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Abstract

A graph G is 1-Hamilton-connected if G − x is Hamilton-connected for every x ∈
V (G), and G is 2-edge-Hamilton-connected if the graph G + X has a hamiltonian

cycle containing all edges of X for any X ⊂ E+(G) = {xy| x, y ∈ V (G)} with

1 ≤ |X| ≤ 2. We prove that Thomassen’s conjecture (every 4-connected line graph is

hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the

statements that every 4-connected line graph is 1-Hamilton-connected and/or 2-edge-

Hamilton-connected. As a corollary, we obtain that Thomassen’s conjecture implies

polynomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness

in line graphs. Consequently, proving that 1-Hamilton-connectedness is NP-complete

in line graphs would disprove Thomassen’s conjecture, unless P=NP.

Keywords: line graph, 4-connected, hamiltonian, Hamilton-connected, dominating cycle,

Thomassen’s conjecture, snark

1 Introduction.

By a graph we mean a finite undirected loopless graph G = (V (G), E(G)) allowing mul-

tiple edges. We follow the most common graph-theoretical notation and for notation and

concepts not defined here we refer the reader e.g. to [2].

A graph G is said to be hamiltonian if G has a hamiltonian cycle, i.e. a cycle of length

|V (G)|, and Hamilton-connected if, for any x, y ∈ V (G), G has a hamiltonian (x, y)-path, i.e.

an (x, y)-path P with V (P ) = V (G). Obviously, a hamiltonian graph must be 2-connected

and a Hamilton-connected graph must be 3-conected. A graph G is k-Hamilton-connected

1Department of Mathematics, University of West Bohemia, and Institute for Theoretical Com-

puter Science (ITI), Charles University, P.O. Box 314, 306 14 Pilsen, Czech Republic, e-mail

{rkuzel,ryjacek,vranap}@kma.zcu.cz.
2Research supported by grants No. 1M0545 and MSM 4977751301 of the Czech Ministry of Education.

1



if, for any X ⊂ V (G) with |X| = k, the graph G−X is Hamilton-connected. It is easy to

see that a k-Hamilton-connected graph must be (k + 3)-connected.

We will use L(H) for the line graph of a graph H. Recall that every line graph is

claw-free, i.e., does not contain an induced subgraph isomorphic to the claw K1,3, and that

a line graph G = L(H) is k-connected if and only if H is essentially k-edge-connected, i.e.,

H has no edge-cutset X ⊂ E(H) such that |X| < k and at least two components of G−X

contain at least one edge (such an X will be referred to as an essential edge-cutset). Also

recall that if an edge in a graph H is pendant (i.e. one of its vertices has degree 1), then the

corresponding vertex in G = L(H) is simplicial, i.e. its neighborhood induces a complete

graph.

If a graph H has no edge-cutset X ⊂ E(H) such that |X| < k and at least two

components ofG−X contain at least one cycle, we say thatH is cyclically k-edge-connected.

It is a well-known fact (see e.g. [5]) that a cubic (i.e. 3-regular) graphH is cyclically 4-edge-

connected if and only if H is essentially 4-edge-connected. A cyclically 4-edge-connected

cubic graph H of girth (length of shortest cycle) g(H) ≥ 5 that is not 3-edge-colorable is

called a snark.

A closed trail (i.e., an Eulerian subgraph) T in a graph H is said to be dominating if

every edge of H has at least one vertex on T . It is a well-known fact (see [9]) that if G

is a line graph of order at least 3 and G = L(H), then G is hamiltonian if and only if H

contains a dominating closed trail. For a, b ∈ E(H), a trail T is said to be an (a, b)-trail if

a is the first and b is the last edge of T . A trail T in a graph H is internally dominating if

every edge of H has at least one vertex in the set of internal vertices of T . Let G = L(H),

a, b ∈ V (G), and let ā, b̄ ∈ E(H) be the edges of H that correspond to a, b. Analogously

to [9] (see e.g. [14]), a line graph G of order at least 3 has a hamiltonian (a, b)-path if and

only if H has an internally dominating (ā, b̄)-trail.

