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October 31, 2012

Abstract

For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-
locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set
of vertices at distance at least 1 and at most k from x induces in G a disconnected
graph. In this paper we study the asymptotic behavior of the number of edges of a
k-locally disconnected graph on n vertices. For general graphs, we show that this
number is Θ(n2) for any fixed value of k and, in the special case of regular graphs,
we show that this asymptotic rate of growth cannot be achieved. For regular graphs,
we give a general upper bound and we show its asymptotic sharpness for some values
of k. We also discuss some connections with cages.

1 Introduction

In this paper, we consider simple finite undirected graphsG = (V (G), E(G)); for notations
and terminology not defined here we refer the reader e.g., to [1]. Specifically, we use
distG(x, y) to denote the distance of x and y in G and diam(G) to denote the diameter
of G; dG(x) stands for the degree of a vertex x in G, ∆(G) for the maximum degree of
G and g(G) for the girth (i.e., the length of a shortest cycle) of G. We use H ⊂ G to
denote that H is a subgraph of G and, for a set M ⊂ V (G), we use ⟨M⟩G to denote the
induced subgraph of G on M . A path with terminal vertices u, v will be referred to as a
(u, v)-path. If x ∈ V (G) is a cutvertex of G and B is a component of G − x then the
subgraph ⟨V (B) ∪ {x}⟩G is called the branch of G at x (corresponding to B).

Let f(n), g(n) be two positive functions defined on the set of positive integers. We
say that f(n) is O(g(n)), denoted f(n) ∈ O(g(n)), if there are constants K ≥ 0 and
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n0 ≥ 0 such that f(n) ≤ Kg(n), for every n ≥ n0. Similarly, f(n) is Ω(g(n)), denoted
f(n) ∈ Ω(g(n)), if there are constants K ′ ≥ 0 and n′

0 ≥ 0 such that f(n) ≥ K ′g(n) for
every n ≥ n′

0, and f(n) is Θ(g(n)), denoted f(n) ∈ Θ(g(n)), if both f(n) ∈ O(g(n)) and
f(n) ∈ Ω(g(n)).

The neighborhood of a vertex x in G is the set NG(x) = {y ∈ V (G)| xy ∈ E(G)} and,
more generally, for an integer k ≥ 1, the setNG

k (x) = {y ∈ V (G)| distG(x, y) = k} is called
the neighborhood at distance k and the set NG

[k](x) = {y ∈ V (G)| 1 ≤ distG(x, y) ≤ k} is

called the neighborhood at distance at most k (or simply the k-neighborhood) of x in G
(thus, NG(x) = NG

1 (x) = NG
[1](x) and NG

[k](x) = ∪k
j=1N

G
j (x)). We will also use the closed

neighborhood and closed k-neighborhood (of x in G) defined as NG[x] = NG(x) ∪ {x} and
NG

[k][x] = NG
[k](x) ∪ {x}, respectively.

Finally, a graph G is locally disconnected if ⟨NG(x)⟩G is a disconnected graph for every
x ∈ V (G) and, more generally, for k ≥ 1, G is k-distance-locally disconnected, or simply
k-locally disconnected if ⟨NG

[k](x)⟩G is disconnected for every x ∈ V (G).

The problem of determining the maximum number of edges of a locally disconnected
graph was originally posed by Bohdan Zelinka in 1985. In [7], Zelinka showed that this
number cannot be expressed as a linear function of n and determined its exact value in
the special case of planar graphs. In [6], it was shown that, surprisingly, this number
can be, in a sense, “arbitrarily close” to the number of edges of a complete graph (more
precisely, for any n ≥ 4, there is a locally disconnected graph Gn on n vertices such that
limn→∞

|E(Gn)|
(n2)

= 1). In [5], a similar question was studied in the case of edge-induced

vertex neighborhoods.
In the present paper, we will study the asymptotic behavior of the number of edges

of a k-locally disconnected graph for k ≥ 2. In Section 2, we will see that this maximum
number is, for k ≥ 2, of asymptotic order n2

2k
, i.e., asymptotically strictly less than

(
n
2

)
, but

still Θ(n2) for any fixed value of k, while in Section 3 we show that under the restriction
to regular graphs the Θ(n2) growth rate is not possible. For regular graphs we give a
general upper bound and, for some values of k, we show its asymptotic sharpness. We
also discuss some connections with cages.

