
Closure, clique covering and degree conditions for
Hamilton-connectedness in claw-free graphs
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Abstract

We strengthen the closure concept for Hamilton-connectedness in claw-free graphs,

introduced by the second and fourth authors, such that the strong closure GM of a

claw-free graph G is the line graph of a multigraph containing at most two triangles

or at most one double edge.

Using the concept of strong closure, we prove that a 3-connected claw-free graph

G is Hamilton-connected if G satisfies one of the following: (i) G can be covered by

at most 5 cliques, (ii) δ(G) ≥ 4 and G can be covered by at most 6 cliques, (iii)

δ(G) ≥ 6 and G can be covered by at most 7 cliques.

Finally, by reconsidering the relation between degree conditions and clique cover-

ings in the case of the strong closure GM , we prove that every 3-connected claw-free

graph G of minimum degree δ(G) ≥ 24 and minimum degree sum σ8(G) ≥ n + 50

(or, as a corollary, of order n ≥ 142 and minimum degree δ(G) ≥ n+50
8 ) is Hamilton-

connected.

We also show that our results are asymptotically sharp.

1 Notation and terminology

In this paper we follow the most common graph-theoretic terminology and notation and
for notations and concepts not defined here we refer the reader to [3].

Specifically, by a graph we mean a finite simple undirected graph G = (V (G), E(G));
whenever we allow multiedges (multiple edges), we say that G is a multigraph. By a
multiedge in a multigraph we mean an induced subgraph X ⊂ G such that |V (X)| = 2
and |E(X)| ≥ 2. More precisely, for an edge e1e2, we can define the induced subgraph
X ⊂ G with V (X) = {e1, e2} and say that e1e2 is a single edge (multiedge) if |E(X)| = 1
(|E(X)| ≥ 2), respectively. The number |E(X)| will be also called the multiplicity of the
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edge e1e2. Thus a graph is a multigraph with all edges of multiplicity 1. By a double edge
we mean an edge with multiplicity 2.

A walk in G is an alternating sequence v0e0v1e1...ek−1vk of vertices and edges of G
such that ei = vivi+1 for all i = 0, 1, ..k−1. A trail in G is a walk with no repeated edges.
For u, v ∈ V (G), a (u, v)-walk in G is a walk such that u = v0, v = vk. A (u, v)-trail in
G is a trail such that u = v0, v = vk. A (u, v)-path in G is a (u, v)-trail with no repeated
vertices. For h, f ∈ E(G), an (h, f)-trail in G is a trail such that e0 = h and ek−1 = f .

Given a trail T and an edge e in a multigraph G, we say e is dominated (internally
dominated) by T if e is incident to a vertex (to an interior vertex) of T , respectively.
Given u, v ∈ V (G), we say T is a maximal (u, v)-trail if T internally dominates a maxi-
mum number of edges among all (u, v) trails in G. A trail T in G is called an internally
dominating trail, shortly IDT, if T internally dominates all the edges in G. A closed trail
T in G is called a dominating closed trail, shortly DCT, if T dominates all edges in G.
Note that in a DCT all the vertices are internal.

In a graph G, dG(x) denotes the degree of the vertex x and NG(x) denotes the neigh-
borhood of x, i.e. the set of all the vertices adjacent to x. The induced subgraph by the
set of vertices M is denoted ⟨M⟩G. If the graph G is clear from the context, we omit the
subscript and simply write d(x), N(x) or ⟨M⟩, respectively.

A vertex v in a graph G is simplicial if ⟨N(v)⟩ is complete. An edge e in G is called
pendant if one of its vertices is of degree 1 in G; the other vertex of degree more than one
is called the root of e. For graphs (multigraphs) G1 and G2, we use G1 ≃ G2 to denote
that G1 and G2 are isomorphic.

We use δ(G) for the minimum degree of a graph G, α(G) for the independence number
(i.e. the maximum size of an independent set) of G, ν(G) for the matching number
(i.e. the maximum size of a matching) of G, and we set σk(G) = min{d(a1) + ... +
d(ak) | {a1, ..., ak} ⊂ V (G) is an independent set}. A vertex cover of a graph G is a set
M ⊂ V (G) such that every edge has at least one vertex in M , and the vertex cover
number of G, denoted τ(G), is the minimum size of a vertex cover. A clique is a complete
subgraph, not necessarily maximal, and a clique covering of a graph G is a set of cliques
of G which covers all the vertices of G. The clique covering number of G, denoted ϑ(G), is
the minimum number of cliques in a clique covering of G among all the cliques coverings
of G.

IfH is a given graph, then a graphG is calledH-free ifG contains no induced subgraph
isomorphic to H. In this case, the graph H is called a forbidden subgraph. The claw is
the graph K1,3.

2 Introduction

In this section we summarize some background knowledge that will be needed for our
results.

IfH is a graph (multigraph), then the line graph ofH, denoted L(H), is the graph with
E(H) as vertex set, in which two vertices are adjacent if and only if the corresponding
edges have a vertex in common. Recall that every line graph is claw-free.
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It is well-known that if G is a line graph of a graph, then the graph H such that
G = L(H) is uniquely determined (with one exception of G = K3). However, in line
graphs of multigraphs this is, in general, not true, as can be seen from the graphs in
Fig. 1, where L(H1) = L(H2) = G, i.e., in line graphs of multigraphs the “line graph
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preimage” is not unique. This difficulty can be avoided by introducing an additional
requirement that, for any simplicial vertex in the line graph, the corresponding edge in
the preimage is a pendant edge.

Proposition A [16]. Let G be a connected line graph of a multigraph. Then there is,
up to an isomorphism, a uniquely determined multigraph H such that a vertex e ∈ V (G)
is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

For a given line graph G, its (unique) preimage with the properties given in Proposi-
tion A, will be denoted L−1(G) (note that if G is a line graph of a graph, then L−1(G)
and the “obvious” line graph preimage can be different - see Fig. 1). If H = L−1(G),
a ∈ V (G) and e ∈ E(H) is the edge of H corresponding to the vertex a, we will use the
notation e = L−1

G (a) and a = LG(e) (or simply e = L−1(a) and a = L(e) if the graph G is
clear from the context).

We will need the following characterization of line graphs of multigraphs by Krausz [11].

Theorem B [11]. A nonempty graph G is a line graph of a multigraph if and only if
V (G) can be covered by a system of cliques K such that every vertex of G is in exactly
two cliques of K and every edge of G is in at least one clique of K.

A system of cliques K = {K1, ..., Km} with the properties given in Theorem B is called
a Krausz partition of G. Also, if G is a line graph, then G has a Krausz partition K such
that a vertex x ∈ V (G) is simplicial if and only if one of the two cliques containing x is
of order 1 (this can be easily seen from Proposition A), and then the preimage L−1(G)
can be obtained from such a Krausz partition K as the intersection graph (multigraph) of
the set system {V (K1), ..., V (Km)}, in which the number of vertices shared by two cliques
equals the multiplicity of the (multi)edge joining the corresponding vertices of L−1(G).

The line graph preimage counterpart of hamiltonicity was established by Harary and
Nash-Williams [9] who showed that a line graph G of order at least 3 is hamiltonian if and
only if its preimage H = L−1(G) contains a DCT. A similar argument gives the following
analogue for Hamilton-connectedness (see e.g. [12]).
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Theorem C [12]. Let H be a multigraph with |E(H)| ≥ 3. Then G = L(H) is
Hamilton-connected if and only if for any pair of edges e1, e2 ∈ E(H), H has an internally
dominating (e1, e2)-trail.

