Rainbow connection and forbidden subgraphs

Přemysl Holub ${ }^{1,3,5,6}$

Zdeněk Ryjáčekk 1,3,5,6
Petr Vrána ${ }^{1,3,5,6}$

Ingo Schiermeyer ${ }^{2,4,5}$

April 27, 2014

Abstract

A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number $\operatorname{rc}(G)$ of G is the minimum number of colors such that G is rainbow-connected. We consider families \mathcal{F} of connected graphs for which there is a constant $k_{\mathcal{F}}$ such that, for every connected \mathcal{F}-free graph $G, \operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $\operatorname{diam}(G)$ is the diameter of G. In this paper, we give a complete answer for $|\mathcal{F}| \in\{1,2\}$.

1 Introduction

We use [2] for terminology and notation not defined here and consider finite and simple graphs only. To avoid trivial cases, all graphs considered here will be connected with at least one edge.

An edge-colored connected graph G is called rainbow-connected if each pair of distinct vertices of G is connected by a rainbow path, that is, by a path whose edges have pairwise distinct colors. Note that the edge coloring need not be proper. The rainbow connection number of G, denoted by $\operatorname{rc}(G)$, is the minimum number of colors such that G is rainbowconnected.

The concept of rainbow connection in graphs was introduced by Chartrand et al. in [7]. An easy observation is that if G has n vertices then $\operatorname{rc}(G) \leq n-1$, since one may

[^0]color the edges of a given spanning tree of G with different colors and color the remaining edges with one of the already used colors. Chartrand et al. determined the precise value of the rainbow connection number for several graph classes including complete multipartite graphs [7]. The rainbow connection number has been studied for further graph classes in $[4,10,11,15]$ and for graphs with fixed minimum degree in $[4,12,17]$. See $[16]$ for a survey.

There are various applications for such edge colorings of graphs. One interesting example is the secure transfer of classified information between agencies (see, e.g., [9]).

The computational complexity of rainbow connectivity has been studied in [5, 13]. It is proved that the computation of $\operatorname{rc}(G)$ is NP-hard ([5, 13]). In fact, it is already NP-complete to decide whether $\operatorname{rc}(G)=2$. It is also NP-complete to decide whether a given edge-colored graph (with an unbounded number of colors) is rainbow-connected [5]. More generally, it has been shown in [13] that for any fixed $k \geq 2$ it is NP-complete to decide whether $\operatorname{rc}(G)=k$.

For the rainbow connection numbers of graphs the following results are known (and obvious).

Proposition A. Let G be a connected graph of order n. Then
(i) $1 \leq \operatorname{rc}(G) \leq n-1$,
(ii) $\operatorname{rc}(G) \geq \operatorname{diam}(G)$,
(iii) $\operatorname{rc}(G)=1$ if and only if G is complete,
(iv) $\operatorname{rc}(G)=n-1$ if and only if G is a tree,
(v) if G is a cycle of length $n \geq 4$, then $\mathrm{rc}(G)=\left\lceil\frac{n}{2}\right\rceil$.
Note that the difference $\operatorname{rc}(G)-\operatorname{diam}(G)$ can be arbitrarily large. For $G=K_{1, n-1}$ we have $\operatorname{rc}\left(K_{1, n-1}\right)-\operatorname{diam}\left(K_{1, n-1}\right)=(n-1)-2=n-3$. Especially, each bridge requires a single color.

Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain an induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F}=\{X\}$ we say that G is X-free, and for $\mathcal{F}=\{X, Y\}$ we say that G is (X, Y)-free. The members of \mathcal{F} will be referred to in this context as forbidden induced subgraphs.

Graphs characterized in terms of forbidden induced subgraphs are known to have many interesting properties. Although, in general, there is no upper bound on $\operatorname{rc}(G)$ in terms of $\operatorname{diam}(G)$, and, in bridgeless graphs, by virtue of Theorem $\mathrm{F}, \mathrm{rc}(G)$ can be quadratic in terms of $\operatorname{diam}(G)$, it turns out that forbidden subgraph conditions can remarkably lower the upper bound on $\operatorname{rc}(G)$.

Namely, we will consider the following question.
For which families \mathcal{F} of connected graphs, there is a constant $k_{\mathcal{F}}$ such that a connected graph G being \mathcal{F}-free implies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$?

We give a complete answer for $|\mathcal{F}|=1$ in Section 3, and for $|\mathcal{F}|=2$ in Section 4.

2 Preliminary results

In this section we summarize some further notations and facts that will be needed for the proofs of our results.

An edge in a graph G is called a bridge, if its removal disconnects the graph. A graph with no bridges is called a bridgeless graph. An edge is called pendant edge, if one of its end vertices has degree one. For two vertices $x, y \in V(G)$, we denote by $\operatorname{dist}(x, y)$ the distance between x and y in G. The diameter and the radius of a graph G will be denoted by $\operatorname{diam}(G)$ and $\operatorname{rad}(G)$, respectively. For $M \subset V(G)$, we use $G[M]$ to denote the induced subgraph of G on M.

For $x \in V(G)$, we use $N_{G}(x)$ to denote the neighborhood of x in G and $N_{G}[x]$ to denote the closed neighborhood of x in G (i.e., $N_{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$ and $N_{G}[x]=$ $\left.N_{G}(x) \cup\{x\}\right)$. More generally, for sets $A, B \subset V(G)$, we denote $N_{G}(A)=\cup_{x \in A} N_{G}(x)$ and $N_{B}(A)=N_{G}(A) \cap B$, and for a subgraph $P \subset G$ we write $N_{P}(A)$ for $N_{V(P)}(A)$ and $N_{G}(P)$ for $N_{G}(V(P))$.

