Distance-locally disconnected graphs

Mirka Miller ${ }^{1,3,4,5,7,9}$, Joe Ryan ${ }^{3,7}$, Zdeněk Ryjáček ${ }^{1,2,3,6,8}$

October 31, 2012

Abstract

For an integer $k \geq 1$, we say that a (finite simple undirected) graph G is k-distancelocally disconnected, or simply k-locally disconnected if, for any $x \in V(G)$, the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is $\Theta\left(n^{2}\right)$ for any fixed value of k and, in the special case of regular graphs, we show that this asymptotic rate of growth cannot be achieved. For regular graphs, we give a general upper bound and we show its asymptotic sharpness for some values of k. We also discuss some connections with cages.

1 Introduction

In this paper, we consider simple finite undirected graphs $G=(V(G), E(G))$; for notations and terminology not defined here we refer the reader e.g., to [1]. Specifically, we use dist ${ }^{G}(x, y)$ to denote the distance of x and y in G and diam (G) to denote the diameter of G; $d^{G}(x)$ stands for the degree of a vertex x in $G, \Delta(G)$ for the maximum degree of G and $g(G)$ for the girth (i.e., the length of a shortest cycle) of G. We use $H \subset G$ to denote that H is a subgraph of G and, for a set $M \subset V(G)$, we use $\langle M\rangle_{G}$ to denote the induced subgraph of G on M. A path with terminal vertices u, v will be referred to as a (u, v)-path. If $x \in V(G)$ is a cutvertex of G and B is a component of $G-x$ then the subgraph $\langle V(B) \cup\{x\}\rangle_{G}$ is called the branch of G at x (corresponding to B).

Let $f(n), g(n)$ be two positive functions defined on the set of positive integers. We say that $f(n)$ is $O(g(n))$, denoted $f(n) \in O(g(n))$, if there are constants $K \geq 0$ and

[^0]$n_{0} \geq 0$ such that $f(n) \leq K g(n)$, for every $n \geq n_{0}$. Similarly, $f(n)$ is $\Omega(g(n))$, denoted $f(n) \in \Omega(g(n))$, if there are constants $K^{\prime} \geq 0$ and $n_{0}^{\prime} \geq 0$ such that $f(n) \geq K^{\prime} g(n)$ for every $n \geq n_{0}^{\prime}$, and $f(n)$ is $\Theta(g(n))$, denoted $f(n) \in \Theta(g(n))$, if both $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

The neighborhood of a vertex x in G is the set $N^{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$ and, more generally, for an integer $k \geq 1$, the set $N_{k}^{G}(x)=\left\{y \in V(G) \mid\right.$ dist $\left.{ }^{G}(x, y)=k\right\}$ is called the neighborhood at distance k and the set $N_{[k]}^{G}(x)=\left\{y \in V(G) \mid 1 \leq \operatorname{dist}^{G}(x, y) \leq k\right\}$ is called the neighborhood at distance at most k (or simply the k-neighborhood) of x in G (thus, $N^{G}(x)=N_{1}^{G}(x)=N_{[1]}^{G}(x)$ and $\left.N_{[k]}^{G}(x)=\cup_{j=1}^{k} N_{j}^{G}(x)\right)$. We will also use the closed neighborhood and closed k-neighborhood (of x in G) defined as $N^{G}[x]=N^{G}(x) \cup\{x\}$ and $N_{[k]}^{G}[x]=N_{[k]}^{G}(x) \cup\{x\}$, respectively.

Finally, a graph G is locally disconnected if $\left\langle N^{G}(x)\right\rangle_{G}$ is a disconnected graph for every $x \in V(G)$ and, more generally, for $k \geq 1, G$ is k-distance-locally disconnected, or simply k-locally disconnected if $\left\langle N_{[k]}^{G}(x)\right\rangle_{G}$ is disconnected for every $x \in V(G)$.

The problem of determining the maximum number of edges of a locally disconnected graph was originally posed by Bohdan Zelinka in 1985. In [7], Zelinka showed that this number cannot be expressed as a linear function of n and determined its exact value in the special case of planar graphs. In [6], it was shown that, surprisingly, this number can be, in a sense, "arbitrarily close" to the number of edges of a complete graph (more precisely, for any $n \geq 4$, there is a locally disconnected graph G_{n} on n vertices such that $\left.\lim _{n \rightarrow \infty} \frac{\left|E\left(G_{n}\right)\right|}{\binom{n}{2}}=1\right)$. In [5], a similar question was studied in the case of edge-induced vertex neighborhoods.

In the present paper, we will study the asymptotic behavior of the number of edges of a k-locally disconnected graph for $k \geq 2$. In Section 2 , we will see that this maximum number is, for $k \geq 2$, of asymptotic order $\frac{n^{2}}{2 k}$, i.e., asymptotically strictly less than $\binom{n}{2}$, but still $\Theta\left(n^{2}\right)$ for any fixed value of k, while in Section 3 we show that under the restriction to regular graphs the $\Theta\left(n^{2}\right)$ growth rate is not possible. For regular graphs we give a general upper bound and, for some values of k, we show its asymptotic sharpness. We also discuss some connections with cages.

