Thomassen's conjecture implies polynomiality of 1-Hamilton-connectedness in line graphs

Roman Kužel ${ }^{1,2}$, Zdeněk Ryjáček ${ }^{1,2}$, Petr Vrána ${ }^{1}$

October 29, 2010

Abstract

A graph G is 1-Hamilton-connected if $G-x$ is Hamilton-connected for every $x \in$ $V(G)$, and G is 2-edge-Hamilton-connected if the graph $G+X$ has a hamiltonian cycle containing all edges of X for any $X \subset E^{+}(G)=\{x y \mid x, y \in V(G)\}$ with $1 \leq|X| \leq 2$. We prove that Thomassen's conjecture (every 4 -connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4 -connected line graph is 1 -Hamilton-connected and/or 2-edge-Hamilton-connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness in line graphs. Consequently, proving that 1-Hamilton-connectedness is NP-complete in line graphs would disprove Thomassen's conjecture, unless $\mathrm{P}=\mathrm{NP}$.

Keywords: line graph, 4-connected, hamiltonian, Hamilton-connected, dominating cycle, Thomassen's conjecture, snark

1 Introduction.

By a graph we mean a finite undirected loopless graph $G=(V(G), E(G))$ allowing multiple edges. We follow the most common graph-theoretical notation and for notation and concepts not defined here we refer the reader e.g. to [2].

A graph G is said to be hamiltonian if G has a hamiltonian cycle, i.e. a cycle of length $|V(G)|$, and Hamilton-connected if, for any $x, y \in V(G), G$ has a hamiltonian (x, y)-path, i.e. an (x, y)-path P with $V(P)=V(G)$. Obviously, a hamiltonian graph must be 2-connected and a Hamilton-connected graph must be 3 -conected. A graph G is k-Hamilton-connected

[^0]if, for any $X \subset V(G)$ with $|X|=k$, the graph $G-X$ is Hamilton-connected. It is easy to see that a k-Hamilton-connected graph must be $(k+3)$-connected.

We will use $L(H)$ for the line graph of a graph H. Recall that every line graph is claw-free, i.e., does not contain an induced subgraph isomorphic to the claw $K_{1,3}$, and that a line graph $G=L(H)$ is k-connected if and only if H is essentially k-edge-connected, i.e., H has no edge-cutset $X \subset E(H)$ such that $|X|<k$ and at least two components of $G-X$ contain at least one edge (such an X will be referred to as an essential edge-cutset). Also recall that if an edge in a graph H is pendant (i.e. one of its vertices has degree 1), then the corresponding vertex in $G=L(H)$ is simplicial, i.e. its neighborhood induces a complete graph.

If a graph H has no edge-cutset $X \subset E(H)$ such that $|X|<k$ and at least two components of $G-X$ contain at least one cycle, we say that H is cyclically k-edge-connected. It is a well-known fact (see e.g. [5]) that a cubic (i.e. 3-regular) graph H is cyclically 4-edgeconnected if and only if H is essentially 4 -edge-connected. A cyclically 4-edge-connected cubic graph H of girth (length of shortest cycle) $g(H) \geq 5$ that is not 3-edge-colorable is called a snark.

A closed trail (i.e., an Eulerian subgraph) T in a graph H is said to be dominating if every edge of H has at least one vertex on T. It is a well-known fact (see [9]) that if G is a line graph of order at least 3 and $G=L(H)$, then G is hamiltonian if and only if H contains a dominating closed trail. For $a, b \in E(H)$, a trail T is said to be an (a, b)-trail if a is the first and b is the last edge of T. A trail T in a graph H is internally dominating if every edge of H has at least one vertex in the set of internal vertices of T. Let $G=L(H)$, $a, b \in V(G)$, and let $\bar{a}, \bar{b} \in E(H)$ be the edges of H that correspond to a, b. Analogously to [9] (see e.g. [14]), a line graph G of order at least 3 has a hamiltonian (a, b)-path if and only if H has an internally dominating (\bar{a}, \bar{b})-trail.

