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Abstract

A graph G is 1-Hamilton-connected if G — x is Hamilton-connected for every x €
V(G), and G is 2-edge-Hamilton-connected if the graph G + X has a hamiltonian
cycle containing all edges of X for any X C ET(G) = {ay| =,y € V(G)} with
1 < |X| < 2. We prove that Thomassen’s conjecture (every 4-connected line graph is
hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the
statements that every 4-connected line graph is 1-Hamilton-connected and/or 2-edge-
Hamilton-connected. As a corollary, we obtain that Thomassen’s conjecture implies
polynomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness
in line graphs. Consequently, proving that 1-Hamilton-connectedness is NP-complete
in line graphs would disprove Thomassen’s conjecture, unless P=NP.

Keywords: line graph, 4-connected, hamiltonian, Hamilton-connected, dominating cycle,
Thomassen’s conjecture, snark

1 Introduction.

By a graph we mean a finite undirected loopless graph G = (V(G), E(G)) allowing mul-
tiple edges. We follow the most common graph-theoretical notation and for notation and
concepts not defined here we refer the reader e.g. to [2].

A graph G is said to be hamiltonian if G has a hamiltonian cycle, i.e. a cycle of length
\V(G)|, and Hamilton-connectedif, for any z,y € V(G), G has a hamiltonian (z,y)-path, i.c.
an (z,y)-path P with V(P) = V(G). Obviously, a hamiltonian graph must be 2-connected
and a Hamilton-connected graph must be 3-conected. A graph G is k-Hamilton-connected
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if, for any X C V(G) with | X| = k, the graph G — X is Hamilton-connected. It is easy to
see that a k-Hamilton-connected graph must be (k + 3)-connected.

We will use L(H) for the line graph of a graph H. Recall that every line graph is
claw-free, i.e., does not contain an induced subgraph isomorphic to the claw K 3, and that
a line graph G = L(H) is k-connected if and only if H is essentially k-edge-connected, i.e.,
H has no edge-cutset X C F(H) such that | X| < k and at least two components of G — X
contain at least one edge (such an X will be referred to as an essential edge-cutset). Also
recall that if an edge in a graph H is pendant (i.e. one of its vertices has degree 1), then the
corresponding vertex in G = L(H) is simplicial, i.e. its neighborhood induces a complete
graph.

If a graph H has no edge-cutset X C E(H) such that |X| < k and at least two
components of G— X contain at least one cycle, we say that H is cyclically k-edge-connected.
It is a well-known fact (see e.g. [5]) that a cubic (i.e. 3-regular) graph H is cyclically 4-edge-
connected if and only if H is essentially 4-edge-connected. A cyclically 4-edge-connected
cubic graph H of girth (length of shortest cycle) g(H) > 5 that is not 3-edge-colorable is
called a snark.

A closed trail (i.e., an Eulerian subgraph) 7" in a graph H is said to be dominating if
every edge of H has at least one vertex on 7. It is a well-known fact (see [9]) that if G
is a line graph of order at least 3 and G = L(H), then G is hamiltonian if and only if H
contains a dominating closed trail. For a,b € E(H), a trail T is said to be an (a, b)-trail if
a is the first and b is the last edge of T'. A trail T" in a graph H is internally dominating if
every edge of H has at least one vertex in the set of internal vertices of T'. Let G = L(H),
a,b € V(G), and let a,b € E(H) be the edges of H that correspond to a,b. Analogously
to [9] (see e.g. [14]), a line graph G of order at least 3 has a hamiltonian (a, b)-path if and
only if H has an internally dominating (a, b)-trail.

Thomassen [17] posed the following conjecture.
Conjecture A [17].  Every 4-connected line graph is hamiltonian.

Since then, many statements that are seemingly stronger or weaker than Conjecture A
have been proved to be equivalent to it. Below we list some of them. The reference always
refers to the paper in which the equivalence with Conjecture A was established.

Theorem B. The following statements are equivalent with Conjecture A.
(i) [15] Every 4-connected claw-free graph is hamiltonian.
(17) [b] Every essentially 4-edge-connected graph has a dominating closed trail.
(#ii) [5] Every cyclically 4-edge-connected cubic graph has a dominating cycle.
)

(iv) [11] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has
a dominating cycle.
(v) [3] Every snark has a dominating cycle.



Statement (i7i) of Theorem B was strengthened as follows.