A dominating set D in a graph G is called a two-way dominating set if D includes all vertices of G of degree 1 . In addition, if $G[D]$ is connected, we call D a connected two-way dominating set. Note that if $\delta(G) \geq 2$, then every (connected) dominating set in G is a (connected) two-way dominating set.

Theorem B [6]. If D is a connected two-way dominating set in a graph G, then $\operatorname{rc}(G) \leq \operatorname{rc}(G[D])+3$.

The following simple fact is implicit in the proof od Theorem B in [6]. However, since it is not stated explicitly, and since it will be used several times, we state it here, including its (easy) proof.

Proposition C [6]. Let G be a graph and let $F \subset G$ be a connected subgraph of G such that every vertex in $V(G) \backslash V(F)$ has at least 2 neighbors in F. Then $\operatorname{rc}(G) \leq \operatorname{rc}(F)+2$.

Proof. Color the edges of G as follows:

- color the edges of F with colors $1, \ldots, k$, where $k=\operatorname{rc}(F)$,
- for each $x \in V(G) \backslash V(F)$, choose two edges from x to F and color them with colors $k+1$ and $k+2$,
- color the remaining edges arbitrarily (e.g., all of them with color $k+2$).

Then G is rainbow-connected.
For the proofs of Theorem 4 and Theorem 6, we will also need the following two facts by Li et al. [14].

Theorem D [14]. If G is a connected bridgeless graph of diameter 2 , then $\operatorname{rc}(G) \leq 5$.

Theorem \mathbf{E} [14]. If G is a connected graph of diameter 2 with $k \geq 1$ bridges, then $\operatorname{rc}(G) \leq k+2$.

For connected bridgeless graphs, the following upper bound on $\mathrm{rc}(G)$ was proved by Basarajavu et al. [1].

Theorem F [1]. For every connected bridgeless graph G with radius r,

$$
\operatorname{rc}(G) \leq r(r+2)
$$

Moreover, for every integer $r \geq 1$, there exists a bridgeless graph G with radius r and $\operatorname{rc}(G)=r(r+2)$.

3 One forbidden subgraph

In this section, we characterize all connected graphs X such that every connected X-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X}$, where k_{X} is a constant.

Theorem 1. Let X be a connected graph. Then there is a constant k_{X} such that every connected X-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X}$, if and only if $X=P_{3}$.

Proof. If $X=P_{3}$, then G is a complete graph, $\operatorname{implying~} \operatorname{rc}(G)=\operatorname{diam}(G)=1$.
Conversely, let $t_{0} \geq 3$ and, for $t \geq t_{0}$, set $G_{1}^{t}=K_{1, t}$, and let G_{2}^{t} denote the graph obtained by attaching a pendant edge to each vertex of a complete graph K_{t} (see Fig. 1). Since $\operatorname{rc}\left(G_{1}^{t}\right)=t$ but $\operatorname{diam}\left(G_{1}^{t}\right)=2, G_{1}^{t}$ must contain an induced copy of X. Hence X is a star. Since $\operatorname{rc}\left(G_{2}^{t}\right)=t+1$ but $\operatorname{diam}\left(G_{2}^{t}\right)=3, G_{2}^{t}$ contains an induced copy of X. But X is a star and G_{2}^{t} is $K_{1,3}$-free, hence $X=K_{1,2}=P_{3}$.

Figure 1: The graphs G_{1}^{t} and G_{2}^{t}

4 Pairs of forbidden subgraphs

The main result of this section, Theorem 2, characterizes all forbidden pairs X, Y for which there is a constant $k_{X Y}$ such that G being (X, Y)-free implies $\mathrm{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$.

Figure 2: The net N

Here the net is the graph obtained by attaching a pendant edge to each vertex of a triangle (see Fig 2). By virtue of Theorem 1, we exclude the case that one of X, Y is P_{3}.

Theorem 2. Let X, Y be connected graphs, $X, Y \neq P_{3}$. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$, if and only if (up to symmetry) either $X=K_{1, r}, r \geq 4$ and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

The proof of Theorem 2 will be subdivided into three separate results: in Proposition 3, we prove necessity, and Theorems 4 and 6 will establish sufficiency of the forbidden pairs given in Theorem 2.

Proposition 3. Let $X, Y \neq P_{3}$ be connected graphs for which there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$. Then (up to symmetry) either $X=K_{1, r}, r \geq 4$ and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

Proof. Let $t_{0} \geq 3$ and, for $t \geq t_{0}$, let (see Fig. 3):

- G_{3}^{t} be the graph obtained by attaching an endvertex of a path P_{t} to every vertex of a triangle,
- G_{4}^{t} be the graph obtained by attaching a pendant edge to every internal vertex of a path P_{t}.
We will also use the graphs G_{1}^{t} and G_{2}^{t} introduced in the proof of Theorem 1.

Figure 3: The graphs G_{3}^{t} and G_{4}^{t}
Consider the graph $G_{1}^{t}=K_{1, t}$. Since $\operatorname{rc}\left(G_{1}^{t}\right)=t$ while $\operatorname{diam}\left(G_{1}^{t}\right)=2$, we have, up to symmetry, $X=K_{1, r}$ for some $r \geq 3$. Now we consider the graphs G_{2}^{t} and G_{3}^{t}. Clearly $\operatorname{rc}\left(G_{2}^{t}\right)=t+1$ while $\operatorname{diam}\left(G_{2}^{t}\right)=3$, and for G_{3}^{t} we observe that $\operatorname{diam}\left(G_{3}^{t}\right)=2 t-1$ while $\operatorname{rc}\left(G_{3}^{t}\right) \geq 3(t-1)$ (since all edges of the three paths must have mutually distinct colors), from which $\operatorname{rc}\left(G_{3}^{t}\right) \geq \frac{3}{2}\left(\operatorname{diam}\left(G_{3}^{t}\right)-1\right)$. Since both G_{2}^{t} and G_{3}^{t} are claw-free, neither of them contains X, implying that both G_{2}^{t} and G_{3}^{t} contain Y. Since the maximum common
induced subgraph of G_{2}^{t} and G_{3}^{t} is the net, we have that $Y=N$, or Y is an induced subgraph of N.