Thomassen [17] posed the following conjecture.
Conjecture A [17]. Every 4-connected line graph is hamiltonian.
Since then, many statements that are seemingly stronger or weaker than Conjecture A have been proved to be equivalent to it. Below we list some of them. The reference always refers to the paper in which the equivalence with Conjecture A was established.

Theorem B. The following statements are equivalent with Conjecture A.
(i) [15] Every 4-connected claw-free graph is hamiltonian.
(ii) [5] Every essentially 4-edge-connected graph has a dominating closed trail.
(iii) [5] Every cyclically 4-edge-connected cubic graph has a dominating cycle.
(iv) [11] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a dominating cycle.
(v) [3] Every snark has a dominating cycle.

Statement (iii) of Theorem B was strengthened as follows.
Theorem C. The following statements are equivalent with Conjecture A.
(i) [7] Any two independent edges of a cyclically 4-edge-connected cubic graph are contained in a dominating cycle.
(ii) [6] Any two edges of a cyclically 4-edge-connected cubic graph are contained in a dominating cycle.

On the positive side, the strongest known results related to Conjecture A are the following.

Theorem D.

(i) [10] Every 5-connected claw-free graph G with minimum degree $\delta(G) \geq 6$ is hamiltonian.
(ii) [16] Every 6-connected claw-free graph with at most 29 vertices of degree 6 is Hamilton-connected.

2 Main result.

Set $E^{+}(G)=\{x y \mid x, y \in V(G)\}$, and for $X \subset E^{+}(G)$ set $G+X=(V(G), E(G) \cup X)$ (note that we admit $E(G) \cap X \neq \emptyset)$. A graph G is said to be k-edge-Hamilton-connected if, for any $X \subset E^{+}(G)$ such that $|X| \leq k$ and X determines a path system, the graph $G+X$ has a hamiltonian cycle containing all edges of X (note that by a path system we mean a forest each component of which is a path).

The following facts are easy to observe.
Proposition 1. Let G be a graph. Then
(i) G is 1-edge-Hamilton-connected if and only if G is Hamilton-connected,
(ii) G is 2-edge-Hamilton-connected if and only if
$(\alpha) G$ is 1-Hamilton-connected, and
(β) for any four distinct vertices $x_{1}, x_{2}, x_{3}, x_{4} \in V(G), G$ has a path factor consisting of two paths P_{1}, P_{2} such that both P_{1} and P_{2} have one endvertex in $\left\{x_{1}, x_{2}\right\}$ and one endvertex in $\left\{x_{3}, x_{4}\right\}$,
(iii) if G is k-edge-Hamilton-connected, then G is $(k+2)$-connected.

Proof. Parts (i) and (ii) follow immediately from the definitions. Let G be k-edge-Hamilton-connected and let $\left\{a_{1}, \ldots, a_{\ell}\right\} \subset V(G), \ell \leq k+1$, be a cutset of G. Then for $X=\left\{a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{\ell-1} a_{\ell}\right\}$ the graph G has no hamiltonian cycle containing all edges of X. This contradiction proves part (iii).

Our main result, Theorem 2, shows that Conjecture A is equivalent to the statement(s) that every 4 -connected line graph has any of the above mentioned properties. Note that the equivalence of (i) and (ii) was originally established in the unpublished paper [13].

Theorem 2. The following statements are equivalent.
(i) Every 4-connected line graph is hamiltonian.
(ii) Every 4-connected line graph is Hamilton-connected.
(iii) Every 4-connected line graph is 1-Hamilton-connected.
(iv) Every 4-connected line graph is 2-edge-Hamilton-connected.