2 Maximal k-locally disconnected graphs

It is easy to observe that, for any integers $k \geq 1$ and $n \geq 2 k+2$, there is a k-locally disconnected graph of order n (a cycle is an easy example). Thus, for $k \geq 1$ and $n \geq 2 k+2$, we can define

$$
\operatorname{ld}_{k}(n)=\max \{|E(G)| \mid G \text { is } k \text {-locally disconnected, }|V(G)|=n\} .
$$

We will also say that a k-locally disconnected graph G with $|V(G)|=n$ and $|E(G)|=$ $\operatorname{ld}_{k}(n)$ is maximal. Note that any k-locally disconnected graph is also $(k-1)$-locally disconnected, hence, for any $k \geq 2$ and $n \geq 2 k+2$, we have

$$
\operatorname{ld}_{k-1}(n) \geq \operatorname{ld}_{k}(n)
$$

We begin with several structural observations.

Proposition 1. Let G be a k-locally disconnected graph. Then $\operatorname{diam}(G) \geq k+1$.
Proof. Suppose, to the contrary, that G is k-locally disconnected and $\operatorname{diam}(G) \leq k$, and let $x, y \in V(G)$ be such that $\operatorname{dist}^{G}(x, y)=\operatorname{diam}(G)$. Since $\operatorname{diam}(G) \leq k$, all vertices of G are at distance at most k from x, implying $\left\langle N_{[k]}(x)\right\rangle_{G}=G-x$. As G is k-locally disconnected, $G-x$ is disconnected, i.e., x is a cutvertex of G. But now, for a vertex z in the component $G-x$ not containing y, we have $\operatorname{dist}^{G}(z, y)=\operatorname{dist}^{G}(z, x)+\operatorname{dist}^{G}(x, y)>$ dist ${ }^{G}(x, y)$, contradicting the assumption dist ${ }^{G}(x, y)=\operatorname{diam}(G)$.

Note that e.g. the cycle $C_{2 k+2}$ is k-locally disconnected and $\operatorname{diam}\left(C_{2 k+2}\right)=k+1$. Hence Proposition 1 is sharp.

Proposition 2. Let G be a k-locally disconnected graph, and let $x \in V(G)$. Then every component of $\left\langle N_{[k]}^{G}(x)\right\rangle_{G}$ contains a vertex at distance k from x.

Proof. Let, to the contrary, B be a component of $\left\langle N_{[k]}^{G}(x)\right\rangle_{G}$ with all vertices at distance at most $k-1$ from x. Then x is the only vertex in $G-B$ having a neighbor in B (for otherwise such a vertex would be at distance at most k from x, hence in B, contradicting its definition). Consequently, x is a cutvertex of G. Let B^{\prime} be the branch of G at x corresponding to B and let $y \in V\left(B^{\prime}\right)$ be at maximum distance from x. Then all vertices in $G-B^{\prime}$ that are at distance at most k from y are accessible from y only through x, hence all such vertices occur in the same component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$. As G is k-locally disconnected, $\left\langle N_{[k]}^{B^{\prime}}(y)\right\rangle_{B^{\prime}}=B^{\prime}-y$ is disconnected, hence y is a cutvertex of B^{\prime}. But then, similarly as before, for a vertex z in a component of $B^{\prime}-y$ not containing x, we have $\operatorname{dist}^{B^{\prime}}(z, y)=\operatorname{dist}^{B^{\prime}}(z, x)+\operatorname{dist}^{B^{\prime}}(x, y)>\operatorname{dist}^{B^{\prime}}(x, y)$, contradicting the choice of y.

We say that a k-locally disconnected graph is critical if, for any pair of nonadjacent vertices $x, y \in V(G)$, the graph $G+x y$ is not k-locally disconnected. Obviously, every maximal k-locally disconnected graph is also critical.

Theorem 3. Let G be a critical k-locally disconnected graph. Then G is 2-connected.
Proof. Suppose, to the contrary, that G is critical k-locally disconnected and x is a cutvertex of G. Let B be a branch of G at x and let $y \in V(B)$ be a vertex at maximum distance from x. Observe that all vertices in other branches of G at x are accessible from y only through x, hence those of them that are at distance at most k from y must occur in one component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$. Thus, if dist ${ }^{G}(y, x) \leq k$, all vertices of B are in $N_{[k]}^{G}(x)$, hence $\left\langle N_{[k]}^{B}(x)\right\rangle_{B}=B-y$ is disconnected, implying y is a cutvertex of B. But this, similarly as before, contradicts the maximality of dist ${ }^{G}(x, y)$.