Thomassen [17] posed the following conjecture.

Conjecture A [17]. Every 4-connected line graph is hamiltonian.

Since then, many statements that are seemingly stronger or weaker than Conjecture A

have been proved to be equivalent to it. Below we list some of them. The reference always

refers to the paper in which the equivalence with Conjecture A was established.

Theorem B. The following statements are equivalent with Conjecture A.

(i) [15] Every 4-connected claw-free graph is hamiltonian.

(ii) [5] Every essentially 4-edge-connected graph has a dominating closed trail.

(iii) [5] Every cyclically 4-edge-connected cubic graph has a dominating cycle.

(iv) [11] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has

a dominating cycle.

(v) [3] Every snark has a dominating cycle.

2



Statement (iii) of Theorem B was strengthened as follows.

Theorem C. The following statements are equivalent with Conjecture A.

(i) [7] Any two independent edges of a cyclically 4-edge-connected cubic graph are

contained in a dominating cycle.

(ii) [6] Any two edges of a cyclically 4-edge-connected cubic graph are contained in a

dominating cycle.

On the positive side, the strongest known results related to Conjecture A are the fol-

lowing.

Theorem D.

(i) [10] Every 5-connected claw-free graph G with minimum degree δ(G) ≥ 6 is hamil-

tonian.

(ii) [16] Every 6-connected claw-free graph with at most 29 vertices of degree 6 is

Hamilton-connected.

2 Main result.

Set E+(G) = {xy| x, y ∈ V (G)}, and for X ⊂ E+(G) set G+X = (V (G), E(G)∪X) (note

that we admit E(G) ∩X ̸= ∅). A graph G is said to be k-edge-Hamilton-connected if, for

any X ⊂ E+(G) such that |X| ≤ k and X determines a path system, the graph G + X

has a hamiltonian cycle containing all edges of X (note that by a path system we mean a

forest each component of which is a path).

The following facts are easy to observe.

Proposition 1. Let G be a graph. Then

(i) G is 1-edge-Hamilton-connected if and only if G is Hamilton-connected,

(ii) G is 2-edge-Hamilton-connected if and only if

(α) G is 1-Hamilton-connected, and

(β) for any four distinct vertices x1, x2, x3, x4 ∈ V (G), G has a path factor con-

sisting of two paths P1, P2 such that both P1 and P2 have one endvertex in

{x1, x2} and one endvertex in {x3, x4},
(iii) if G is k-edge-Hamilton-connected, then G is (k + 2)-connected.

Proof. Parts (i) and (ii) follow immediately from the definitions. Let G be k-edge-

Hamilton-connected and let {a1, . . . , aℓ} ⊂ V (G), ℓ ≤ k + 1, be a cutset of G. Then for

X = {a1a2, a2a3, . . . , aℓ−1aℓ} the graph G has no hamiltonian cycle containing all edges

of X. This contradiction proves part (iii).
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Our main result, Theorem 2, shows that Conjecture A is equivalent to the statement(s)

that every 4-connected line graph has any of the above mentioned properties. Note that

the equivalence of (i) and (ii) was originally established in the unpublished paper [13].

Theorem 2. The following statements are equivalent.

(i) Every 4-connected line graph is hamiltonian.

(ii) Every 4-connected line graph is Hamilton-connected.

(iii) Every 4-connected line graph is 1-Hamilton-connected.

(iv) Every 4-connected line graph is 2-edge-Hamilton-connected.

Proof of Theorem 2 is postponed to Section 3.

We will now discuss complexity aspects of Theorem 2.

The problem to decide whether a given graph G has a hamiltonian (a, b)-path for given

vertices a, b is one of the classical NP-complete problems (see [8]), and the hamiltonian

problem remains NP-complete even when restricted to line graphs (see e.g. [1] for the

hamiltonian path problem). The problem to decide whether G is Hamilton-connected

is also known to be NP-complete [4]. The complexity of the corresponding Hamilton-

connectedness problem in line graphs is not known, however, it is usually supposed to be

NP-complete. We now consider the next step (we include the easy proof here since we are

not aware of its being published).