Now consider the graph G_{4}^{t}. Obviously, $\operatorname{diam}\left(G_{4}^{t}\right)=t-1$ and $\operatorname{rc}\left(G_{4}^{t}\right)=\left|V\left(G_{4}^{t}\right)\right|-1=$ $2 t-3$, from which $\operatorname{rc}\left(G_{4}^{t}\right)=2 \operatorname{diam}\left(G_{4}^{t}\right)-1$. We have two possibilities:
(i) G_{4}^{t} contains X. Then we obtain that $X=K_{1,3}$ and $Y=N$ (or an induced subgraph of N).
(ii) G_{4}^{t} contains Y. As the only induced subgraph of the net N contained in G_{4}^{t} and different from P_{3} (or an induced subgraph) is the path P_{4}, and the case $X=K_{1,3}$ is already covered by case (i), we have that $X=K_{1, r}, r \geq 4$, and $Y=P_{4}$.

Theorem 4. Let G be a connected $\left(K_{1, r}, P_{4}\right)$-free graph for some $r \geq 4$. Then $\operatorname{rc}(G) \leq r+1$.

Proof. We have $\operatorname{diam}(G) \leq 2$ since G is P_{4}-free. If $\operatorname{diam}(G)=1$, then G is a complete graph and $\operatorname{rc}(G)=1$. Hence we may assume that $\operatorname{diam}(G)=2$.

If G is bridgeless, then, by Theorem $\mathrm{D}, \operatorname{rc}(G) \leq 5$, implying $\mathrm{rc}(G) \leq 5 \leq r+1$ and we are done. Thus, let $e=u v$ be a bridge in G. Since $\operatorname{diam}(G)=2$, one of u, v, say, u, is of degree 1 , and v is adjacent to all the other vertices of G. Since G is $K_{1, r}$-free, G has at most $r-1$ bridges. By Theorem E, we then have $\operatorname{rc}(G) \leq(r-1)+2=r+1$.

Corollary 5. Let G be a connected $\left(K_{1, r}, P_{4}\right)$-free graph for some $r \geq 4$. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+r-1$.

Proof. If $\operatorname{diam}(G)=1$, then $\operatorname{rc}(G)=1 \leq \operatorname{diam}(G)+r-1$, and if $\operatorname{diam}(G)=2$, then, by Theorem $4, \operatorname{rc}(G) \leq r+1=\operatorname{diam}(G)+r-1$.

Note that, for any $r \geq 3$, the graph G_{1}^{r-1} in Fig. 1 is $\left(K_{1, r}, P_{4}\right)$-free and has $\operatorname{rc}\left(G_{1}^{r-1}\right)=$ $r-1=\operatorname{diam}\left(G_{1}^{r-1}\right)+r-3$. This shows that the constant in Theorem 4 and Corollary 5 has to depend on r.

Theorem 6. Let G be a connected $\left(K_{1,3}, N\right)$-free graph. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+3$.
For the proof of Theorem 6, we will need some observations on cycles and paths in $\left(K_{1,3}, N\right)$-free graphs. The first of them deals with induced cycles.

Lemma 7. Let G be a $\left(K_{1,3}, N\right)$-free graph and let $C \subset G$ be a chordless cycle of length at least 5 in G. Then $V(C) \cup N_{G}(C)=V(G)$ and every vertex in $V(G) \backslash V(C)$ has at least 2 consecutive neighbors on C.

Proof. Let first $x \in V(G) \backslash V(C)$ be at distance 1 from C, let $y \in N_{C}(x)$, and let y_{1}, y_{2} be the neighbors of y on C. If neither y_{1} nor y_{2} is adjacent to x, then $G\left[\left\{y, y_{1}, y_{2}, x\right\}\right] \simeq$ $K_{1,3}$, a contradiction.

Secondly, let $x \in V(G) \backslash V(C)$ be at distance 2 from C, and let y be a neighbor of x at distance 1 from C. By the above, y has 2 consecutive neighbors y_{1}, y_{2} on C. Let y_{1}^{\prime} be the neighbor of y_{1} on C distinct from y_{2}, and, symmetrically, let y_{2}^{\prime} be the neighbor of y_{2} on C distinct from y_{1}. If $y_{1}^{\prime} y \in E(G)$, then $G\left[\left\{y, x, y_{1}^{\prime}, y_{2}\right\}\right] \simeq K_{1,3}$, if $y_{2}^{\prime} y \in E(G)$, then $G\left[\left\{y, x, y_{1}, y_{2}^{\prime}\right\}\right] \simeq K_{1,3}$, and if neither y_{1}^{\prime} nor y_{2}^{\prime} is adjacent to y, then $G\left[\left\{y_{1}, y_{2}, y, y_{1}^{\prime}, y_{2}^{\prime}, x\right\}\right] \simeq N$.

We will also need the following simple observations on shortest paths and their neighborhoods in $\left(K_{1,3}, N\right)$-free graphs. Their main idea can be found in [3] (and, in fact, already in [8]), however, for the sake of completeness, we include them here as well.

Let G be a claw-free graph, let $x, y \in V(G)$ and let $P: x=v_{0} v_{1} v_{2} \ldots v_{k}=y, k \geq 3$, be a shortest $x y$-path in G. Let $z \in V(G) \backslash V(P)$.

