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Abstract

The closure cl(G) of a claw-free graph G is the graph obtained from G by a

series of local completions at eligible vertices, as long as this is possible. The

construction of an SM-closure of G follows the same operations, but if G is not

Hamilton-connected, then the construction terminates once every local completion

at an eligible vertex leads to a Hamilton-connected graph.

Although (see e.g. [7]) cl(G) may be Hamilton-connected even if G is not, we

show that if G is a 2-connected claw-free graph with minimum degree at least 3

such that its SM-closure is hourglass-free, then G is Hamilton-connected if and only

if the closure cl(G) of G is Hamilton-connected.

Keywords: closure; SM-closure; claw-free; Hamilton-connected; hourglass

1 Introduction

All graphs considered here are finite undirected graphs and for terminology and notation

not defined here we refer to [1].

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). The claw is

the graph K1,3 and the hourglass is the only graph with degree sequence 4, 2, 2, 2, 2 (i.e.

two triangles with exactly one common vertex). The square of a graph G is the graph

G2 whose vertex set is V (G), two distinct vertices being adjacent in G2 if and only if

their distance in G is at most 2. Specifically, the square of a path P6 on six vertices will

be denoted (P6)
2 (see Fig. 1). A graph is called S-free if it has no induced subgraph

isomorphic to S. Specifically, a graph is called claw-free if S = K1,3 and hourglass-free
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The graph (P6)
2

Figure 1: The graphs K1,3,Γ, (P6)
2

if S = Γ, respectively. A graph G is hamiltonian if G contains a hamiltonian cycle, i.e.,

a cycle passing through all its vertices, and G is Hamilton-connected if, for any pair of

distinct vertices x, y ∈ V (G), G contains a hamiltonian (x, y)-path, i.e., an (x, y)-path

passing through all vertices of G.

For a vertex x ∈ V (G), the set NG(x) = {y ∈ V (G) : xy ∈ E(G)} is called the

neighborhood of x in G. A vertex x ∈ V (G) is locally connected if the subgraph induced

by NG(x) is connected, x is eligible if the subgraph induced by NG(x) is connected

and noncomplete, and x is simplicial if the subgraph induced by NG(x) is complete,

respectively. The set of all eligible vertices in G will be denoted VEL(G).

Let x be a vertex of a claw-free graph G. If the subgraph induced by NG(x) is

connected, we add edges joining all pairs of nonadjacent vertices in NG(x) and obtain

the graph G∗

x. This operation is called the local completion of G at x. Note that if a

graph G is {K1,3,Γ}-free and x ∈ VEL(G), then G∗

x is not necessarily Γ-free (an easy

example is the graph (P6)
2, in which we choose x as one of its vertices of degree 3).

The closure cl(G) of a graph G is the graph obtained from G by recursively repeating

the local completion operation, as long as this is possible. Note that the closure cl(G) of

a given graph G is uniquely determined and cl(G) is the line graph of a simple triangle-

free graph [6].

As in [5], for a given claw-free graph G, we construct a graph GM by the following

construction.

(i) If G is Hamilton-connected, we set GM = cl(G).

(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G1, · · ·Gk

such that

(1) G1 = G,

(2) Gi+1 = (Gi)
∗

xi
for some xi ∈ VEL(Gi), i = 1, · · · , k,

(3) Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

(4) for any x ∈ VEL(Gk), (Gk)∗x is Hamilton-connected,

and we set GM = Gk.
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A graph GM obtained by the above construction will be called a strong M-closure (or

briefly an SM-closure) of the graph G, and a graph G equal to its SM-closure will be

said to be SM-closed. If GM is an SM-closure of a claw-free graph G, then clearly GM is

Hamilton-connected if and only if so is G. Note that, for a given graph G, its SM-closure

is not necessarily uniquely determined.

As shown in [6], a claw-free graph G is hamiltonian if and only if cl(G) is hamiltonian,

however, it is known (see [2], [7]) that there are infinitely many claw-free graphs G such

that G is not Hamilton-connected while cl(G) is Hamilton-connected. However, it could

be still possible that G is Hamilton-connected if and only if cl(G) is Hamilton-connected,

if the graph G satisfies some additional assumptions. This question was considered

in [4]. The first observation in [4] shows that the local completion operation preserves

the property of being {K1,3, (P6)
2,Γ}-free.

Proposition A [4]. Let G be a connected {K1,3, (P6)
2,Γ}-free graph and let x be a

locally connected vertex of G. Then G∗

x is also {K1,3, (P6)
2,Γ}-free.

Using Proposition A, the following was proved in [4].

Theorem B [4]. Let G be a 3-connected {K1,3, (P6)
2,Γ}-free graph with minimum

degree at least 4. Then G is Hamilton-connected if and only if cl(G) is Hamilton-

connected.