Thus, every branch of G at x contains a vertex at distance at least $k+1$ from x. Let y_{1}, y_{2} be two such vertices in different branches. Then the graph $G+y_{1} y_{2}$ is also k-locally disconnected, contradicting the criticality of G.

Note that the graph G consisting of two cycles of length $2 k+2$ sharing a vertex shows that the criticality assumption in Theorem 3 is essential.

The following technical proposition is crucial for the main result of this section, Theorem 6 .

Proposition 4. Let G be a k-locally disconnected graph, $k \geq 2, x \in V(G), d^{G}(x)=d$. Then there are vertices $x_{i}^{\ell} \in V(G), i=1, \ldots, d, \ell=1, \ldots, k$, such that
(i) $\left\{x_{1}^{\ell}, \ldots, x_{d}^{\ell}\right\} \subset N_{\ell}(x), \ell=1, \ldots, k$;
(ii) $x, x_{i}^{1}, \ldots, x_{i}^{k}$ is an induced path in $G, i=1, \ldots, d$;
(iii) for any i_{1}, i_{2} and $\ell_{1}, \ell_{2}, 1 \leq i_{1}, i_{2} \leq d, i_{1} \neq i_{2}, 1 \leq \ell_{1}, \ell_{2} \leq k$, the vertices $x_{i_{1}}^{\ell_{1}}$ and $x_{i_{2}}^{\ell_{2}}$ are distinct and for $\max \left\{\ell_{1}, \ell_{2}\right\} \geq 2$ nonadjacent.

Proof. Let $\left\{x_{1}^{1}, \ldots, x_{d}^{1}\right\}=N_{1}(x)$, and consider $\left\langle N_{[k]}^{G}\left(x_{1}^{1}\right)\right\rangle_{G}$. As the vertex x and the vertices $x_{2}^{1}, \ldots, x_{d}^{1}$ are at distance at most 2 from x_{1}^{1}, they are in one component of $\left\langle N_{[k]}^{G}\left(x_{1}^{1}\right)\right\rangle_{G}$. By Proposition 2, there are vertices $x_{1}^{2}, \ldots, x_{1}^{k+1}$ in another component such that $\operatorname{dist}\left(x_{1}^{1}, x_{1}^{\ell+1}\right)=\ell, \ell=1, \ldots, k$ (for $d=4$ and $k=5$, see Fig. 1 ; note that some of the edges of the form $x_{i}^{1} x_{j}^{1}, 1 \leq i, j \leq d$, are possible in G).

By induction, for $i=2, \ldots, d$, some component of $\left\langle N_{[k]}^{G}\left(x_{i}^{1}\right)\right\rangle_{G}$ contains all of $N_{1}[x] \backslash$ $\left\{x_{i}^{1}\right\}$ and all the vertices x_{j}^{ℓ} for $1 \leq j \leq i$ and $2 \leq \ell \leq k-1$, hence there are vertices $x_{i}^{2}, \ldots, x_{i}^{k+1}$ in another component such that $\operatorname{dist}\left(x_{i}^{1}, x_{i}^{\ell+1}\right)=\ell, \ell=1, \ldots, k$. By the construction, it is straightforward to verify that the vertices $x_{i}^{\ell}, i=1, \ldots, d, \ell=1, \ldots, k$ have the required properties $(i),(i i)$ and (iii).

Figure 1

Theorem 5. Let G be a k-locally disconnected graph of order n. Then

$$
\Delta(G) \leq \frac{n-2}{k}
$$

Proof. The statement is obvious for $k=1$, thus let $k \geq 2$, and let $x \in V(G)$ be a vertex of degree $d=\Delta(G)$. By Proposition $4,\left|N_{\ell}^{G}(x)\right| \geq d$ for $\ell=1, \ldots, k$ and clearly $\left|N_{k+1}(x)\right| \geq 1$. Hence we have $n \geq\left|N_{[k+1]}^{G}[x]\right| \geq 1+\sum_{\ell=1}^{k}\left|N_{\ell}^{G}(x)\right|+1 \geq k d+2$, from which $d \leq \frac{n-2}{k}$.

Theorem 6. Let G be a k-locally disconnected graph of order n. Then

$$
|E(G)| \leq \frac{1}{2 k}\left(n^{2}-2 n\right)
$$

Proof. By Theorem 5, $|E(G)|=\frac{1}{2} \sum_{x \in V(G)} d^{G}(x) \leq \frac{1}{2} n \Delta(G) \leq \frac{1}{2 k} n(n-2)$.
In Theorem 6 we have, for any $k \geq 1$, an $O\left(n^{2}\right)$ upper bound on the number of edges of a k-locally disconnected graph of order n. The next result shows that the quadratic growth rate is achievable.