An edge cut Y of a multigraph G is essential if G − Y has at least two nontrivial
components. For an integer k > 0, a multigraph G is essentially k-edge-connected if every
essential edge cut Y of G contains at least k edges. From the definitions it is easy to
see that a line graph G = L(H) with α(G) ≥ 2 is k-connected if and only if the graph
H is essentially k-edge-connected. Also, G = L(H) contains a graph F as an induced
subgraph if and only if H contains L−1(F ) as a (not necessarily induced) subgraph.

It is also easy to see that if δ(G) ≥ k, then there are no trivial edge-cuts of size
less then k, hence G is k-edge-connected if and only if G is essentially k-edge-connected.
Moreover, ifG is cubic, thenG is 3-edge-connected if and only ifG is 3-connected. Thus, in
cubic graphs, 3-connectedness, 3-edge-connectedness and essential 3-edge-connectedness
are equivalent concepts.

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G) ∪

{y1y2| y1, y2 ∈ NG(x)}) (i.e., G
∗
x is obtained from G by adding all the missing edges with

both vertices in NG(x)).
A vertex x ∈ V (G) is locally connected (eligible), if ⟨N(x)⟩ is a connected (connected

noncomplete) subgraph of G, respectively. The set of all eligible vertices in G will be
denoted VEL(G). It is an easy observation that in the special case when G is a line
graph and H = L−1(G), a vertex x ∈ V (G) is locally connected if and only if the edge
e = L−1

G (x) is in a triangle or in a multiedge in H, and G
∗
x = L(H|e), where the graph H|e

is obtained from H by contraction of e into a vertex and replacing the created loop(s) by
pendant edge(s).

Based on the fact that if G is claw-free and x ∈ VEL(G), then G
∗
x is hamiltonian if and

only if G is hamiltonian, the closure cl(G) of a claw-free graph G was defined in [14] as the
graph obtained from G by recursively performing the local completion operation at eligible
vertices, as long as this is possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a
sequence of graphs such thatG1 = G, Gi+1 = (Gi)

∗
xi
for some xi ∈ VEL(G), i = 1, . . . , k−1,

and VEL(Gk) = ∅). We say that G is closed if G = cl(G).
The following result from [14] summarizes basic properties of the closure operation.

Theorem D [14]. For every claw-free graph G:
(i) cl(G) is uniquely determined,
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) cl(G) is hamiltonian if and only if G is hamiltonian.

However, as observed in [4], the closure operation, in general, does not preserve the
(non-)Hamilton-connectedness of G. This motivated the concept of k-closure as intro-
duced in [2]: for an integer k ≥ 1, a vertex x is k-eligible if ⟨N(x)⟩ is k-connected
noncomplete, and the k-closure clk(G) is obtained analogously by recursively performing
the local completion operation at k-eligible vertices, as long as this is possible. The re-
sulting graph is again unique (see [2]). The following result was conjectured in [2] and
proved in [15].
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Theorem E [15]. Let G be a claw-free graph. Then G is Hamilton-connected if and
only if cl2(G) is Hamilton-connected.

It can be easily seen that, in general, cl2(G) is not a line graph, and even not a
line graph of a multigraph. To overcome this drawback, the second and fourth authors
developed in [16] the concept of the multigraph closure (or briefly M-closure) clM(G) of
a graph G: the graph clM(G) is obtained from cl2(G) by performing local completions
at some (but not all) eligible vertices, where these vertices are chosen in a special way
such that the resulting graph is a line graph of a multigraph while still preserving the
(non-)Hamilton-connectedness of G. We do not give technical details of the construction
since these will not be needed for our proofs. We refer the interested reader to [15], [16];
we only note here that clM(G) can be constructed in polynomial time.

The following result summarizes basic properties of clM(G).

Theorem F [16]. Let G be a claw-free graph and let clM(G) be the M -closure of G.
Then

(i) clM(G) is uniquely determined,
(ii) there is a multigraph H such that clM(G) = L(H),
(iii) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

We say that G is M-closed if G = clM(G). Consider the graphs T1, T2, T3 in Fig. 2 (the
graph T1 will be often referred to as the diamond and T2 as the multitriangle). It is easy
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to observe that if G = L(H) and x ∈ V (G) is 2-eligible, then the edge x1x2 = L−1
G (x) ∈

E(H), corresponding to x, is contained in a copy of Ti for some i, 1 ≤ i ≤ 3, such that
dTi

(x1) = dTi
(x2) = 3. Although the converse is not true in general, it can be shown (see

[16]) that it is true in the special case when H = L−1(G).

Proposition G [16]. Let G be a claw-free graph and let T1, T2, T3 be the graphs shown
in Fig. 2. Then G is M -closed if and only if G is a line graph of a multigraph and L−1(G)
does not contain a subgraph (not necessarily induced) isomorphic to any of the graphs
T1, T2 or T3.

It is not difficult to observe that, roughly speaking, graphs that can be covered by
few cliques are likely to have some hamiltonian properties and, similarly, graphs with
high vertex degrees are likely to be coverable by few cliques. Using this approach, a re-
lation between degree conditions and clique covering number was established and degree
conditions for hamiltonicity in claw-free graphs (with exception classes) were obtained
in [5], degree conditions for traceability and for the existence of a 2-factor with limited
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number of components were obtained in [8] and, finally, a general algorithm that gener-
ates all classes of 2-connected nonhamiltonian exceptions for a degree condition of type
σk(G) ≥ n + constant (or, as a corollary, δk(G) ≥ n+constant

k
) for arbitrary integer k was

developed in [10], and performed (on a cluster of parallel workstations) for k = 8. In this
paper, we will apply this approach to Hamilton-connectedness.

In Section 3 we strengthen the concept of M -closure such that the closure of a claw-
free graph is the line graph of a multigraph with at most two triangles or at most one
double edge.

In Section 4 we consider the relation between the clique covering number and Hamilton-
connectedness. Among others, we prove that every 3-connected claw-free graph G with
minimum degree δ(G) ≥ 6 and clique covering number ϑ(G) ≤ 7 is Hamilton-connected.

Finally, in Section 5 we reconsider the relation between degree conditions and clique
covering number, developed in [5], in the case of the strengthened M -closure. As an
application, we obtain the following asymptotically sharp degree conditions for Hamilton-
connectedness in claw-free graphs (see Theorem 10 and Corollary 11):

If G is a 3-connected claw-free graph such that δ(G) ≥ 24 and σ8(G) ≥ n+50, then
G is Hamilton-connected.

If G is a 3-connected claw-free graph with n ≥ 142 vertices and with minimum
degree δ(G) ≥ n+50

8
, then G is Hamilton-connected.

These results extend the best known degree condition for Hamilton-connectedness in
3-connected claw-free graphs δ(G) ≥ n+8

5
proved in [13].

3 Strengthening the M-closure

In this section we further strengthen the concept of M -closure as introduced in [16] (see
Theorem F) in such a way that the closure of a claw-free graph is the line graph of
a multigraph with either at most two triangles and no multiedge, or with at most one
double edge and no triangle.

For a given claw-free graph G, we construct a graph GM by the following construction.
(i) If G is Hamilton-connected, we set GM = cl(G).
(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-
connected, as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk

such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
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A graph GM obtained by the above construction will be called a strong M -closure (or
briefly an SM -closure) of the graph G, and a graph G equal to its SM -closure will be
said to be SM -closed.