2 Maximal k-locally disconnected graphs

It is easy to observe that, for any integers k ≥ 1 and n ≥ 2k + 2, there is a k-locally
disconnected graph of order n (a cycle is an easy example). Thus, for k ≥ 1 and n ≥ 2k+2,
we can define

ldk(n) = max{|E(G)| | G is k-locally disconnected, |V (G)| = n}.

We will also say that a k-locally disconnected graph G with |V (G)| = n and |E(G)| =
ldk(n) is maximal. Note that any k-locally disconnected graph is also (k − 1)-locally
disconnected, hence, for any k ≥ 2 and n ≥ 2k + 2, we have

ldk−1(n) ≥ ldk(n).

We begin with several structural observations.
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Proposition 1. Let G be a k-locally disconnected graph. Then diam(G) ≥ k + 1.

Proof. Suppose, to the contrary, that G is k-locally disconnected and diam(G) ≤ k,
and let x, y ∈ V (G) be such that distG(x, y) = diam(G). Since diam(G) ≤ k, all vertices
of G are at distance at most k from x, implying ⟨N[k](x)⟩G = G − x. As G is k-locally
disconnected, G−x is disconnected, i.e., x is a cutvertex of G. But now, for a vertex z in
the component G− x not containing y, we have distG(z, y) = distG(z, x) + distG(x, y) >
distG(x, y), contradicting the assumption distG(x, y) = diam(G).

Note that e.g. the cycle C2k+2 is k-locally disconnected and diam(C2k+2) = k + 1.
Hence Proposition 1 is sharp.

Proposition 2. Let G be a k-locally disconnected graph, and let x ∈ V (G). Then
every component of ⟨NG

[k](x)⟩G contains a vertex at distance k from x.

Proof. Let, to the contrary, B be a component of ⟨NG
[k](x)⟩G with all vertices at

distance at most k − 1 from x. Then x is the only vertex in G − B having a neighbor
in B (for otherwise such a vertex would be at distance at most k from x, hence in B,
contradicting its definition). Consequently, x is a cutvertex of G. Let B′ be the branch
of G at x corresponding to B and let y ∈ V (B′) be at maximum distance from x. Then
all vertices in G − B′ that are at distance at most k from y are accessible from y only
through x, hence all such vertices occur in the same component of ⟨NG

[k](y)⟩G. As G is

k-locally disconnected, ⟨NB′

[k] (y)⟩B′ = B′ − y is disconnected, hence y is a cutvertex of B′.
But then, similarly as before, for a vertex z in a component of B′ − y not containing x,
we have distB

′
(z, y) = distB

′
(z, x) + distB

′
(x, y) > distB

′
(x, y), contradicting the choice

of y.

We say that a k-locally disconnected graph is critical if, for any pair of nonadjacent
vertices x, y ∈ V (G), the graph G + xy is not k-locally disconnected. Obviously, every
maximal k-locally disconnected graph is also critical.

Theorem 3. Let G be a critical k-locally disconnected graph. Then G is 2-connected.

Proof. Suppose, to the contrary, that G is critical k-locally disconnected and x is a
cutvertex of G. Let B be a branch of G at x and let y ∈ V (B) be a vertex at maximum
distance from x. Observe that all vertices in other branches of G at x are accessible
from y only through x, hence those of them that are at distance at most k from y must
occur in one component of ⟨NG

[k](y)⟩G. Thus, if distG(y, x) ≤ k, all vertices of B are in

NG
[k](x), hence ⟨NB

[k](x)⟩B = B − y is disconnected, implying y is a cutvertex of B. But

this, similarly as before, contradicts the maximality of distG(x, y).
Thus, every branch of G at x contains a vertex at distance at least k + 1 from x. Let

y1, y2 be two such vertices in different branches. Then the graph G+y1y2 is also k-locally
disconnected, contradicting the criticality of G.

Note that the graph G consisting of two cycles of length 2k+2 sharing a vertex shows
that the criticality assumption in Theorem 3 is essential.
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The following technical proposition is crucial for the main result of this section, The-
orem 6.