Proof of Theorem 2 is postponed to Section 3.
We will now discuss complexity aspects of Theorem 2.
The problem to decide whether a given graph G has a hamiltonian (a, b)-path for given vertices a, b is one of the classical NP-complete problems (see [8]), and the hamiltonian problem remains NP-complete even when restricted to line graphs (see e.g. [1] for the hamiltonian path problem). The problem to decide whether G is Hamilton-connected is also known to be NP-complete [4]. The complexity of the corresponding Hamiltonconnectedness problem in line graphs is not known, however, it is usually supposed to be NP-complete. We now consider the next step (we include the easy proof here since we are not aware of its being published).

1-HC
Instance: A graph G.
Question: Is G 1-Hamilton-connected?
Theorem 3. 1-HC is NP-complete.
Proof. Obviously 1-HC \in NP. We transform the Hamilton-connectedness problem to 1-HC. Given a graph G, take a vertex $w \notin V(G)$ and set $G^{\prime}=(V(G) \cup\{w\}, E(G) \cup\{w x \mid x \in$ $V(G)\})$. We show that G^{\prime} is 1-Hamilton-connected if and only if G is Hamilton-connected. Suppose first that G is Hamilton-connected. We show that for any $x, y, u \in V\left(G^{\prime}\right), G^{\prime}-u$ has a hamiltonian (x, y)-path. Let P be a hamiltonian (x, y)-path in G. If $u \neq w$, then $P^{\prime}=x P u^{-} w u^{+} P y$ is a hamiltonian (x, y)-path in $G^{\prime}-u$, and for $u=w$ we simply set $P^{\prime}=P$. Conversely, if G^{\prime} is 1-Hamilton-connected, then $G=G^{\prime}-w$ is Hamilton-connected by definition.

Thus, we can analogously define the following problems.

1-HCL

Instance: A line graph G.
Question: Is G 1-Hamilton-connected?

2-E-HCL

Instance: A line graph G.
Question: Is G 2-edge-Hamilton-connected?
Note that, with respect to the above mentioned facts, a common expectation would probably be that both these problems are NP-complete.

If Conjecture A is true, then, by Theorem 2, we have that every 4-connected line graph is 2-edge-Hamilton-connected (hence also 1-Hamilton-connected). Conversely, by Proposition $1(i i i)$, every 2 -edge-Hamilton-connected graph is 4 -connected and, similarly, every 1-Hamilton-connected graph is 4-connected. From this we observe that if Conjecture A is true, then
(i) a line graph G is 1-Hamilton-connected if and only if G is 4 -connected,
(ii) a line graph G is 2-edge-Hamilton-connected if and only if G is 4-connected.

Consequently, Conjecture A, if true, would imply polynomiality of both 1-HCL and 2-EHCL. We thus have the following consequence.

Theorem 4. At least one of the following is true:
(i) Both 1-HCL and 2-E-HCL are polynomial.
(ii) Conjecture A fails.

Remark. Note that Theorem 4 means that proving NP-completeness of 1-HCL or 2-E-HCL would imply the existence of a 4 -connected nonhamiltonian line graph (and also e.g. the existence of a snark with no dominating cycle etc.), unless $\mathrm{P}=\mathrm{NP}$.

3 Proof of Theorem 2.

We first mention several results that will be needed for our proof.
Set $V_{i}(H)=\left\{x \in V(H) \mid d_{H}(x)=i\right\}$ and let H be a graph with $\delta(H)=2$ and $\left|V_{2}(H)\right|=4$. Then H is said to be $V_{2}(H)$-dominated if for any two edges $e_{1}=u_{1} v_{1}, e_{2}=$ $u_{2} v_{2} \in E^{+}(H)$ with $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}=V_{2}(H)$ the graph $H+\left\{e_{1}, e_{2}\right\}$ has a dominating closed trail containing e_{1} and e_{2}, and H is said to be strongly $V_{2}(H)$-dominated if H is $V_{2}(H)$-dominated and for any $e=u v \in E^{+}(H)$ with $u, v \in V_{2}(H)$, the graph $H+\{e\}$ has a dominating closed trail containing e. Note that in the special case of a cubic graph a dominating closed trail becomes a dominating cycle.

