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Abstract

If C is a subclass of the class of claw-free graphs, then C is said to be stable if, for any

G ∈ C, the local completion of G at any vertex is also in C. If cl is a closure operation

that turns a claw-free graph into a line graph by a series of local completions and C
is stable, then cl(G) ∈ C for any G ∈ C. In this paper we study stability of hereditary

classes of claw-free graphs defined in terms of a family of connected closed forbidden

subgraphs. We characterize line graph preimages of graphs in families that yield

stable classes, we identify minimal families that yield stable classes in the finite case,

and we also give a general background for techniques for handling unstable classes

by proving that their closure may be included into another (possibly stable) class.

1 Introduction

Bedrossian [1] and Faudree and Gould [9] characterized pairs of connected graphs X, Y

such that an (X, Y )-free graph G is hamiltonian if and only if G is 2-connected. Brousek

et al. [7] characterized connected graphs Y such that the class of (K1,3, Y )-free graphs is

stable under the closure operation for hamiltonicity introduced by the third author [11].

Comparing these characterizations (see Theorems A and C), it can be observed that some

classes have both properties, but there are also connected graphs Y such that every 2-

connected (K1,3, Y )-free graph is hamiltonian while the class of (K1,3, Y )-free graphs is
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not stable. This is particularly the case with Y = B1,2 (see Fig. 1) while, e.g., in the class

of (K1,3, N1,1,1)-free graphs 2-connectedness implies hamiltonicity and the class is stable.

This “uneven” behavior was explained in [12], where it was shown that the closure of a

2-connected (K1,3, B1,2)-free graph must be (K1,3, N1,1,1)-free, i.e.,

cl(Forb2(K1,3, B1,2)) ⊂ Forb2(K1,3, N1,1,1) (∗)
(where Forbk(X ) denotes the class of all k-connected X -free graphs), and thus, after

applying the closure operation, the class of (K1,3, B1,2)-free graphs becomes redundant.

The technique of the paper [12] was recently extended in [13] for some other graph classes

and their behavior under the closure for 2-factors introduced in [16].

In this paper, we develop a general technique for proving inclusions of classes similar

to that of (∗) for various closure operations, which gives a tool for handling unstable

classes using closure techniques.

It should be noted that the results of the papers [12] and [13], which motivated our

research, have complicated and technical proofs. Thus, the relative simplicity of the

proofs of our results, giving a common generalization, should be considered as another

demonstration of the power of closure techniques.

By a graph we will always mean a finite simple undirected graph G = (V (G), E(G));

whenever we allow multiple edges we say that G is a multigraph. Throughout the paper,

we assume all graphs in consideration to be connected. We follow the most common

graph-theoretical terminology and for concepts and notations not defined here we refer

e.g. to [3].

Specifically, NG(x) denotes the neighborhood and dG(x) the degree of a vertex x in G,

and for k ≥ 0 we set Vk(G) = {x ∈ V (G)| dG(x) = k} and V≥k(G) = {x ∈ V (G)| dG(x) ≥
k}. A pendant edge is an edge with one vertex of degree 1, and a cherry in G is a pair of

pendant edges sharing a vertex. If G has no cherry, we say G is cherry-free. A clique in

G is a (not necessarily maximal) complete subgraph of G; a vertex x ∈ V (G) is simplicial

if NG(x) is a clique and universal if NG(x) = V (G) \ {x}. For x ∈ V (G) we further set

E(x) = {e ∈ E(G)| e contains x}. For X ⊂ V (G), ⟨X⟩ denotes the induced subgraph on

X, and if F is an induced subgraph of G, we also write F
IND

⊂ G. Throughout the paper,

∆(G) denotes the maximum degree of G, c(G) the circumference of G, g(G) the girth of

G and ν(G) the cyclomatic number ν(G) = |E(G)| − |V (G)|+ 1 of G.

A hamiltonian path (cycle) in G is a path (cycle) containing all vertices of G. A

graph with a hamiltonian cycle is said to be hamiltonian, while a graph G is said to

be Hamilton-connected if G has a hamiltonian (a, b)-path for any a, b ∈ V (G). Recall

that a hamiltonian graph must be 2-connected and a Hamilton-connected graph must be

3-connected.