Theorem 7. Let $k \geq 1$ and $t \geq 2$ be integers and let $n=t(k+1)$. Then there is a k-locally disconnected graph G with n vertices and

$$
|E(G)|=\frac{1}{(k+1)^{2}}\left(n^{2}+\left(k^{2}-1\right) n\right)
$$

edges.
Proof. For given $k \geq 1$ and $t \geq 2$, let H_{1}, H_{2} be two copies of the complete graph K_{t} and let G be the graph obtained by joining the vertices of H_{1} to the vertices of H_{2} with t vertex-disjoint paths of length k (for $t=4$ and $k=3$, see Fig. 2). Then clearly G is

Figure 2
k-locally disconnected, $n=|V(G)|=(k+1) t$, and $|E(G)|=2\binom{t}{2}+k t=t(t-1)+k t=$ $t^{2}+(k-1) t=\left(\frac{n}{k+1}\right)^{2}+(k-1) \frac{n}{k+1}=\frac{1}{(k+1)^{2}}\left(n^{2}+\left(k^{2}-1\right) n\right)$, as required.

Now we are able to determine the asymptotic growth rate of the function $\operatorname{ld}_{k}(n)$.
Theorem 8. For any fixed integer $k \geq 1$,

$$
\operatorname{ld}_{k}(n) \in \Theta\left(n^{2}\right)
$$

Proof. We have $\operatorname{ld}_{k}(n) \in O\left(n^{2}\right)$ immediately by Theorem 6 . To obtain $\operatorname{ld}_{k}(n) \in \Omega\left(n^{2}\right)$, we extend the construction from the proof of Theorem 7 in such a way that, for $n=$ $t(k+1)+r$ with $1 \leq r \leq k$, we arbitrarily subdivide some of the t paths joining H_{1} to H_{2} with r vertices of degree 2 .

3 Regular k-locally disconnected graphs

In the previous section we have seen that, for any fixed $k \geq 2$, the number of edges of a k-locally disconnected graph of order n can achieve the growth rate $\Theta\left(n^{2}\right)$. Here we will show that this is not possible under the additional restriction on G to be regular. Similarly to the general case, we set

$$
\operatorname{ld}_{k}^{R}(n)=\max \{|E(G)| \mid G \text { is regular and } k \text {-locally disconnected, }|V(G)|=n\} .
$$

Furthermore, analogously, for any $k \geq 2$ and $n \geq 2 k+2$ we have

$$
\operatorname{ld}_{k-1}^{R}(n) \geq \operatorname{ld}_{k}^{R}(n)
$$

We begin with a structural result that will be crucial for our proof of the main result of this section. Here, a leaf of a tree T is a vertex of degree 1 in T.

Proposition 9. Let G be a k-locally disconnected ($k \geq 1$) d-regular graph and let $x \in V(G)$. Then G contains a tree T such that
(i) $V(T) \subset N_{[k]}^{G}[x]$;
(ii) all leaves of T are in $N_{k}^{G}(x)$;
(iii) for any $y \in V(T), \operatorname{dist}^{T}(x, y)=\operatorname{dist}^{G}(x, y)$;
(iv) for any $t, 1 \leq t \leq k$,

$$
\left|N_{t}^{T}(x)\right| \geq \begin{cases}d(d-1)^{\frac{t-1}{2}} & \text { for } t \text { odd } \\ d(d-1)^{\frac{t-2}{2}} & \text { for } t \text { even }\end{cases}
$$

Proof. We construct a sequence of trees $\left\{T_{t}\right\}_{t=1}^{k}$ such that, for any $t, 1 \leq t \leq k$, we have
(i) $V\left(T_{t}\right) \subset N_{[t]}^{G}[x]$;
(ii) all leaves of T_{t} are in $N_{t}^{G}(x)$;
(iii) for any $y \in V\left(T_{t}\right)$, $\operatorname{dist}^{T_{t}}(x, y)=\operatorname{dist}^{G}(x, y)$;
(iv) $\left|N_{t}^{T_{t}}(x)\right| \geq \begin{cases}d(d-1)^{\frac{t-1}{2}} & \text { for } t \text { odd, } \\ d(d-1)^{\frac{t-2}{2}} & \text { for } t \text { even; }\end{cases}$
(v) for $t \geq 2, T_{t-1} \subset T_{t}$.

We proceed by induction on t.

1. For $t=1$, we set $V\left(T_{1}\right)=N_{1}^{G}[x]$ and $E\left(T_{1}\right)=\left\{x y \mid y \in N_{1}^{G}(x)\right\}$. Then clearly T_{1} satisfies $(i)-(i v)$ for $t=1$.
2. Let $t \geq 2$ and suppose that we have already constructed a tree T_{t-1} satisfying $(i)-(v)$ with $t:=t-1$ (hence also its subtrees $T_{t^{\prime}}$ for all $t^{\prime}, 1 \leq t^{\prime} \leq t-1$). Note that, by the induction hypothesis, we have

$$
\left|N_{t-1}^{T_{t-1}}(x)\right| \geq \begin{cases}d(d-1)^{\frac{t-3}{2}} & \text { for } t \text { odd } \\ d(d-1)^{\frac{t-2}{2}} & \text { for } t \text { even }\end{cases}
$$