1. If $\left|N_{P}(z)\right|=1$, then, since G is claw-free, z is adjacent to x or to y.
2. If $\left|N_{P}(z)\right| \geq 2$ and $\left\{v_{i}, v_{j}\right\} \subset N_{P}(z)$, then, since P is a shortest path, $|i-j| \leq 2$.
3. By (1) and (2), since G is claw-free and since P is a shortest path, $\left|N_{P}(z)\right| \leq 3$ for every vertex $z \in V(G) \backslash V(P)$, and the vertices of $N_{P}(z)$ are consecutive on P.

This motivates the following notation:

$$
\begin{aligned}
& N_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right\} \text { for } 1 \leq i \leq k-1, \\
& M_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i-1}, v_{i}\right\}\right\} \text { for } 1 \leq i \leq k, \\
& M_{0}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{0}\right\}\right\}, \\
& M_{k+1}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{k}\right\}\right\} .
\end{aligned}
$$

Then, by (1), (2) and (3), we have $N(P) \cup V(P)=\left(\bigcup_{i=1}^{k-1} N_{i}\right) \cup\left(\bigcup_{i=0}^{k+1} M_{i}\right) \cup V(P)$. We further denote $S=V(P) \cup N(P)$ and $R=V(G) \backslash S$. The sets M_{i} and N_{i} have the following properties.

Lemma 8. Let G be a $\left(K_{1,3}, N\right)$-free graph, let $x, y \in V(G)$ be vertices at distance $\operatorname{dist}_{G}(x, y) \geq 3$, and let $P: x=v_{0} v_{1} v_{2} \ldots v_{k}=y$ be a shortest $x y$-path in G. Then
(i) $N_{G}\left(M_{i}\right) \subset V(P) \cup N_{G}(P), i=2, \ldots, k-1$,
(ii) $N_{G}\left(N_{i}\right) \subset V(P) \cup N_{G}(P), i=1, \ldots, k-1$,
(iii) $N_{P}(R)=\emptyset$,
(iv) $N_{S}(R) \subseteq M_{0} \cup M_{1} \cup M_{k} \cup M_{k+1}$.

Proof. If $z y \in E(G)$ for some $z \in R$ and $y \in M_{i}, 2 \leq i \leq k-1$, then we have $G\left[\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, y, z\right\}\right] \simeq N$, a contradiction. Hence $N_{G}\left(M_{i}\right) \subset S$, implying (i). Similarly, if $z y \in E(G)$ for $z \in R$ and $y \in N_{i}, 1 \leq i \leq k-1$, then $G\left[\left\{y, z, v_{i-1}, v_{i+1}\right\}\right] \simeq$ $K_{1,3}$, a contradiction. Hence $N_{G}\left(N_{i}\right) \subset S$, implying (ii). Part (iii) follows immediately by the definition of R, and (iv) follows immediately by (i) and $(i i)$.

Proof of Theorem 6. Let G be a $\left(K_{1,3}, N\right)$-free graph. If $\operatorname{diam}(G)=1, G$ is a complete graph and there is nothing to do.

Let now $\operatorname{diam}(G)=2$. If G is bridgeless, we have $\operatorname{rc}(G) \leq 5=\operatorname{diam}(G)+3$ by Theorem D; if G has $k \geq 1$ bridges, then, by $\operatorname{diam}(G)=2$, all bridges in G have a vertex in common, implying $k \leq 2$ (since G is $K_{1,3}$-free), and we have $\operatorname{rc}(G) \leq k+2 \leq 4=$ $\operatorname{diam}(G)+2$ by Theorem E.

Thus, for the rest of the proof we suppose that $\operatorname{diam}(G)=d \geq 3$. Let $v_{0}, v_{d} \in V(G)$ be at distance d, let $P: v_{0} v_{1} v_{2} \ldots v_{d}$ be a diameter path in G, and let M_{i}, N_{i}, S, R be as above. Set $B_{c}=\left(\cup_{i=1}^{d-1} N_{i}\right) \cup\left(\cup_{i=2}^{d-1} M_{i}\right) \cup\left\{v_{1}, \ldots, v_{d-1}\right\}$. By virtue of Lemma 8, we have $N_{G}\left(B_{c}\right) \subset V(P) \cup N_{G}(P)$.

We distinguish two cases.
Case 1: B_{c} is a cutset of G.
We claim that $R=\emptyset$. Let, to the contrary, $z \in R$ be at distance 2 from P. Then, by Lemma 8, by the assumption of Case 1 and by symmetry, we can suppose that $N_{S}(z) \subset$ $M_{0} \cup M_{1}$. Let Q be a shortest $\left(z, v_{d}\right)$-path, let w be the first vertex of Q in B_{c} (it exists by the assumption of Case 1), and let w^{-}be the predecessor of w on Q. By Lemma 8 , $\operatorname{dist}\left(w^{-}, P\right)=1$, implying $w^{-} \in M_{0} \cup M_{1}$. Then $\operatorname{dist}_{G}\left(w^{-}, v_{d}\right) \geq d-1$ (otherwise the path $v_{0} w^{-} Q v_{d}$ is a $\left(v_{0}, v_{d}\right)$-path shorter than $\left.d\right)$, implying $\operatorname{dist}_{G}\left(w^{-}, v_{d}\right)=d-1$ and $w^{-} z \in E(G)$. But then $G\left[\left\{w^{-}, z, v_{0}, w\right\}\right] \simeq K_{1,3}$, a contradiction. Thus, $V(P)$ is a connected dominating set in G. Moreover, if $M_{0} \neq \emptyset$, then $M_{0} \subset N_{G}\left(M_{2}\right)$, for otherwise again M_{0} contains a vertex at distance $d+1$ from v_{d} (note that an edge from M_{0} to M_{3} is not possible since it would create an induced net). This specifically implies that every vertex in M_{0} is of degree at least 2 . Thus, the only vertices of G that can possibly be of degree 1 , are the vertices v_{0} and v_{d}. Consequently, $V(P)$ is a connected two-way dominating set in G, and, by Theorem B, we have $\operatorname{rc}(G) \leq \operatorname{rc}(P)+3=\operatorname{diam}(G)+3$.