The following theorem summarizes basic properties of the SM -closure operation.

Theorem 1. Let G be a claw-free graph and let GM be its SM -closure. Then GM has
the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(G
M) = ∅ and GM = cl(G), or

(β) VEL(G
M) ̸= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(G

M),
(vi) GM = L(H), where H contains either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,

(vii) if G contains no hamiltonian (a, b)-path for some a, b ∈ V (G) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} ≠ ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

Note that, by (vi), the structure of L−1(GM) is very close to that of L−1(cl(G)) (only
at most two triangles or at most one double edge). In some cases (specifically, in cases
(iv) and (v)(α) of Theorem 1), we have VEL(G

M) = ∅ and GM = cl(G), implying that
GM is uniquely determined. However, if VEL(G

M) ̸= ∅, then, for a given graph G, its
SM -closure GM is in general not uniquely determined and, as will be seen from the proof,
the construction of GM requires knowledge of a pair of vertices a, b for which there is no
hamiltonian (a, b)-path in G. Consequently, there is not much hope to construct GM in
polynomial time (unless P=NP). Nevertheless, the special structure of GM will be very
useful for our considerations in the next sections.

For the proof of Theorem 1 we will need the following result from [4].

Proposition H [4]. Let x be an eligible vertex of a claw-free graph G, G
∗
x the local

completion of G at x, and a, b two distinct vertices of G. Then for every longest (a, b)-
path P ′(a, b) in G

∗
x there is a path P in G such that V (P ) = V (P ′) and P admits at

least one of a, b as an endvertex. Moreover, there is an (a, b)-path P (a, b) in G such that
V (P ) = V (P ′) except perhaps in each of the following two situations (up to symmetry
between a and b):

(i) There is an induced subgraph F ⊂ G isomorphic to the graph S in Fig. 3 such
that both a and x are vertices of degree 4 in F . In this case G contains a path Pb

such that b is an endvertex of P and V (Pb) = V (P ′). If, moreover, b ∈ V (F ), then
G contains also a path Pa with endvertex a and with V (Pa) = V (P ′).
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(ii) x = a and ab ∈ E(G). In this case there is always both a path Pa in G with
endvertex a and with V (Pa) = V (P ′) and a path Pb in G with endvertex b and
with V (Pb) = V (P ′).
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Proof of Theorem 1. Let G be a claw-free graph and let GM be its SM -closure.
Clearly, GM satisfies (i), (ii), (iii), (iv) and, if VEL(G

M) ̸= ∅, then also (v)(β). Suppose
that G is such that cl(G) is not Hamilton-connected and, for some GM , VEL(G

M) ̸= ∅.
Then, by the definition of cl(G), for any x ∈ VEL(G), (GM)

∗
x is a spanning subgraph

of cl(G) and hence also not Hamilton-connected, a contradiction. Thus, if cl(G) is not
Hamilton-connected, then VEL(G

M) = ∅ for any GM . By the uniqueness of cl(G), GM

satisfies also (v)(α).

Now, if some GM is not a line graph (of a multigraph), then GM is a proper subgraph of
clM(GM). However, the graph clM(GM) is also not Hamilton-connected and was obtained
from GM by local completions at eligible vertices, contradicting (v)(β). Hence every GM

is a line graph of a multigraph.

Let GM be an SM -closure of G and set H = L−1(GM), e = L−1
GM (a) and f = L−1

GM (b).

Claim 1. Each triangle in H contains at least one of the edges e, f .

Proof. Suppose that H contains a triangle T such that {e, f} ∩ E(T ) = ∅, and let
h ∈ E(T ) and x = L(h). Then x ∈ VEL(G

M). Suppose that GM contains an induced
subgraph F such that F ≃ S (see Fig. 3) and x is a vertex of degree 4 in F . Since L−1(S)
is the graph consisting of a triangle with a pendant edge at each vertex, L−1(S) contains
a triangle containing h. By Proposition G, H contains no diamond (otherwise we have
a 2-eligible vertex, contradicting the definition of GM), hence L−1(S) contains T . Since
{e, f}∩E(T ) = ∅, none of the vertices a, b is a vertex of degree 4 in F . By Proposition H(i),
the graph (GM)

∗
x has no hamiltonian (a, b)-path, contradicting the definition of GM .

Claim 2. If H contains a multiedge X, then E(X) = {e, f}.

Proof. If X is a multiedge in H, then, by Proposition G, X is a double edge and no
edge of X is in a triangle. Set E(X) = {h1, h2}, xi = L(hi), i = 1, 2, and suppose that
h1 /∈ {e, f}. Then x1x2 ∈ E(GM) and xi ∈ VEL(G

M), i = 1, 2. Since x1 /∈ {a, b}, by
Proposition H(ii), the graph (GM)

∗
x1

has no hamiltonian (a, b)-path, contradicting the
definition of GM .

Now, the properties (vi) and (vii) of GM follow immediately from Claims 1 and 2.
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4 Graphs that can be covered by few cliques

In this section we prove that every 3-connected claw-free graph that can be covered by a
small number of cliques is Hamilton-connected.

Theorem 2. Let G be a 3-connected claw-free graph. If
(i) ϑ(G) ≤ 5, or
(ii) ϑ(G) ≤ 6 and δ(G) ≥ 4, or
(iii) ϑ(G) ≤ 7 and δ(G) ≥ 6,

then G is Hamilton-connected.

Examples. (i) Consider the graph G1 = L(H1), where H1 is the left graph in Fig. 4
(in which the dots indicate that the number of pendant edges attached to the respective
vertices can be arbitrarily large). The graph H1 has no (e, f)-IDT (hence, by Theorem C,
G1 is not Hamilton-connected), but ϑ(G1) = 6 and δ(G1) = 3. This example shows that,
in Theorem 2(ii), the condition δ(G) ≥ 4 is necessary.

(ii) Let G2 = L(H2), where H2 is the second graph in Fig. 4 (in which again the
dots indicate an arbitrary number of pendant edges). Clearly, G2 is 3-connected and
ϑ(G2) = 8, but G2 is not Hamilton-connected (since H2 has e.g. no (u1u5, u3u7)-IDT).
This example shows that Theorem 2 is sharp.
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Figure 4

For the proof of Theorem 2 we will need several notations and auxiliary results.

Let H be a graph, u ∈ V (H) a vertex of degree 2, and let v1, v2 be the neighbors of
u. Then H|(u) denotes the graph obtained from H by suppressing the vertex u (i.e., by
replacing the path v1, u, v2 by the edge v1v2) and by adding two pendant edges f1 and f2
such that f1 is incident with v1 and f2 is incident with v2.

Lemma 3. Let H be a graph, u ∈ V (H) a vertex of degree 2, and let v1, v2 be the
neighbors of u. Set H ′ = H|(u), h = v1v2 ∈ E(H ′), and let f1, f2 ∈ E(H ′) \ E(H) be the
two pendant edges attached to v1 and v2, respectively.
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(i) If L(H) is Hamilton-connected, then L(H ′) has a hamiltonian (x, y)-path for every
x, y ∈ V (L(H ′)) for which either L(h) /∈ {x, y}, or L(h) ∈ {x, y} and {x, y} ∩
{L(f1), L(f2)} ̸= ∅.

(ii) If L(H ′) is Hamilton-connected, then L(H) has a hamiltonian (x, y)-path for every
x, y ∈ V (L(H)) for which {x, y} ̸= {L(uv1), L(uv2)}.