(since $t-1$ is even/odd for t odd/even, respectively).
(a) Suppose first that t is even and let y be a leaf of T_{t-1}. Then all vertices in T_{1} are at distance at most t from y and, since $t \leq k, T_{1}$ is (together with the (y, x)-path in T_{t-1}) a subgraph of one component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$. Thus, y has a neighbor y^{+}that is in another component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$ (not containing T_{1}). Choose such a vertex y^{+}for every leaf y of T_{t-1}. Then all these vertices are distinct and nonadjacent in G, for if e.g. $y_{1}^{+} y_{2}^{+} \in E(G)$ for some two leaves y_{1}, y_{2} of T_{t-1}, then y_{1}, y_{2} and all vertices of the $\left(y_{2}, x\right)$-path in T_{t-1} would be at distance at most $t \leq k$ from y_{1}, implying y_{1}^{+}is in the same component of $\left\langle N_{[k]}^{G}\left(y_{1}\right)\right\rangle_{G}$ as T_{1}, a contradiction (the case $y_{1}=y_{2}$ is similar). Thus, adding to T_{t-1} the vertices y^{+}and the edges $y y^{+}$for all leaves y of T_{t-1}, we obtain the desired tree T_{t} (note that if t is even then the lower bound $(i v)$ is the same for t and for $t-1$).
(b) If t is odd (implying $t \geq 3$), we construct a desired tree T_{t} by attaching to every leaf of T_{t-2} a tree T_{y} rooted at y such that T_{y} contains the edge $y y^{+}$(where y^{+}is the leaf of T_{t-1} defined in the previous step) and T_{y} has $d-1$ leaves at distance 2 from y (hence at distance t from x).

Thus, let y be a leaf of T_{t-2} and y^{+}the corresponding leaf of T_{t-1}. Since G is $d-$ regular, y^{+}has, besides $y, d-1$ other neighbors $y_{1}^{\prime}, \ldots, y_{d-1}^{\prime}$. Choose the notation such that, for some $s, 0 \leq s \leq d-1$, we have $y y_{i}^{\prime} \notin E(G)$ for $1 \leq i \leq s$ and $y y_{i}^{\prime} \in E(G)$ for $s+1 \leq i \leq d-1$. First observe that all $y_{i}^{\prime}, i=1, \ldots, s$, are at distance t from x (in G), for, if some $y_{i_{0}}^{\prime}$ is at distance at most $t-1$ from x, then, since $y y_{i}^{\prime} \notin E(G)$, there is a path from $y_{i_{0}}^{\prime}$ to some vertex in T_{1} of length at most $t-2$ avoiding y, hence y^{+}is in the same component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$ as T_{1}, a contradiction.

Now let $s+1 \leq i \leq d-1$. Then y_{i}^{\prime} is adjacent to both y and y^{+}, implying dist ${ }^{G}\left(x, y_{i}^{\prime}\right) \leq$ $t-1$. Similarly as before, $\operatorname{dist}^{G}\left(x, y_{i}^{\prime}\right)=t-1$ and y_{i}^{\prime} is nonadjacent to any vertex in T_{t-1}, for otherwise y^{+}is in the same component of $\left\langle N_{[k]}^{G}(y)\right\rangle_{G}$ as T_{1}, a contradiction. But now T_{1}, all vertices of the $\left(y^{+}, x\right)$-path in T_{t-1}, all vertices y_{j}^{\prime} for $j \neq i$, and all their neighbors are in the same component of $\left\langle N_{[k]}^{G}\left(y_{i}^{\prime}\right)\right\rangle_{G}$. Thus, y_{i}^{\prime} has a neighbor $y_{i}^{\prime \prime}$ in another component of $\left\langle N_{[k]}^{G}\left(y_{i}^{\prime}\right)\right\rangle_{G}$, and clearly $y_{i}^{\prime \prime}$ is at distance t from x. By their definition, all the vertices $y_{i}^{\prime \prime}, i=s+1, \ldots, d-1$, are distinct and nonadjacent.

Now, we define T_{y} as the tree containing the vertices $y, y^{+}, y_{1}^{\prime}, \ldots, y_{d-1}^{\prime}$ and $y_{s+1}^{\prime \prime}, \ldots, y_{d-1}^{\prime \prime}$, the edge $y y^{+}$, the edges $y^{+} y_{i}^{\prime}$ for $1 \leq i \leq s$, and the paths $y y_{i}^{\prime} y_{i}^{\prime \prime}$ for $s+1 \leq i \leq d-1$. Then T_{y} has $d-1$ leaves $y_{1}^{\prime}, \ldots, y_{s}^{\prime}, y_{s+1}^{\prime \prime}, \ldots, y_{d-1}^{\prime \prime}$ at distance 2 from y (see Fig. 3, where the edges of the tree T_{y} appear as thick lines).