If X is a family of graphs, we say that a graph G is X -free if G does not con-

tain any graph from X as an induced subgraph. The class of all X -free graphs is

denoted Forb(X ). If X is finite and X = {X1, . . . , Xk}, then we also say that G is

(X1, . . . , Xk)-free and we write G ∈ Forb(X1, . . . , Xk). In this context, the graphs in

X will be referred to as forbidden induced subgraphs. Specifically, the graph C = K1,3
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is called the claw and graphs in Forb(C) are said to be claw-free. For k ≥ 1, we set

Forbk(X ) = {X ∈ Forb(X )| x is k-connected}. Throughout, Pi denotes the path on i

vertices and T denotes the triangle. The graph K4 − e is called the diamond. Further

graphs often used as forbidden induced subgraphs are shown in Fig. 1; here the graph Bi,j
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Figure 1

is called the generalized bull, Ni,j,k the generalized net and H0 the hourglass.

We write G = L(H) if G is the line graph of H, and in this context we allow H to be

a multigraph. For a class of graphs C we denote L(C) = {L(G)| G ∈ C}.
It is a well-known fact that if G is a line graph (of a graph) and G is not a triangle, then

there is a unique graphH such that G = L(H). Such a graphH is called the preimage of G

and denoted H = L−1(G). We will use a similar notation, i.e. x = L(y) and y = L−1(x),

also for edges in H and the corresponding vertices in G. Recall that a graph F is a

subgraph of a graph H (we write F ⊂ H) if and only if L(F )
IND

⊂ L(H), and G = L(H)

is k-connected if and only if H is essentially k-edge-connected (i.e., |E(H)| ≥ k + 1 and

every edge-cut of G separating two nontrivial components has at least k edges).

2 Preliminary results

Pairs of connected graphs X1, X2 implying that a 2-connected (X1, X2)-free graph is

hamiltonian were characterized by Bedrossian [1]. Faudree and Gould [9] reconsidered

the Bedrossian characterization and added Z3 to the list under the additional assumption

n ≥ 10 (where the ’only if’ part is now based on infinite families of graphs).

Theorem A [1], [9]. Let X1, X2 be connected graphs with X1, X2 ̸≃ P3 and let G

be a 2-connected graph of order n ≥ 10 that is not a cycle. Then, G being (X1, X2)-free

implies G is hamiltonian if and only if (up to a symmetry) X1 = K1,3 and X2 is an induced

subgraph of at least one of the graphs P6, Z3, B1,2 or N1,1,1.

The third author introduced a closure concept in the class of claw-free graphs as

follows (see [11] or also the survey paper [5]). For x ∈ V (G), the local completion of G at

x is the graph G∗
x = (V (G), E(G) ∪ {uv| u, v ∈ NG(x)}) (i.e., G∗

x is obtained from G by

adding to ⟨NG(x)⟩G all missing edges); the vertex x is called the center of the completion

in this context. A vertex x ∈ V (G) is said to be eligible if ⟨NG(x)⟩G is a connected

noncomplete graph. The closure of a claw-free graph G is the graph cl(G) obtained from

G by recursively performing the local completion operation at eligible vertices, as long as
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this is possible (more precisely, there is a sequence of graphs G1, . . . , Gk such that G1 = G,

Gi+1 = (Gi)
∗
x, for some vertex x ∈ V (G) eligible in Gi, i = 1, . . . , k− 1, and Gk = cl(G)).

We say that G is closed if G = cl(G). The following result summarizes basic properties

of the closure operation.

Theorem B [11]. Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined,

(ii) c(cl(G)) = c(G),

(iii) cl(G) is the line graph of a triangle-free graph.

Thus, the closure operation turns a claw-free graph G into a unique line graph of

a triangle-free graph while preserving the length of a longest cycle (and hence also the

hamiltonicity or nonhamiltonicity) of G.

The behavior of some further path and cycle properties under the closure has also

been studied. It turns out that the closure operation preserves some of these properties

(e.g., the existence of a 2-factor - see [14]), while some other properties (such as e.g.

the Hamilton-connectedness, see [2]) are not necessarily preserved. Consequently, several

further closure concepts have been developed – see e.g., [4], [15] for strengthening of the

closure cl(G) for hamiltonicity, [16] for a closure for 2-factors, or [17] for a closure for

Hamilton-connectedness. All these closure concepts are based on the local completion

operation, i.e., the closure of a graph G is obtained by a series of local completions. The

difference is in the definition of eligibility. Further details are omitted since they are not

needed for our results; they are well documented in the references mentioned above.