1-HC

Instance: A graph G.

Question: Is G 1-Hamilton-connected?

Theorem 3. 1-HC is NP-complete.

Proof. Obviously 1-HC ∈ NP. We transform the Hamilton-connectedness problem to

1-HC. Given a graphG, take a vertex w /∈ V (G) and setG′ = (V (G)∪{w}, E(G)∪{wx| x ∈
V (G)}). We show that G′ is 1-Hamilton-connected if and only if G is Hamilton-connected.

Suppose first that G is Hamilton-connected. We show that for any x, y, u ∈ V (G′), G′ − u

has a hamiltonian (x, y)-path. Let P be a hamiltonian (x, y)-path in G. If u ̸= w, then

P ′ = xPu−wu+Py is a hamiltonian (x, y)-path in G′ − u, and for u = w we simply set

P ′ = P . Conversely, if G′ is 1-Hamilton-connected, then G = G′−w is Hamilton-connected

by definition.

Thus, we can analogously define the following problems.

1-HCL

Instance: A line graph G.

Question: Is G 1-Hamilton-connected?
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2-E-HCL

Instance: A line graph G.

Question: Is G 2-edge-Hamilton-connected?

Note that, with respect to the above mentioned facts, a common expectation would prob-

ably be that both these problems are NP-complete.

If Conjecture A is true, then, by Theorem 2, we have that every 4-connected line graph

is 2-edge-Hamilton-connected (hence also 1-Hamilton-connected). Conversely, by Propo-

sition 1(iii), every 2-edge-Hamilton-connected graph is 4-connected and, similarly, every

1-Hamilton-connected graph is 4-connected. From this we observe that if Conjecture A is

true, then

(i) a line graph G is 1-Hamilton-connected if and only if G is 4-connected,

(ii) a line graph G is 2-edge-Hamilton-connected if and only if G is 4-connected.

Consequently, Conjecture A, if true, would imply polynomiality of both 1-HCL and 2-E-

HCL. We thus have the following consequence.

Theorem 4. At least one of the following is true:

(i) Both 1-HCL and 2-E-HCL are polynomial.

(ii) Conjecture A fails.

Remark. Note that Theorem 4 means that proving NP-completeness of 1-HCL or 2-E-HCL

would imply the existence of a 4-connected nonhamiltonian line graph (and also e.g. the

existence of a snark with no dominating cycle etc.), unless P=NP.

3 Proof of Theorem 2.

We first mention several results that will be needed for our proof.

Set Vi(H) = {x ∈ V (H)| dH(x) = i} and let H be a graph with δ(H) = 2 and

|V2(H)| = 4. Then H is said to be V2(H)-dominated if for any two edges e1 = u1v1, e2 =

u2v2 ∈ E+(H) with {u1, v1, u2, v2} = V2(H) the graph H + {e1, e2} has a dominating

closed trail containing e1 and e2, and H is said to be strongly V2(H)-dominated if H is

V2(H)-dominated and for any e = uv ∈ E+(H) with u, v ∈ V2(H), the graph H + {e} has

a dominating closed trail containing e. Note that in the special case of a cubic graph a

dominating closed trail becomes a dominating cycle.

The following was proved in [12].

Theorem E [12]. Conjecture A is equivalent to the statement that any subgraph H

of an essentially 4-edge-connected cubic graph with δ(H) = 2 and |V2(H)| = 4 is V2(H)-

dominated.
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We will need the following slight strengthening of Theorem E.

Theorem 5. Conjecture A is equivalent to the statement that any subgraph H of

an essentially 4-edge-connected cubic graph with δ(H) = 2 and |V2(H)| = 4 is strongly

V2(H)-dominated.

Proof. Suppose that Conjecture A is true, let H be a subgraph of an essentially 4-edge-

connected cubic graph with δ(H) = 2 and |V2(H)| = 4, let V2(H) = {a, b, c, d}, set e = ab

and suppose that H + {e} has no dominating cycle containing e.