Figure 3
Now it is again straightforward to verify that if y, v are two leaves of T_{t-2} and T_{y}, T_{v} are the corresponding trees, then all vertices of T_{y} and T_{v} are distinct and nonadjacent, for otherwise we have a contradiction with the definition of y^{+}, v^{+}or of some of $y_{i}^{\prime \prime}$ or $v_{i}^{\prime \prime}$. Thus, for the tree T_{t}, obtained from T_{t-2} by attaching T_{y} to y for any leaf y of T_{t-2}, we have

$$
\left|N_{t}^{T_{t}}(x)\right| \geq\left|N_{t-2}^{T_{t-2}}(x)\right|(d-1) \geq d(d-1)^{\frac{t-3}{2}}(d-1)=d(d-1)^{\frac{t-1}{2}},
$$

as requested.

The following result is a counterpart to Theorem 5 for regular graphs.
Theorem 10. Let $k \geq 1$ be odd and let G be a d-regular k-locally disconnected graph of order n. Then

$$
d \leq n^{\frac{2}{k+1}}+1
$$

Proof. Choose a vertex $x \in V(G)$ and let T be the tree given in Proposition 9. Then we have

$$
\begin{aligned}
& n \geq|V(T)|+1=1+\sum_{i=1}^{k}\left|N_{i}^{T}(x)\right|+1 \geq \\
& 1+d+d+d(d-1)+d(d-1)+\ldots+d(d-1)^{\frac{k-3}{2}}+d(d-1)^{\frac{k-3}{2}}+d(d-1)^{\frac{k-1}{2}}+1= \\
& 2+2 d\left[1+(d-1)+\ldots+(d-1)^{\frac{k-3}{2}}\right]+d(d-1)^{\frac{k-1}{2}}=2+2 d \frac{(d-1)^{\frac{k-1}{2}}-1}{(d-1)-1}+d(d-1)^{\frac{k-1}{2}}= \\
& 2+2 \frac{d}{d-2}\left[(d-1)^{\frac{k-1}{2}}-1\right]+d(d-1)^{\frac{k-1}{2}} \geq 2+2\left[(d-1)^{\frac{k-1}{2}}-1\right]+d(d-1)^{\frac{k-1}{2}}= \\
& (d+2)(d-1)^{\frac{k-1}{2}} \geq(d-1)^{\frac{k+1}{2}} .
\end{aligned}
$$

Thus, we have $n \geq(d-1)^{\frac{k+1}{2}}$, from which $d \leq n^{\frac{2}{k+1}}+1$.
Now we are able to give an upper bound on the function $\mathrm{ld}^{R}(n)$. We will show that, unlike in the general case (cf. Theorem 8), $\Theta\left(n^{2}\right)$ growth rate is not possible in the case of regular graphs.

Theorem 11. Let G be a regular k-locally disconnected graph of order n. Then

$$
|E(G)| \leq \begin{cases}\frac{n}{2}\left(1+n^{\frac{2}{k+1}}\right) & \text { for } k \text { odd } \\ \frac{n}{2}\left(1+n^{\frac{2}{k}}\right) & \text { for } k \text { even }\end{cases}
$$

Proof. If k is even, then $k-1$ is odd and the upper bound for $k-1$ equals the upper bound for k. Since $\operatorname{ld}_{k-1}^{R}(n) \geq \operatorname{ld}_{k}^{R}(n)$, it is sufficient to prove the bound for k odd. If G is d-regular, then $d \leq n^{\frac{2}{k+1}}+1$ by Theorem 10 . From this we have

$$
|E(G)|=\frac{1}{2} \sum_{x \in V(G)} d^{G}(x)=\frac{1}{2} n d \leq \frac{1}{2}\left(n^{1+\frac{2}{k+1}}+n\right)=\frac{n}{2}\left(1+n^{\frac{2}{k+1}}\right),
$$

as requested.

Corollary 12. For any fixed integer $k \geq 1$,

$$
\operatorname{ld}_{k}^{R}(n) \in \begin{cases}O\left(n^{1+\frac{2}{k+1}}\right) & \text { for } k \text { odd } \\ O\left(n^{1+\frac{2}{k}}\right) & \text { for } k \text { even. }\end{cases}
$$

Proof follows immediately from Theorem 11.

Specifically, we have:

$$
\operatorname{ld}_{k}^{R}(n) \in\left\{\begin{array}{cl}
O\left(n^{2}\right) & \text { for } k=1,2 \\
O\left(n^{\frac{3}{2}}\right) & \text { for } k=3,4 \\
O\left(n^{\frac{4}{3}}\right) & \text { for } k=5,6 \\
O\left(n^{\frac{5}{4}}\right) & \text { for } k=7,8
\end{array}\right.
$$

etc. We finish with examples of infinite families of regular locally disconnected graphs showing that, for $1 \leq k \leq 5, k=7$ and $k=11$ these asymptotic growth rates can really be achieved. We do not know similar constructions for $k \geq 12$; for these values of k we only give some general observations.