Let C be a subclass of the class of claw-free graphs. We say that C is stable if G ∈ C
implies G∗

x ∈ C, for any x ∈ V (G). Note that if cl is any closure operation based on local

completions (i.e., such that cl(G) is obtained from G by a series of local completions),

then a class C being stable implies cl(G) ∈ C, for any G ∈ C.

An example of a stable class is the class Forb(C,Pi) of all (C,Pi)-free graphs for any

fixed i ≥ 3, or the class Forb(C,Ni,j,k) for any i, j, k ≥ 1 (see [7]). An example of a stable

class defined in terms of a larger (but finite) family of forbidden subgraphs is the class

Forb(C, S1, S2, N1,1,2), where S1, S2 are the graphs shown in Fig. 2. Proof of the fact that
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Figure 2

Forb(C, S1, S2, N1,1,2) is stable is implicit in the proof of Proposition 3 of [12] (Claims 1,
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2 and 3). The class Forb(C, {Ck}∞k=k0
), where k0 ≥ 3 is any fixed integer, is an example

of a stable class with infinite family of forbidden subgraphs (for stability proof see [8],

Lemma 2).

Note that all these classes are stable without any assumption on the eligibility of the

vertices used as centers of local completions.

On the other hand, the graph G1 in Fig. 3 is an example of a graph that is (C,H0)-free

while (G1)
∗
x contains an induced H0. A similar example for the case of forbidden subgraph
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Z3 is the graph G2 in Fig. 3. Thus, the graphs in Fig. 3 show that the classes Forb(C,H0)

and Forb(C,Z3) are not stable. However, continuing with performing local completions

and using the eligibility assumption at their centers, it is still possible to show that cl(G1)

is (C,H0)-free and cl(G2) is (C,Z3)-free.

We say that a class C is weakly stable under a closure operation cl if cl(G) ∈ C for any

G ∈ C. It was shown in [6] that Forb(C,Zi) is weakly stable under cl for any i ≥ 1 and,

similarly, Forb(C,H0) is also weakly stable under cl (see [7]).

Connected graphs X for which Forb(C,X) is weakly stable under cl were characterized

in [7].

Theorem C [7]. Let X be a closed connected claw-free graph. Then Forb(C,X) is

weakly stable under cl if and only if

X ∈ {H0, T} ∪ {Pi| i ≥ 3} ∪ {Zi| i ≥ 1} ∪ {Ni,j,k| i, j, k ≥ 1}.

From Theorem C and the previous examples we easily conclude that if X is a closed

connected claw-free graph then the class Forb(C,X) is stable if and only if X is a path

or a generalized net.

Note that the situation can be different with different types of closures that use a

different eligibility concept: e.g., the class Forb(C,Zi), which is weakly stable under cl by

Theorem C, is not weakly stable under the multigraph closure for Hamilton-connectedness

clM(G) introduced in [17].

Comparing Theorems A and C, we observe a somewhat surprising fact that, al-

though in the class Forb(C,B1,2) 2-connectedness implies hamiltonicity, Forb(C,B1,2)

is not weakly stable under cl. This is explained by the fact that, although the classes

Forb(C,B1,2) and Forb(C,N1,1,1) are independent, the closures of graphs from Forb(C,B1,2)

are in Forb(C,N1,1,1). Specifically, the following was proved in [12] where clC(G) is the

cycle closure of G, as introduced in [4].
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Theorem D [12]. Let G be a 2-connected graph.

(i) If G is (C,P6)-free, then cl(G) is (C,N1,1,1)-free.

(ii) If G is (C,B1,2)-free, then cl(G) is (C,N1,1,1)-free.

(iii) If G is (C,Z3)-free, then clC(G) is (C,N1,1,1)-free.

Corollary E [12]. Let G be a 2-connected (X1, X2)-free graph of order n ≥ 11,

where X1, X2 is a pair of connected graphs such that G being (X1, X2)-free implies G is

hamiltonian. Then G is claw-free and clC(G) is N1,1,1-free.

Thus, Forb(C,N1,1,1) is the only class that comes into consideration when working

with closed graphs. Similar results were obtained in [13], where the characterization of

forbidden pairs for 2-factors from [8] was simplified using the 2-factor closure introduced

in [16].