Theorem C. The following statements are equivalent with Conjecture A.
(1) [7] Any two independent edges of a cyclically 4-edge-connected cubic graph are
contained in a dominating cycle.
(17) [6] Any two edges of a cyclically 4-edge-connected cubic graph are contained in a
dominating cycle.

On the positive side, the strongest known results related to Conjecture A are the fol-

lowing.

Theorem D.
(1) [10] Every 5-connected claw-free graph G with minimum degree 6(G) > 6 is hamil-
tonian.
(i7) [16] Every 6-connected claw-free graph with at most 29 vertices of degree 6 is
Hamilton-connected.

2 Main result.

Set EY(GQ) = {xy| z,y € V(G)}, and for X C E*(G) set G+ X = (V(G), E(G)UX) (note
that we admit E(G) N X # 0). A graph G is said to be k-edge-Hamilton-connected if, for
any X C ET(G) such that |X| < k and X determines a path system, the graph G + X
has a hamiltonian cycle containing all edges of X (note that by a path system we mean a
forest each component of which is a path).

The following facts are easy to observe.

Proposition 1. Let G be a graph. Then
(i) G is I-edge-Hamilton-connected if and only if G' is Hamilton-connected,
(11) G is 2-edge-Hamilton-connected if and only if
(o) G is 1-Hamilton-connected, and
(B) for any four distinct vertices x1,xs, 3,24 € V(G), G has a path factor con-
sisting of two paths Py, P, such that both P, and P, have one endvertex in
{1, 22} and one endvertex in {3, x4},
(13i) if G is k-edge-Hamilton-connected, then G is (k + 2)-connected.

Proof.  Parts (i) and (i) follow immediately from the definitions. Let G be k-edge-
Hamilton-connected and let {as,...,a;} C V(G), ¢ < k+1, be a cutset of G. Then for
X = {aja9,a0a3,...,a,-1a,} the graph G has no hamiltonian cycle containing all edges
of X. This contradiction proves part (iii). |



Our main result, Theorem 2, shows that Conjecture A is equivalent to the statement(s)
that every 4-connected line graph has any of the above mentioned properties. Note that
the equivalence of (i) and (i7) was originally established in the unpublished paper [13].

Theorem 2.  The following statements are equivalent.
(1) Every 4-connected line graph is hamiltonian.
(ii) Every 4-connected line graph is Hamilton-connected.
(2ii) Every 4-connected line graph is 1-Hamilton-connected.
(iv) Every 4-connected line graph is 2-edge-Hamilton-connected.

Proof of Theorem 2 is postponed to Section 3.
We will now discuss complexity aspects of Theorem 2.

The problem to decide whether a given graph G has a hamiltonian (a, b)-path for given
vertices a,b is one of the classical NP-complete problems (see [8]), and the hamiltonian
problem remains NP-complete even when restricted to line graphs (see e.g. [1] for the
hamiltonian path problem). The problem to decide whether G is Hamilton-connected
is also known to be NP-complete [4]. The complexity of the corresponding Hamilton-
connectedness problem in line graphs is not known, however, it is usually supposed to be
NP-complete. We now consider the next step (we include the easy proof here since we are
not aware of its being published).

1-HC
Instance: A graph G.
Question: Is G 1-Hamilton-connected?

Theorem 3. 1-HC is NP-complete.

Proof. Obviously 1-HC € NP. We transform the Hamilton-connectedness problem to
1-HC. Given a graph G, take a vertex w ¢ V(G) and set G' = (V(G)U{w}, E(G)U{wz|x €
V(G)}). We show that G’ is 1-Hamilton-connected if and only if G is Hamilton-connected.
Suppose first that G is Hamilton-connected. We show that for any z,y,u € V(G'), G' —u
has a hamiltonian (x,y)-path. Let P be a hamiltonian (x,y)-path in G. If u # w, then
P’ = zPu”wut Py is a hamiltonian (z,y)-path in G’ — u, and for u = w we simply set
P" = P. Conversely, if G’ is 1-Hamilton-connected, then G = G’ —w is Hamilton-connected
by definition. [ |

Thus, we can analogously define the following problems.

1-HCL
Instance: A line graph G.
Question: Is G 1-Hamilton-connected?



2-E-HCL
Instance: A line graph G.
Question: Is G 2-edge-Hamilton-connected?

Note that, with respect to the above mentioned facts, a common expectation would prob-
ably be that both these problems are NP-complete.