The following was proved in [12].
Theorem E [12]. Conjecture A is equivalent to the statement that any subgraph H of an essentially 4-edge-connected cubic graph with $\delta(H)=2$ and $\left|V_{2}(H)\right|=4$ is $V_{2}(H)$ dominated.

We will need the following slight strengthening of Theorem E.
Theorem 5. Conjecture A is equivalent to the statement that any subgraph H of an essentially 4-edge-connected cubic graph with $\delta(H)=2$ and $\left|V_{2}(H)\right|=4$ is strongly $V_{2}(H)$-dominated.

Proof. Suppose that Conjecture A is true, let H be a subgraph of an essentially 4-edgeconnected cubic graph with $\delta(H)=2$ and $\left|V_{2}(H)\right|=4$, let $V_{2}(H)=\{a, b, c, d\}$, set $e=a b$ and suppose that $H+\{e\}$ has no dominating cycle containing e.

Let $H_{i}, i=1,2,3,4$ be four vertex-disjoint copies of H, denote $V_{2}\left(H_{i}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$, $i=1,2,3,4$, and let F^{\prime} be the graph with $V\left(F^{\prime}\right)=\cup_{i=1}^{4} V\left(H_{i}\right)$ and $E\left(F^{\prime}\right)=\left(\cup_{i=1}^{4} E\left(H_{i}\right)\right) \cup$ $\left\{a_{1} a_{2}, b_{1} b_{2}, a_{3} a_{4}, b_{3} b_{4}, c_{1} d_{3}, c_{2} d_{4}, d_{1} c_{4}, d_{2} c_{3}\right\}$. Finally, let F be the graph obtained from F^{\prime} by subdividing the following edges with new vertices: $c_{1} d_{3}$ with a vertex $x, c_{2} d_{4}$ with a vertex $y, c_{3} d_{2}$ with a vertex z and $c_{4} d_{1}$ with a vertex w, and set $e_{1}=x y$ and $e_{2}=z w$ (see Figure 1).

Figure 1: The graph F
By Theorem E, the graph $F+\left\{e_{1}, e_{2}\right\}$ has a dominating cycle C with $e_{1}, e_{2} \in E(C)$. As $\{w, x, y, z\}$ separates $H_{1} \cup H_{2}$ from $H_{3} \cup H_{4}$, both e_{1} and e_{2} must be incident to edges on C to both $H_{1} \cup H_{2}$ and $H_{3} \cup H_{4}$. But no matter how we pick these edges, two of w, x, y, z are adjacent on C to some c_{i}, d_{i}, contradicting that $H_{j}+a_{j} b_{j}$ has no dominating cycle containing $a_{j} b_{j}$ for $j \in\{1,2,3,4\} \cap\{3-i, 7-i\}$.

Conversely, if every subgraph H of an essentially 4 -edge-connected cubic graph with $\delta(H)=2$ and $\left|V_{2}(H)\right|=4$ is strongly $V_{2}(H)$-dominated, then clearly every such H is $V_{2}(H)$-dominated and Conjecture A is true by Theorem E.

We will also need the following operation (see [5]). Let H be a graph, $z \in V(H)$ a vertex of degree $d \geq 4$, and let $u_{1}, u_{2}, \ldots, u_{d}$ be an ordering of neighbors of z (we allow repetition in case of parallel edges). Then the graph H_{z}, obtained from the disjoint union of $G-z$ and the cycle $C_{z}=z_{1}, z_{2}, \ldots, z_{d} z_{1}$ by adding the edges $u_{i} z_{i}, i=1, \ldots, d$, is called an inflation of H at z. If $\delta(H) \geq 3$, then, by successively taking an inflation at each vertex of degree greater than 3 we can obtain a cubic graph H^{I}, called a cubic inflation of H. The inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors
of z) and it is possible that the operation decreases the edge-connectivity of the graph. However, the following was proved in [5].