In this paper we will shed more light on the stability of hereditary classes of type

Forb(C,M), where M can be an arbitrary (even infinite) family of connected closed

claw-free graphs, and we will identify some common background for the techniques used

in proving results similar to Theorem D. As we will be interested in using the correspon-

dence between a line graph and its preimage, and all forbidden subgraphs in the previous

results are closed, we restrict our considerations to the cases when all forbidden subgraphs

(besides the claw) are closed claw-free graphs.

3 Stable classes

We begin with some necessary definitions. The following concepts slightly extend those

introduced in [13].

Let G be a graph, x ∈ V (G) a vertex of degree at least 2, and let A,B be a partition

of E(x) (i.e., E(x) = A∪B, where A,B are disjoint and nonempty). Let G+
x be the graph

with V (G+
x ) = (V (G) \ {x}) ∪ {x1, x2}, where x1, x2 /∈ V (G) (i.e., x1 and x2 are “new”

vertices), in which x1x2 ∈ E(G+
x ), and for every edge e ∈ E(G) with vertices u, x the

graph G+
x contains an edge from u to x1 if e ∈ A, or from u to x2 if e ∈ B, respectively.

We say that G+
x is obtained from G by splitting of type 1 of the vertex x.

Let e ∈ E(G) be a pendant edge with vertices u, x, dG(x) ≥ 3. We say that a graph

G
+(e)
x is obtained from G by splitting of type 2 of x, if G

+(e)
x is obtained from the graph

(V (G) \ {u}, E(G) \ {e}) by splitting of type 1 of x (see Fig. 4).

The following result, generalizing Proposition 1 of [13], is the first step towards iden-

tifying the line graph preimage counterpart of stability.

Proposition 1. Let G be a claw-free graph and x ∈ V (G). If G∗
x contains a connected

induced subgraph X such that X = L(Y ), where Y is a triangle-free and cherry-free

graph, then G contains an induced subgraph X ′ such that X ′ = L(Y ′), where either Y ,

Y ′ are isomorphic, or Y ′ is obtained from Y by splitting of a vertex.
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Figure 4

Proof. Let X
IND

⊂ G
∗
x and Y = L−1(X) be graphs satisfying the assumptions and

note that the assumption that Y is triangle-free implies that X is diamond-free. Set

B = E(X) \ E(G) and S = E(X) ∩ E(G). If B = ∅, then we set X ′ = X and we are

done, hence suppose B ̸= ∅.
Since X is induced, all edges in B are in one clique of X; thus, let K be a largest

clique containing B.

Claim 1. Let u,w1, w2 ∈ V (K) be such that uw1, uw2 ∈ S but w1w2 ∈ B. Then

NX(u) = V (K) \ {u}. In particular, u is simplicial in X.

Proof. Suppose that, to the contrary, uv ∈ E(X) for some v ∈ V (X) \ V (K). Since

⟨{u, v, w1, w2}⟩G ̸≃ K1,3, up to a symmetry, vw1 ∈ E(G). Since X is induced, vw1 ∈
E(X). Let z ∈ V (K) be arbitrary (not excluding the possibility z = w2). Since X is

diamond-free, ⟨{u,w1, v, z}⟩X cannot be a diamond (note that possibly uz and w1z can

be in B or in S), implying vz ∈ E(X). Since z is arbitrary, v is adjacent (in X) to all

vertices of K, contradicting the maximality of K. �

Claim 2. At most one vertex in K is simplicial in X.

Proof. Since Y is triangle-free, the vertices of K correspond to a star in Y . Two

simplicial vertices in K would give a cherry in Y , a contradiction. �

Let KS be the graph with V (KS) = V (K) and E(KS) = S and, similarly, set KB =

(V (K), B). Note that KB is triangle-free for, otherwise, x would be a claw center in G.

Claim 3. The graph KS satisfies one of the following:

(i) KS has two components and both are cliques,

(ii) KS contains a vertex u which is simplicial in X, the graph KS−u has two complete

components, and u is universal in KS.

Proof. Suppose first that no vertex of K is simplicial (in X). By Claim 1, each compo-

nent of KS is a clique. If KS has one component, then B = ∅, a contradiction. If KS has

at least three components, then, for any three vertices a1, a2, a3 in different components,

⟨{a1, a2, a3}⟩X is a triangle in B, a contradiction again. Hence KS has two components

and KS satisfies (i).
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Let now u ∈ V (K) be simplicial in X and let A1, . . . , Ak be components of KS − u.

First observe that all Ai are cliques, for otherwise, by Claim 1, we have in K a second

vertex that is simplicial in X, contradicting Claim 2.