Let Hi, i = 1, 2, 3, 4 be four vertex-disjoint copies of H, denote V2(Hi) = {ai, bi, ci, di},
i = 1, 2, 3, 4, and let F ′ be the graph with V (F ′) = ∪4

i=1V (Hi) and E(F ′) = (∪4
i=1E(Hi))∪

{a1a2, b1b2, a3a4, b3b4, c1d3, c2d4, d1c4, d2c3}. Finally, let F be the graph obtained from F ′

by subdividing the following edges with new vertices: c1d3 with a vertex x, c2d4 with a

vertex y, c3d2 with a vertex z and c4d1 with a vertex w, and set e1 = xy and e2 = zw (see

Figure 1).
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Figure 1: The graph F

By Theorem E, the graph F +{e1, e2} has a dominating cycle C with e1, e2 ∈ E(C). As

{w, x, y, z} separates H1 ∪H2 from H3 ∪H4, both e1 and e2 must be incident to edges on

C to both H1 ∪H2 and H3 ∪H4. But no matter how we pick these edges, two of w, x, y, z

are adjacent on C to some ci, di, contradicting that Hj + ajbj has no dominating cycle

containing ajbj for j ∈ {1, 2, 3, 4} ∩ {3− i, 7− i}.

Conversely, if every subgraph H of an essentially 4-edge-connected cubic graph with

δ(H) = 2 and |V2(H)| = 4 is strongly V2(H)-dominated, then clearly every such H is

V2(H)-dominated and Conjecture A is true by Theorem E.

We will also need the following operation (see [5]). Let H be a graph, z ∈ V (H) a

vertex of degree d ≥ 4, and let u1, u2, . . . , ud be an ordering of neighbors of z (we allow

repetition in case of parallel edges). Then the graph Hz, obtained from the disjoint union

of G− z and the cycle Cz = z1, z2, . . . , zdz1 by adding the edges uizi, i = 1, . . . , d, is called

an inflation of H at z. If δ(H) ≥ 3, then, by successively taking an inflation at each vertex

of degree greater than 3 we can obtain a cubic graph HI , called a cubic inflation of H. The

inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors
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of z) and it is possible that the operation decreases the edge-connectivity of the graph.

However, the following was proved in [5].

Lemma F [5]. Let H be an essentially 4-edge-connected graph with minimum degree

δ(H) ≥ 3. Then some cubic inflation of H is essentially 4-edge-connected.

Let H ′ be a cubic inflation of a graph H and for any z ∈ V (H) set I(z) = V (Cz)

if dH(z) > 3 and I(z) = {z} otherwise. Observing that a dominating cycle in H ′ must

contain at least one vertex in I(z) for each z ∈ V (H) with dH(z) ≥ 4, we immediately

have the following fact (which is implicit in [5]).

Lemma G [5]. Let H be a graph with δ(H) ≥ 3 and let HI be a cubic inflation of H.

Let C be a dominating cycle in HI . Then H has a dominating closed trail T such that

(i) T contains all vertices of degree at least 4,

(ii) if uv ∈ E(C) and u ∈ I(x), v ∈ I(y) for some x, y ∈ V (H), x ̸= y, then xy ∈ E(T ).

Proof of Theorem 2. It is sufficient to prove that (i) implies (iv). Thus, suppose that

Conjecture A is true and let G be a minimum counterexample to the statement (iv) of

Theorem 2, i.e. G is a 4-connected line graph that is not 2-edge-Hamilton-connected but

every 4-connected line graph G′ with |V (G′)| < |V (G)| is 2-edge-Hamilton-connected. Let

Y ⊂ E+(G) be such that |Y | ≤ 2 and G+Y has no hamiltonian cycle containing all edges

of Y .