Case 2: B_{c} is not a cutset of G.
In this case, our strategy is to construct in G an induced cycle of length at least 5 and to use Lemma 7 and Proposition C. However, for $d=3$, it is possible that G contains an edge $x y$ with $x \in M_{1}$ and $y \in M_{3}$, in which case the general construction does not work. Thus, we consider the possibility when $d=3$ separately.

$$
\text { Set } H=G-B_{c} \text {. }
$$

Subcase 2.1: $d=3$.
First suppose that H contains a $\left(v_{0}, v_{3}\right)$-path which neither contains an edge from M_{1} to M_{3} nor has such an edge as a chord, and, among all such paths, let $P^{\prime}: v_{3} v_{4} \ldots v_{3+\ell}=v_{0}$ be a shortest one. Clearly, $\ell \geq 3$. Set $P^{3}: v_{2} v_{3} v_{4}$ if $v_{2} v_{4} \notin E(G)$ or $P^{3}: v_{2} v_{4}$ if $v_{2} v_{4} \in E(G)$, and, symmetrically, set $P^{0}: v_{3+\ell-1} v_{0} v_{1}$ if $v_{3+\ell-1} v_{1} \notin E(G)$ or $P^{0}: v_{3+\ell-1} v_{1}$ if $v_{3+\ell-1} v_{1} \in E(G)$, respectively. Set $C: v_{1} v_{2} P^{3} v_{4} \ldots v_{3+\ell-1} P_{0} v_{1}$. By the choice of P^{\prime}, at least one of the paths $P^{0}, P^{3}, v_{4} P^{\prime} v_{3+\ell-1}$ has length at least 2 , hence C is a cycle of length at least 5 and it is straightforward to verify that C is chordless.

Claim 1. $\quad \ell \leq 5$.
Proof. Suppose that $\ell \geq 6$, and let Q be a shortest $\left(v_{0}, v_{5}\right)$-path in G. Then $|E(Q)| \leq 3$ (since $\operatorname{diam}(G)=3$), and, since $\ell \geq 6$ and P^{\prime} is shortest in $H=G-B_{c}$, we have $\operatorname{dist}_{H}\left(v_{0}, v_{5}\right) \geq 4$. Hence either Q contains an edge between M_{1} and M_{3}, or Q contains a vertex from B_{c}. However, in the first case, if $x \in V(Q) \cap M_{3}$ and x^{-}, x^{+}are the predecessor and successor of x on Q, then $G\left[\left\{x, x^{-}, x^{+}, v_{3}\right\}\right] \simeq K_{1,3}$, a contradiction. Hence Q contains a vertex from B_{c}.

Let w^{-}be the last vertex of Q in B_{c}, and let w be its successor on Q (it exists since $v_{5} \notin B_{c}$ by the definition of $\left.P^{\prime}\right)$. By Lemma $8, w$ is at distance at most 1 from P. Since clearly $w \notin\left\{v_{0}, v_{3}\right\}$, either $w v_{0} \in E(G)$ or $w v_{3} \in E(G)$. If $w v_{0} \in E(G)$, then, replacing in Q the subpath $v_{0} Q w$ by the edge $v_{0} w$, we get a $\left(v_{0}, v_{5}\right)$-path in G shorter than Q, a contradiction. Hence $w v_{3} \in E(G)$. Now, $w \neq v_{5}$ since C is chordless, therefore $\operatorname{dist}_{G}\left(v_{0}, w\right)=2$, implying that $v_{0}, w^{-} \in E(G)$ and $w v_{5} \in E(Q)$. But then $G\left[\left\{w, w^{-}, v_{5}, v_{3}\right\}\right] \simeq K_{1,3}$, a contradiction. Hence $\ell \leq 5$.

Now, C is a chordless cycle of length at least 5 and at most $3+\ell \leq 8$. Thus, by Lemma 7, Proposition C and Proposition A (v), we have $\operatorname{rc}(G) \leq \operatorname{rc}(C)+2 \leq 6=$ $\operatorname{diam}(G)+3$.

Thus, we finally suppose that every $\left(v_{0}, v_{d}\right)$-path in H either contains an edge from M_{1} to M_{3}, or has such an edge as a chord.

Claim 2. The set $V(P) \cup M_{1} \cup B_{c} \cup M_{3} \subset V(G)$ can be covered by 4 complete graphs $K_{1}, K_{2}, K_{3}, K_{4}$ such that $V\left(K_{1}\right)=\left\{v_{0}, v_{1}\right\} \cup M_{1}, V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\} \cup N_{1} \cup M_{2}, V\left(K_{3}\right)=$ $\left\{v_{1}, v_{2}\right\} \cup N_{2}$, and $V\left(K_{4}\right)=\left\{v_{2}, v_{3}\right\} \cup M_{3}$.