Proof. Suppose first that L(H) is Hamilton-connected, i.e. H contains an (e, f)-IDT
for any e, f ∈ E(H). For given e′, f ′ ∈ E(H ′), we construct an (e′, f ′)-IDT in H ′. Up to
a symmetry, we have the following possibilities.

(a) If {e′, f ′} = {f1, f2}, we take a (uv1, uv2)-IDT in H and replace the edges uv1 and
uv2 with f1 and f2, respectively. The resulting trail is an (f1, f2)-IDT in H ′.

(b) If e′ = f1 and f ′ = h, we similarly take a (uv1, uv2)-IDT in H and, replacing uv1
and uv2 with f1 and h, we get an (f1, h)-IDT in H ′.

(c) Suppose that e′ = f1 and f ′ /∈ {f1, f2, h}. Let f ∈ E(H) be the edge corresponding
to f ′, and let T be a (uv1, f)-IDT in H. If u is not an internal vertex of T , we
replace uv1 with f1; otherwise (i.e. if u is an internal vertex of T ), we replace v1u
and uv2 with f1 and h. In both cases we get an (f1, f

′)-IDT in H ′ (note that if u
is not an internal vertex of T , then v2 ∈ V (T ), since otherwise the edge uv2 would
not be dominated).

(d) Finally, let {e′, f ′}∩{f1, f2, h} = ∅ and let e, f ∈ E(H) be the edges corresponding
to e′, f ′ ∈ E(H ′). Then any (e, f)-IDT in H corresponds to an (e′, f ′)-IDT in H ′.

In all cases, we have constructed an (e′, f ′)-IDT in H ′.

Conversely, suppose that L(H ′) is Hamilton-connected, i.e. H ′ has an (e′, f ′)-IDT for
any e′, f ′ ∈ E(H ′). For given e, f ∈ E(H), we construct an (e, f)-IDT in H.

(a) If {e, f} ∩ {uv1, uv2} = ∅, then, for e′, f ′ ∈ E(H ′) corresponding to e, f ∈ E(H),
any (e′, f ′)-IDT in H ′ corresponds to an (e, f)-IDT in H.

(b) Let e = uv1 and f ̸= uv2, let f ′ ∈ E(H ′) be corresponding to f , and let T ′ be
an (h, f ′)-IDT in H ′. To obtain a (uv1, f)-IDT in H, we replace the edge h with
either the edge uv1 if v1 is the first interior vertex on T ′, or with the path v1uv2 if
v2 is the first interior vertex on T ′.

In both cases, we have constructed an (e, f)-IDT in H.

Corollary 4. Let G be an SM -closed graph that is not Hamilton-connected and
suppose that the graph H = L−1(G) contains a vertex u ∈ V (H) of degree 2 and a
triangle not containing u. Then the graph L(H|(u)) is not Hamilton-connected.

Proof. Let v1 and v2 be the two neighbors of u in H and let T be a triangle in H
not containing u. Since L(H) is SM -closed, there are e, f ∈ E(H) such that at least
one of the edges e, f is in T and H has no (e, f)-IDT (see Theorem 1(v)(α)). Clearly
{e, f} ≠ {uv1, uv2}. If L(H|(u)) is Hamilton-connected, then, by Lemma 3(ii), H has an
(e, f)-IDT, a contradiction.
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We will also need the following operation (see [7]). Let H be a graph, z ∈ V (H) a
vertex of degree d ≥ 4, and let u1, u2, . . . , ud be an ordering of neighbors of z (allowing
repetition in case of parallel edges). Then the graph Hz, obtained from the disjoint union
of G−z and the cycle Cz = z1, z2, . . . , zdz1 by adding the edges uizi, i = 1, . . . , d, is called
an inflation of H at z. If δ(H) ≥ 3, then, by successively taking an inflation at each
vertex of degree greater than 3 we can obtain a cubic graph HI , called a cubic inflation of
H. The inflation of a graph at a vertex is not unique (since it depends on the ordering of
neighbors of z) and it is possible that the operation decreases the edge-connectivity of the
graph; however, it can be shown that with a proper choice of the ordering of neighbors,
the connectivity can be preserved. This was shown in [7] for essential edge-connectivity
4, and the following proposition is an analogue for essential edge-connectivity 3. Its proof
is implicit in the proof of Lemma 2 of [6].

Also recall that, in cubic graphs, 3-connectedness, 3-edge-connectedness and essential
3-edge-connectedness are equivalent concepts; we state the result here in a form in which
it will be needed for our proof.

Proposition I [6]. Let H be an essentially 3-edge-connected graph with δ(H) ≥ 3
and let z ∈ V (H) be a vertex of degree d(z) ≥ 4. Then there exists an inflation Hz of H
at z which is essentially 3-edge-connected.

For the proof of Theorem 2 we will also need the following result by Bau and Holton [1].

Proposition J [1]. Let G be a 3-connected cubic graph, M ⊂ V (G) such that |M | ≤ 7
and e ∈ E(G). Then there exists a cycle C in G, such that M ⊂ V (C) and e ∈ E(C).

Now we are ready to prove the main result of this section.

Proof of Theorem 2. Let G be a graph satisfying the assumptions of the theorem and
suppose, to the contrary, that G is not Hamilton-connected. Let GM be an SM -closure
of G. Clearly, if G can be covered by ϑ cliques, then so can be GM , hence ϑ(GM) ≤ ϑ(G).
Obviously, GM is 3-connected and δ(GM) ≥ δ(G), hence GM also satisfies the assumptions
of the theorem. Thus, we can suppose that G is SM -closed. Set H = L−1(G).

Let K = {K1, . . . , Kϑ(G)} be a minimum clique covering of G.
In a clique in G, all the vertices are pairwise adjacent and therefore the corresponding

edges in H are also pairwise adjacent. Hence, the cliques in K correspond in H either to
stars or to triangles. If L−1(Ki) is a star, then its center will be refereed to as a black
vertex, and if L−1(Ki) is a triangle, we say that L−1(Ki) is a black triangle in H. Edges of
black triangles are called black edges, and all the other edges are said to be white edges.

We will use the following notation:
BV denotes the set of black vertices in H (i.e. BV ⊂ V (H)) and βV = |BV |,
BT denotes the set of black triangles in H and βT = |BT |,
W = V (H) \BV ; the vertices in W we will called white vertices,
B2 = {b ∈ BV | dH(b) = 2} and β2 = |B2|,
Y = {y ∈ V (H) | yb ∈ E(H) for some b ∈ B2} and η = |Y |,
β = βV + βT (i.e., β = ϑ(G)).
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We choose the graph G and the clique covering K of G such that
(i) G is SM -closed and not Hamilton-connected,
(ii) subject to (i), |K| is minimum,
(iii) subject to (i) and (ii), β2 is minimum.

From the definitions we immediately see the following properties of BV , Y and W :
• every white edge has at least one vertex in BV ,
• Y ⊂ W (otherwise there is a black vertex incident with a black vertex u of degree
2, but now we can lower β2 by coloring u white and its neighbors black),

• the vertices in W (and hence also in Y ) can be connected only by black edges (note
that a white edge is contained only in a star in H which corresponds to a clique in
G),

• every vertex in Y has degree at least three (otherwise we have a contradiction with
the 3-connectedness of G).

We denote B2 = {x1, x2, ..., xβ2} and, for any xi ∈ B2, we set N(xi) = {y1i , y2i }, i =
1, ..., β2. Now we present several claims concerning the vertices in B2.