Since $\operatorname{ld}_{1}^{R}(n) \geq \operatorname{ld}_{2}^{R}(n)$ and $\operatorname{ld}_{3}^{R}(n) \geq \operatorname{ld}_{4}^{R}(n)$, it is not necessary to give the constructions for $k=1,3$; constructions for $k=2,4$ are sufficient.

Example 1: $k=2$. Let H_{0}, H_{1}, H_{2} be three copies of the complete bipartite graph $K_{t, t}, t \geq 2$, with vertices colored black and white, and let G be the graph obtained by joining black vertices in H_{i} to white vertices in H_{i+1} with a matching, $i=0,1,2$ (indices modulo 3). For $t=3$, see Fig. 4. Then $n=|V(G)|=6 t$, i.e., $t=\frac{n}{6}$, and

Figure 4
$|E(G)|=3 t^{2}+3 t=3\left(\frac{n}{6}\right)^{2}+3 \frac{n}{6}$, i.e. $|E(G)|=\frac{1}{12}\left(n^{2}+6 n\right)$. Thus $|E(G)| \in \Omega\left(n^{2}\right)$.
Example 2: $k=4$. Let $t \geq 2$ and let $H_{i, j}, i=0, \ldots, 4, j=0, \ldots, t-1$, be $5 t$ copies of the graph $K_{t, t}$ and let $w_{i, j}^{0}, \ldots, w_{i, j}^{t-1}\left(b_{i, j}^{0}, \ldots, b_{i, j}^{t-1}\right)$ denote the white (black) vertices of $H_{i, j}$, respectively. The graph G is obtained by joining $b_{i, j}^{k}$ to $w_{i+1, k}^{j}$ for all $j, k=0, \ldots, t-1$ and $i=0, \ldots, 4$ (index i modulo 5). For $t=2$, see Fig. 5. Then $n=|V(G)|=5 t \cdot 2 t=10 t^{2}$,

Figure 5
i.e., $t=\sqrt{\frac{n}{10}}$, and $|E(G)|=5 t \cdot t^{2}+5 t^{2}=5 t^{3}+5 t^{2}=\frac{1}{2 \sqrt{10}} n^{\frac{3}{2}}+\frac{1}{2} n$, hence we have $|E(G)| \in \Omega\left(n^{\frac{3}{2}}\right)$.

For our next examples, we will need some definitions and observations. Given integers d, g, a (d, g)-graph is a d-regular graph of girth g, and a (d, g)-graph of minimum order (number of vertices) is called a (d, g)-cage. For a survey paper on cages, see [2]. Since a graph of girth g is clearly $\left(\left\lfloor\frac{g}{2}\right\rfloor-1\right)$-locally disconnected and cages are such graphs of minimum order, cages are candidates for "good" locally disconnected graphs. While it can be seen that cages themselves are not dense enough to provide a sharpness example, we show that they can be used as "building blocks" for such a construction.

An inflation of a graph H is the graph G obtained from H by
(i) replacing each vertex $x \in V(H)$ with a clique K_{x} of order $d^{H}(x)$; and
(ii) replacing each edge $x y \in E(H)$ with an edge joining a vertex in K_{x} to a vertex in K_{y} in such a way that the edges of G corresponding to edges of H form a perfect matching in G.
Obviously, an inflation of a (d, g)-graph (hence also of a (d, g)-cage) is a d-regular $(g-1)$ locally disconnected graph. We will use known families of cages of girths $g=6,8$ and 12 to construct examples showing asymptotic sharpness for $k=5,7$ and 11 .

Example 3: $k=5$. The incidence graph of a projective plane of order q is a cage of degree $d^{\prime}=q+1$ and girth $g=6$, has $n^{\prime}=2\left(q^{2}+q+1\right)$ vertices (see [2], Section 2.2.1), and its inflation is a 5 -locally disconnected graph. Let G be such an inflation. Then G is d-regular with $d=d^{\prime}=q+1$ and has $n=|V(G)|=d n^{\prime}=2(q+1)\left(q^{2}+q+1\right) \leq 2(q+1)^{3}$ vertices, from which $q+1 \geq\left(\frac{n}{2}\right)^{\frac{1}{3}}$. Since G is d-regular, we have $|E(G)|=\frac{1}{2} \sum_{x \in V(G)} d^{G}(x)=\frac{1}{2} d n=$ $\frac{1}{2}(q+1) n \geq \frac{1}{2 \sqrt[3]{2}} n^{\frac{4}{3}}$.