Proof. If there are $x_{1}, x_{2} \in M_{1}$ with $x_{1} x_{2} \notin E(G)$, then $G\left[\left\{v_{1}, x_{1}, x_{2}, v_{2}\right\}\right] \simeq K_{1,3}$, a contradiction. Hence K_{1} is complete. Similarly, if some $x_{1}, x_{2} \in\left(N_{1} \cup M_{1}\right)$ are nonadjacent, then $G\left[\left\{v_{2}, x_{1}, x_{2}, v_{3}\right\}\right] \simeq K_{1,3}$, hence K_{2} is also complete. The proof for K_{3} and K_{4} is symmetric.

$$
\text { Set } F=G\left[V(P) \cup M_{1} \cup B_{c} \cup M_{3}\right] \text {. }
$$

Claim 3. $\quad \operatorname{rc}(F) \leq 4$.

Proof. Color $E\left(K_{1}\right)$ with color 1, $E\left(K_{i}\right) \backslash E\left(K_{i-1}\right)$ with color $i, i=2,3,4$, and remaining edges of F arbitrarily (e.g., all of them with color 4). Then F is rainbow-connected.

Claim 4. $\quad V(F) \cup N_{G}(F)=V(G)$ and every vertex in $V(G) \backslash V(F)$ has at least 2 neighbors in F.

Proof. Suppose that a vertex $x \in V(G) \backslash V(F)$ at distance 1 from F has exactly one neighbor in F, and set $N_{F}(x)=\{y\}$. Then, by Lemma 8 , up to symmetry, either $x \in M_{0}$ or $y \in M_{1}$. Let Q be a shortest $\left(x, v_{3}\right)$-path in H. By the assumption, Q contains an edge from M_{1} to M_{3}, implying that, in both cases, the successor of x on Q is in M_{1}. Thus, if $x \in M_{0}, x$ has 2 neighbors in F and we are done, and, if $y \in M_{1}$, the successor y^{+}of y on Q is in M_{3} and we have $G\left[\left\{y, x, v_{0}, y^{+}\right\}\right] \simeq K_{1,3}$, a contradiction. Hence every vertex at distance 1 from F has at least 2 neighbors in F.

It remains to show that $V(F) \cup N_{G}(F)=V(G)$. Let, to the contrary, $z \in V(G)$ be at distance 2 from F, let y be a neighbor of z at distance 1 from F, and, by the previous part, let y_{1}, y_{2} be neighbors of y in $V(F)$. Then $y_{1} y_{2} \in E(G)$, for otherwise $G\left[\left\{y, z, y_{1}, y_{2}\right\}\right] \simeq K_{1,3}$. Since $\operatorname{dist}\left(z, v_{0}\right) \leq 3$ and $\operatorname{dist}\left(z, v_{3}\right) \leq 3$, we have, up to symmetry, $y_{1} \in M_{1} \cup\left\{v_{0}\right\}$ and $y_{2} \in M_{3} \cup\left\{v_{3}\right\}$. If e.g. $y_{2}=v_{3}$, then $v_{0} y_{1} y_{2}$ is a $\left(v_{0}, v_{3}\right)$-path of length 2 , a contradiction. Hence $y_{2} \in M_{3}$, and, symmetrically, $y_{1} \in M_{1}$. But then $G\left[\left\{y, y_{1}, y_{2}, z, v_{0}, v_{3}\right\}\right] \simeq N$, a contradiction.

Now, by Claim 4, by Claim 3 and by Proposition C, we have $\operatorname{rc}(G) \leq \operatorname{rc}(F)+2 \leq 6=$ $\operatorname{diam}(G)+3$.

Subcase 2.2: $d \geq 4$.
Let $P^{\prime}: v_{d} v_{d+1} v_{d+2} \ldots v_{d+\ell-1} v_{d+\ell}=v_{0}$ be a shortest $v_{d} v_{0}$-path in H. Since P is a diameter path, $\ell \geq d$. Since H is $\left(K_{1,3}, N\right)$-free and P^{\prime} is a shortest path in H, we can define analogously the sets M_{i}, N_{i} for $i=d+1, \ldots d+\ell$, and we set $B_{c}^{\prime}=\left(\cup_{i=d+1}^{d+\ell-1} N_{i}\right) \cup$ $\left(\cup_{i=d+2}^{d+\ell-1} M_{i}\right) \cup\left\{v_{d+1}, \ldots, v_{d+\ell-1}\right\}$. By Lemma 8, we have $N_{G}\left(B_{c}^{\prime}\right) \subset V\left(P^{\prime}\right) \cup N_{G}\left(P^{\prime}\right)$.

Let P^{d} be the path $P^{d}: v_{d-1} v_{d} v_{d+1}$ if $v_{d-1} v_{d+1} \notin E(G)$, or the edge $P^{d}: v_{d-1} v_{d+1}$ if $v_{d-1} v_{d+1} \in E(G)$, respectively, and, symmetrically, set $P^{0}: v_{d+\ell-1} v_{0} v_{1}$ if $v_{d+\ell-1} v_{1} \notin$ $E(G)$, or $P^{0}: v_{d+\ell-1} v_{1}$ if $v_{d+\ell-1} v_{1} \in E(G)$, respectively. Finally, let C be the cycle $C: v_{1} \ldots v_{d-1} P^{d} v_{d+1} \ldots v_{d+\ell-1} P^{0} v_{1}$. Then C is a cycle of length at least $2 d-2$.

Claim 5. The cycle C is chordless.
Proof. Let, to the contrary, $v_{i} v_{j} \in E(G)$ be a chord in C. Since both P and P^{\prime} are chordless, we can choose the notation such that $1 \leq i \leq d-1$ and $d+1 \leq j \leq d+\ell-1$. Since $v_{j} \in V\left(P^{\prime}\right)$, we have $v_{j} \notin B_{c}$ by the definition of P^{\prime}, implying that $i=d-1$ and $v_{j} \in M_{d}$, or, symmetrically, $i=1$ and $v_{j} \in M_{1}$. This implies that in the first case $v_{j}=v_{d+1}$ and in the second case $v_{j}=v_{d+\ell-1}$, in both cases, $v_{i} v_{j} \in V(C)$ by the definition of C. Thus, C is chordless.