Claim 1. For every i = 1, ..., β2, y
1
i y

2
i /∈ E(H).

Proof. Let, to the contrary, y1i y
2
i ∈ E(H). Since Y ⊂ W , y1i y

2
i is an edge of a black

triangle T . If T = xiy
1
i y

2
i , then we can color xi with white color, thus lower β2, a

contradiction. Therefore T = zy1i y
2
i and z ̸= xi. But now zy1i y

2
i xi is a diamond, which is

also a contradiction (see Proposition G).

Consider the bipartite graph F = (B2, Y ). There is no cycle in F , otherwise we could
switch colors of the vertices along this cycle and lower β2. Recall that the vertices in
B2 are of degree two, thus F is a subdivision of a forest. This immediately implies the
following fact.

Claim 2. If β2 > 0, then β2 + 1 ≤ η ≤ 2β2.

Let e1, e2 ∈ E(H) be two edges such that there is no (e1, e2)-IDT in H.

Claim 3. Let xi ∈ B2 and N(xi) = {y1i , y2i }.
(i) If H contains a multiedge or two triangles, then N(y1i ) ∩N(y2i ) = {xi}.
(ii) If {e1, e2} ≠ {xiy

1
i , xiy

2
i }, then |N(y1i ) ∩N(y2i )| ≤ 2}.

Proof. Suppose first that H contains a multiedge or two triangles. If H contains two
triangles T1, T2, then, since y1i y

2
i /∈ E(H) (by Claim 1) and xi has degree two, neither

of the edges xiy
1
i , xiy

2
1 is contained in T1 or T2, hence neither of them is e1 or e2. If H

contains a multiedge X, then E(X) = {e1, e2} (by Theorem 1(v)(β)), and neither of xiy
1
i ,

xiy
2
1 is in X since xi has degree two. Thus, in both cases, {xiy

1
i , xiy

2
i } ∩ {e1, e2} = ∅.

We consider the graphH ′ = H|(xi). By Lemma 3(ii), L(H ′) is not Hamilton-connected.
Moreover, if H contains triangles T1, T2 (a multiedge X), then T1, T2 (or X) are triangles
(a multiedge) also in H ′.
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Suppose that there is a vertex z ∈ NH(y
1
i ) ∩ NH(y

2
i ), z ̸= xi. Then ⟨{z, y1i , y2i }⟩H′ is

a triangle in H ′. We show that neither of the edges y1i z, y
2
i z can be in one of T1, T2 or

in X.
Let first T1, T2 be triangles in H ′ and let, say, y1i z ∈ E(T1). Then ⟨{y1i , y2i , z, w}⟩H′

(where w is the third vertex of T1) is a diamond (see Fig. 2). Hence the vertex u =
L(y1i z) ∈ V (L(H ′)) is 2-eligible in L(H ′), implying L(H ′)

∗
u = L(H ′|y1i z) is not Hamilton-

connected. However, coloring the vertices y1i = z and y2i of H ′|y1i z black, we reduce β2, a
contradiction. By symmetry, we conclude that (E(T1)∪E(T2))∩{y1i z, y2i z} = ∅. Similarly,
if X is a multiedge in H ′ and, say, y1i z ∈ E(X), then the graph T with V (T ) = {y1i , y2i , z}
and E(T ) = E(X) ∪ {y1i y2i , zy2i } is a multitriangle (see Fig. 2) in H ′, and contracting
one of the edges of X we have a similar contradiction. Thus, in both cases, neither of
y1i z, y

2
i z can be in one of T1, T2 or in X. This specifically implies that z ∈ BV and

{y1i z, y2i z} ∩ {e1, e2} = ∅.
Hence none of the edges e1, e2 is in the triangle ⟨{z, y1i , y2i }⟩H′ . Let H ′′ be the graph

obtained from H ′ by contracting the triangle ⟨{z, y1i , y2i }⟩H′ (note that this corresponds
to two local completions in L(H ′)). Then, by Proposition H, L(H ′′) is not Hamilton-
connected. However, L(H ′′) can be covered by ϑ(G)− 1 cliques, a contradiction.

Now suppose that {e1, e2} ̸= {xiy
1
i , xiy

2
i } and, to the contrary, {xi, z1, z2} ⊂ N(y1i ) ∩

N(y2i ). If, say, z1 ∈ W , then, since Y ⊂ W , the edges zy1i , zy
2
i are edges of black triangles;

by Claim 1, these triangles are distinct and we are in the previous case. Hence z1, z2 ∈ BV .
Set again H ′ = L(H|(xi)). By Corollary 4, L(H ′) is not Hamilton-connected. However,
⟨{y1i , y2i , z1, z2}⟩H′ is a diamond in H ′, and contracting the edge y1i y

2
i and coloring the

contracted vertex black we again reduce β2, a contradiction.

Claim 4. If β2 > 0 and {e1, e2} ≠ {xiy
1
i , xiy

2
i } for every xi ∈ B2, then η−β2 ≤ 7−ϑ(GM).

Proof. We distinguish three cases.

Case 1: ϑ(G) ≤ 5. We need to show that η − β2 ≤ 2. If β2 ≤ 2, then, by Claim 2,
η − β2 ≤ β2 ≤ 2 and we are done. Thus, let β2 ≥ 3 and assume, to the contrary, that
η − β2 ≥ 3 (i.e, the forest F has at least three components). Then η ≥ 3 + β2 ≥ 6.
This means that at least six vertices in Y are connected using some edges from black
triangles or some edges ending in black vertices outside F such that the resulting graph
is essentially 3-edge-connected. Recall that any edge not in a black triangle must have at
least one vertex black. There are at least six vertices in F of degree one in F (at least 2
in each component of F ) and, since δ(G) ≥ 3, every such vertex is incident to at least two
edges outside F . Thus β − β2 ≥ 2. Since ϑ(G) = β ≤ 5, we have β − β2 = 2 and β2 = 3.
Since η ≥ 6 and every vertex in B2 has 2 neighbors in Y , η = 6 and all the vertices in Y
are of degree one in F .

If some vertex in Y , say, y11, is not in a black triangle, then, since δ(G) ≥ 3, y11 has
two black neighbors z1, z2 outside F , implying Bv \ B2 = {z1, z2} and βT = 0, but then
all vertices in Y have to be adjacent to both z1 and z2, contradicting Claim 3. Hence all
vertices in Y are in black triangles, i.e. βT = 2. By Claim 1, the only possibility is the
graph H in Fig 5. But then the graph G = L(H) is Hamilton-connected, a contradiction.
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H

L(H)

Figure 5

Case 2: ϑ(G) = 6 and δ(G) ≥ 4. We have to show that η − β2 ≤ 1. If β2 ≤ 1, then
again η − β2 ≤ β2 ≤ 1 and we are done, hence let β2 ≥ 2 and assume, to the contrary,
that η − β2 ≥ 2. Then η ≥ 2 + β2 = 4, the forest F has at least two components and
there are at least four vertices in Y of degree one in F .

First suppose that some vertex in Y of degree one in F , say, y11, is not in a black
triangle. We can assume that y11 is not in a multiedge for otherwise βT = 0 and we
choose a different vertex in Y of degree one in F . Since δ(G) ≥ 4, y11 has three neighbors
z1, z2, z3 ∈ BV \ V (F ), implying βV − β2 ≥ 3. Since ϑ(G) = β = 6, we have β2 ≤ 3.