Example 4: $k=7$. The incidence graph of a generalized quadrangle of order (q, q) is a cage of degree $d^{\prime}=q+1$ and girth $g=8$, and has $n^{\prime}=2(q+1)\left(q^{2}+1\right)$ vertices (see [2], Section 2.2.2). Let G be its inflation. Then G is 7 -locally disconnected, d-regular with $d=d^{\prime}=q+1$, and has $n=d n^{\prime}=2(q+1)^{2}\left(q^{2}+1\right) \leq 2(q+1)^{4}$ vertices, from which $q+1 \geq\left(\frac{n}{2}\right)^{\frac{1}{4}}$. As G is d-regular, we have $|E(G)|=\frac{1}{2} d n=\frac{1}{2}(q+1) n \geq \frac{1}{2 \sqrt[4]{2}} n^{\frac{5}{4}}$.

Example 5: $k=11$. Similarly, the incidence graph of a generalized hexagon of order (q, q) is a cage of degree $d^{\prime}=q+1$ and girth $g=12$, and has $n^{\prime}=2\left(q^{3}+1\right)\left(q^{2}+q+1\right)$ vertices (see [2], Section 2.2.3). Again, its inflation G is 11-locally disconnected, d-regular with $d=d^{\prime}=q+1$, and has $n=d n^{\prime}=2(q+1)\left(q^{3}+1\right)\left(q^{2}+q+1\right) \leq 2(q+1)^{6}$ vertices, from which $q+1 \geq\left(\frac{n}{2}\right)^{\frac{1}{6}}$ and hence $|E(G)|=\frac{1}{2} d n=\frac{1}{2}(q+1) n \geq \frac{1}{2 \sqrt[6]{2}} n^{\frac{7}{6}}$.

For $k \geq 12$, no infinite families of cages of girth $g>12$ are known. Thus, to obtain similar constructions based on inflations, instead of cages we can only use "good" families of (d, g)-graphs. The best known such families have (see [3], or Theorem 12 in [2]) $n^{\prime} \leq$ $2 d q^{\frac{3}{4} g-4}$ vertices, where q denotes the smallest odd prime power for which $d \leq q$. By a well-known result (proved by Chebychev in the mid of 19th century, see e.g. [4], page 96), for any integer $a \geq 2$, there is a prime between a and $2 a$, hence certainly $q \leq 2 d$, which gives $n^{\prime} \leq(2 d)^{\frac{3}{4} g-3}$. For the inflation G we then have $|V(G)|=n=d n^{\prime} \leq 2^{\frac{3}{4} g-3} d^{\frac{3}{4} g-2}$, from which, for fixed g, we have $d \geq c_{1} n^{\frac{4}{3 g-8}}$, where c_{1} is a suitable constant, and $|E(G)|=$ $\frac{1}{2} d n \geq c_{2} n^{1+\frac{4}{3 g-8}}=c_{2} n^{\frac{3 g-4}{3 g-8}}$, where again c_{2} is a suitable constant.

Similarly to before, G is k-locally disconnected, where $k=g-1$, and hence $|E(G)| \geq$ $c_{2} n^{\frac{3(k+1)-4}{3(k+1)-8}}=c_{2} n^{1+\frac{4}{3 k-5}}$. Thus, we have $|E(G)| \in \Omega\left(n^{1+\frac{4}{3 k-5}}\right)$, which is noticeably less than the upper bound of Corollary 12.

Of course, there could possibly be a better special construction (not based on the inflation of a (d, g)-graph $)$, however, this remains an open question.

References

[1] J.A. Bondy, U.S.R. Murty: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[2] G. Exoo, R. Jajcay: Dynamic cage survey. Electron. J. Comb. 18 (2011), \#DS16
[3] F. Lazebnik, V.A. Ustimenko, A.J. Woldar: New upper bounds on the order of cages. Electron. J. Combin. 4(2) (1997) R13.
[4] L. Lovász, J. Pelikán, K. Vesztergombi: Discrete Mathematics: Elementary and Beyond. Springer, New York, 2003.
[5] Z. Ryjáček: N_{2}-locally disconnected graphs. Discrete Mathematics 121 (1993), 189193.
[6] Z. Ryjáček, B. Zelinka: Locally disconnected graphs with large numbers of edges. Mathem. Slovaca 37 (1987), No. 2, 195-198.
[7] B. Zelinka: Two local properties of graphs. Časop. pěst. mat. 113 (1988), 113-121.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
 ${ }^{2}$ Institute for Theoretical Computer Science (ITI), Charles University, Pilsen, Czech Republic
 ${ }^{3}$ School of Electrical Engineering and Computer Science, The University of Newcastle, Australia
 ${ }^{4}$ Department of Computer Science, King's College, London, UK
 ${ }^{5}$ Department of Mathematics, ITB Bandung, Indonesia
 ${ }^{6}$ e-mail ryjacek@kma.zcu.cz
 ${ }^{7}$ e-mail \{Mirka.Miller, Joe.Ryan\}@newcastle.edu.au
 ${ }^{8}$ Research supported by grant No. P202/12/G061 of the Czech Science Foundation and by the European Regional Development Fund (ERDF), project NTIS - New Technologies for Information Society, European Centre of Excellence, CZ.1.05/1.1.00/02.0090.
 ${ }^{9}$ Research supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme.