If Conjecture A is true, then, by Theorem 2, we have that every 4-connected line graph
is 2-edge-Hamilton-connected (hence also 1-Hamilton-connected). Conversely, by Propo-
sition 1(#ii), every 2-edge-Hamilton-connected graph is 4-connected and, similarly, every
1-Hamilton-connected graph is 4-connected. From this we observe that if Conjecture A is
true, then

(i) a line graph G is 1-Hamilton-connected if and only if G is 4-connected,

(77) a line graph G is 2-edge-Hamilton-connected if and only if G is 4-connected.
Consequently, Conjecture A, if true, would imply polynomiality of both 1-HCL and 2-E-
HCL. We thus have the following consequence.

Theorem 4. At least one of the following is true:

(1) Both 1-HCL and 2-E-HCL are polynomial.
(77) Conjecture A fails. |

Remark. Note that Theorem 4 means that proving NP-completeness of 1-HCL or 2-E-HCL
would imply the existence of a 4-connected nonhamiltonian line graph (and also e.g. the
existence of a snark with no dominating cycle etc.), unless P=NP.

3 Proof of Theorem 2.

We first mention several results that will be needed for our proof.

Set Vi(H) = {x € V(H)| dy(z) = i} and let H be a graph with §(H) = 2 and
\Vo(H)| = 4. Then H is said to be Vo(H)-dominated if for any two edges e; = ujvy, es =
ugvy € ET(H) with {uy,v1,us,v9} = Vo(H) the graph H + {e1,e2} has a dominating
closed trail containing e; and ey, and H is said to be strongly Vo(H)-dominated if H is
Vo(H)-dominated and for any e = uv € ET(H) with u,v € Vo(H), the graph H + {e} has
a dominating closed trail containing e. Note that in the special case of a cubic graph a
dominating closed trail becomes a dominating cycle.

The following was proved in [12].
Theorem E [12].  Conjecture A is equivalent to the statement that any subgraph H

of an essentially 4-edge-connected cubic graph with §(H) = 2 and |Vo(H)| = 4 is Vo(H)-
dominated.



We will need the following slight strengthening of Theorem E.

Theorem 5. Conjecture A is equivalent to the statement that any subgraph H of
an essentially 4-edge-connected cubic graph with 6(H) = 2 and |Vo(H)| = 4 is strongly
Va(H)-dominated.

Proof. Suppose that Conjecture A is true, let H be a subgraph of an essentially 4-edge-
connected cubic graph with 6(H) = 2 and |Vo(H)| = 4, let Vo(H) = {a,b,c,d}, set e = ab
and suppose that H + {e} has no dominating cycle containing e.

Let H;, i = 1,2, 3,4 be four vertex-disjoint copies of H, denote Vo(H;) = {a;, b;, ¢;,d; },
i=1,2,3,4, and let I’ be the graph with V(F') = UL,V (H;) and E(F') = (U, E(H;))U
{ayag, b1bs, azay, bsby, c1ds, cady, dicy, docs}. Finally, let F' be the graph obtained from F”
by subdividing the following edges with new vertices: cyds with a vertex x, cody with a
vertex y, czds with a vertex z and cyd; with a vertex w, and set e; = xy and ey = zw (see
Figure 1).

Figure 1: The graph F

By Theorem E, the graph F'+{ey, e2} has a dominating cycle C with e, e € E(C'). As
{w, z,y, 2} separates H; U Hy from H3 U Hy, both e; and e must be incident to edges on
C to both Hy U Hy and H3 U H,. But no matter how we pick these edges, two of w, x,y, 2
are adjacent on C' to some ¢;, d;, contradicting that H; + a;b; has no dominating cycle
containing a;b; for j € {1,2,3,4} N {3 — 4,7 —i}.

Conversely, if every subgraph H of an essentially 4-edge-connected cubic graph with
0(H) = 2 and |Vo(H)| = 4 is strongly V5(H)-dominated, then clearly every such H is
Va(H)-dominated and Conjecture A is true by Theorem E. |

We will also need the following operation (see [5]). Let H be a graph, z € V(H) a
vertex of degree d > 4, and let uy,us, ..., uq be an ordering of neighbors of z (we allow
repetition in case of parallel edges). Then the graph H,, obtained from the disjoint union
of G — z and the cycle C, = z1, 29, . .., 2421 by adding the edges u;z;, i = 1,...,d, is called
an inflation of H at z. 1f 6(H) > 3, then, by successively taking an inflation at each vertex
of degree greater than 3 we can obtain a cubic graph H, called a cubic inflation of H. The
inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors
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of z) and it is possible that the operation decreases the edge-connectivity of the graph.
However, the following was proved in [5].