Claim 6. $\quad \ell \leq d+2$.
Proof. Suppose that $\ell \geq d+3$, and let Q be a shortest $\left(v_{0}, v_{d+2}\right)$-path in G. Then $|E(Q)| \leq d($ since $\operatorname{diam}(G)=d)$, and, since $\ell \geq d+3$ and P^{\prime} is shortest in $H=G-B_{c}$, we have $\operatorname{dist}_{H}\left(v_{0}, v_{d+2}\right) \geq d+1$. Hence Q contains a vertex from B_{c}. Let w^{-}be the last vertex of Q in B_{c}, and let w be its successor on Q (it exists since $v_{d+2} \notin B_{c}$ by the definition of P^{\prime}). By Lemma $8, w$ is at distance at most 1 from P. Since clearly $w \notin\left\{v_{0}, v_{d}\right\}$, either $w v_{0} \in E(G)$ or $w v_{d} \in E(G)$. If $w v_{0} \in E(G)$, then, replacing in Q the subpath $v_{0} Q w$ by the edge $v_{0} w$, we get a $\left(v_{0}, v_{d+2}\right)$-path in G shorter than Q, a contradiction. Hence $w v_{d} \in E(G)$. Now, $w \neq v_{d+2}$ since C is chordless, implying $\operatorname{dist}_{G}\left(v_{0}, w\right) \leq d-1$. However, if $\operatorname{dist}_{G}\left(v_{0}, w\right) \leq d-2$, then $v_{0} Q w v_{d}$ is a $\left(v_{0}, v_{d}\right)$-path of length at most $d-1$, contradicting the fact that $\operatorname{diam}(G)=d$. Hence $\operatorname{dist}_{G}\left(v_{0}, w\right)=d-1$, implying that $\operatorname{dist}_{G}\left(v_{0}, w^{-}\right)=d-2$ and $w v_{d+2} \in E(Q)$. But then $G\left[\left\{w, w^{-}, v_{d+2}, v_{d}\right\}\right] \simeq K_{1,3}$, a contradiction. Hence $\ell \leq d+2$.

By Claim 5, C is a chordless cycle of length at least $2 d-2 \geq 6$, thus, by Lemma 7 and by Proposition $\mathrm{C}, \mathrm{rc}(G) \leq \mathrm{rc}(C)+2$. By Claim 6, the length of C is at most $d+\ell \leq 2 d+2$, hence, by Proposition $\mathrm{A}(v), \operatorname{rc}(C) \leq\left\lceil\frac{2 d+2}{2}\right\rceil=d+1$. Summarizing, we have $\operatorname{rc}(G) \leq \operatorname{rc}(C)+2 \leq d+3$.

5 Concluding remarks

In Sections 3 and 4, we have characterized forbidden families \mathcal{F} with $|\mathcal{F}| \leq 2$ implying that $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$. As a next step, it is natural to ask for forbidden families \mathcal{F} implying that $\operatorname{rc}(G)$ is bounded by a linear function of $\operatorname{diam}(G)$. Thus, we can address the following question.

For which families \mathcal{F} of connected graphs, there are constants $q_{\mathcal{F}}, k_{\mathcal{F}}$ such that a connected graph G being \mathcal{F}-free implies $\operatorname{rc}(G) \leq q_{\mathcal{F}} \cdot \operatorname{diam}(G)+k_{\mathcal{F}}$?

For $|\mathcal{F}|=1$, it is easy to observe that both graphs G_{1}^{t}, G_{2}^{t}, used in the proof of the "only if" part of Theorem 1, have bounded diameter but their rainbow connection number is unbounded for $t \rightarrow \infty$. Thus, for $|\mathcal{F}|=1$, the answer to the above question is the same as in Theorem 1, i.e., the only such graph X is the path $X=P_{3}$.

Our last result shows that the situation is the same also for $|\mathcal{F}|=2$.
Theorem 9. Let $X, Y \neq P_{3}$ be connected graphs. Then there are constants $q_{X Y}, k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq q_{X Y} \cdot \operatorname{diam}(G)+k_{X Y}$, if and only if (up to symmetry) either $X=K_{1, r}, r \geq 4$ and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

Proof. Sufficiency follows from Theorems 4 and 6; it remains to show necessity.
Let q, k be arbitrary constants, let s be a positive integer such that $3 \cdot 2^{s-2}>q+1$, and let T_{s} be a balanced cubic tree of depth $s+1$, i.e., with $3 \cdot 2^{s}$ leaves (vertices of degree 1) and $3 \cdot 2^{s}-2$ non-leaves of degree 3 , thus with $\left|V\left(T_{s}\right)\right|=3 \cdot 2^{s+1}-2$ vertices and $\left|E\left(T_{s}\right)\right|=3 \cdot 2^{s+1}-3$ edges (for $s=2$, see Fig. 4).

Figure 4: The tree T_{2}
For $t \geq s+1$, let:

- $G_{5}^{s, t}$ be the graph obtained by identifying each leaf of a tree T_{s} with an endvertex of a path P_{t+1},
- $G_{6}^{s, t}$ be the line graph of the graph $G_{5}^{s, t}$ (for $s=1$, see Fig. 5).