In this paper, we prove the following results strengthening Theorem B.

Theorem 1. Let G be a 2-connected claw-free graph with minimum degree δ(G) ≥ 3

and let GM be an SM-closure of G. If GM is hourglass-free, then GM is the only

SM-closure of G and GM = cl(G).

Proof of Theorem 1 is postponed to Section 3.

Note that, in Theorem 1, it is possible that G is of connectivity 2 while cl(G) is

3-connected. Then clearly G is not Hamilton-connected, and Theorem 1 guarantees that

neither is cl(G) (regardless of its connectivity).

From Theorem 1 we easily obtain the following fact.

Theorem 2. Let G be a 2-connected claw-free graph with minimum degree δ(G) ≥ 3

such that G has an hourglass-free SM-closure GM . Then G is Hamilton-connected if

and only if cl(G) is Hamilton-connected.

Proof. If G is Hamilton-connected, then clearly so is cl(G). Conversely, suppose

that G is not Hamilton-connected, and let GM be an hourglass-free SM-closure of G.

Then GM is not Hamilton-connected either. By Theorem 1, GM = cl(G) and the result

follows.

3



Theorem 2 implies the following result, which is a direct strengthening of Theorem B.

Corollary 3. Let G be a 2-connected {K1,3, (P6)
2,Γ}-free graph with minimum

degree δ(G) ≥ 3. Then G is Hamilton-connected if and only if cl(G) is Hamilton-

connected.

Proof. Let GM be an SM-closure of G. If G is {K1,3, (P6)
2,Γ}-free, then so is GM

by Proposition A. The statement now follows by Theorem 2.

2 Notations and preliminary results

Before presenting the proof of Theorem 1, we first introduce some additional terminology

and notation. The line graph L(G) of a graph G is the graph with V (L(G)) = E(G) and

E(L(G)) = {eiej : ei and ej have a common vertex in G}. If G = L(H) and e ∈ E(H),

we will also use the notation L(e) to denote the vertex of G corresponding to e. For

simple graphs, it is well-known that if G is a line graph (of some graph), then the graph

H such that G = L(H) is uniquely determined (with one exception of the graphs C3 and

K1,3, for which both L(C3) and L(K1,3) are isomorphic to C3). However, this is not true

for multigraphs, as it is easy to construct infinitely many examples of nonisomorphic

multigraphs with isomorphic line graphs. This drawback can be overcome by imposing

an additional requirement that if G = L(H), then simplicial vertices in G correspond to

pendant edges in H (where a pendant edge is an edge one vertex of which is of degree 1).

It can be shown [8] that for any line graph G there is a uniquely determined multigraph

H such that G = L(H) and simplicial vertices in G correspond to pendant edges in H.

This graph H will be called the preimage of G and denoted H = L−1(G).

It is an easy observation that in the special case when G is a line graph and H =

L−1(G), a vertex x ∈ V (G) is locally connected if and only if the edge e = L−1(x) is in

a triangle or in a multiedge in H, and G∗

x = L(H|e), where the graph H|e is obtained

from H by contraction of e into a vertex and replacing the created loop(s) by pendant

edge(s).

A walk in G is an alternating sequence v0, e0, v1, e1, · · · , ek−1, vk of vertices and

edges of G such that ei = vivi+1 for all i = 0, 1, · · · , k − 1. A trail in G is a walk with

no repeated edges. For a trail T = v0, e0, v1, e1, · · · , ek−1, vk and two elements a, b of the

sequence T , a preceding b in T (a, b can be vertices or edges), the subtrail T ′ determined

by the subsequence between a and b will be denoted T ′ = aTb; the trail T ′′, determined

by the same sequence in the reverse order is denoted T ′′ = b
←−
T a. For h, f ∈ E(G), an

(h, f)-trail in G is a trail such that e0 = h, ek−1 = f .

Given a trail T and an edge e in a multigraph G, we say that e is dominated

(internally dominated) by T if e is incident to a vertex (to an interior vertex) of T ,

respectively. A trail T in G is called an internally dominating trail, shortly IDT, if T

4



internally dominates all the edges in G. The following result shows that Hamilton paths

in a line graph correspond to internally dominating trails in its preimage.

Theorem C [3]. Let H be a multigraph with |E(H)| ≥ 3. Then G = L(H)

is Hamilton-connected if and only if, for any pair of edges e1, e2 ∈ E(H), H has an

internally dominating (e1, e2)-trail.

It can be shown (see [5]) that if G is SM-closed, then G is a line graph, and if H =

L−1(G), then H contains no multiple edge of multiplicity more than 2, no multitriangle

(a triangle with a multiple edge) and no diamond (a pair of triangles with a common

edge). The following two theorems summarize further basic properties of the SM-closure

operation which will be of importance for our proof.