Proposition 4. Let G be a k-locally disconnected graph, k ≥ 2, x ∈ V (G), dG(x) = d.
Then there are vertices xℓ

i ∈ V (G), i = 1, . . . , d, ℓ = 1, . . . , k, such that
(i) {xℓ

1, . . . , x
ℓ
d} ⊂ Nℓ(x), ℓ = 1, . . . , k;

(ii) x, x1
i , . . . , x

k
i is an induced path in G, i = 1, . . . , d;

(iii) for any i1, i2 and ℓ1, ℓ2, 1 ≤ i1, i2 ≤ d, i1 ̸= i2, 1 ≤ ℓ1, ℓ2 ≤ k, the vertices xℓ1
i1

and

xℓ2
i2

are distinct and for max{ℓ1, ℓ2} ≥ 2 nonadjacent.

Proof. Let {x1
1, . . . , x

1
d} = N1(x), and consider ⟨NG

[k](x
1
1)⟩G. As the vertex x and

the vertices x1
2, . . . , x

1
d are at distance at most 2 from x1

1, they are in one component of
⟨NG

[k](x
1
1)⟩G. By Proposition 2, there are vertices x2

1, . . . , x
k+1
1 in another component such

that dist(x1
1, x

ℓ+1
1 ) = ℓ, ℓ = 1, . . . , k (for d = 4 and k = 5, see Fig. 1; note that some of

the edges of the form x1
ix

1
j , 1 ≤ i, j ≤ d, are possible in G).

By induction, for i = 2, . . . , d, some component of ⟨NG
[k](x

1
i )⟩G contains all of N1[x] \

{x1
i } and all the vertices xℓ

j for 1 ≤ j ≤ i and 2 ≤ ℓ ≤ k − 1, hence there are vertices

x2
i , . . . , x

k+1
i in another component such that dist(x1

i , x
ℓ+1
i ) = ℓ, ℓ = 1, . . . , k. By the

construction, it is straightforward to verify that the vertices xℓ
i , i = 1, . . . , d, ℓ = 1, . . . , k

have the required properties (i), (ii) and (iii).
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Figure 1

Theorem 5. Let G be a k-locally disconnected graph of order n. Then

∆(G) ≤ n− 2

k
.

Proof. The statement is obvious for k = 1, thus let k ≥ 2, and let x ∈ V (G) be a
vertex of degree d = ∆(G). By Proposition 4, |NG

ℓ (x)| ≥ d for ℓ = 1, . . . , k and clearly

|Nk+1(x)| ≥ 1. Hence we have n ≥ |NG
[k+1][x]| ≥ 1 +

∑k
ℓ=1 |NG

ℓ (x)| + 1 ≥ kd + 2, from

which d ≤ n−2
k
.

Theorem 6. Let G be a k-locally disconnected graph of order n. Then

|E(G)| ≤ 1

2k
(n2 − 2n).

4



Proof. By Theorem 5, |E(G)| = 1
2

∑
x∈V (G) d

G(x) ≤ 1
2
n∆(G) ≤ 1

2k
n(n− 2).

In Theorem 6 we have, for any k ≥ 1, an O(n2) upper bound on the number of edges
of a k-locally disconnected graph of order n. The next result shows that the quadratic
growth rate is achievable.

Theorem 7. Let k ≥ 1 and t ≥ 2 be integers and let n = t(k + 1). Then there is a
k-locally disconnected graph G with n vertices and

|E(G)| = 1

(k + 1)2
(n2 + (k2 − 1)n)

edges.

Proof. For given k ≥ 1 and t ≥ 2, let H1, H2 be two copies of the complete graph Kt

and let G be the graph obtained by joining the vertices of H1 to the vertices of H2 with
t vertex-disjoint paths of length k (for t = 4 and k = 3, see Fig. 2). Then clearly G is
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Figure 2

k-locally disconnected, n = |V (G)| = (k + 1)t, and |E(G)| = 2
(
t
2

)
+ kt = t(t− 1) + kt =

t2 + (k − 1)t = ( n
k+1

)2 + (k − 1) n
k+1

= 1
(k+1)2

(n2 + (k2 − 1)n), as required.