If k ≥ 3, then, as above, we have a triangle in B, a contradiction. Next, suppose that

k = 1. If all edges between u and A1 are in B, KS satisfies (i) and we are done. Thus,

let v ∈ V (A1) be a neighbor of u such that uv ∈ S. If there is a w ∈ V (A1) such that

uw ∈ B, then, by Claim 1, v is a second simplicial vertex, a contradiction. Thus, all

edges between u and A1 are in S, but then B = ∅, a contradiction again. Hence we have

k = 2. If all edges between u and A1, A2 are in B, then, for some ai ∈ V (Ai), i = 1, 2,

⟨{u, a1, a2}⟩X is a triangle in KB, a contradiction. Hence we can choose notation such

that ua1 ∈ E(KS). By Claims 1 and 2, u is adjacent in KS to all vertices in A1, i.e.,

S1 = ⟨V (A1) ∪ {u}⟩KS
is a clique.

If u is adjacent inKS to no vertex of A2, then S1 and S2 = A2 are complete components

ofKS andKS satisfies (i). Thus, suppose that ua2 ∈ E(G) (i.e. ua2 ∈ S) for some a2 ∈ A2.

By Claims 1 and 2, u is adjacent in KS to all vertices of A2 and KS satisfies (ii). �

Now we can finish the proof of Proposition 1. We distinguish the two cases given in

Claim 3.

(i) The graphKS has two complete components S1, S2 (one of them possibly containing

a simplicial vertex u). Since KS is disconnected, x is adjacent to all vertices of K and, by

the maximality of K, x /∈ V (X). We set X ′ = ⟨V (X) ∪ {x}⟩G. Since NX′(x) consists of

two cliques, X ′ is a line graph, and in Y ′ = L−1(X ′) the contraction of the edge y = L−1(x)

yields the graph Y = L−1(X). Hence Y ′ is obtained from Y by vertex splitting of type 1.

(ii) The vertex u is simplicial in X and KS − u has two complete components S1, S2.

Then we simply set X ′ = ⟨V (X)⟩G. Since NX′(u) consists of two cliques, X ′ is a line

graph and, similarly as above, in Y ′ = L−1(X ′) the contraction of the edge y = L−1(u)

and adding a pendant edge to the contracted vertex yields the graph Y = L−1(X). Hence

Y ′ is obtained from Y by vertex splitting of type 2.

Examples.

1. Let X, X ′, Y be the graphs in Fig. 5. If G contains an induced copy of X ′, then
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G
∗
x contains an induced copy of X. We have X = L(Y ), however, there is no graph Y ′ of

Proposition 1 since X ′ is not a line graph. This example shows that the assumption that

Y is cherry-free is necessary in Proposition 1.
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2. Similarly, for the graphs X, X ′, Y in Fig. 6, clearly X = (X ′)
∗
x and L(Y ) = X, but

X ′ (and also X ′−x) is not a line graph. Hence also the assumption that Y is triangle-free

cannot be omitted in Proposition 1.
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Figure 6

Let Y be a family of graphs. We say that Y is closed under vertex splitting (or briefly

split-closed), if, for any Y ∈ Y and any Y ′ obtained from Y by vertex splitting (of type 1

or 2), Y ′ contains a subgraph Y ′′ ∈ Y .

The following result characterizes families of closed forbidden subgraphs that yield

stable classes.

Theorem 2. Let H be the class of all connected triangle-free and cherry-free graphs

and let Y ⊂ H and X = L(Y). Then the class Forb(C,X ) is stable if and only if Y is

split-closed.

Proof. If Y is split-closed, then the class Forb(C,X ) is stable by Proposition 1.

Conversely, suppose that Y is not split-closed. Then there is an H ∈ Y , a y ∈ V (H)

and a partition of edges at y such that the graph H ′, obtained from H by splitting at y,

contains no subgraph from Y . Set G = L(H ′), let h ∈ E(H ′) be the new edge obtained

by splitting y, and set x = L(h) ∈ V (G). Since H ′ contains no subgraph from Y , the

graph G = L(H ′) contains no induced subgraph from X = L(Y), hence G ∈ Forb(C,X ).

However, G
∗
x = L(H) and H ∈ Y , hence L(H) ∈ X = L(Y) and G

∗
x /∈ Forb(C,X ). Thus,

Forb(C,X ) is not stable.

Examples.