Theorem D [5]. Let G be a claw-free graph and let GM be its SM-closure. Then:

1. G is Hamilton-connected if and only if GM is Hamilton-connected;

2. GM is a line graph, and H = L−1(GM ) satisfies one of the following conditions:

(1) H is a triangle-free simple graph;

(2) There are e, f ∈ E(H) such that there is no (e, f)-IDT and either

(α) H is triangle-free and {e, f} is the only multiedge in H, or

(β) H is a simple graph containing at most 2 triangles, each triangle in H

contains at least one of e, f , and if H contains 2 triangles, then the

triangles have no common edge.

Theorem E [9]. Let G be an SM-closed graph and let H = L−1(G). Then H does

not contain a triangle with a vertex of degree 2.

3 Proof of Theorem 1

In this section we provide the proof of Theorem 1.

Proof of Theorem 1. Let G be a 2-connected claw-free graph with minimum degree

δ(G) ≥ 3, let GM be an hourglass-free SM-closure of G and let H = L−1(GM ). Then

H satisfies the condition (1), (2)(α) or (2)(β) of Theorem D, and we need to prove that

GM = cl(G). If GM satisfies condition (1) of Theorem D, then H is a triangle-free simple

graph, hence GM = L(H) is a closed graph, i.e., cl(GM ) = GM , implying GM = cl(G).

For the proof of Theorem 1, it is sufficient to show that neither one of the cases (2)(α)

and (2)(β) of Theorem D is possible.

5



Case 1: H satisfies condition (2)(α) of Theorem D.

Let e, f ∈ E(H) be the (only) pair of parallel edges in H, and let a, b be their vertices. If

one of a, b is of degree 2, then e, f are non-pendant edges in H corresponding to simplicial

vertices in GM , contradicting the fact that simplicial vertices in GM correspond to

pendant edges in H = L−1(GM ). Hence both a and b are of degree at least 3. If both

dH(a) ≥ 4 and dH(b) ≥ 4, then, except for e and f , a is incident to some edges e1, e2

and b is incident to some edges f1, f2, but then GM [{L(e), L(e1), L(e2), L(f1), L(f2)}] is

an induced hourglass because H is triangle-free, a contradiction. Hence, we can assume

dH(a) = 3. Let a′ be the vertex of NH(a) \ {b}. We distinguish three possibilities

according to the degree of a′.

If dH(a′) = 1, then {e, f} is an edge-cut of H, separating the edge aa′ from the

rest of H. Hence the vertex L(aa′) is of degree 2 in GM , contradicting the fact that

δ(GM ) ≥ δ(G) ≥ 3.

If dH(a′) ≥ 3, we choose arbitrary vertices a1, a2 ∈ NH(a′) \ {a}, and then clearly

GM [{L(aa′), L(a′a1), L(a′a2), L(e), L(f)}] is an induced hourglass in GM , a contradic-

tion.

Thus, dH(a′) = 2. Let a′′ denote the second neighbor of a′ and consider the graph

H|e. Since e is in a multiedge, L(e) ∈ VEL(GM ) and, by the definition of the SM-closure,

(GM )∗
L(e) = L(H|e) is Hamilton-connected. According to Theorem C, for any pair of

edges e1, e2 ∈ E(H|e), H|e has an internally dominating (e1, e2)-trail. Let T be an

(a′a, a′a′′)-IDT in H|e. Since dH(a′) = 2, we have T = a′, a′a, aTa′′, a′′a′, a′ (i.e., a′ is

not an interior vertex of T ), and since in H|e we have a = b while in H, a and b are

the vertices of both e and f , the trail T ′ = e, aTa′, a′a, a, f is an (e, f)-IDT in H, a

contradiction.

Case 2: H satisfies condition (2)(β) of Theorem D.

Let C3 = abca be a triangle in H containing the edge e, and assume e = ac. Since

GM is SM-closed, by Theorem E, each of the vertices a, b, c has degree at least 3. If,

say, dH(a) > 3, we consider a pair of vertices a1, a2 ∈ NH(a) \ {b, c} and a vertex

b1 ∈ NH(b) \ {a, c} and then, since H contains neither a multiedge nor a diamond,

the graph GM [{L(ab), L(aa1), L(aa2), L(bc), L(bb1)}] is an induced hourglass in GM , a

contradiction. Hence d(a) = d(b) = d(c) = 3.

Let a′, b′ and c′ denote the (only) neighbors of a, b and c outside C3, respectively. If

one of a′, b′, c′ has degree 1, say dH(a′) = 1, then {ab, ac} is an edge-cut of H, separating

the edge aa′ from the rest of H, but then dGM (L(aa′)) = 2, a contradiction. If one of

a′, b′, c′ has degree at least 3, say, dH(a′) ≥ 3, we choose vertices a1, a2 ∈ NH(a′) \ {a}

and then GM [{L(aa′), L(a′a1), L(a′a2), L(ac), L(ab)}] is an induced hourglass in GM , a

contradiction again. Hence dH(a′) = dH(b′) = dH(c′) = 2.