Now we are able to determine the asymptotic growth rate of the function ldk(n).

Theorem 8. For any fixed integer k ≥ 1,

ldk(n) ∈ Θ(n2).

Proof. We have ldk(n) ∈ O(n2) immediately by Theorem 6. To obtain ldk(n) ∈ Ω(n2),
we extend the construction from the proof of Theorem 7 in such a way that, for n =
t(k + 1) + r with 1 ≤ r ≤ k, we arbitrarily subdivide some of the t paths joining H1 to
H2 with r vertices of degree 2.

3 Regular k-locally disconnected graphs

In the previous section we have seen that, for any fixed k ≥ 2, the number of edges of
a k-locally disconnected graph of order n can achieve the growth rate Θ(n2). Here we
will show that this is not possible under the additional restriction on G to be regular.
Similarly to the general case, we set

ldR
k (n) = max{|E(G)| | G is regular and k-locally disconnected, |V (G)| = n}.
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Furthermore, analogously, for any k ≥ 2 and n ≥ 2k + 2 we have

ldR
k−1(n) ≥ ldR

k (n).

We begin with a structural result that will be crucial for our proof of the main result of
this section. Here, a leaf of a tree T is a vertex of degree 1 in T .

Proposition 9. Let G be a k-locally disconnected (k ≥ 1) d-regular graph and let
x ∈ V (G). Then G contains a tree T such that

(i) V (T ) ⊂ NG
[k][x];

(ii) all leaves of T are in NG
k (x);

(iii) for any y ∈ V (T ), distT (x, y) = distG(x, y);
(iv) for any t, 1 ≤ t ≤ k,

|NT
t (x)| ≥

{
d(d− 1)

t−1
2 for t odd,

d(d− 1)
t−2
2 for t even.

Proof. We construct a sequence of trees {Tt}kt=1 such that, for any t, 1 ≤ t ≤ k, we
have

(i) V (Tt) ⊂ NG
[t][x];

(ii) all leaves of Tt are in NG
t (x);

(iii) for any y ∈ V (Tt), dist
Tt(x, y) = distG(x, y);

(iv) |NTt
t (x)| ≥

{
d(d− 1)

t−1
2 for t odd,

d(d− 1)
t−2
2 for t even;

(v) for t ≥ 2, Tt−1 ⊂ Tt.
We proceed by induction on t.

1. For t = 1, we set V (T1) = NG
1 [x] and E(T1) = {xy| y ∈ NG

1 (x)}. Then clearly T1

satisfies (i)− (iv) for t = 1.

2. Let t ≥ 2 and suppose that we have already constructed a tree Tt−1 satisfying
(i)− (v) with t := t− 1 (hence also its subtrees Tt′ for all t

′, 1 ≤ t′ ≤ t− 1). Note that,
by the induction hypothesis, we have

|NTt−1

t−1 (x)| ≥

{
d(d− 1)

t−3
2 for t odd,

d(d− 1)
t−2
2 for t even

(since t− 1 is even/odd for t odd/even, respectively).

(a) Suppose first that t is even and let y be a leaf of Tt−1. Then all vertices in T1 are
at distance at most t from y and, since t ≤ k, T1 is (together with the (y, x)-path in Tt−1)
a subgraph of one component of ⟨NG

[k](y)⟩G. Thus, y has a neighbor y+ that is in another

component of ⟨NG
[k](y)⟩G (not containing T1). Choose such a vertex y+ for every leaf y of

Tt−1. Then all these vertices are distinct and nonadjacent in G, for if e.g. y+1 y
+
2 ∈ E(G)

for some two leaves y1, y2 of Tt−1, then y1, y2 and all vertices of the (y2, x)-path in Tt−1

would be at distance at most t ≤ k from y1, implying y+1 is in the same component of
⟨NG

[k](y1)⟩G as T1, a contradiction (the case y1 = y2 is similar). Thus, adding to Tt−1 the

vertices y+ and the edges yy+ for all leaves y of Tt−1, we obtain the desired tree Tt (note
that if t is even then the lower bound (iv) is the same for t and for t− 1).
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(b) If t is odd (implying t ≥ 3), we construct a desired tree Tt by attaching to every
leaf of Tt−2 a tree Ty rooted at y such that Ty contains the edge yy+ (where y+ is the leaf
of Tt−1 defined in the previous step) and Ty has d− 1 leaves at distance 2 from y (hence
at distance t from x).