1. The classes Forb(C,X ), where X = {Pi} for any fixed i ≥ 2 or X = {Ni,j,k} for any

fixed i, j, k ≥ 1 are stable, and it is straightforward to see that any path or any preimage

of a generalized net is a subgraph of any graph obtained from it by vertex splitting.

2. Consider the graphs S1, S2 and N1,1,2 of Fig. 2. It is easy to see that splitting of

any vertex in any of the graphs L−1(S1), L
−1(S2) or L

−1(N1,1,2) gives a graph containing

L−1(N1,1,2), hence Forb(C, S1, S2, N1,1,2) is stable.

3. Similarly, splitting of any vertex in a cycle of length i gives a cycle of length i+ 1,

hence Forb(C, {Ci}∞i=k) is stable for any fixed k ≥ 3.

4. If Y is any of the graphs L−1(H0), L
−1(Zi) or L

−1(Bi,j) (see Fig. 7), then splitting

of type 2 of its vertex of degree 3 yields a graph not containing Y as a subgraph. Hence

none of the classes Forb(C,H0), Forb(C,Zi), Forb(C,Bi,j) is stable.
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4 Minimal families of forbidden subgraphs

By Theorem 2, Forb(C, S1, S2, N1,1,2), where S1, S2, N1,1,2 are the graphs in Figure 2, is a

stable class (see also Example 2 after Theorem 2). However, while neither Forb(C, S1) nor

Forb(C, S2) is stable, Forb(C,N1,1,2) is stable. Thus, the family {S1, S2, N1,1,2} contains

a graph (in this case N1,1,2) that itself yields a stable class. As a consequence of the

following result we will see that, in the case of a finite family of forbidden subgraphs for a

stable class, one of the forbidden subgraphs must always be a path or a generalized net.

We say that a graph Y is a subdivision of a star, if Y can be obtained from a star K1,r

(for some r ≥ 3) by adding at least one vertex of degree 2 to each of its edges. In the

special case r = 3 we say that Y is a subdivision of the claw. Note that Y is a subdivision

of the claw if and only if X = L(Y ) is a generalized net.

Proposition 3. Let Y = {Y1, . . . , Yk}, k ≥ 1, be a split-closed family of connected

graphs. Then some Yi ∈ Y is a path or a subdivision of the claw.

Proof. Let Y = {Y1, . . . , Yk}, k ≥ 1, be split-closed.

Claim 1. If Y contains a graph Y with ν(Y ) = r ≥ 1, then Y contains a graph Y ′ with

ν(Y ′) ≤ r − 1.

Proof. Let e = u1u2 ∈ E(Y ), and let {Yj}∞j=1 be the sequence of graphs in which Yj is

obtained by subdividing the edge e j-times, j = 1, 2, . . .. Since Y is split-closed, each Yj

contains a subgraph from Y , and since Y is finite, all graphs in some infinite subsequence

of {Yj}∞j=1 have a common subgraph from Y . But the only graph that can be a common

subgraph for any infinite subsequence of {Yj}∞j=1 is a graph obtained from a subgraph

of Y − e by possibly adding a path to each of the vertices u1, u2, which has cyclomatic

number at most r − 1. �

Claim 2. The class Y contains a tree.

Proof follows immediately from Claim 1 by induction. �

Claim 3. The class Y contains a path or a subdivision of a star.
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Proof. If Y contains a tree T such that |V≥3(T −V1(T ))| ≤ 1, i.e., T −V1(T ) is a path or

a subdivision of a star, we are done since then a subdivision of T −V1(T ) (which is also a

path or a subdivision of a star) can be obtained from T by a sequence of vertex splittings

of type 2. Hence suppose that |V≥3(T − V1(T ))| ≥ 2 for every tree T ∈ Y . Let T0 ∈ Y
be such that |V≥3(T0 − V1(T0))| is minimum and let u1, u2 ∈ V (T0) be of degree at least 3

in T0 − V1(T0). Let e ∈ E(T0) be an edge of the (only) (u1, u2)-path in T and let {Yj}∞j=1

be the sequence of graphs obtained by subdividing the edge e j-times, j = 1, 2, . . .. Since

Y is split-closed and finite, there is an infinite subsequence of {Yj}∞j=1 with a common

subgraph T1 ∈ Y . Since every graph in Y is connected, this is possible only if T1 is

obtained from a component of T0 − e by possibly adding a path to the endvertex of e.