If β2 = 3, then βT = 0, some component of F has only one black vertex and both its
neighbors have to be adjacent to each of z1, z2, z3, contradicting Claim 3. Hence β2 = 2
and η = 4. This means that the forest F has two components isomorphic to P3 and four
vertices in Y of degree one in F . We already have that βV ≥ 5, thus βT ≤ 1. Label
the vertices such that {x1y

1
1, x1y

2
1} ≠ {e1, e2} and none of the vertices y11, y

2
1 is incident

with a multiedge (this is always possible). If βT = 0, then y21 has at least two neighbors
among the vertices z1, z2, z3, contradicting Claim 3, hence βT = 1. Let T be the black
triangle. If only one of x1, x2 has a neighbor in T , then we get the same contradiction
for the other vertex. So, both x1 and x2 have a neighbor in T . Choose the notation such
that y21, y

2
2 ∈ V (T ). Since δ(G) ≥ 4, the vertices y21, y

2
2 must have at least one other black

neighbor outside F . Since ϑ(G) = 6, both y21 and y22 is adjacent to some of z1, z2, z3. If
y21, y

2
2 are adjacent to the same vertex, we get a diamond, a contradiction. So, without

loss of generality suppose that we have the edges z1y
2
1 and z3y

2
2.

Consider the graphs H1 = H|(x1) and H ′ = H1|(x2). Since one of the edges e1, e2 is in
T , by Corollary 4, L(H ′) is not Hamilton-connected. But L(H ′) is not SM -closed, and
as one of the edges e1, e2 is in T , we can contract one of the triangles ⟨{y11, y21, z1}⟩H′ ,
⟨{y12, y22, z3}⟩H′ . Let H ′′ denote the resulting graph. Then clearly L(H ′′) is not Hamilton-
connected and has a clique covering with fewer cliques of size two, contradicting the choice
of G (note that contracting a triangle in H ′ corresponds to local completions in L(H ′)).
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Hence all vertices in Y of degree one in F are in black triangles. Since F has at least
two components, at least 4 vertices in Y are of degree 1 in F . Hence βT = 2 and β2 ≤ 4
(and of course η = 6).

If β2 = 4, we can recolor E(BT ) white, V (BT ) black and B2 white (see Fig. 6) and
reduce β2, a contradiction.

-->

Figure 6

If β2 = 3, then 5 ≤ η ≤ 6. If η = 5, we can similarly recolor E(BT ) white, Y black
and B2 white (see Fig 7) and reduce β2, a contradiction. If η = 6, then F has three
components isomorphic to P3. By Claim 1, we can label the vertices in Y such that
BT = {T1, T2}, where T1 = ⟨{y11, y12, y13}⟩H and T2 = ⟨{y21, y22, y23}⟩H . Since δ(G) ≥ 4, the
vertices yji must have a common black neighbor outside F , but then we have a diamond,
a contradiction.

-->

Figure 7

Finally, if β2 = 2, then η = 4 and F has two components isomorphic to P3. We can
again label the vertices in Y such that BT = {T1, T2}, where y11, y

1
2 ∈ T1 and y21, y

2
2 ∈ T2.

A recoloring similar to that in the previous cases then again reduces β2, a contradiction.

Case 3: ϑ(G) = 7 and δ(G) ≥ 6. We need to show that β2 = 0. Let, to the contrary,
β2 ≥ 1, thus η ≥ 2. Let y11 ∈ Y be of degree one in F . Since δ(G) ≥ 6, there are at least
5 edges joining y11 with a vertex outside F , and there are at least 6 − β2 edges joining
y21 with a vertex outside F . Together we have at least 11 − β2 outgoing edges from F
containing one of y11, y

2
1. Since Y ⊂ W , each of these edges must either be black, or must

contain a black vertex. However, there are only 7− β2 elements in B \B2.
If βT = 0, then one of the vertices in Bv \B2 can be in at most three such edges (with

a possible multiedge), and each of the remaining vertices in Bv \B2 is in at most two such
edges. Then y11, y

2
1 have at least two common neighbors, contradicting Claim 3.

If βT > 0, then each of the black triangles contains at most two edges from Y , otherwise
we have a diamond. Similarly as in the previous case, y11 and y21 have at least two common
neighbors, contradicting Claim 3 again.
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Claim 5. β2 ≤ 9− ϑ(G).

Proof.Due to the Claim 4 it is impossible that β2 = 0 or β2 > 0 and {e1, e2} ̸= {xiy
1
i , xiy

2
i }

for every xi ∈ B2. So, choose the notation such that {e1, e2} = {x1y
1
1, x1y

2
1}. By Claim 1,

H has no triangle or multiedge.
(i) If ϑ(G) ≤ 5, it is enough to show that β2 ≤ 4. Let, to the contrary, β2 ≥ 5. Then

clearly β2 = 5 since 5 ≤ β2 ≤ β = ϑ ≤ 5. Thus H = F and H is not essentially
3-edge-connected because F is a forest.

(ii) If ϑ(G) = 6 and δ(G) ≥ 4, we have to show that β2 ≤ 3. Let, to the contrary,
β2 ≥ 4. Then β − β2 ≤ 2, but since δ(G) ≥ 4, every vertex in Y of degree one in
F has at least three neighbors outside F . Hence β − β2 ≥ 3, a contradiction.

(iii) If ϑ(G) = 7 and δ(G) ≥ 5, we have to show that β2 ≤ 2. Let, to the contrary,
β2 ≥ 3. Since F is a forest, we can choose the notation such that the vertex y12 ∈
NH(x2) is of degree one in F and y12x1 /∈ E(H). Since δ(G) ≥ 5, y12 has at least 4
black neighbors outside F , thus β−β2 ≥ 4. Therefore 3 ≤ β2 ≤ β−4 ≤ ϑ−4 = 3,
from which β2 = 3 and β − β2 = 4. The vertex y22 has at most three neighbors in
F and, since δ(G) ≥ 5, y22 has at least two black neighbors outside F . But then y12
and y22 have at least two common neighbors in B \B2, contradicting Claim 3.

Now we can continue with the main proof. We define a graph H+ obtained from H by
specifying an (in most cases new) edge h = u1u2 and by (in most cases) recoloring black
vertices. We use a notation B(H), B(H+), β(H) etc. to distinguish black etc. vertices in
H and in H+. Also note that, by the properties of B(H), the root of a pendant edge in
H has always to be black in H.

The construction of H+ is as follows:
(i) if e1, e2 are pendant edges with a common root w, we setH+ = H, B(H+) = B(H),

and we choose h = u1u2 to be an arbitrary non-pendant edge of H;
(ii) if e1, e2 share a vertex w of degree 2 in H, we denote e1 = u1w, e2 = u2w and we set

h = u1u2, V (H+) = V (H) \ {w}, E(H+) = (E(H) \ {u1w, u2w})∪{h} (i.e., H+ is
obtained fromH by suppressing the vertex w), and we set B(H+) = B(H)\{u1, u2}
(i.e., u1, u2 are white in H+, whatever was their color in H);

(iii) otherwise we set for i = 1, 2:
(α) if ei is pendant, then ui is the root of ei,
(β) if ei is not pendant, then ui is a new vertex subdividing ei,
(γ) H+ = H + h, where h = u1u2,
(δ) B(H+) = B(H) \ {u1, u2}.

Moreover, if some ei (i ∈ {1, 2}) is black in H, say, ei = aibi, where ⟨{ai, bi, ci}⟩H ∈
BT (H), we color the edges ciai, cibi white in H+ (since ⟨{ai, bi, ci}⟩H+ is no more
a triangle), and we set ci ∈ BV (H

+).