Denote NH(a′) \ {a} = {a′′}, NH(b′) \ {b} = {b′′} and NH(c′) \ {c} = {c′′}, and set

V1 = {a, b, c, a′, b′, c′, a′′, b′′, c′′} and H1 = H[V1] (see Fig. 2). Now we consider possible

positions of the edge f in E(H1) or in E(H) \ E(H1). Since e = ac, there are, up to

6
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Figure 2: The graph H1

symmetry, 5 possible positions of f in H1, namely, f ∈ {bc, aa′, bb′, a′a′′, b′b′′} ⊆ E(H1),

and one possibility when f ∈ E(H)\E(H1). We consider these cases separately. In each

of the cases, we use the fact that, for each edge h ∈ E(H), the corresponding vertex

L(h) of GM = L(H) is eligible and hence, by the definition of the SM-closure, the graph

H|h has an (h1, h2)-IDT for any pair of edges h1, h2 ∈ E(H).

If f = bc, we consider the graph H|ab. Since L(ab) ∈ VEL(GM ), the graph

(GM )∗
L(ab) = L(H|ab) is Hamilton-connected. Let T be an (e, f)-IDT in H|ab. Then T

contains the edge cc′ and, by symmetry, we can suppose that T passes through bb′, b′b′′

and dominates (but does not pass through) aa′, a′a′′. Then T ′ = e, a, ab, bT c, f is an

(e, f)-IDT in H, a contradiction.

If f = aa′, consider H|ab, and let T be an (a′a, a′a′′)-IDT in H|ab. There are

two possibilities: either T passes through the edges bb′, b′b′′ (and does not contain the

edges cc′, c′c′′, which are dominated by T but not contained in it), or T passes through

cc′, c′c′′ and dominates but does not contain bb′, b′b′′. Then, in the first case the trail

T ′ = e, c, cb, bTa′, f , and in the second case the trail T ′ = e, a, ab, b, bc, cTa′ , f is an

(e, f)-IDT in H, a contradiction.

If f = bb′, we consider the graph H|ab, and let T be a (b′b, b′b′′)-IDT in H|ab.

Then either T passes through aa′, a′a′′ and dominates cc′, c′c′′, in which case T ′ =

e, c, cb, b, ba, aTb′, f is an (e, f)-IDT in H, or T passes through cc′, c′c′′ and dominates

aa′, a′a′′, and then T ′ = e, a, ab, b, bc, cT b′ , f is an (e, f)-IDT in H. In both cases, we

have a contradiction.

If f = a′a′′, we consider H|bc, and choose T as an (a′a′′, bb′)-IDT in H|bc. Then either

T passes through a′a (and necessarily also through cc′, c′c′′ and b′′b′), in which case T ′ =

e, cT b, ba, a, aa′, a′, f is an (e, f)-IDT in H, or T does not pass through aa′ (and neces-

sarily passes through cc′, c′c′′ but not through b′b′′), and then T ′ = e, a, ab, b, bc, c
←−
T a′′, f

is an (e, f)-IDT in H. In both cases, we have a contradiction.

If f = b′b′′, we consider H|ac, and T is a (bb′, b′b′′)-IDT in H|ac. Up to symmetry, we

can consider only one possibility, namely, that T passes through aa′, a′a′′ and dominates

cc′, c′c′′. Then T ′ = e, c, cb, b, ba, aTb′′, f is an (e, f)-IDT in H, a contradiction.

Finally, let f ∈ E(H) \ E(H1). Then we consider the graph H|ab, and T is a

(bb′, f)-IDT in H|ab.
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First suppose that T does not pass through the edge b′b′′. Then either T passes

through aa′, a′a′′ (and cc′, c′c′′ are dominated), or T passes through cc′, c′c′′ (and aa′, a′a′′

are dominated); then in the first case T ′ = e, c, cb, b, ba, a, aa′Tf and in the second case

T ′ = e, a, ab, b, bc, c, cc′Tf is an (e, f)-IDT in H, a contradiction.

Secondly, suppose that T passes through b′b′′. Then necessarily T passes through

both a′′a′, a′a and cc′, c′c′′, either in this or in the opposite orientation; in the first case

T ′ = e, a, aa′
←−
T b′b, b, bc, c, cc′Tf and in the second case T ′ = e, c, cc′

←−
T b′b, b, ba, a, aa′Tf

is an (e, f)-IDT in H, a contradiction.

This final contradiction completes the proof of Theorem 1.
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