But then |V≥3(T1 − V1(T1))| < |V≥3(T0 − V1(T0))|, contradicting the choice of T0. �

Now let T ∈ Y be a path or a subdivision of a star such that d = ∆(T ) is minimum.

If 2 ≤ d ≤ 3 we are done, hence suppose d ≥ 4, and let x ∈ V (T ) be of degree d in T .

Let A,B be a partition of E(x) with min{|A|, |B|} ≥ 2 and let T1 be obtained from T by

splitting x with respect to the partition A,B. Then ∆(T1) < ∆(T ).

Let {Yj}∞j=1 be the sequence of graphs obtained from T1 by subdividing j-times, j =

1, 2, . . ., the edge x1x2 (where x1, x2 are the vertices obtained by splitting x). Then for

any infinite subsequence of {Yj}∞j=1 the only common subgraph is a path or a subdivision

of a star T ′ with ∆(T ′) < ∆(T ), contradicting the choice of T .

Theorem 4. Let X be a finite family of connected line graphs of triangle-free and

cherry-free graphs such that Forb(C,X ) is stable. Then X contains a path or a generalized

net.

Proof is immediate by Proposition 3.

In the case of infinite families of forbidden subgraphs an analogue of Corollary 4 is

not true, as can be seen e.g. by considering the stable class Xk = Forb(C, {Ci}∞i=k) (for

any fixed k ≥ 3); Xk is stable although neither of the forbidden subgraphs is a path

or a generalized net. However, it is still possible to show that each family of forbidden

subgraphs that yields a stable class contains a proper subfamily with the same property.

Proposition 5. Let Y be a split-closed family of connected graphs. Then Y contains

a proper subfamily Y ′ ⊂ Y , Y ′ ̸= Y , such that Y \ Y ′ is split-closed, unless |Y| = 1 and

Y = {Y }, where Y is a path or a subdivision of the claw.

Proof. First suppose that Y contains no tree and set g(Y) = min{g(Y )| Y ∈ Y} and

Y ′ = {Y ∈ Y| g(Y ) = g(Y)}. Then Y \ Y ′ is split-closed (since vertex splitting cannot

reduce the length of a cycle).

Next suppose that Y contains both a tree and some graph that is not a tree. If Y ′ ⊂ Y
is the subfamily of all graphs from Y that are not trees, then Y \ Y ′ is split-closed (since

splitting a vertex of a tree cannot create a cycle).
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Finally, suppose that all graphs in Y are trees and, for a tree T , define the core

co(T ) of T as the smallest subtree T ′ ⊂ T such that V≥3(T − V1(T )) ⊂ V (T ′), and set

η(T ) = |co(T )| and η(Y) = min{η(T )| T ∈ Y}. Let Y ′ = {T ∈ Y| η(T ) = η(Y)}. If

Y ′ ̸= Y , then again Y \Y ′ is split-closed (since, by vertex splitting, η(T ) cannot decrease).

Hence it remains to consider the case when η(T ) = η(Y) for any T ∈ Y . If η(T ) ≥ 2,

or if η(T ) = 1 and the vertex in co(T ) is of degree at least 4, then splitting of a vertex in

co(T ) increases η(T ) and we are in the previous case. Thus, the only remaining possibility

is that η(T ) ≤ 1 and |V≥4(T )| = 0, ie., T is a path or a subdivision of the claw.

Theorem 6. Let X be a family of line graphs of connected triangle-free and cherry-free

graphs such that Forb(C,X ) is stable. Then X contains a subfamily X ′ ⊂ X , X ′ ̸= X ,

such that Forb(C,X \X ′) is stable, unless |X | = 1 and X contains a path or a generalized

net.

Proof is immediate by Proposition 5.

5 Unstable classes and stabilizers

In this section we show a common background of the techniques that can be used to

prove results similar to Theorem D and Corollary E, and to their analogue for the 2-

factor closure proved in [13]. Throughout the section, cl will always denote a closure

operation that turns a claw-free graph into a line graph (possibly of a multigraph) by

a series of local completions at eligible vertices; the definition of eligibility can vary in

specific cases. Thus, special cases of the closure operation cl are the closure introduced

in [11], the cycle closure introduced in [4], the contraction closure introduced in [15], the

2-factor closure introduced in [16], the multigraph closure introduced in [17] or the strong

M-closure introduced in [10].