If |Y | = 1, then denote Y = {e1}, choose an arbitrary e2 ∈ E(G) such that e1, e2 have

no vertex in common, and set X = {e1, e2}. If |Y | = 2, then denote Y = {e1, e2} and set

X = Y . Denote e1 = ab, e2 = cd, and choose the notation such that possibly b = d. With

a slight abuse of notation, we will use X also for the subgraph determined by e1, e2. To

reach a contradiction, it is sufficient to show that G+X has a hamiltonian cycle containing

all edges of X.

Claim 1. None of the vertices a, b, c, d is simplicial.

Proof of Claim 1. Suppose that u ∈ {a, b, c, d} is simplicial.

Case 1: dX(u) = 1. Without loss of generality suppose u = a, and set G′ = G−u. Then G′

is a 4-connected line graph with |V (G′)| < |V (G)|, hence G′ is 2-edge-Hamilton-connected.

Choose a′ ∈ NG(u) such that a′ /∈ {b, c, d} (this is always possible since dG(u) ≥ 4) and set

e′1 = a′b and X ′ = {e′1, e2}. Let C ′ be a hamiltonian cycle in G′ +X ′ containing e′1 and e2.

Then C = a′ae1bC
′a′ is a hamiltonian cycle in G containing e1 and e2, a contradiction.

Case 2: dX(u) = 2. Then, by the choice of notation, u = b = d. Similarly as before,

G′ = G − u is 2-edge-Hamilton-connected. Set e′ = ac, X ′ = {e′} and let C ′ be a

hamiltonian cycle in G′ containing X ′. Then C = aucC ′a is a hamiltonian cycle in G

containing X, a contradiction. �
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Let now H be a graph such that L(H) = G, and let ā, b̄, c̄, d̄ be the edges corresponding

to the vertices a, b, c, d ∈ V (G), respectively. By Claim 1, none of the edges ā, b̄, c̄, d̄ is

pendant.

We now distinguish two cases.

Case 1: {a, b} ∩ {c, d} = ∅. We define a graph H4 by the following construction.

• H ′ is a graph obtained from H by subdividing each of the edges ā, b̄, c̄, d̄ with a new

vertex a′, b′, c′, d′, respectively,

• H1 is a graph obtained from H ′ by adding a new vertex u and edges ua′, ub′, uc′, ud′,

• H2 is obtained from H1 by removing vertices of degree 1 and suppressing vertices of

degree 2.

ThenH2 is essentially 4-edge-connected with minimum degree δ(H2) ≥ 3 and, by Lemma F,

H2 has an essentially 4-edge-connected cubic inflation H3. Finally, let H4 be obtained from

H3 by removing I(u) (i.e. the vertices of the cycle that corresponds to the vertex u of H2).

ThenH4 satisfies the assumptions of Theorem 5, henceH4+{a′b′, c′d′} has a dominating

cycle containing a′b′ and c′d′.

By Lemma G, (H2−u)+{a′b′, c′d′} has a dominating closed trail T containing the edges

a′b′, c′d′ and all vertices of degree at least 4. The graph H is essentially 4-edge-connected,

hence for every vertex of H of degree 1 or 2, all its neighbors are of degree at least 4. Thus,

T is a dominating closed trail also in H ′ + {a′b′, c′d′}. Since T contains the edges a′b′ and

c′d′, G+X has a hamiltonian cycle containing the edges e1 and e2, a contradiction.

Case 2: {a, b} ∩ {c, d} ̸= ∅. By the choice of notation, we have b = d and the vertices a, b, c

are distinct. By the assumption, G is not 2-edge-Hamilton-connected, hence G− b has no

hamiltonian (a, c)-path, implying that H − b̄ has no internally dominating (ā, c̄)-trail.

Claim 2. Neither ā and b̄ nor b̄ and c̄ share a vertex of degree 2.

Proof of Claim 2. By symmetry, suppose that ā and b̄ share a vertex v of degree 2. Then

ab ∈ E(G). Let K denote the subgraph of G induced by NG(a) \ {b, c}. Since dH(v) = 2,

K is a clique of order at least 2.