Lemma F [5]. Let H be an essentially 4-edge-connected graph with minimum degree
d(H) > 3. Then some cubic inflation of H is essentially 4-edge-connected.

Let H' be a cubic inflation of a graph H and for any z € V(H) set I(z) = V(C,)
if dg(z) > 3 and I(z) = {z} otherwise. Observing that a dominating cycle in H’ must
contain at least one vertex in I(z) for each z € V(H) with dy(z) > 4, we immediately
have the following fact (which is implicit in [5]).

Lemma G [5]. Let H be a graph with 6(H) > 3 and let H' be a cubic inflation of H.
Let C be a dominating cycle in HY. Then H has a dominating closed trail T such that

(1) T contains all vertices of degree at least 4,
(17) ifuv € E(C) and u € I(x), v € I(y) for some x,y € V(H), v # y, then xy € E(T).

Proof of Theorem 2. It is sufficient to prove that (i) implies (iv). Thus, suppose that
Conjecture A is true and let G be a minimum counterexample to the statement (iv) of
Theorem 2, i.e. GG is a 4-connected line graph that is not 2-edge-Hamilton-connected but
every 4-connected line graph G’ with |V(G")| < |V(G)| is 2-edge-Hamilton-connected. Let
Y C E*(G) be such that |Y| <2 and G+ Y has no hamiltonian cycle containing all edges
of Y.

If Y| =1, then denote Y = {e;}, choose an arbitrary es € E(G) such that eq, e have
no vertex in common, and set X = {ej,ex}. If |Y| = 2, then denote Y = {ey, €2} and set
X =Y. Denote e; = ab, e5 = cd, and choose the notation such that possibly b = d. With
a slight abuse of notation, we will use X also for the subgraph determined by e, es. To
reach a contradiction, it is sufficient to show that G+ X has a hamiltonian cycle containing
all edges of X.

Claim 1. None of the vertices a, b, ¢, d is simplicial.

Proof of Claim 1. Suppose that u € {a,b, ¢, d} is simplicial.

Case 1: dx(u) = 1. Without loss of generality suppose u = a, and set G’ = G —u. Then G’
is a 4-connected line graph with |V (G")| < |[V(G)], hence G is 2-edge-Hamilton-connected.
Choose o’ € Ng(u) such that o’ ¢ {b, c,d} (this is always possible since dg(u) > 4) and set
el =a'band X' = {e],es}. Let C’ be a hamiltonian cycle in G’ + X’ containing €] and es.

Then C = d'ae;bC’d’ is a hamiltonian cycle in G containing e; and e, a contradiction.

Case 2: dx(u) = 2. Then, by the choice of notation, u = b = d. Similarly as before,
G' = G — u is 2-edge-Hamilton-connected. Set ¢/ = ac, X’ = {¢'} and let C’ be a
hamiltonian cycle in G’ containing X’. Then C = aucC’a is a hamiltonian cycle in G

containing X, a contradiction. U



Let now H be a graph such that L(H) = G, and let a, b, ¢, d be the edges corresponding
to the vertices a,b,c,d € V(G), respectively. By Claim 1, none of the edges a,b, ¢, d is
pendant.

We now distinguish two cases.

Case 1: {a,b} N{c,d} = 0. We define a graph Hy by the following construction.
e H’is a graph obtained from H by subdividing each of the edges a, b, ¢, d with a new

vertex a/, V', ¢, d', respectively,
e [, is a graph obtained from H' by adding a new vertex u and edges ua’, ub’, uc, ud’,
e H, is obtained from H; by removing vertices of degree 1 and suppressing vertices of
degree 2.
Then Hs, is essentially 4-edge-connected with minimum degree §( Hs) > 3 and, by Lemma F,
H, has an essentially 4-edge-connected cubic inflation Hj. Finally, let H; be obtained from
Hj3 by removing I(u) (i.e. the vertices of the cycle that corresponds to the vertex u of Hy).

Then H, satisfies the assumptions of Theorem 5, hence Hy+{a'b’, ¢/d’'} has a dominating
cycle containing a'b’ and ¢d’.

By Lemma G, (Hy—u)+{a’l/,d'} has a dominating closed trail T’ containing the edges
a't', dd" and all vertices of degree at least 4. The graph H is essentially 4-edge-connected,
hence for every vertex of H of degree 1 or 2, all its neighbors are of degree at least 4. Thus,
T is a dominating closed trail also in H' + {a'b/, ¢/d'}. Since T' contains the edges a't’ and
dd', G+ X has a hamiltonian cycle containing the edges e; and ey, a contradiction.