Thus, let y be a leaf of Tt−2 and y+ the corresponding leaf of Tt−1. Since G is d-
regular, y+ has, besides y, d − 1 other neighbors y′1, . . . , y

′
d−1. Choose the notation such

that, for some s, 0 ≤ s ≤ d − 1, we have yy′i /∈ E(G) for 1 ≤ i ≤ s and yy′i ∈ E(G) for
s + 1 ≤ i ≤ d− 1. First observe that all y′i, i = 1, . . . , s, are at distance t from x (in G),
for, if some y′i0 is at distance at most t− 1 from x, then, since yy′i /∈ E(G), there is a path
from y′i0 to some vertex in T1 of length at most t− 2 avoiding y, hence y+ is in the same
component of ⟨NG

[k](y)⟩G as T1, a contradiction.

Now let s+1 ≤ i ≤ d−1. Then y′i is adjacent to both y and y+, implying distG(x, y′i) ≤
t−1. Similarly as before, distG(x, y′i) = t−1 and y′i is nonadjacent to any vertex in Tt−1, for
otherwise y+ is in the same component of ⟨NG

[k](y)⟩G as T1, a contradiction. But now T1,

all vertices of the (y+, x)-path in Tt−1, all vertices y
′
j for j ̸= i, and all their neighbors are

in the same component of ⟨NG
[k](y

′
i)⟩G. Thus, y′i has a neighbor y′′i in another component

of ⟨NG
[k](y

′
i)⟩G, and clearly y′′i is at distance t from x. By their definition, all the vertices

y′′i , i = s+ 1, . . . , d− 1, are distinct and nonadjacent.
Now, we define Ty as the tree containing the vertices y, y

+, y′1, . . . , y
′
d−1 and y′′s+1, . . . , y

′′
d−1,

the edge yy+, the edges y+y′i for 1 ≤ i ≤ s, and the paths yy′iy
′′
i for s + 1 ≤ i ≤ d − 1.

Then Ty has d− 1 leaves y′1, . . . , y
′
s, y

′′
s+1, . . . , y

′′
d−1 at distance 2 from y (see Fig. 3, where

the edges of the tree Ty appear as thick lines).
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Now it is again straightforward to verify that if y, v are two leaves of Tt−2 and Ty, Tv

are the corresponding trees, then all vertices of Ty and Tv are distinct and nonadjacent,
for otherwise we have a contradiction with the definition of y+, v+ or of some of y′′i or v′′i .
Thus, for the tree Tt, obtained from Tt−2 by attaching Ty to y for any leaf y of Tt−2, we
have

|NTt
t (x)| ≥ |NTt−2

t−2 (x)|(d− 1) ≥ d(d− 1)
t−3
2 (d− 1) = d(d− 1)

t−1
2 ,

as requested.

7



The following result is a counterpart to Theorem 5 for regular graphs.

Theorem 10. Let k ≥ 1 be odd and let G be a d-regular k-locally disconnected graph
of order n. Then

d ≤ n
2

k+1 + 1.

Proof. Choose a vertex x ∈ V (G) and let T be the tree given in Proposition 9. Then
we have

n ≥ |V (T )|+ 1 = 1 +
∑k

i=1 |NT
i (x)|+ 1 ≥

1 + d+ d+ d(d− 1) + d(d− 1) + . . .+ d(d− 1)
k−3
2 + d(d− 1)

k−3
2 + d(d− 1)

k−1
2 + 1 =

2+ 2d[1 + (d− 1) + . . .+ (d− 1)
k−3
2 ] + d(d− 1)

k−1
2 = 2+ 2d (d−1)

k−1
2 −1

(d−1)−1
+ d(d− 1)

k−1
2 =

2 + 2 d
d−2

[(d− 1)
k−1
2 − 1] + d(d− 1)

k−1
2 ≥ 2 + 2[(d− 1)

k−1
2 − 1] + d(d− 1)

k−1
2 =

(d+ 2)(d− 1)
k−1
2 ≥ (d− 1)

k+1
2 .