Figure 5: The graphs $G_{5}^{1, t}$ and $G_{6}^{1, t}$
For the graph $G_{5}^{s, t}$, we have $\operatorname{diam}\left(G_{5}^{s, t}\right)=2(s+t+1)$ and $\operatorname{rc}\left(G_{5}^{s, t}\right)=\left|E\left(G_{5}^{s, t}\right)\right|>$ $3 \cdot 2^{s} t \geq 3 \cdot 2^{s-1}(t+s+1)=3 \cdot 2^{s-2} \cdot \operatorname{diam}\left(G_{5}^{s, t}\right)>(q+1) \cdot \operatorname{diam}\left(G_{5}^{s, t}\right)$ since $G_{5}^{s, t}$ is a tree. Hence there is a t_{1} such that, for $t \geq t_{1}, \operatorname{rc}\left(G_{5}^{s, t}\right)>q \cdot \operatorname{diam}\left(G_{5}^{s, t}\right)+k$.

For the graph $G_{6}^{s, t}$, we analogously have $\operatorname{diam}\left(G_{6}^{s, t}\right)=2 s+1+2 t=2 s+2 t+1$ and, since $G_{6}^{s, t}$ has $3 \cdot 2^{s} t$ bridges, we have $\operatorname{rc}\left(G_{6}^{s, t}\right) \geq 3 \cdot 2^{s} t \geq 3 \cdot 2^{s-1}(t+s+1)=$ $3 \cdot 2^{s-2}(2 t+2 s+2)>3 \cdot 2^{s-2} \cdot \operatorname{diam}\left(G_{6}^{s, t}\right)>(q+1) \cdot \operatorname{diam}\left(G_{6}^{s, t}\right)$. Hence there is a t_{2} such that, for $t \geq t_{2}, \operatorname{rc}\left(G_{6}^{s, t}\right)>q \cdot \operatorname{diam}\left(G_{6}^{s, t}\right)+k$.

We will also use the graphs G_{1}^{t} and G_{2}^{t} introduced in the proof of Theorem 1, which, as already noted, have bounded diameter but their rainbow connection number is unbounded
for $t \rightarrow \infty$; hence there are t_{3} and t_{4} such that $\operatorname{rc}\left(G_{1}^{t}\right)>q \cdot \operatorname{diam}\left(G_{1}^{t}\right)+k$ for $t \geq t_{3}$ and $\operatorname{rc}\left(G_{2}^{t}\right)>q \cdot \operatorname{diam}\left(G_{2}^{t}\right)+k$ for $t \geq t_{4}$.

Now, let X, Y be connected graphs implying that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq q \cdot \operatorname{diam}(G)+k$, and set $t_{0}=\max \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Then, by the above discussion, for $t \geq t_{0}$, each of the graphs $G_{1}^{t}, G_{2}^{t}, G_{5}^{s, t}, G_{6}^{s, t}$ contains an induced X or Y. By symmetry, we can suppose that G_{1}^{t} contains X, implying $X=K_{1, r}$ for some $r \geq 3$. Since both G_{2}^{t} and $G_{6}^{s, t}$ are claw-free, Y is an induced subgraph of both G_{2}^{t} and $G_{6}^{s, t}$, implying that $Y=N$ (or an induced subgraph).

Considering $G_{5}^{s, t}$, we have two possibilities:
(i) $G_{5}^{s, t}$ contains X, and then $X=K_{1,3}$ and $Y=N$,
(ii) $G_{5}^{s, t}$ contains Y, and then, since the only induced subgraph of N contained in $G_{5}^{s, t}$ and different from P_{3} is P_{4}, and the case $X=K_{1,3}$ is already covered in (i), we conclude that $X=K_{1, r}, r \geq 4$, and $Y=P_{4}$.

References

[1] M. Basarajavu, L.S. Chandran, D. Rajendraprasad, and D. Ramaswamy, Rainbow connection number and radius, Graphs and Combinatorics 30 (2014), 275-285.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[3] J. Brousek, R. J. Faudree, and Z. Ryjáček, A note on hamiltonicity of generalized net-free graphs of large diameter, Discrete Math. 251 (2002), 77-85.
[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electr. Journal Comb. 15 (2008), \#57.
[5] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connectivity, Journal Comb. Optimization 21 (2011) 330-347.
[6] L. S. Chandran, A. Das, D. Rajendraprasad, and N. M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
[7] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008), 85-98.
[8] D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the hamiltonian theme. The theory and applications of graphs. (Kalamazoo, Mich. 1980), Wiley, New York, 1981 297-316.
[9] A. B. Ericksen, A matter of security, Graduating Engineer \& Computer Careers (2007), 24-28.
[10] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček, and I. Schiermeyer, The rainbow connection number in 2 -connected graphs, Discrete Mathematics 313 (2013), 1884-1892.
[11] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Th. 31 (2011), 313-320.
[12] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), 185-191.
[13] V. B. Le and Z. Tuza, Finding optimal rainbow connection is hard, Preprint, Rostock Inst. für Informatik, 2009.
[14] H. Li, X. Li, and S. Liu, Rainbow connection of graphs with diameter 2, Discrete Mathematics 312 (2012), 1453-1457.
[15] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013), 603-611.
[16] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[17] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Lecture Notes in Computer Science 5874 (2009), 432-437.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia; Centre of Excellence ITI - Institute for Theoretical Computer Science, Charles University; European Centre of Excellence NTIS - New Technologies for the Information Society; P.O. Box 314, 30614 Pilsen, Czech Republic
 ${ }^{2}$ Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany
 ${ }^{3}$ e-mail \{holubpre, ryjacek, vranap\}@kma.zcu.cz
 ${ }^{4} \mathrm{e}$-mail Ingo.Schiermeyer@tu-freiberg.de
 ${ }^{5}$ Research partly supported by the DAAD-PPP project "Rainbow connection and cycles in graphs" with project-ID 56268242 (German) and 7AMB13DE003 (Czech), respectively.
 ${ }^{6}$ Research partly supported by project P202/12/G061 of the Czech Science Foundation.