Case 2: {a,b} N{c,d} # 0. By the choice of notation, we have b = d and the vertices a, b, ¢
are distinct. By the assumption, G is not 2-edge-Hamilton-connected, hence G — b has no

hamiltonian (a, c)-path, implying that H — b has no internally dominating (a, ¢)-trail.
Claim 2. Neither a and b nor b and ¢ share a vertex of degree 2.

Proof of Claim 2. By symmetry, suppose that @ and b share a vertex v of degree 2. Then
ab € E(G). Let K denote the subgraph of G induced by Ng(a) \ {b,c}. Since dy(v) = 2,
K is a clique of order at least 2.

Let H' be obtained from H by suppressing the vertex v, i.e., @ and b coincide in H’
into an edge w. Set G’ = L(H'). Then G’ is obtained from G by contraction of the edge
ab into a vertex w. Clearly, G’ is 4-connected, hence, by the minimality of G, G’ is 2-edge-
Hamilton-connected. Let a; be an arbitrary vertex in K, set €] = wa; and ¢, = we, and
let C’ be a hamiltonian cycle in G' + {e], €, } containing €] and €},. Then C' = a;abcC’a; is
a hamiltonian cycle in G + X containing e; and ey, a contradiction. 0

Let H; be the graph obtained from H by removing vertices of degree 1 and suppressing
vertices of degree 2. Then H; is essentially 4-edge-connected. Let a*,b*, ¢* denote the
edges of H; that correspond to the edges @, b, ¢ of H. Note that possibly a* = ¢* (if @ and
¢ share a vertex of degree 2), but, by Claim 2, a* # b* and b* # ¢*.
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Let H, be an essentially 4-edge-connected cubic inflation of H; and, with a slight abuse
of notation, let a*, b*, ¢* denote the edges of Hy that correspond to these edges of H;. Set
a* = aiasg, b* = blbg, ct = C1Co.

Claim 3.  The edges a*,b*, c* (and hence also the edges a, b, ¢) do not share a vertex of
degree 3.

Proof of Claim 3. Let, to the contrary, w = a; = b; = ¢; be of degree 3. If a = wa] for
some a} # ay, then, by the construction of Hy, a is of degree 2 in H and {a]as, bow, cow}
is an essential edge-cutset separating the edge ajw from the rest of H, a contradiction.
Hence a* = @ and, similarly, b* = b and ¢* = ¢.

By Theorem C(ii), Hy has a dominating cycle C' containing ¢* and ¢*. Since w is of
degree 3, C' does not contain b*. By Lemma G and since H is essentially 4-edge-connected,
H has a dominating closed trail 7' containing @ and ¢ and not containing b. But then 7 is
an internally dominating (@, ¢)-trail in H — b, a contradiction. 0

By Claim 3, we either have a* = ¢*, or either a*, ¢* or a*,b* have no common vertex. Let
Hj; and H, be the graphs obtained from H, as follows:

(7) if a*,c¢* have no vertex in common, then Hj is obtained from Hy by subdividing
each of the edges a*, ¢* with a new vertex a’, ¢, respectively, and by adding the edge
a'd, and H, is obtained from Hj by deleting the edges a’c¢’ and b* (but keeping the
vertices @, ¢, by, by);

(71) if a* = ¢*, then H3 = H, and H, is obtained from Hj by deleting the edges a*, b*
(but keeping the vertices ay, as, by, bg), and, for consistence, by relabeling a; := o
and ay := ¢/;

(240) if a*,b* have no vertex in common, then Hj is obtained from Hs by subdividing a*
and b* with a new vertex ¢’ and &’ and adding the edge a’b’ and then subdividing
a'l’ and ¢* with a new vertex d’ and ¢’ and adding the edge d'c/, and H, is obtained
from Hj by deleting the vertices ' and d'.

It is an easy observation that an essentially 4-edge-connected cubic graph remains essen-
tially 4-edge-connected if we subdivide two independent edges and connect the new vertices
with a new edge. Hence, in all three cases, the graph Hj is essentially 4-edge-connected.
Since Hy is a subgraph of Hy with 6(H,) = 2 and |V5(Hy)| = 4, H, satisfies the assumptions
of Theorem 5. Then the graph Hy+ {a'c'} has a dominating cycle containing the edge a’c/,
implying that H — b has an internally dominating (@, ¢)-trail, a contradiction. [ |
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