Thus, we have n ≥ (d− 1)
k+1
2 , from which d ≤ n

2
k+1 + 1.

Now we are able to give an upper bound on the function ldR(n). We will show that,
unlike in the general case (cf. Theorem 8), Θ(n2) growth rate is not possible in the case
of regular graphs.

Theorem 11. Let G be a regular k-locally disconnected graph of order n. Then

|E(G)| ≤

{
n
2
(1 + n

2
k+1 ) for k odd,

n
2
(1 + n

2
k ) for k even.

Proof. If k is even, then k − 1 is odd and the upper bound for k − 1 equals the upper
bound for k. Since ldR

k−1(n) ≥ ldR
k (n), it is sufficient to prove the bound for k odd. If G

is d-regular, then d ≤ n
2

k+1 + 1 by Theorem 10. From this we have

|E(G)| = 1
2

∑
x∈V (G) d

G(x) = 1
2
nd ≤ 1

2
(n1+ 2

k+1 + n) = n
2
(1 + n

2
k+1 ),

as requested.

Corollary 12. For any fixed integer k ≥ 1,

ldR
k (n) ∈

{
O(n1+ 2

k+1 ) for k odd,

O(n1+ 2
k ) for k even.

Proof follows immediately from Theorem 11.

Specifically, we have:

ldR
k (n) ∈


O(n2) for k = 1, 2,

O(n
3
2 ) for k = 3, 4,

O(n
4
3 ) for k = 5, 6,

O(n
5
4 ) for k = 7, 8,

8



etc. We finish with examples of infinite families of regular locally disconnected graphs
showing that, for 1 ≤ k ≤ 5, k = 7 and k = 11 these asymptotic growth rates can really
be achieved. We do not know similar constructions for k ≥ 12; for these values of k we
only give some general observations.

Since ldR
1 (n) ≥ ldR

2 (n) and ldR
3 (n) ≥ ldR

4 (n), it is not necessary to give the constructions
for k = 1, 3; constructions for k = 2, 4 are sufficient.

Example 1: k = 2. Let H0, H1, H2 be three copies of the complete bipartite graph
Kt,t, t ≥ 2, with vertices colored black and white, and let G be the graph obtained
by joining black vertices in Hi to white vertices in Hi+1 with a matching, i = 0, 1, 2
(indices modulo 3). For t = 3, see Fig. 4. Then n = |V (G)| = 6t, i.e., t = n

6
, and
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Figure 4

|E(G)| = 3t2 + 3t = 3(n
6
)2 + 3n

6
, i.e. |E(G)| = 1

12
(n2 + 6n). Thus |E(G)| ∈ Ω(n2).

Example 2: k = 4. Let t ≥ 2 and letHi,j, i = 0, . . . , 4, j = 0, . . . , t−1, be 5t copies of the
graph Kt,t and let w0

i,j, . . . , w
t−1
i,j (b0i,j, . . . , b

t−1
i,j ) denote the white (black) vertices of Hi,j,

respectively. The graph G is obtained by joining bki,j to wj
i+1,k for all j, k = 0, . . . , t−1 and

i = 0, . . . , 4 (index i modulo 5). For t = 2, see Fig. 5. Then n = |V (G)| = 5t · 2t = 10t2,
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Figure 5

i.e., t =
√

n
10
, and |E(G)| = 5t · t2 + 5t2 = 5t3 + 5t2 = 1

2
√
10
n

3
2 + 1

2
n, hence we have

|E(G)| ∈ Ω(n
3
2 ).
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For our next examples, we will need some definitions and observations. Given integers
d, g, a (d, g)-graph is a d-regular graph of girth g, and a (d, g)-graph of minimum order
(number of vertices) is called a (d, g)-cage. For a survey paper on cages, see [2]. Since
a graph of girth g is clearly (⌊g

2
⌋ − 1)-locally disconnected and cages are such graphs of

minimum order, cages are candidates for “good” locally disconnected graphs. While it
can be seen that cages themselves are not dense enough to provide a sharpness example,
we show that they can be used as “building blocks” for such a construction.