Lemma F [5]. Let H be an essentially 4-edge-connected graph with minimum degree $\delta(H) \geq 3$. Then some cubic inflation of H is essentially 4-edge-connected.

Let H^{\prime} be a cubic inflation of a graph H and for any $z \in V(H)$ set $I(z)=V\left(C_{z}\right)$ if $d_{H}(z)>3$ and $I(z)=\{z\}$ otherwise. Observing that a dominating cycle in H^{\prime} must contain at least one vertex in $I(z)$ for each $z \in V(H)$ with $d_{H}(z) \geq 4$, we immediately have the following fact (which is implicit in [5]).

Lemma G [5]. Let H be a graph with $\delta(H) \geq 3$ and let H^{I} be a cubic inflation of H. Let C be a dominating cycle in H^{I}. Then H has a dominating closed trail T such that
(i) T contains all vertices of degree at least 4,
(ii) if $u v \in E(C)$ and $u \in I(x), v \in I(y)$ for some $x, y \in V(H), x \neq y$, then $x y \in E(T)$.

Proof of Theorem 2. It is sufficient to prove that (i) implies (iv). Thus, suppose that Conjecture A is true and let G be a minimum counterexample to the statement (iv) of Theorem 2, i.e. G is a 4 -connected line graph that is not 2-edge-Hamilton-connected but every 4-connected line graph G^{\prime} with $\left|V\left(G^{\prime}\right)\right|<|V(G)|$ is 2-edge-Hamilton-connected. Let $Y \subset E^{+}(G)$ be such that $|Y| \leq 2$ and $G+Y$ has no hamiltonian cycle containing all edges of Y.

If $|Y|=1$, then denote $Y=\left\{e_{1}\right\}$, choose an arbitrary $e_{2} \in E(G)$ such that e_{1}, e_{2} have no vertex in common, and set $X=\left\{e_{1}, e_{2}\right\}$. If $|Y|=2$, then denote $Y=\left\{e_{1}, e_{2}\right\}$ and set $X=Y$. Denote $e_{1}=a b, e_{2}=c d$, and choose the notation such that possibly $b=d$. With a slight abuse of notation, we will use X also for the subgraph determined by e_{1}, e_{2}. To reach a contradiction, it is sufficient to show that $G+X$ has a hamiltonian cycle containing all edges of X.

Claim 1. None of the vertices a, b, c, d is simplicial.
Proof of Claim 1. Suppose that $u \in\{a, b, c, d\}$ is simplicial.
Case 1: $d_{X}(u)=1$. Without loss of generality suppose $u=a$, and set $G^{\prime}=G-u$. Then G^{\prime} is a 4-connected line graph with $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, hence G^{\prime} is 2-edge-Hamilton-connected. Choose $a^{\prime} \in N_{G}(u)$ such that $a^{\prime} \notin\{b, c, d\}$ (this is always possible since $d_{G}(u) \geq 4$) and set $e_{1}^{\prime}=a^{\prime} b$ and $X^{\prime}=\left\{e_{1}^{\prime}, e_{2}\right\}$. Let C^{\prime} be a hamiltonian cycle in $G^{\prime}+X^{\prime}$ containing e_{1}^{\prime} and e_{2}. Then $C=a^{\prime} a e_{1} b C^{\prime} a^{\prime}$ is a hamiltonian cycle in G containing e_{1} and e_{2}, a contradiction.

Case 2: $d_{X}(u)=2$. Then, by the choice of notation, $u=b=d$. Similarly as before, $G^{\prime}=G-u$ is 2-edge-Hamilton-connected. Set $e^{\prime}=a c, X^{\prime}=\left\{e^{\prime}\right\}$ and let C^{\prime} be a hamiltonian cycle in G^{\prime} containing X^{\prime}. Then $C=a u c C^{\prime} a$ is a hamiltonian cycle in G containing X, a contradiction.