Let H ′ be obtained from H by suppressing the vertex v, i.e., ā and b̄ coincide in H ′

into an edge w̄. Set G′ = L(H ′). Then G′ is obtained from G by contraction of the edge

ab into a vertex w. Clearly, G′ is 4-connected, hence, by the minimality of G, G′ is 2-edge-

Hamilton-connected. Let a1 be an arbitrary vertex in K, set e′1 = wa1 and e′2 = wc, and

let C ′ be a hamiltonian cycle in G′ + {e′1, e′2} containing e′1 and e′2. Then C = a1abcC
′a1 is

a hamiltonian cycle in G+X containing e1 and e2, a contradiction. �

Let H1 be the graph obtained from H by removing vertices of degree 1 and suppressing

vertices of degree 2. Then H1 is essentially 4-edge-connected. Let a∗, b∗, c∗ denote the

edges of H1 that correspond to the edges ā, b̄, c̄ of H. Note that possibly a∗ = c∗ (if ā and

c̄ share a vertex of degree 2), but, by Claim 2, a∗ ̸= b∗ and b∗ ̸= c∗.
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Let H2 be an essentially 4-edge-connected cubic inflation of H1 and, with a slight abuse

of notation, let a∗, b∗, c∗ denote the edges of H2 that correspond to these edges of H1. Set

a∗ = a1a2, b
∗ = b1b2, c

∗ = c1c2.

Claim 3. The edges a∗, b∗, c∗ (and hence also the edges ā, b̄, c̄) do not share a vertex of

degree 3.

Proof of Claim 3. Let, to the contrary, w = a1 = b1 = c1 be of degree 3. If ā = wa′1 for

some a′1 ̸= a2, then, by the construction of H1, a
′
1 is of degree 2 in H and {a′1a2, b2w, c2w}

is an essential edge-cutset separating the edge a′1w from the rest of H, a contradiction.

Hence a∗ = ā and, similarly, b∗ = b̄ and c∗ = c̄.

By Theorem C(ii), H2 has a dominating cycle C containing a∗ and c∗. Since w is of

degree 3, C does not contain b∗. By Lemma G and since H is essentially 4-edge-connected,

H has a dominating closed trail T containing ā and c̄ and not containing b̄. But then T is

an internally dominating (ā, c̄)-trail in H − b̄, a contradiction. �

By Claim 3, we either have a∗ = c∗, or either a∗, c∗ or a∗, b∗ have no common vertex. Let

H3 and H4 be the graphs obtained from H2 as follows:

(i) if a∗, c∗ have no vertex in common, then H3 is obtained from H2 by subdividing

each of the edges a∗, c∗ with a new vertex a′, c′, respectively, and by adding the edge

a′c′, and H4 is obtained from H3 by deleting the edges a′c′ and b∗ (but keeping the

vertices a′, c′, b1, b2);

(ii) if a∗ = c∗, then H3 = H2 and H4 is obtained from H3 by deleting the edges a∗, b∗

(but keeping the vertices a1, a2, b1, b2), and, for consistence, by relabeling a1 := a′

and a2 := c′;

(iii) if a∗, b∗ have no vertex in common, then H3 is obtained from H2 by subdividing a∗

and b∗ with a new vertex a′ and b′ and adding the edge a′b′ and then subdividing

a′b′ and c∗ with a new vertex d′ and c′ and adding the edge d′c′, and H4 is obtained

from H3 by deleting the vertices b′ and d′.

It is an easy observation that an essentially 4-edge-connected cubic graph remains essen-

tially 4-edge-connected if we subdivide two independent edges and connect the new vertices

with a new edge. Hence, in all three cases, the graph H3 is essentially 4-edge-connected.

Since H4 is a subgraph of H3 with δ(H4) = 2 and |V2(H4)| = 4, H4 satisfies the assumptions

of Theorem 5. Then the graph H4+{a′c′} has a dominating cycle containing the edge a′c′,

implying that H − b̄ has an internally dominating (ā, c̄)-trail, a contradiction.
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[15] Z. Ryjáček: On a closure concept in claw-free graphs. Journal of Combinatorial The-

ory, Series B, 70 (1997), 217-224.
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