Let B be a family of connected line graphs of triangle-free and cherry-free graphs, G a

family of connected closed (under cl) claw-free graphs, and let k ≥ 2 be an integer. Then

a family S of connected triangle-free and cherry-free graphs such that

(i) S is split-closed,

(ii) every S ∈ S contains a subgraph isomorphic to L−1(B) for some B ∈ B,
(iii) every cl-closed k-connected (C,L(S))-free graph is (C,G)-free,

is called a k-stabilizer for B into G under cl, or briefly a (k,B,G, cl)-stabilizer. In the

special case when B = {B} and G = {Q} we simply say that S is a (k,B,Q, cl)-stabilizer.

Remark. If Q ∈ G is not cl-closed, then clearly cl(G) is Q-free for any claw-free graph

G. Similarly, if for some B ∈ B, L−1(B) is not triangle-free and cherry-free, then B is

redundant since (ii) is an empty condition for B. In the definition of a stabilizer we

suppose that all graphs in G are closed and all graphs in L−1(B) are triangle-free and

cherry-free in order to avoid such trivial cases.
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The following theorem shows that if for some classes B, G there is a k-stabilizer, then

the closures of all k-connected (C,B)-free graphs are (C,G)-free, i.e. cl(Forbk(C,B)) ⊂
Forbk(C,G).

In typical applications (see [12], [13]) this technique was used to handle an unsta-

ble class Forb(C,B) by inserting closures of graphs from Forb(C,B) into a stable class

Forb(C,G) (which also motivates the name “stabilizer”), however, it turns out that the

stability of Forb(C,G) is not necessary for the inclusion.

Theorem 7. Let k ≥ 1, let B, G be classes of graphs such that there is a (k,B,G, cl)-
stabilizer, and let G be a k-connected (C,B)-free graph. Then cl(G) is (C,G)-free.

Proof. Let S be a (k,B,G, cl)-stabilizer, k ≥ 1, and suppose that cl(G) is not G-free,
i.e. Q

IND

⊂ cl(G) for some Q ∈ G. By (iii), cl(G) is not L(S)-free, i.e. there is an S ∈ S
such that L(S)

IND

⊂ cl(G). By (i), by Proposition 1 and by induction, L(S ′)
IND

⊂ G for some

S ′ ∈ S. By (ii), G is not B-free, a contradiction.

Examples. 1. Let S1, S2, N1,1,2 be the graphs in Fig. 2 and set S ′
1 = L−1(S1), S

′
2 =

L−1(S2), S ′
3 = L−1(N1,1,2) and S = {S ′

1, S
′
2, S

′
3}. As already noted, S is split-closed,

and it is also not difficult to verify that a 2-connected closed graph G containing an

induced N1,1,1 must also contain some of S ′
i, i = 1, 2, 3 (since then L−1(G) contains an

L−1(N1,1,1) and the connectivity assumption implies the existence of some suitable addi-

tional paths). Equivalently, a closed (C,S)-free graph must be (C,N1,1,1)-free. Since each

of S ′
1, S

′
2, S

′
3 contains L−1(B1,2) as a subgraph, S is a (2, B1,2, N1,1,1, cl)-stabilizer. This

gives a much simpler proof of part (ii) of Theorem D and the subsequent simplification

of the Bedrossian’s characterization (Corollary E).

2. A similar approach would give an alternative (and simpler) proof of the fact that

closures of 2-connected (C,Z3)-free graphs are (C,N1,1,1)-free (originally in [12]), hence

also immediately part (iii) of Theorem D. The proof is slightly more elaborate here since

there are several finite exceptions and one infinite class of exceptions, nevertheless still

much easier than in the original paper [12]. We leave details to the reader.

3. A similar approach was used in [13] to simplify the characterization of forbidden

pairs for 2-factors. Having in mind the definition of a stabilizer, it is easy to observe that

the family of “good suns”, as defined in [13], is a (2, B1,3, N1,1,2, cl
2f )-stabilizer (where cl2f

is the 2-factor closure introduced in [16]).

Remark. Although Theorem 4 shows that the only minimal families X such that

Forb(C,X ) is stable are the one-element ones containing a path or a generalized net,

from Example 1 we see that an analogue for stabilizers is not true: the (finite) family

{S1, S2, N1,1,2} is a (2, B1,2, N1,1,1, cl)-stabilizer, but it is easy to verify that none of its

proper subfamilies has this property. However, a characterization of minimal (in some

sense) stabilizers for given families B, G remains an open problem.
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