An inflation of a graph H is the graph G obtained from H by
(i) replacing each vertex x ∈ V (H) with a clique Kx of order dH(x); and
(ii) replacing each edge xy ∈ E(H) with an edge joining a vertex in Kx to a vertex in

Ky in such a way that the edges of G corresponding to edges of H form a perfect
matching in G.

Obviously, an inflation of a (d, g)-graph (hence also of a (d, g)-cage) is a d-regular (g−1)-
locally disconnected graph. We will use known families of cages of girths g = 6, 8 and 12
to construct examples showing asymptotic sharpness for k = 5, 7 and 11.

Example 3: k = 5. The incidence graph of a projective plane of order q is a cage of degree
d′ = q + 1 and girth g = 6, has n′ = 2(q2 + q + 1) vertices (see [2], Section 2.2.1), and its
inflation is a 5-locally disconnected graph. Let G be such an inflation. Then G is d-regular
with d = d′ = q+1 and has n = |V (G)| = dn′ = 2(q+1)(q2 + q+1) ≤ 2(q+1)3 vertices,

from which q+1 ≥ (n
2
)
1
3 . SinceG is d-regular, we have |E(G)| = 1

2

∑
x∈V (G) d

G(x) = 1
2
dn =

1
2
(q + 1)n ≥ 1

2 3√2
n

4
3 .

Example 4: k = 7. The incidence graph of a generalized quadrangle of order (q, q) is a
cage of degree d′ = q + 1 and girth g = 8, and has n′ = 2(q + 1)(q2 + 1) vertices (see [2],
Section 2.2.2). Let G be its inflation. Then G is 7-locally disconnected, d-regular with
d = d′ = q + 1, and has n = dn′ = 2(q + 1)2(q2 + 1) ≤ 2(q + 1)4 vertices, from which

q + 1 ≥ (n
2
)
1
4 . As G is d-regular, we have |E(G)| = 1

2
dn = 1

2
(q + 1)n ≥ 1

2 4√2
n

5
4 .

Example 5: k = 11. Similarly, the incidence graph of a generalized hexagon of order
(q, q) is a cage of degree d′ = q + 1 and girth g = 12, and has n′ = 2(q3 + 1)(q2 + q + 1)
vertices (see [2], Section 2.2.3). Again, its inflation G is 11-locally disconnected, d-regular
with d = d′ = q + 1, and has n = dn′ = 2(q + 1)(q3 + 1)(q2 + q + 1) ≤ 2(q + 1)6 vertices,

from which q + 1 ≥ (n
2
)
1
6 and hence |E(G)| = 1

2
dn = 1

2
(q + 1)n ≥ 1

2 6√2
n

7
6 .

For k ≥ 12, no infinite families of cages of girth g > 12 are known. Thus, to obtain
similar constructions based on inflations, instead of cages we can only use “good” families
of (d, g)-graphs. The best known such families have (see [3], or Theorem 12 in [2]) n′ ≤
2dq

3
4
g−4 vertices, where q denotes the smallest odd prime power for which d ≤ q. By a

well-known result (proved by Chebychev in the mid of 19th century, see e.g. [4], page 96),
for any integer a ≥ 2, there is a prime between a and 2a, hence certainly q ≤ 2d, which
gives n′ ≤ (2d)

3
4
g−3. For the inflation G we then have |V (G)| = n = dn′ ≤ 2

3
4
g−3d

3
4
g−2,

from which, for fixed g, we have d ≥ c1n
4

3g−8 , where c1 is a suitable constant, and |E(G)| =
1
2
dn ≥ c2n

1+ 4
3g−8 = c2n

3g−4
3g−8 , where again c2 is a suitable constant.

10



Similarly to before, G is k-locally disconnected, where k = g− 1, and hence |E(G)| ≥
c2n

3(k+1)−4
3(k+1)−8 = c2n

1+ 4
3k−5 . Thus, we have |E(G)| ∈ Ω(n1+ 4

3k−5 ), which is noticeably less than
the upper bound of Corollary 12.

Of course, there could possibly be a better special construction (not based on the
inflation of a (d, g)-graph), however, this remains an open question.
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