{P'}$  is not possible by Claim 13).

If  $r_{2s} \notin E(G)$  for all  $s \in V(S_2)$ , then  $b_{P'}$  is the only neighbor of  $r_2$  in  $K_2$  (since by Claim 13 necessarily  $a = a_{P'}$  or  $b = b_{P'}$ ), but then  $\{a_{P'}, b_{P'}\}$  is a cutset of  $\langle N_G(x) \rangle_G$ contradicting the choice of R. Hence there is a  $u \in V(S_2)$  such that  $r_2u \in E(G)$ . If  $u \in V(S_2 \cap S^{(1)})$ , we set  $s = \{u\}$  and then  $Q = a_{P'}xr_2u(S_2 \setminus \{s\})b_{P'}$ ; if  $u \in V(S_2 \cap S^{(2)})$ , then  $s = \{u, u'\} \in S_2$  for some  $u' \in V(S_2)$  and then  $Q = a_{P'}xr_2uu'(S_2 \setminus \{s\})b_{P'}$ .

b)  $a_{P'} \notin R$ . If  $|K_2| = 2$ , then  $\{b_{P'}, r_1\}$  or  $\{b_{P'}, r_2\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , contradicting the choice of R; hence  $|K_2| \geq 3$ . If  $\{a, b, b_{P'}\} \subset K_2$  with  $b \neq b_{P'}$ , then we have  $a \neq a_{P'}$ ,  $b \neq b_{P'}$  and  $aa_{P'} \notin E(G)$ , contradicting Claim 11. Hence there is a  $u \in V(S_2)$ . We choose the notation such that  $r_2u \in E(G)$ , set u' = u and  $s = \{u\}$  if  $u \in V(S_2 \cap S^{(1)})$  or  $s = \{u, u'\} \in S_2$  if  $u \in V(S_2 \cap S^{(2)})$ , and then  $Q = a_{P'}r_1xr_2uu'(S_2 \setminus \{s\})b_{P'}$ .

Case 4:  $a_{P'} \in K_1, b_{P'} = x$ . We choose the notation such that if  $a_{P'} \in R$ , then  $a_{P'} = r_1$ ; recall then  $x = b_{P'}$  implies  $x = b_{P'} = b$ .

1. If  $|S_{12}| \geq 2$ , let  $s, s' \in S_{12}$ , and choose the notation such that  $r_2 \notin s$ . Then  $Q = \widehat{a_{P'}r_1}s_1s_2S_2s'_2s'_1r_2(S_{12} \setminus \{s,s'\})b_{P'}$ .

2. If  $|S_{12}| = 1$ , let  $S_{12} = \{s\}$  and choose the notation such that  $r_1 \notin s$ . If  $a \in K_2$  and a is the only neighbor of  $r_1$ , then  $\{a, r_2\}$  is a cutset of  $\langle N_G(x) \rangle_G$ , contradicting the choice of R. Hence there is a  $u \in K_2$  such that  $u \in V(S_2 \cup S_{12})$  and  $r_1 u \in E(G)$ .

a) If there is such a  $u \in V(S_2)$ , then  $Q = \widehat{a_{P'}r_1}uu'(S_2 \setminus \{s'\})s_2s_1r_2b_{P'}$ , where u' = uand  $s' = \{u\}$  if  $u \in V(S_2 \cap S^{(1)})$  or  $s' = \{u, u'\} \in S_2$  if  $u \in V(S_2 \cap S^{(2)})$ .

b) If such a  $u \in V(S_2)$  does not exist, then  $u = s_2$  (where  $s = \{s_1, s_2\}$  is the only element of  $S_{12}$ ), and by Corollary 4 we have  $r_2v \in E(G)$  for every  $v \in V(S_2)$  (since  $r_1v \notin E(G)$ ). Then  $Q = \widehat{a_{P'}r_1s_2s_1r_2}S_2b_{P'}$  (not excluding the possibility  $S_2 = \emptyset$ ).

3. It remains to consider the case  $|S_{12}| = \emptyset$ . If  $a_{P'} \in R$ , then by Claim 12 we have  $K_1 \setminus R = \{a\}$ , and if  $a_{P'} \notin R$ , then, by Claim 12 and Claim 11,  $K_1 \setminus R = \{a, a_{P'}\}$  (not

excluding the possibility  $a = a_{P'}$ ). Then  $Q = \widehat{a_{P'}r_1}S_2r_2b_{P'}$  (it is straightforward to check that this is always possible if we keep an element of  $V(S_2)$  that is nonadjacent to  $r_1$  as the last one).

Case 5:  $a_{P'} \in K_2$ ,  $b_{P'} = x$ . We choose the notation such that  $a_{P'}r_1 \in E(G)$  (this is always possible by Corollary 4).

1. If  $|S_{12}| \geq 2$ , let  $s, s' \in S_{12}$ , and choose the notation such that  $r_2 \notin s$ . Then  $Q = a_{P'} \widehat{r_1 s_1} s_2 S_2 s'_2 \widehat{s'_1 r_2} (S_{12} \setminus \{s, s'\}) b_{P'}$ .

2. Let  $|S_{12}| \leq 1$ . Then, by Claim 11 and by (\*),  $a \in K_2$ , and since  $K_1 \setminus R \neq \emptyset$ , we have  $K_1 \setminus R \subset V(S_{12})$ . Hence  $|S_{12}| = 1$ , set  $S_{12} = \{s\}$ .

a) If  $S_2 = \emptyset$ , then, by Corollary 4, either  $s_2r_1 \in E(G)$  and then  $Q = a_{P'}r_1s_2s_1r_2b_{P'}$ , or  $s_2r_2 \in E(G)$  and then  $Q = a_{P'}r_1s_1s_2r_2b_{P'}$ .

b) If  $S_2 \neq \emptyset$ , we choose  $u \in V(S_2)$  and denote u' = u and  $s' = \{u\}$  if  $u \in V(S_2 \cap S^{(1)})$ or  $s' = \{u, u'\} \in S_2$  if  $u \in V(S_2 \cap S^{(2)})$ . By Corollary 4, either  $r_1 u \in E(G)$  and then  $Q = a_{P'}r_1uu'(S_2 \setminus \{s'\})s_2s_1r_2b_{P'}$ , or  $r_2u \in E(G)$  and then  $Q = a_{P'}r_1s_1s_2(S_2 \setminus \{s'\})u'ur_2b_{P'}$ .

## References

- Bollobás, B.; Riordan, O.; Ryjáček, Z.; Saito, A.; Schelp, R.H.: Closure and hamiltonian-connectivity of claw-free graphs. Discrete Math. 195 (1999), 67-80.
- [2] Bondy, J.A.; Murty, U.S.R.: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
- [3] Brandt, S.: 9-connected claw-free graphs are Hamilton-connected. J. Combin. Theory Ser. B 75 (1999), no. 2, 167–173.
- [4] Fouquet, J.L.: A strengthening of Ben Rebea's lemma. J. Combin. Theory Ser. B 59 (1993) 35-40.
- [5] Hu, Zhiquan; Tian, Feng; Wei, Bing: Hamilton connectivity of line graphs and clawfree graphs. J. Graph Theory 50 (2005), no. 2, 130–141.
- [6] Kelmans, A.: On graph closures. Discrete Mathematics 271 (2003), 141-168.
- [7] Ryjáček, Z.: On a closure concept in claw-free graphs. Journal of Combinatorial Theory, Series B, 70 (1997), 217-224.
- [8] Ryjáček, Z.; Vrána, P.: Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. Manuscript 2008.