Note that:
• in case (ii), if f = u1u2 ∈ E(H), then ⟨{u1, u2, w}⟩H is a triangle in H (possibly
even black), and then f and h are parallel edges in H+,
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• in case (iii), if both e1 and e2 are pendant with adjacent roots (i.e., f = u1u2 ∈
E(H)), then similarly f and h are parallel edges in H+,

• if e1, e2 are parallel edges in H, then case (iii) applies, and H+ contains a diamond.

Claim 6. The graph H+ has the following properties:
(i) if X is a triangle or a multiedge in H+, then h ∈ E(X),
(ii) dH+(ui) ≥ 3 for i = 1, 2.
(iii) H+ has no black triangles,
(iv) B(H+) ∪ {u1, u2} dominates all edges in H+,
(v) β(H+) ≤ β(H) = ϑ(G),
(vi) if e1, e2 share a vertex of degree two in H, then β(H+) ≤ β(H)− 1,
(vii) H+ has no DCT containing the edge h and all vertices in B(H+).

Proof follows immediately from the construction of H+ (see also Theorem 1(v)).

Now we construct a graph H+
R from H+ by removing all pendant edges, suppressing all

white vertices of degree two, and suppressing all black vertices of degree two but recoloring
their neighbors in H+ black in H+

R .

Claim 7. The graph H+
R has the following properties:

(i) δ(H+
R ) ≥ 3,

(ii) H+
R is essentially 3-edge-connected,

(iii) H+
R has no DCT containing the edge h and all vertices in B(H+

R ),
(iv) β(H+

R ) ≤ 7.

Proof of (i), (ii) and (iii) is immediate from the construction of H+
R .

We prove (iv). From the construction of H+
R we immediately have β(H+

R ) = β(H+) +
β2(H

+). If {e1, e2} ̸= {xiy
1
i , xiy

2
i } for every xi ∈ B2(H), then immediately from the

construction we have β(H+) ≤ β(H), β2(H
+) = β2(H) and β(H+

R ) = β(H+) + (η(H+)−
β2(H

+)). By Claim 4, β(H+
R ) ≤ β(H) + (η(H) − β2(H)) ≤ ϑ(GM) + (7 − ϑ(GM)) = 7.

If there is an xi ∈ B2(H) such that {e1, e2} = {xiy
1
i , xiy

2
i }, then, by the construction,

β(H+) ≤ β(H)− 1, β2(H
+) = β2(H)− 1 and β(H+

R ) ≤ β(H+) + β2(H
+). Using Claim 5

we further have β(H+
R ) ≤ (β(H) − 1) + (β2(H) − 1) = ϑ(GM) + β2(H) − 2 ≤ ϑ(GM) +

(9− ϑ(GM))− 2 = 7.

Since δ(H+
R ) ≥ 3 and H+

R is essentially 3-edge-connected, we can construct a 3-
connected cubic inflation HI of the graph H+

R . In the graph HI we define black vertices
as follows:

• vertices of degree three in H+
R have the same color in HI as in H+

R ,
• a white vertex x of degree at least four in H+

R corresponds to a white cycle Cx in
HI (i.e., all vertices on Cx are white),

• a black vertex x of degree at least four in H+
R corresponds to a cycle Cx in which

one arbitrary vertex is black and all other vertices are white.
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It is obvious that β(HI) = β(H+
R ) ≤ 7. By Proposition J, there exists a cycle in HI

containing the edge h and all vertices in B(HI). But then contracting all cycles Cx we
obtain a DCT in H+

R containing the edge h and all vertices in B(H+
R ), which contradicts

Claim 7(iii).

5 Degree conditions for Hamilton-connectedness

In this section we prove a σ8-condition and, as a corollary, a minimum degree condition
for Hamilton-connectedness in 3-connected claw-free graphs. The best known result in
this direction is by MingChu Li [13] who proved that every 3-connected claw free graph
G with δ(G) ≥ n+8

5
is Hamilton-connected. We improve this result by showing that a

3-connected claw-free graph such that δ(G) ≥ 24 and σ8(G) ≥ n+ 50 (or, as a corollary,
n ≥ 142 and δ(G) ≥ n+50

8
) is Hamilton-connected. We also show that our results are

asymptotically sharp. We start with some useful lemmas.

The following three lemmas were originally proved in [5] for closed graphs; we will
prove here their analogues for SM-closed graphs.

Lemma 5. Let G be an SM -closed graph and let A = {a1, ..., at} ⊂ V (G) be an
independent set. Then:

(i) |N(ai) ∩ N(aj)| ≤ 2 for all i, j ∈ {1, ..., t} except possibly for one pair ai0 , aj0 , for
which |N(ai0) ∩N(aj0)| ≤ 3,

(ii)
t∑

i=1

d(ai) ≤ n+ t2 − 2t+ 1.

Proof. Let G be SM -closed, A = {a1, ..., at} ⊂ V (G) independent, let K be a Krausz
partition of G, and set H = L−1(G).

We first show that any two vertices ai, aj ∈ A can have at most three common neigh-
bors. Assume, to the contrary, that some ai, aj ∈ A have four common neighbors z1, ..., z4.
By the properties of K, the edges aiz1, aiz2, aiz3, aiz4 (and, symmetrically, also the edges
ajz1, ajz2, ajz3, ajz4) can be covered by at most two cliques from K (see Theorem B).

Suppose first that, say, ⟨{ai, z1, z2, z3}⟩G is a clique. Then, symmetrically, either
⟨{aj, z1, z2, z3}⟩G is a clique, or both ⟨{aj, z1, z2}⟩G and ⟨{aj, z3}⟩G are cliques. But then
in the first case H contains a multiedge with multiplicity three and in the second case H
contains a multitriangle, both contradicting Proposition G. By symmetry, we conclude
that there is no clique that covers any of ai, aj with any three of z1, ..., z4.

Thus, by symmetry, we can suppose that ⟨{ai, z1, z2, }⟩G and ⟨{ai, z3, z4}⟩G are cliques.
Then either ⟨{aj, z1, z2}⟩G and ⟨{aj, z3, z4}⟩G are cliques, implying H contains two multi-
edges, or ⟨{aj, z1, z3}⟩G and ⟨{aj, z2, z4}⟩G are cliques, implyingH contains three triangles.
In both cases, we have a contradiction with Theorem 1.

To finish the proof of (i), it suffices to show that if two vertices ai, aj have three
common neighbors, then some two of them that are connected by an edge correspond to
a multiedge in H (since then, by Theorem 1, there can be only one such pair of vertices
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in G). So, let z1, z2, z3 be common neighbors of ai, aj. If z1z2 ∈ E(G) and ⟨{ai, z1, z2}⟩G
and ⟨{aj, z1, z2}⟩G are cliques, then in H we have a multiedge and we are done. Thus,
every edge between z1, z2, z3 is in exactly one clique. Then, up to a symmetry, the only
possible partition is ⟨{ai, z1, z2}⟩G, ⟨{ai, z3}⟩G, ⟨{aj, z1}⟩G, ⟨{aj, z2, z3, }⟩G, but then we
have a diamond in H, a contradiction.

To prove (ii), we observe that, by (i),
t∑

i=1

d(ai) ≤ (n− t)+2
(
t
2

)
+1 = n+ t2−2t+1.

Lemma 6. Let G be an SM -closed graph and let H = L−1(G). If ν(H) < τ(H), then
there is an edge xy ∈ E(H) such that d(x) + d(y) ≤ ν(H) + τ(H) + 2.