Let now H be a graph such that $L(H)=G$, and let $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ be the edges corresponding to the vertices $a, b, c, d \in V(G)$, respectively. By Claim 1, none of the edges $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ is pendant.

We now distinguish two cases.
Case 1: $\{a, b\} \cap\{c, d\}=\emptyset$. We define a graph H_{4} by the following construction.

- H^{\prime} is a graph obtained from H by subdividing each of the edges $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ with a new vertex $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$, respectively,
- H_{1} is a graph obtained from H^{\prime} by adding a new vertex u and edges $u a^{\prime}, u b^{\prime}, u c^{\prime}, u d^{\prime}$,
- H_{2} is obtained from H_{1} by removing vertices of degree 1 and suppressing vertices of degree 2.
Then H_{2} is essentially 4-edge-connected with minimum degree $\delta\left(H_{2}\right) \geq 3$ and, by Lemma F , H_{2} has an essentially 4-edge-connected cubic inflation H_{3}. Finally, let H_{4} be obtained from H_{3} by removing $I(u)$ (i.e. the vertices of the cycle that corresponds to the vertex u of H_{2}).

Then H_{4} satisfies the assumptions of Theorem 5, hence $H_{4}+\left\{a^{\prime} b^{\prime}, c^{\prime} d^{\prime}\right\}$ has a dominating cycle containing $a^{\prime} b^{\prime}$ and $c^{\prime} d^{\prime}$.

By Lemma $\mathrm{G},\left(H_{2}-u\right)+\left\{a^{\prime} b^{\prime}, c^{\prime} d^{\prime}\right\}$ has a dominating closed trail T containing the edges $a^{\prime} b^{\prime}, c^{\prime} d^{\prime}$ and all vertices of degree at least 4 . The graph H is essentially 4 -edge-connected, hence for every vertex of H of degree 1 or 2, all its neighbors are of degree at least 4. Thus, T is a dominating closed trail also in $H^{\prime}+\left\{a^{\prime} b^{\prime}, c^{\prime} d^{\prime}\right\}$. Since T contains the edges $a^{\prime} b^{\prime}$ and $c^{\prime} d^{\prime}, G+X$ has a hamiltonian cycle containing the edges e_{1} and e_{2}, a contradiction.

Case 2: $\{a, b\} \cap\{c, d\} \neq \emptyset$. By the choice of notation, we have $b=d$ and the vertices a, b, c are distinct. By the assumption, G is not 2-edge-Hamilton-connected, hence $G-b$ has no hamiltonian (a, c)-path, implying that $H-\bar{b}$ has no internally dominating (\bar{a}, \bar{c})-trail.

Claim 2. Neither \bar{a} and \bar{b} nor \bar{b} and \bar{c} share a vertex of degree 2.
Proof of Claim 2. By symmetry, suppose that \bar{a} and \bar{b} share a vertex v of degree 2. Then $a b \in E(G)$. Let K denote the subgraph of G induced by $N_{G}(a) \backslash\{b, c\}$. Since $d_{H}(v)=2$, K is a clique of order at least 2 .

Let H^{\prime} be obtained from H by suppressing the vertex v, i.e., \bar{a} and \bar{b} coincide in H^{\prime} into an edge \bar{w}. Set $G^{\prime}=L\left(H^{\prime}\right)$. Then G^{\prime} is obtained from G by contraction of the edge $a b$ into a vertex w. Clearly, G^{\prime} is 4-connected, hence, by the minimality of G, G^{\prime} is 2-edge-Hamilton-connected. Let a_{1} be an arbitrary vertex in K, set $e_{1}^{\prime}=w a_{1}$ and $e_{2}^{\prime}=w c$, and let C^{\prime} be a hamiltonian cycle in $G^{\prime}+\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ containing e_{1}^{\prime} and e_{2}^{\prime}. Then $C=a_{1} a b c C^{\prime} a_{1}$ is a hamiltonian cycle in $G+X$ containing e_{1} and e_{2}, a contradiction.