Proof. Let T ⊂ V (H) be a minimum vertex cover and let M be a maximum matching
such that |V (M) ∩ T | is smallest possible. Note that V (H) \ T is independent since T is
a vertex cover and V (H) \ V (M) is also independent since M is maximal.

We first show that there is a vertex x ∈ T such that N(x) ⊂ V (M). If T ̸⊂ V (M), we
choose an x ∈ T \ V (M) and then clearly N(x) ⊂ V (M) for otherwise we can extend M .
Thus let T ⊂ V (M). Since ν(H) < τ(H), there is an edge xx′ ∈ M such that x, x′ ∈ T .
Then for any w ∈ N(x) either w ∈ T and then w ∈ V (M) since T ⊂ V (M), or w /∈ T
and then also w ∈ M for otherwise we can modify M by replacing in M the edge xx′ with
the edge xw and lower |V (M) ∩ T |, contradicting the choice of M . So, in both cases we
have N(x) ⊂ V (M).

If H contains a multiedge, then x has at least d(x)−1 neighbors in H and no edge from
M has both ends in N(x), from which d(x)− 1 ≤ |M | = ν(H) and d(x) ≤ ν(H)+ 1. If G
contains no multiedge, then x is in at most two triangles, hence x has d(x) neighbors and
at most two edges from M have both ends in N(x), from which d(x)− 2 ≤ |M | = ν(H)
and d(x) ≤ ν(H) + 2. So we have d(x) ≤ ν(H) + 1 if H contains a multiedge and
d(x) ≤ ν(H) + 2 otherwise.

Since x ∈ T and T is minimum, there is a y ∈ N(x) which is not in T (otherwise x can
be removed from T ). But since T is a vertex cover, all neighbors of y are in T . Now, if G
contains a multiedge, then y has at least d(y)− 1 neighbors, hence d(y) ≤ τ(H) + 1 and
d(x)+d(y) ≤ (ν(H)+1)+(τ(H)+1) = ν(H)+τ(H)+2; if G contains no multiedge, then
y has d(y) neighbors and d(y) ≤ τ(H), from which also d(x)+d(y) ≤ (ν(H)+2)+τ(H) =
ν(H) + τ(H) + 2.

Lemma 7. Let G be an SM -closed graph and let α(G) < ϑ(G). Then δ(G) ≤
α(G) + ϑ(G) + 2.

Proof. Let H = L−1(G). We first show that ϑ(G) ≤ τ(H) ≤ ϑ(G) + 2.
First, assume to the contrary that τ(H) > ϑ(G) and let {b1, ..., bt} be a vertex cover in

H with t = τ(H) vertices. Then the system of stars with centers in {b1, ..., bt} determines
inG a clique covering with t = τ(H) < ϑ(G) cliques, a contradiction. Hence τ(H) ≥ ϑ(G).
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Now we show that τ(H) ≤ ϑ(G) + 2. Let K1, ..., KS ⊂ G be cliques in G and let
H1, ..., HS ⊂ H be their preimages (i.e., L(Hi) = Ki), and choose K1, ..., KS such that the
number of triangles among the graphs Hi is smallest possible. Since H has at most two
triangles, at most two Hi, say, H1 and H2, are triangles. Let V (H1) = {u, v, w}, and let
H ′

1, H
′′
1 denote the stars with centers at u and v. Then the system {H ′

1, H
′′
1 , H2, ..., HS}

does not contain the triangle H1 and corresponds to a clique covering of G with at most
S + 1 cliques. If H2 is a triangle, we proceed analogously. By this construction, we get
a vertex cover of H such that the corresponding clique covering of G has at most S + 2
cliques. Hence τ(H) ≤ ϑ(G) + 2.

Now, since α(G) < ϑ(G), we have ν(H) = α(G) < ϑ(G) ≤ τ(H). Therefore ν(H) <
τ(H) and, by Lemma 6, there is an edge xy ∈ E(H) such that d(x) + d(y) ≤ ν(H) +
τ(H)+2. Let u ∈ V (G) be the vertex corresponding to xy. Then d(u) = d(x)+d(y)−2 ≤
(ν(H) + τ(H) + 2)− 2 = ν(H) + τ(H) ≤ α(G) + ϑ(G) + 2.

Lemma 8. Let G be an SM -closed graph. Then ϑ(G) ≤ 2α(G).

Proof. In a line graph, the neighborhood of every vertex can be covered by at most
two cliques, and since any maximal independent set is also dominating, any line graph
can be covered by at most 2α(G) cliques.

Proposition 9. Let G be a claw-free graph, let GM be an SM -closure of G and let
k ≥ 2 be an integer such that δ(G) ≥ 3k and σk(G) ≥ n+k2−2k+2. Then ϑ(GM) ≤ k−1.

Proof. Clearly, if G satisfies the assumptions, then so does GM , hence we can assume
that G is SM -closed. Let, to the contrary, ϑ(G) ≥ k. If α(G) ≥ k, then G contains
an independent set of size k and, by Lemma 5, we have σk(G) ≤ n + k2 − 2k + 1, a
contradiction. If α(G) ≤ k − 1, then α(G) < ϑ(G) and by Lemma 7 and Lemma 8 we
have δ(G) ≤ α(G) + ϑ(G) + 2 ≤ (k − 1) + 2(k − 1) + 2 = 3k − 1, contradicting the
assumption δ(G) ≥ 3k.

Theorem 10. Let G be a 3-connected claw-free graph such that δ(G) ≥ 24 and
σ8(G) ≥ n+ 50. Then G is Hamilton-connected.

Proof. Clearly, if G satisfies the assumptions of the theorem, then so does GM , hence
we can assume that G is SM -closed. Then G satisfies the assumptions of Proposition 9
with k = 8, hence ϑ(G) ≤ 7. By Theorem 2, G is Hamilton-connected.

Corollary 11. Let G be a 3-connected claw-free graph of order n ≥ 142 and minimum
degree δ(G) ≥ n+50

8
. Then G is Hamilton-connected.

Proof. Under the assumptions of the corollary, δ(G) ≥ n+50
8

≥ 142+50
8

= 24 and
σ8(G) ≥ 8 · δ(G) ≥ n+ 50, hence G is Hamilton-connected by Theorem 10.
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Example. Let Hℓ be a copy of the graph H2 of Fig. 4 in which there are ℓ pendant edges
attached to every vertex, and let Gℓ = L(Hℓ). For every vertex ui choose a neighbor vi
of degree one and let wi ∈ V (Gℓ) be the vertex corresponding to the edge uivi ∈ E(Hℓ),
i = 1, ..., 8. Then δ(Gℓ) = dGℓ

(wi) = dHℓ
(vi) + dHℓ

(ui)− 2 = 1 + (ℓ+ 3)− 2 = ℓ+ 2, thus
ℓ = δ(Gℓ)− 2. Since n = |V (Gℓ)| = |E(Hℓ)| = 8ℓ+ 12 = 8(δ(Gℓ)− 2) + 12 = 8δ(Gℓ)− 4,
we have δ(Gℓ) = n+4

8
. Moreover, {w1, ..., w8} is an independent set in Gℓ and hence

σ8(Gℓ) =
8∑

i=1

d(wi) = 8 · n+4
8

= n + 4. However, the graph Gℓ is not Hamilton-connected.

Therefore Theorem 10 and Corollary 11 are asymptotically sharp.
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