Let H_{1} be the graph obtained from H by removing vertices of degree 1 and suppressing vertices of degree 2 . Then H_{1} is essentially 4 -edge-connected. Let a^{*}, b^{*}, c^{*} denote the edges of H_{1} that correspond to the edges $\bar{a}, \bar{b}, \bar{c}$ of H. Note that possibly $a^{*}=c^{*}$ (if \bar{a} and \bar{c} share a vertex of degree 2), but, by Claim $2, a^{*} \neq b^{*}$ and $b^{*} \neq c^{*}$.

Let H_{2} be an essentially 4-edge-connected cubic inflation of H_{1} and, with a slight abuse of notation, let a^{*}, b^{*}, c^{*} denote the edges of H_{2} that correspond to these edges of H_{1}. Set $a^{*}=a_{1} a_{2}, b^{*}=b_{1} b_{2}, c^{*}=c_{1} c_{2}$.

Claim 3. The edges a^{*}, b^{*}, c^{*} (and hence also the edges $\bar{a}, \bar{b}, \bar{c}$) do not share a vertex of degree 3.

Proof of Claim 3. Let, to the contrary, $w=a_{1}=b_{1}=c_{1}$ be of degree 3. If $\bar{a}=w a_{1}^{\prime}$ for some $a_{1}^{\prime} \neq a_{2}$, then, by the construction of H_{1}, a_{1}^{\prime} is of degree 2 in H and $\left\{a_{1}^{\prime} a_{2}, b_{2} w, c_{2} w\right\}$ is an essential edge-cutset separating the edge $a_{1}^{\prime} w$ from the rest of H, a contradiction. Hence $a^{*}=\bar{a}$ and, similarly, $b^{*}=\bar{b}$ and $c^{*}=\bar{c}$.

By Theorem $\mathrm{C}(i i), H_{2}$ has a dominating cycle C containing a^{*} and c^{*}. Since w is of degree $3, C$ does not contain b^{*}. By Lemma G and since H is essentially 4-edge-connected, H has a dominating closed trail T containing \bar{a} and \bar{c} and not containing \bar{b}. But then T is an internally dominating (\bar{a}, \bar{c})-trail in $H-\bar{b}$, a contradiction.

By Claim 3, we either have $a^{*}=c^{*}$, or either a^{*}, c^{*} or a^{*}, b^{*} have no common vertex. Let H_{3} and H_{4} be the graphs obtained from H_{2} as follows:
(i) if a^{*}, c^{*} have no vertex in common, then H_{3} is obtained from H_{2} by subdividing each of the edges a^{*}, c^{*} with a new vertex a^{\prime}, c^{\prime}, respectively, and by adding the edge $a^{\prime} c^{\prime}$, and H_{4} is obtained from H_{3} by deleting the edges $a^{\prime} c^{\prime}$ and b^{*} (but keeping the vertices $a^{\prime}, c^{\prime}, b_{1}, b_{2}$);
(ii) if $a^{*}=c^{*}$, then $H_{3}=H_{2}$ and H_{4} is obtained from H_{3} by deleting the edges a^{*}, b^{*} (but keeping the vertices $a_{1}, a_{2}, b_{1}, b_{2}$), and, for consistence, by relabeling $a_{1}:=a^{\prime}$ and $a_{2}:=c^{\prime}$;
(iii) if a^{*}, b^{*} have no vertex in common, then H_{3} is obtained from H_{2} by subdividing a^{*} and b^{*} with a new vertex a^{\prime} and b^{\prime} and adding the edge $a^{\prime} b^{\prime}$ and then subdividing $a^{\prime} b^{\prime}$ and c^{*} with a new vertex d^{\prime} and c^{\prime} and adding the edge $d^{\prime} c^{\prime}$, and H_{4} is obtained from H_{3} by deleting the vertices b^{\prime} and d^{\prime}.
It is an easy observation that an essentially 4 -edge-connected cubic graph remains essentially 4-edge-connected if we subdivide two independent edges and connect the new vertices with a new edge. Hence, in all three cases, the graph H_{3} is essentially 4-edge-connected. Since H_{4} is a subgraph of H_{3} with $\delta\left(H_{4}\right)=2$ and $\left|V_{2}\left(H_{4}\right)\right|=4, H_{4}$ satisfies the assumptions of Theorem 5. Then the graph $H_{4}+\left\{a^{\prime} c^{\prime}\right\}$ has a dominating cycle containing the edge $a^{\prime} c^{\prime}$, implying that $H-\bar{b}$ has an internally dominating (\bar{a}, \bar{c})-trail, a contradiction.

References

[1] A.A. Bertossi: The edge hamiltonian path problem is NP-complete. Inform. Process. Lett. 13 (1981), 157-159.
[2] J.A. Bondy, U.S.R. Murty: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[3] H.J. Broersma, G. Fijavž, T. Kaiser, R. Kužel, Z. Ryjáček, P. Vrána: Contractible subgraphs, Thomassen's conjecture and the dominating cycle conjecture for snarks. Discrete Mathematics 308 (2008), 6064-6077.
[4] A.M. Dean: The computational complexity of deciding Hamiltonian-connectedness. Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993). Congr. Numer. 93 (1993), 209-214.
[5] H. Fleischner; B. Jackson: A note concerning some conjectures on cyclically 4-edgeconnected 3-regular graphs. In "Graph Theory in Memory of G.A. Dirac" (L.D. Andersen, I.T. Jakobsen, C. Thomassen, B. Toft and P.D. Vestergaard, Eds.), Annals of Discrete Math., Vol. 41, 171-177, North-Holland, Amsterdam, 1989.
[6] H. Fleischner; M. Kochol: A note about the dominating circuit conjecture. Discrete Mathematics 259 (2002), 307-309.
[7] J.-L. Fouquet, H. Thuillier: On some conjectures on cubic 3-connected graphs. Discrete Mathematics 80 (1990), 41-57.
[8] M.R. Garey and D.S. Johnson: Computers and Intractability, A guide to the theory of NP-completeness, W.H. Freeman and Company, San Francisco, 1979.
[9] F. Harary, C.St.J.A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
[10] T. Kaiser, P. Vrána: Hamilton cycles in 5-connected line graphs. Preprint 2010 (submitted).
[11] M. Kochol: Equivalence of Fleischner's and Thomassen's conjectures. J. Combin. Theory, Ser. B 78(2000), 277-279.
[12] R. Kužel: A note on the dominating circuit conjecture and subgraphs of essentially 4-edge-connected cubic graphs. Discrete Mathematics 308 (2008), 5801-5804.
[13] R. Kužel, L. Xiong: Every 4-connected line graph is hamiltonian if and only if it is hamiltonian connected. In: R. Kužel: Hamiltonian properties of graphs. Ph.D. Thesis, U.W.B. Pilsen, 2004.
[14] D. Li, H.-J. Lai, M. Zhan: Eulerian subgraphs and Hamilton-connected line graphs. Discrete Applied Mathematics 145 (2005) 422-428.
[15] Z. Ryjáček: On a closure concept in claw-free graphs. Journal of Combinatorial Theory, Series B, 70 (1997), 217-224.
[16] Z. Ryjáček, P. Vrána: Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. Preprint 2009.
[17] C. Thomassen: Reflections on graph theory. J. Graph Theory 10(1986), 309-324.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 30614 Pilsen, Czech Republic, e-mail \{rkuzel, ryjacek, vranap\}@kma.zcu.cz.
 ${ }^{2}$ Research supported by grants No. 1M0545 and MSM 4977751301 of the Czech Ministry of Education.

